51
|
Kabbaligere R, Lee BC, Layne CS. Balancing sensory inputs: Sensory reweighting of ankle proprioception and vision during a bipedal posture task. Gait Posture 2017; 52:244-250. [PMID: 27978501 DOI: 10.1016/j.gaitpost.2016.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 02/02/2023]
Abstract
During multisensory integration, it has been proposed that the central nervous system (CNS) assigns a weight to each sensory input through a process called sensory reweighting. The outcome of this integration process is a single percept that is used to control posture. The main objective of this study was to determine the interaction between ankle proprioception and vision during sensory integration when the two inputs provide conflicting sensory information pertaining to direction of body sway. Sensory conflict was created by using bilateral Achilles tendon vibration and contracting visual flow and produced body sway in opposing directions when applied independently. Vibration was applied at 80Hz, 1mm amplitude and the visual flow consisted of a virtual reality scene with concentric rings retreating at 3m/s. Body sway elicited by the stimuli individually and in combination was evaluated in 10 healthy young adults by analyzing center of pressure (COP) displacement and lower limb kinematics. The magnitude of COP displacement produced when vibration and visual flow were combined was found to be lesser than the algebraic sum of COP displacement produced by the stimuli when applied individually. This suggests that multisensory integration is not merely an algebraic summation of individual cues. Instead the observed response might be a result of a weighted combination process with the weight attached to each cue being directly proportional to the relative reliability of the cues. The moderating effect of visual flow on postural instability produced by vibration points to the potential use of controlled visual flow for balance training.
Collapse
Affiliation(s)
- Rakshatha Kabbaligere
- Department of Health and Human Performance, University of Houston, Houston, TX, United States; Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, United States.
| | - Beom-Chan Lee
- Department of Health and Human Performance, University of Houston, Houston, TX, United States; Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, United States
| | - Charles S Layne
- Department of Health and Human Performance, University of Houston, Houston, TX, United States; Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, United States; Center for Neuro-Engineering and Cognitive Science, University of Houston, Houston, TX, United States
| |
Collapse
|
52
|
Hyde DC, Flom R, Porter CL. Behavioral and Neural Foundations of Multisensory Face-Voice Perception in Infancy. Dev Neuropsychol 2017; 41:273-292. [PMID: 28059567 DOI: 10.1080/87565641.2016.1255744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this article, we describe behavioral and neurophysiological evidence for infants' multimodal face-voice perception. We argue that the behavioral development of face-voice perception, like multimodal perception more broadly, is consistent with the intersensory redundancy hypothesis (IRH). Furthermore, we highlight that several recently observed features of the neural responses in infants converge with the behavioral predictions of the intersensory redundancy hypothesis. Finally, we discuss the potential benefits of combining brain and behavioral measures to study multisensory processing, as well as some applications of this work for atypical development.
Collapse
Affiliation(s)
- Daniel C Hyde
- a Department of Psychology , University of Illinois at Urbana-Champaign , Champaign , Illinois
| | - Ross Flom
- b Department of Psychology , Brigham Young University , Provo , Utah
| | - Chris L Porter
- c School of Family Life , Brigham Young University , Provo , Utah
| |
Collapse
|
53
|
Hannant P, Tavassoli T, Cassidy S. The Role of Sensorimotor Difficulties in Autism Spectrum Conditions. Front Neurol 2016; 7:124. [PMID: 27559329 PMCID: PMC4978940 DOI: 10.3389/fneur.2016.00124] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to difficulties in social communication, current diagnostic criteria for autism spectrum conditions (ASC) also incorporate sensorimotor difficulties, repetitive motor movements, and atypical reactivity to sensory input (1). This paper explores whether sensorimotor difficulties are associated with the development and maintenance of symptoms in ASC. First, studies have shown difficulties coordinating sensory input into planning and executing movement effectively in ASC. Second, studies have shown associations between sensory reactivity and motor coordination with core ASC symptoms, suggesting these areas each strongly influence the development of social and communication skills. Third, studies have begun to demonstrate that sensorimotor difficulties in ASC could account for reduced social attention early in development, with a cascading effect on later social, communicative and emotional development. These results suggest that sensorimotor difficulties not only contribute to non-social difficulties such as narrow circumscribed interests, but also to the development of social behaviors such as effectively coordinating eye contact with speech and gesture, interpreting others' behavior, and responding appropriately. Further research is needed to explore the link between sensory and motor difficulties in ASC and their contribution to the development and maintenance of ASC.
Collapse
Affiliation(s)
- Penelope Hannant
- Centre for Research in Psychology, Behaviour and Achievement, Coventry University, Coventry, UK
| | - Teresa Tavassoli
- Seaver Autism Centre, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Cassidy
- Centre for Research in Psychology, Behaviour and Achievement, Coventry University, Coventry, UK
- Autism Research Centre, University of Cambridge, Cambridge, UK
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
54
|
Bilella A, Alvarez-Bolado G, Celio MR. TheFoxb1-expressing neurons of the ventrolateral hypothalamic parvafox nucleus project to defensive circuits. J Comp Neurol 2016; 524:2955-81. [DOI: 10.1002/cne.24057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/03/2016] [Accepted: 06/09/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Alessandro Bilella
- Anatomy Unit and Program in Neuroscience, Department of Medicine, Faculty of Sciences, University of Fribourg; CH-1700 Fribourg Switzerland
| | - Gonzalo Alvarez-Bolado
- Institute of Anatomy and Cell Biology, University of Heidelberg; 69120 Heidelberg Germany
| | - Marco R. Celio
- Anatomy Unit and Program in Neuroscience, Department of Medicine, Faculty of Sciences, University of Fribourg; CH-1700 Fribourg Switzerland
| |
Collapse
|
55
|
Felch DL, Khakhalin AS, Aizenman CD. Multisensory integration in the developing tectum is constrained by the balance of excitation and inhibition. eLife 2016; 5. [PMID: 27218449 PMCID: PMC4912350 DOI: 10.7554/elife.15600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/23/2016] [Indexed: 11/13/2022] Open
Abstract
Multisensory integration (MSI) is the process that allows the brain to bind together spatiotemporally congruent inputs from different sensory modalities to produce single salient representations. While the phenomenology of MSI in vertebrate brains is well described, relatively little is known about cellular and synaptic mechanisms underlying this phenomenon. Here we use an isolated brain preparation to describe cellular mechanisms underlying development of MSI between visual and mechanosensory inputs in the optic tectum of Xenopus tadpoles. We find MSI is highly dependent on the temporal interval between crossmodal stimulus pairs. Over a key developmental period, the temporal window for MSI significantly narrows and is selectively tuned to specific interstimulus intervals. These changes in MSI correlate with developmental increases in evoked synaptic inhibition, and inhibitory blockade reverses observed developmental changes in MSI. We propose a model in which development of recurrent inhibition mediates development of temporal aspects of MSI in the tectum.
Collapse
Affiliation(s)
- Daniel L Felch
- Department of Neuroscience, Brown University, Providence, United States.,Department of Cell and Molecular Biology, Tulane University, New Orleans, United States
| | - Arseny S Khakhalin
- Department of Neuroscience, Brown University, Providence, United States.,Department of Biology, Bard College, New York, United States
| | - Carlos D Aizenman
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
56
|
Nardini M, Bales J, Mareschal D. Integration of audio-visual information for spatial decisions in children and adults. Dev Sci 2015; 19:803-16. [DOI: 10.1111/desc.12327] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/21/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Marko Nardini
- Department of Psychology; University of Durham; UK
- Department of Visual Neuroscience; UCL Institute of Ophthalmology; UK
| | - Jennifer Bales
- Department of Visual Neuroscience; UCL Institute of Ophthalmology; UK
| | - Denis Mareschal
- Centre for Brain and Cognitive Development; Department of Psychological Sciences; Birkbeck University of London; UK
| |
Collapse
|
57
|
Abbas Shangari T, Falahi M, Bakouie F, Gharibzadeh S. Multisensory integration using dynamical Bayesian networks. Front Comput Neurosci 2015; 9:58. [PMID: 26052281 PMCID: PMC4440906 DOI: 10.3389/fncom.2015.00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Mohsen Falahi
- Amirkabir Robotic Center, Amirkabir University of Technology Tehran, Iran
| | - Fatemeh Bakouie
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University Tehran, Iran
| | - Shahriar Gharibzadeh
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University Tehran, Iran
| |
Collapse
|
58
|
Hahn JD, Swanson LW. Connections of the juxtaventromedial region of the lateral hypothalamic area in the male rat. Front Syst Neurosci 2015; 9:66. [PMID: 26074786 PMCID: PMC4445319 DOI: 10.3389/fnsys.2015.00066] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/06/2015] [Indexed: 01/09/2023] Open
Abstract
Evolutionary conservation of the hypothalamus attests to its critical role in the control of fundamental behaviors. However, our knowledge of hypothalamic connections is incomplete, particularly for the lateral hypothalamic area (LHA). Here we present the results of neuronal pathway-tracing experiments to investigate connections of the LHA juxtaventromedial region, which is parceled into dorsal (LHAjvd) and ventral (LHAjvv) zones. Phaseolus vulgaris leucoagglutinin (PHAL, for outputs) and cholera toxin B subunit (CTB, for inputs) coinjections were targeted stereotaxically to the LHAjvd/v. Results: LHAjvd/v connections overlapped highly but not uniformly. Major joint outputs included: Bed nuc. stria terminalis (BST), interfascicular nuc. (BSTif) and BST anteromedial area, rostral lateral septal (LSr)- and ventromedial hypothalamic (VMH) nuc., and periaqueductal gray. Prominent joint LHAjvd/v input sources included: BSTif, BST principal nuc., LSr, VMH, anterior hypothalamic-, ventral premammillary-, and medial amygdalar nuc., and hippocampal formation (HPF) field CA1. However, LHAjvd HPF retrograde labeling was markedly more abundant than from the LHAjvv; in the LSr this was reversed. Furthermore, robust LHAjvv (but not LHAjvd) targets included posterior- and basomedial amygdalar nuc., whereas the midbrain reticular nuc. received a dense input from the LHAjvd alone. Our analyses indicate the existence of about 500 LHAjvd and LHAjvv connections with about 200 distinct regions of the cerebral cortex, cerebral nuclei, and cerebrospinal trunk. Several highly LHAjvd/v-connected regions have a prominent role in reproductive behavior. These findings contrast with those from our previous pathway-tracing studies of other LHA medial and perifornical tier regions, with different connectional behavioral relations. The emerging picture is of a highly differentiated LHA with extensive and far-reaching connections that point to a role as a central coordinator of behavioral control.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Larry W Swanson
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
59
|
Wallace MT, Stevenson RA. The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia 2014; 64:105-23. [PMID: 25128432 PMCID: PMC4326640 DOI: 10.1016/j.neuropsychologia.2014.08.005] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023]
Abstract
Behavior, perception and cognition are strongly shaped by the synthesis of information across the different sensory modalities. Such multisensory integration often results in performance and perceptual benefits that reflect the additional information conferred by having cues from multiple senses providing redundant or complementary information. The spatial and temporal relationships of these cues provide powerful statistical information about how these cues should be integrated or "bound" in order to create a unified perceptual representation. Much recent work has examined the temporal factors that are integral in multisensory processing, with many focused on the construct of the multisensory temporal binding window - the epoch of time within which stimuli from different modalities is likely to be integrated and perceptually bound. Emerging evidence suggests that this temporal window is altered in a series of neurodevelopmental disorders, including autism, dyslexia and schizophrenia. In addition to their role in sensory processing, these deficits in multisensory temporal function may play an important role in the perceptual and cognitive weaknesses that characterize these clinical disorders. Within this context, focus on improving the acuity of multisensory temporal function may have important implications for the amelioration of the "higher-order" deficits that serve as the defining features of these disorders.
Collapse
Affiliation(s)
- Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37232, USA; Department of Hearing & Speech Sciences, Vanderbilt University, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.
| | - Ryan A Stevenson
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
60
|
Noriega G. A neural model to study sensory abnormalities and multisensory effects in autism. IEEE Trans Neural Syst Rehabil Eng 2014; 23:199-209. [PMID: 25343764 DOI: 10.1109/tnsre.2014.2363775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Computational modeling plays an increasingly prominent role in complementing critical research in the genetics, neuroscience, and psychology of autism. This paper presents a model that supports the notion that weak central coherence, a processing bias for features and local information, may be responsible for perception abnormalities by failing to "control" sensory issues in autism. The model has a biologically plausible architecture based on a self-organizing map. It incorporates temporal information in input stimuli, with emphasis on real auditory signals, and provides a mechanism to model multisensory effects. Through comprehensive simulations the paper studies the effect of a control mechanism (akin to central coherence) in compensating the effects of temporal information in the presentation of stimuli, sensory abnormalities, and crosstalk between domains. The mechanism is successful in balancing out timing effects, basic hypersensitivities and, to a lesser degree, multisensory effects. An analysis of the effect of the control mechanism's onset time on performance suggests that most of the potential benefits are still attainable even when started rather late in the learning process. This high level of adaptability shown by the neural network highlights the importance of appropriate teaching and intervention throughout the lifetime of persons with autism and other neurological disorders.
Collapse
|
61
|
Blais M, Martin E, Albaret JM, Tallet J. Preservation of perceptual integration improves temporal stability of bimanual coordination in the elderly: an evidence of age-related brain plasticity. Behav Brain Res 2014; 275:34-42. [PMID: 25192640 DOI: 10.1016/j.bbr.2014.08.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/16/2014] [Accepted: 08/23/2014] [Indexed: 12/26/2022]
Abstract
Despite the apparent age-related decline in perceptual-motor performance, recent studies suggest that the elderly people can improve their reaction time when relevant sensory information are available. However, little is known about which sensory information may improve motor behaviour itself. Using a synchronization task, the present study investigates how visual and/or auditory stimulations could increase accuracy and stability of three bimanual coordination modes produced by elderly and young adults. Neurophysiological activations are recorded with ElectroEncephaloGraphy (EEG) to explore neural mechanisms underlying behavioural effects. Results reveal that the elderly stabilize all coordination modes when auditory or audio-visual stimulations are available, compared to visual stimulation alone. This suggests that auditory stimulations are sufficient to improve temporal stability of rhythmic coordination, even more in the elderly. This behavioural effect is primarily associated with increased attentional and sensorimotor-related neural activations in the elderly but similar perceptual-related activations in elderly and young adults. This suggests that, despite a degradation of attentional and sensorimotor neural processes, perceptual integration of auditory stimulations is preserved in the elderly. These results suggest that perceptual-related brain plasticity is, at least partially, conserved in normal aging.
Collapse
Affiliation(s)
- Mélody Blais
- PRISSMH-LAPMA, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Elodie Martin
- PRISSMH-LAPMA, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Jean-Michel Albaret
- PRISSMH-LAPMA, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Jessica Tallet
- PRISSMH-LAPMA, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
62
|
Cerkevich CM, Lyon DC, Balaram P, Kaas JH. Distribution of cortical neurons projecting to the superior colliculus in macaque monkeys. Eye Brain 2014; 2014:121-137. [PMID: 25663799 PMCID: PMC4316385 DOI: 10.2147/eb.s53613] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
To better reveal the pattern of corticotectal projections to the superficial layers of the superior colliculus (SC), we made a total of ten retrograde tracer injections into the SC of three macaque monkeys (Macaca mulatta). The majority of these injections were in the superficial layers of the SC, which process visual information. To isolate inputs to the purely visual layers in the superficial SC from those inputs to the motor and multisensory layers deeper in the SC, two injections were placed to include the intermediate and deep layers of the SC. In another case, an injection was placed in the medial pulvinar, a nucleus not known to be strongly connected with visual cortex, to identify possible projections from tracer spread past the lateral boundary of the SC. Four conclusions are supported by the results: 1) all early visual areas of cortex, including V1, V2, V3, and the middle temporal area, project to the superficial layers of the SC; 2) with the possible exception of the frontal eye field, few areas of cortex outside of the early visual areas project to the superficial SC, although many do, however, project to the intermediate and deep layers of the SC; 3) roughly matching retinotopy is conserved in the projections of visual areas to the SC; and 4) the projections from different visual areas are similarly dense, although projections from early visual areas appear somewhat denser than those of higher order visual areas in macaque cortex.
Collapse
Affiliation(s)
- Christina M Cerkevich
- Department of Neurobiology, University of Pittsburgh School of Medicine, Systems Neuroscience Institute, Pittsburgh, PA, USA
| | - David C Lyon
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Pooja Balaram
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
63
|
Mathis C, Savier E, Bott JB, Clesse D, Bevins N, Sage-Ciocca D, Geiger K, Gillet A, Laux-Biehlmann A, Goumon Y, Lacaud A, Lelièvre V, Kelche C, Cassel JC, Pfrieger FW, Reber M. Defective response inhibition and collicular noradrenaline enrichment in mice with duplicated retinotopic map in the superior colliculus. Brain Struct Funct 2014; 220:1573-84. [PMID: 24647754 PMCID: PMC4409641 DOI: 10.1007/s00429-014-0745-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/28/2014] [Indexed: 10/27/2022]
Abstract
The superior colliculus is a hub for multisensory integration necessary for visuo-spatial orientation, control of gaze movements and attention. The multiple functions of the superior colliculus have prompted hypotheses about its involvement in neuropsychiatric conditions, but to date, this topic has not been addressed experimentally. We describe experiments on genetically modified mice, the Isl2-EphA3 knock-in line, that show a well-characterized duplication of the retino-collicular and cortico-collicular axonal projections leading to hyperstimulation of the superior colliculus. To explore the functional impact of collicular hyperstimulation, we compared the performance of homozygous knock-in, heterozygous knock-in and wild-type mice in several behavioral tasks requiring collicular activity. The light/dark box test and Go/No-Go conditioning task revealed that homozygous mutant mice exhibit defective response inhibition, a form of impulsivity. This defect was specific to attention as other tests showed no differences in visually driven behavior, motivation, visuo-spatial learning and sensorimotor abilities among the different groups of mice. Monoamine quantification and gene expression profiling demonstrated a specific enrichment of noradrenaline only in the superficial layers of the superior colliculus of Isl2-EphA3 knock-in mice, where the retinotopy is duplicated, whereas transcript levels of receptors, transporters and metabolic enzymes of the monoaminergic pathway were not affected. We demonstrate that the defect in response inhibition is a consequence of noradrenaline imbalance in the superficial layers of the superior colliculus caused by retinotopic map duplication. Our results suggest that structural abnormalities in the superior colliculus can cause defective response inhibition, a key feature of attention-deficit disorders.
Collapse
Affiliation(s)
- Chantal Mathis
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Elise Savier
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Jean-Bastien Bott
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Daniel Clesse
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Nicholas Bevins
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, San Diego, CA 92037 USA
- Department of Neurosciences, University of California, La Jolla, San Diego, CA 92039 USA
| | | | - Karin Geiger
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Anaïs Gillet
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Alexis Laux-Biehlmann
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Yannick Goumon
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Adrien Lacaud
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Vincent Lelièvre
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Christian Kelche
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Frank W. Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Michael Reber
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| |
Collapse
|
64
|
Different stimuli, different spatial codes: a visual map and an auditory rate code for oculomotor space in the primate superior colliculus. PLoS One 2014; 9:e85017. [PMID: 24454779 PMCID: PMC3893137 DOI: 10.1371/journal.pone.0085017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/20/2013] [Indexed: 11/25/2022] Open
Abstract
Maps are a mainstay of visual, somatosensory, and motor coding in many species. However, auditory maps of space have not been reported in the primate brain. Instead, recent studies have suggested that sound location may be encoded via broadly responsive neurons whose firing rates vary roughly proportionately with sound azimuth. Within frontal space, maps and such rate codes involve different response patterns at the level of individual neurons. Maps consist of neurons exhibiting circumscribed receptive fields, whereas rate codes involve open-ended response patterns that peak in the periphery. This coding format discrepancy therefore poses a potential problem for brain regions responsible for representing both visual and auditory information. Here, we investigated the coding of auditory space in the primate superior colliculus(SC), a structure known to contain visual and oculomotor maps for guiding saccades. We report that, for visual stimuli, neurons showed circumscribed receptive fields consistent with a map, but for auditory stimuli, they had open-ended response patterns consistent with a rate or level-of-activity code for location. The discrepant response patterns were not segregated into different neural populations but occurred in the same neurons. We show that a read-out algorithm in which the site and level of SC activity both contribute to the computation of stimulus location is successful at evaluating the discrepant visual and auditory codes, and can account for subtle but systematic differences in the accuracy of auditory compared to visual saccades. This suggests that a given population of neurons can use different codes to support appropriate multimodal behavior.
Collapse
|
65
|
Weigel S, Luksch H. Local cholinergic interneurons modulate GABAergic inhibition in the chicken optic tectum. Eur J Neurosci 2013; 39:730-7. [PMID: 24304133 DOI: 10.1111/ejn.12438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/15/2013] [Accepted: 11/04/2013] [Indexed: 11/30/2022]
Abstract
The chicken optic tectum (TeO) and its mammalian counterpart, the superior colliculus, are important sensory integration centers. Multimodal information is represented in a topographic map, which plays a role in spatial attention and orientation movements. The TeO is organised in 15 layers with clear input and output regions, and further interconnected with the isthmic nuclei (NI), which modulate the response in a winner-takes-all fashion. While many studies have analysed tectal cell types and their modulation from the isthmic system physiologically, little is known about local network activity and its modulation in the tectum. We have recently shown with voltage-sensitive dye imaging that electrical stimulation of the retinorecipient layers results in a stereotypic response, which is under inhibitory control [S. Weigel & H. Luksch (2012) J. Neurophysiol., 107, 640-648]. Here, we analysed the contribution of acetylcholine (ACh) and the NI to evoked tectal responses using a pharmacological approach in a midbrain slice preparation. Application of the nicotinic ACh receptor (AChR) antagonist curarine increased the tectal response in amplitude, duration and lateral extent. This effect was similar but less pronounced when γ-aminobutyric acid(A) receptors were blocked, indicating interaction of inhibitory and cholinergic neurons. The muscarinic AChR antagonist atropine did not change the response pattern. Removal of the NI, which are thought to be the major source of cholinergic input to the TeO, reduced the response only slightly and did not result in a disinhibition. Based on the data presented here and the neuroanatomical literature of the avian TeO, we propose a model of the underlying local circuitry.
Collapse
Affiliation(s)
- Stefan Weigel
- Chair of Zoology, Technische Universität München, Liesel-Beckmann Straße 4, 85354, Freising-Weihenstephan, Germany
| | | |
Collapse
|
66
|
Thermal and tactile interactions in the perception of local skin wetness at rest and during exercise in thermo-neutral and warm environments. Neuroscience 2013; 258:121-30. [PMID: 24269934 DOI: 10.1016/j.neuroscience.2013.11.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/22/2013] [Accepted: 11/08/2013] [Indexed: 01/05/2023]
Abstract
The central integration of thermal (i.e. cold) and mechanical (i.e. pressure) sensory afferents is suggested as to underpin the perception of skin wetness. However, the role of temperature and mechanical inputs, and their interaction, is still unclear. Also, it is unknown whether this intra-sensory interaction changes according to the activity performed or the environmental conditions. Hence, we investigated the role of peripheral cold afferents, and their interaction with tactile afferents, in the perception of local skin wetness during rest and exercise in thermo-neutral and warm environments. Six cold-dry stimuli, characterized by decreasing temperatures [i.e. -4, -8 and -15 °C below the local skin temperature (T(sk))] and by different mechanical pressures [i.e. low pressure (LP): 7 kPa; high pressure (HP): 10 kPa], were applied on the back of 8 female participants (age 21 ± 1 years), while they were resting or cycling in 22 or 33 °C ambient temperature. Mean and local Tsk, thermal and wetness perceptions were recorded during the tests. Cold-dry stimuli produced drops in Tsk with cooling rates in a range of 0.06-0.4 °C/s. Colder stimuli resulted in increasing coldness and in stimuli being significantly more often perceived as wet, particularly when producing skin cooling rates of 0.18 °C/s and 0.35 °C/s. However, when stimuli were applied with HP, local wetness perceptions were significantly attenuated. Wetter perceptions were recorded during exercise in the warm environment. We conclude that thermal inputs from peripheral cutaneous afferents are critical in characterizing the perception of local skin wetness. However, the role of these inputs might be modulated by an intra-sensory interaction with the tactile afferents. These findings indicate that human sensory integration is remarkably multimodal.
Collapse
|
67
|
Ethofer T, Bretscher J, Wiethoff S, Bisch J, Schlipf S, Wildgruber D, Kreifelts B. Functional responses and structural connections of cortical areas for processing faces and voices in the superior temporal sulcus. Neuroimage 2013; 76:45-56. [DOI: 10.1016/j.neuroimage.2013.02.064] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 01/17/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022] Open
|
68
|
Pitti A, Kuniyoshi Y, Quoy M, Gaussier P. Modeling the minimal newborn's intersubjective mind: the visuotopic-somatotopic alignment hypothesis in the superior colliculus. PLoS One 2013; 8:e69474. [PMID: 23922718 PMCID: PMC3724856 DOI: 10.1371/journal.pone.0069474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
The question whether newborns possess inborn social skills is a long debate in developmental psychology. Fetal behavioral and anatomical observations show evidences for the control of eye movements and facial behaviors during the third trimester of pregnancy whereas specific sub-cortical areas, like the superior colliculus (SC) and the striatum appear to be functionally mature to support these behaviors. These observations suggest that the newborn is potentially mature for developing minimal social skills. In this manuscript, we propose that the mechanism of sensory alignment observed in SC is particularly important for enabling the social skills observed at birth such as facial preference and facial mimicry. In a computational simulation of the maturing superior colliculus connected to a simulated facial tissue of a fetus, we model how the incoming tactile information is used to direct visual attention toward faces. We suggest that the unisensory superficial visual layer (eye-centered) and the deep somatopic layer (face-centered) in SC are combined into an intermediate layer for visuo-tactile integration and that multimodal alignment in this third layer allows newborns to have a sensitivity to configuration of eyes and mouth. We show that the visual and tactile maps align through a Hebbian learning stage and and strengthen their synaptic links from each other into the intermediate layer. It results that the global network produces some emergent properties such as sensitivity toward the spatial configuration of face-like patterns and the detection of eyes and mouth movement.
Collapse
Affiliation(s)
- Alexandre Pitti
- Department of Compter Sciences, ETIS Laboratory, UMR CNRS 8051, the University of Cergy-Pontoise, ENSEA, Cergy-Pontoise, France.
| | | | | | | |
Collapse
|
69
|
Okada K, Venezia JH, Matchin W, Saberi K, Hickok G. An fMRI Study of Audiovisual Speech Perception Reveals Multisensory Interactions in Auditory Cortex. PLoS One 2013; 8:e68959. [PMID: 23805332 PMCID: PMC3689691 DOI: 10.1371/journal.pone.0068959] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/10/2013] [Indexed: 11/18/2022] Open
Abstract
Research on the neural basis of speech-reading implicates a network of auditory language regions involving inferior frontal cortex, premotor cortex and sites along superior temporal cortex. In audiovisual speech studies, neural activity is consistently reported in posterior superior temporal Sulcus (pSTS) and this site has been implicated in multimodal integration. Traditionally, multisensory interactions are considered high-level processing that engages heteromodal association cortices (such as STS). Recent work, however, challenges this notion and suggests that multisensory interactions may occur in low-level unimodal sensory cortices. While previous audiovisual speech studies demonstrate that high-level multisensory interactions occur in pSTS, what remains unclear is how early in the processing hierarchy these multisensory interactions may occur. The goal of the present fMRI experiment is to investigate how visual speech can influence activity in auditory cortex above and beyond its response to auditory speech. In an audiovisual speech experiment, subjects were presented with auditory speech with and without congruent visual input. Holding the auditory stimulus constant across the experiment, we investigated how the addition of visual speech influences activity in auditory cortex. We demonstrate that congruent visual speech increases the activity in auditory cortex.
Collapse
Affiliation(s)
- Kayoko Okada
- Department of Cognitive Sciences, Center of Cognitive Neuroscience, University of California Irvine, Irvine, California, United States of America
| | - Jonathan H. Venezia
- Department of Cognitive Sciences, Center of Cognitive Neuroscience, University of California Irvine, Irvine, California, United States of America
| | - William Matchin
- Department of Cognitive Sciences, Center of Cognitive Neuroscience, University of California Irvine, Irvine, California, United States of America
| | - Kourosh Saberi
- Department of Cognitive Sciences, Center of Cognitive Neuroscience, University of California Irvine, Irvine, California, United States of America
| | - Gregory Hickok
- Department of Cognitive Sciences, Center of Cognitive Neuroscience, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
70
|
Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. J Neurosci 2013; 33:150-5. [PMID: 23283329 DOI: 10.1523/jneurosci.2924-12.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stimulation of the intermediate and deep layers of superior colliculus (DLSC) in rodents evokes both orienting/pursuit (approach) and avoidance/flight (defense) responses (Dean et al., 1989). These two classes of response are subserved by distinct output projections associated with lateral (approach) and medial (defense) DLSC (Comoli et al., 2012). In non-human primates, DLSC has been examined only with respect to orienting/approach behaviors, especially eye movements, and defense-like behaviors have not been reported. Here we examined the profile of behavioral responses evoked by activation of DLSC by unilateral intracerebral infusions of the GABA(A) receptor antagonist, bicuculline methiodide (BIC), in nine freely moving macaques. Across animals, the most consistently evoked behavior was cowering (all animals), followed by increased vocalization and escape-like behaviors (seven animals), and attack of objects (three animals). The effects of BIC were dose-dependent within the range 2.5-14 nmol (threshold dose of 4.6 nmol). The behaviors and their latencies to onset did not vary across different infusion sites within DLSC. Cowering and escape-like behaviors resembled the defense-like responses reported after DLSC stimulation in rats, but in the macaques these responses were evoked from both medial and lateral sites within DLSC. Our findings are unexpected in the context of an earlier theoretical perspective (Dean et al., 1989) that emphasized a preferential role of the primate DLSC for approach rather than defensive responses. Our data provide the first evidence for induction of defense-like behaviors by activation of DLSC in monkeys, suggesting that the role of DLSC in responding to threats is conserved across species.
Collapse
|
71
|
McBride S, Huelse M, Lee M. Identifying the computational requirements of an integrated top-down-bottom-up model for overt visual attention within an active vision system. PLoS One 2013; 8:e54585. [PMID: 23437044 PMCID: PMC3577816 DOI: 10.1371/journal.pone.0054585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 12/14/2012] [Indexed: 11/18/2022] Open
Abstract
Computational visual attention systems have been constructed in order for robots and other devices to detect and locate regions of interest in their visual world. Such systems often attempt to take account of what is known of the human visual system and employ concepts, such as 'active vision', to gain various perceived advantages. However, despite the potential for gaining insights from such experiments, the computational requirements for visual attention processing are often not clearly presented from a biological perspective. This was the primary objective of this study, attained through two specific phases of investigation: 1) conceptual modeling of a top-down-bottom-up framework through critical analysis of the psychophysical and neurophysiological literature, 2) implementation and validation of the model into robotic hardware (as a representative of an active vision system). Seven computational requirements were identified: 1) transformation of retinotopic to egocentric mappings, 2) spatial memory for the purposes of medium-term inhibition of return, 3) synchronization of 'where' and 'what' information from the two visual streams, 4) convergence of top-down and bottom-up information to a centralized point of information processing, 5) a threshold function to elicit saccade action, 6) a function to represent task relevance as a ratio of excitation and inhibition, and 7) derivation of excitation and inhibition values from object-associated feature classes. The model provides further insight into the nature of data representation and transfer between brain regions associated with the vertebrate 'active' visual attention system. In particular, the model lends strong support to the functional role of the lateral intraparietal region of the brain as a primary area of information consolidation that directs putative action through the use of a 'priority map'.
Collapse
Affiliation(s)
- Sebastian McBride
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| | | | | |
Collapse
|
72
|
|
73
|
Borra E, Gerbella M, Rozzi S, Tonelli S, Luppino G. Projections to the Superior Colliculus From Inferior Parietal, Ventral Premotor, and Ventrolateral Prefrontal Areas Involved in Controlling Goal-Directed Hand Actions in the Macaque. Cereb Cortex 2012; 24:1054-65. [DOI: 10.1093/cercor/bhs392] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
74
|
Impact of the spatial congruence of redundant targets on within-modal and cross-modal integration. Exp Brain Res 2012. [DOI: 10.1007/s00221-012-3308-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
75
|
A new control center for dopaminergic systems: pulling the VTA by the tail. Trends Neurosci 2012; 35:681-90. [DOI: 10.1016/j.tins.2012.06.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/18/2012] [Accepted: 06/27/2012] [Indexed: 12/13/2022]
|
76
|
Bishop CW, London S, Miller LM. Neural time course of visually enhanced echo suppression. J Neurophysiol 2012; 108:1869-83. [PMID: 22786953 PMCID: PMC3545000 DOI: 10.1152/jn.00175.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/08/2012] [Indexed: 11/22/2022] Open
Abstract
Auditory spatial perception plays a critical role in day-to-day communication. For instance, listeners utilize acoustic spatial information to segregate individual talkers into distinct auditory "streams" to improve speech intelligibility. However, spatial localization is an exceedingly difficult task in everyday listening environments with numerous distracting echoes from nearby surfaces, such as walls. Listeners' brains overcome this unique challenge by relying on acoustic timing and, quite surprisingly, visual spatial information to suppress short-latency (1-10 ms) echoes through a process known as "the precedence effect" or "echo suppression." In the present study, we employed electroencephalography (EEG) to investigate the neural time course of echo suppression both with and without the aid of coincident visual stimulation in human listeners. We find that echo suppression is a multistage process initialized during the auditory N1 (70-100 ms) and followed by space-specific suppression mechanisms from 150 to 250 ms. Additionally, we find a robust correlate of listeners' spatial perception (i.e., suppressing or not suppressing the echo) over central electrode sites from 300 to 500 ms. Contrary to our hypothesis, vision's powerful contribution to echo suppression occurs late in processing (250-400 ms), suggesting that vision contributes primarily during late sensory or decision making processes. Together, our findings support growing evidence that echo suppression is a slow, progressive mechanism modifiable by visual influences during late sensory and decision making stages. Furthermore, our findings suggest that audiovisual interactions are not limited to early, sensory-level modulations but extend well into late stages of cortical processing.
Collapse
Affiliation(s)
- Christopher W Bishop
- Center for Mind and Brain, University of California, Davis, California 95618, USA.
| | | | | |
Collapse
|
77
|
Grama A, Engert F. Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition. Front Neural Circuits 2012; 6:59. [PMID: 22969706 PMCID: PMC3432856 DOI: 10.3389/fncir.2012.00059] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/14/2012] [Indexed: 11/13/2022] Open
Abstract
The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons.
Collapse
Affiliation(s)
- Abhinav Grama
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA, USA
| | | |
Collapse
|
78
|
Mahoney JR, Verghese J, Dumas K, Wang C, Holtzer R. The effect of multisensory cues on attention in aging. Brain Res 2012; 1472:63-73. [PMID: 22820295 DOI: 10.1016/j.brainres.2012.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/02/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
Abstract
The attention network test (ANT) assesses the effect of alerting and orienting cues on a visual flanker task measuring executive attention. Previous findings revealed that older adults demonstrate greater reaction times (RT) benefits when provided with visual orienting cues that offer both spatial and temporal information of an ensuing target. Given the overlap of neural substrates and networks involved in multisensory processing and cueing (i.e., alerting and orienting), an investigation of multisensory cueing effects on RT was warranted. The current study was designed to determine whether participants, both old and young, benefited from receiving multisensory alerting and orienting cues. Eighteen young (M=19.17 years; 45% female) and eighteen old (M=76.44 years; 61% female) individuals that were determined to be non-demented and without any medical or psychiatric conditions that would affect their performance were included. Results revealed main effects for the executive attention and orienting networks, but not for the alerting network. In terms of orienting, both old and young adults demonstrated significant orienting effects for auditory-somatosensory (AS), auditory-visual (AV), and visual-somatosensory (VS) cues. RT benefits of multisensory compared to unisensory orienting effects differed by cue type and age group; younger adults demonstrated greater RT benefits for AS orienting cues whereas older adults demonstrated greater RT benefits for AV orienting cues. Both groups, however, demonstrated significant RT benefits for multisensory VS orienting cues. These findings provide evidence for the facilitative effect of multisensory orienting cues, and not multisensory alerting cues, in old and young adults.
Collapse
Affiliation(s)
- Jeannette R Mahoney
- The Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, 1165 Morris Park Avenue, Rousso Building, Room 304, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|
79
|
Weigel S, Luksch H. Spatiotemporal analysis of electrically evoked activity in the chicken optic tectum: a VSDI study. J Neurophysiol 2011; 107:640-8. [PMID: 22031774 DOI: 10.1152/jn.00541.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The midbrain is an important processing area for sensory information in vertebrates. The optic tectum and its mammalian counterpart, the superior colliculus, receive multimodal, topographic information and contain a sensory map that plays a role in spatial attention and orientation movements. Many studies have investigated the tectal circuitry by cytochemistry and by characterization of particular cell types. However, only a few studies have investigated network activation throughout the depth of the tectum. Our study provides the first data on spatiotemporal activity profiles in the depth and width of the avian optic tectum. We used an optical imaging approach with voltage-sensitive dyes to investigate population responses at a high temporal and spatial resolution. With the necessary caution due to cell extension across several layers, we can thus link our findings tentatively with the general layout of the avian optic tectum. Single electrical stimuli in the retinorecipient layers 1-4 evoked a complex optical response pattern with two components: a short, strong transient response and a weaker persistent response that lasted several hundred milliseconds. The response started in layer 5 and spread within this layer before it propagated into deeper layers. This is in line with neuroanatomical and earlier physiological data. Analysis of temporal sequence and pharmacological manipulations revealed that these responses were mainly driven by postsynaptic activation. Thus tectal network responses to patterned input can be studied by voltage-sensitive dye imaging.
Collapse
Affiliation(s)
- Stefan Weigel
- Technische Universität München, Freising-Weihenstephan, Germany.
| | | |
Collapse
|
80
|
|
81
|
Mysore SP, Knudsen EI. The role of a midbrain network in competitive stimulus selection. Curr Opin Neurobiol 2011; 21:653-60. [PMID: 21696945 PMCID: PMC3177965 DOI: 10.1016/j.conb.2011.05.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/29/2011] [Accepted: 05/24/2011] [Indexed: 12/11/2022]
Abstract
A midbrain network interacts with the well-known frontoparietal forebrain network to select stimuli for gaze and spatial attention. The midbrain network, containing the superior colliculus (SC; optic tectum, OT, in non-mammalian vertebrates) and the isthmic nuclei, helps evaluate the relative priorities of competing stimuli and encodes them in a topographic map of space. Behavioral experiments in monkeys demonstrate an essential contribution of the SC to stimulus selection when the relative priorities of competing stimuli are similar. Neurophysiological results from the owl OT demonstrate a neural correlate of this essential contribution of the SC/OT. The multi-layered, spatiotopic organization of the midbrain network lends itself to the analysis and modeling of the mechanisms underlying stimulus selection for gaze and spatial attention.
Collapse
Affiliation(s)
- Shreesh P Mysore
- 299 W Campus Drive, Department of Neurobiology, Stanford University, Stanford, CA 94305, United States.
| | | |
Collapse
|
82
|
Innes-Brown H, Barutchu A, Shivdasani MN, Crewther DP, Grayden DB, Paolini AG. Susceptibility to the flash-beep illusion is increased in children compared to adults. Dev Sci 2011; 14:1089-99. [DOI: 10.1111/j.1467-7687.2011.01059.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Cuppini C, Stein BE, Rowland BA, Magosso E, Ursino M. A computational study of multisensory maturation in the superior colliculus (SC). Exp Brain Res 2011; 213:341-9. [PMID: 21556818 DOI: 10.1007/s00221-011-2714-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
Multisensory neurons in cat SC exhibit significant postnatal maturation. The first multisensory neurons to appear have large receptive fields (RFs) and cannot integrate information across sensory modalities. During the first several months of postnatal life RFs contract, responses become more robust and neurons develop the capacity for multisensory integration. Recent data suggest that these changes depend on both sensory experience and active inputs from association cortex. Here, we extend a computational model we developed (Cuppini et al. in Front Integr Neurosci 22: 4-6, 2010) using a limited set of biologically realistic assumptions to describe how this maturational process might take place. The model assumes that during early life, cortical-SC synapses are present but not active and that responses are driven by non-cortical inputs with very large RFs. Sensory experience is modeled by a "training phase" in which the network is repeatedly exposed to modality-specific and cross-modal stimuli at different locations. Cortical-SC synaptic weights are modified during this period as a result of Hebbian rules of potentiation and depression. The result is that RFs are reduced in size and neurons become capable of responding in adult-like fashion to modality-specific and cross-modal stimuli.
Collapse
Affiliation(s)
- Cristiano Cuppini
- Department of Electronics, Computer Science and Systems, University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
84
|
Current perspectives and methods in studying neural mechanisms of multisensory interactions. Neurosci Biobehav Rev 2011; 36:111-33. [PMID: 21569794 DOI: 10.1016/j.neubiorev.2011.04.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 04/21/2011] [Indexed: 11/22/2022]
Abstract
In the past decade neuroscience has witnessed major advances in the field of multisensory interactions. A large body of research has revealed several new types of cross-sensory interactions. In addition, multisensory interactions have been reported at temporal and spatial system levels previously thought of as strictly unimodal. We review the findings that have led to the current broad consensus that most, if not all, higher, as well as lower level neural processes are in some form multisensory. We continue by outlining the progress that has been made in identifying the functional significance of different types of interactions, for example, in subserving stimulus binding and enhancement of perceptual certainty. Finally, we provide a critical introduction to cutting edge methods from bayes optimal integration to multivoxel pattern analysis as applied to multisensory research at different system levels.
Collapse
|
85
|
An exploratory event-related potential study of multisensory integration in sensory over-responsive children. Brain Res 2010; 1321:67-77. [PMID: 20097181 DOI: 10.1016/j.brainres.2010.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 11/20/2022]
Abstract
Children who are over-responsive to sensation have defensive and "fight or flight" reactions to ordinary levels of sensory stimulation in the environment. Based on clinical observations, sensory over-responsivity is hypothesized to reflect atypical neural integration of sensory input. To examine a possible underlying neural mechanism of the disorder, integration of simultaneous multisensory auditory and somatosensory stimulation was studied in twenty children with sensory over-responsivity (SOR) using event-related potentials (ERPs). Three types of sensory stimuli were presented and ERPs were recorded from thirty-two scalp electrodes while participants watched a silent cartoon: bilateral auditory clicks, right somatosensory median nerve electrical pulses, or both simultaneously. The paradigm was passive; no behavioral responses were required. To examine integration, responses to simultaneous multisensory auditory-somatosensory stimulation were compared to the sum of unisensory auditory plus unisensory somatosensory responses in four time-windows: (60-80 ms, 80-110 ms, 110-150 ms, and 180-220 ms). Specific midline and lateral electrode sites were examined over scalp regions where auditory-somatosensory integration was expected based on previous studies. Midline electrode sites (Fz, Cz, and Pz) showed significant integration during two time-windows: 60-80 ms and 180-220 ms. Significant integration was also found at contralateral electrode site (C3) for the time-window between 180 and 220 ms. At ipsilateral electrode sites (C4 and CP6), no significant integration was found during any of the time-windows (i.e. the multisensory ERP was not significantly different from the summed unisensory ERP). These results demonstrate that MSI can be reliably measured in children with SOR and provide evidence that multisensory auditory-somatosensory input is integrated during both early and later stages of sensory information processing, mainly over fronto-central scalp regions.
Collapse
|
86
|
Hiramoto M, Cline HT. Convergence of multisensory inputs in Xenopus tadpole tectum. Dev Neurobiol 2010; 69:959-71. [PMID: 19813244 DOI: 10.1002/dneu.20754] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The integration of multisensory information takes place in the optic tectum where visual and auditory/mechanosensory inputs converge and regulate motor outputs. The circuits that integrate multisensory information are poorly understood. In an effort to identify the basic components of a multisensory integrative circuit, we determined the projections of the mechanosensory input from the periphery to the optic tectum and compared their distribution to the retinotectal inputs in Xenopus laevis tadpoles using dye-labeling methods. The peripheral ganglia of the lateral line system project to the ipsilateral hindbrain and the axons representing mechanosensory inputs along the anterior/posterior body axis are mapped along the ventrodorsal axis in the axon tract in the dorsal column of the hindbrain. Hindbrain neurons project axons to the contralateral optic tectum. The neurons from anterior and posterior hindbrain regions project axons to the dorsal and ventral tectum, respectively. While the retinotectal axons project to a superficial lamina in the tectal neuropil, the hindbrain axons project to a deep neuropil layer. Calcium imaging showed that multimodal inputs converge on tectal neurons. The layer-specific projections of the hindbrain and retinal axons suggest a functional segregation of sensory inputs to proximal and distal tectal cell dendrites, respectively.
Collapse
Affiliation(s)
- Masaki Hiramoto
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
87
|
Deeg KE, Sears IB, Aizenman CD. Development of multisensory convergence in the Xenopus optic tectum. J Neurophysiol 2009; 102:3392-404. [PMID: 19793878 PMCID: PMC2804420 DOI: 10.1152/jn.00632.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/28/2009] [Indexed: 01/02/2023] Open
Abstract
The adult Xenopus optic tectum receives and integrates visual and nonvisual sensory information. Nonvisual inputs include mechanosensory inputs from the lateral line, auditory, somatosensory, and vestibular systems. While much is known about the development of visual inputs in this species, almost nothing is known about the development of mechanosensory inputs to the tectum. In this study, we investigated mechanosensory inputs to the tectum during critical developmental stages (stages 42-49) in which the retinotectal map is being established. Tract-tracing studies using lipophilic dyes revealed a large projection between the hindbrain and the tectum as early as stage 42; this projection carries information from the Vth, VIIth, and VIIIth nerves. By directly stimulating hindbrain and visual inputs using an isolated whole-brain preparation, we found that all tectal cells studied received both visual and hindbrain input during these early developmental stages. Pharmacological data indicated that the hindbrain-tectal projection is glutamatergic and that there are no direct inhibitory hindbrain-tectal ascending projections. We found that unlike visual inputs, hindbrain inputs do not show a decrease in paired-pulse facilitation over this developmental period. Interestingly, over this developmental period, hindbrain inputs show a transient increase followed by a significant decrease in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA)/N-methyl-D-aspartate (NMDA) ratio and show no change in quantal size, both in contrast to visual inputs. Our data support a model by which fibers are added to the hindbrain-tectal projection across development. Nascent fibers form new synapses with tectal neurons and primarily activate NMDA receptors. At a time when retinal ganglion cells and their tectal synapses mature, hindbrain-tectal synapses are still undergoing a period of rapid synaptogenesis. This study supports the idea that immature tectal cells receive converging visual and mechanosensory information and indicates that the Xenopus tectum might be an ideal preparation to study the early development of potential multisensory interactions at the cellular level.
Collapse
Affiliation(s)
- Katherine E Deeg
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
88
|
Functional MRI of postnatal visual development in normal and hypoxic-ischemic-injured superior colliculi. Neuroimage 2009; 49:2013-20. [PMID: 19879366 DOI: 10.1016/j.neuroimage.2009.10.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/17/2009] [Accepted: 10/23/2009] [Indexed: 11/22/2022] Open
Abstract
The superior colliculus (SC) is a laminated subcortical structure in the mammalian midbrain, whose superficial layers receive visual information from the retina and the visual cortex. To date, its functional organization and development in the visual system remain largely unknown. This study employed blood oxygenation level-dependent (BOLD) functional MRI to evaluate the visual responses of the SC in normally developing and severe neonatal hypoxic-ischemic (HI)-injured rat brains from the time of eyelid opening to adulthood. MRI was performed to the normal animals (n=7) at postnatal days (P) 14, 21, 28 and 60. In the HI-injured group (n=7), the ipsilesional primary and secondary visual cortices were completely damaged after unilateral ligation of the left common carotid artery at P7 followed by hypoxia for 2 h, and MRI was performed at P60. Upon unilateral flash illumination, the normal contralateral SC underwent a systematic increase in BOLD signal amplitude with age especially after the third postnatal week. However, no significant difference in BOLD signal increase was found between P14 and P21. These findings implied the presence of neurovascular coupling at the time of eyelid opening, and the progressive development of hemodynamic regulation in the subcortical visual system. In the HI-injured group at P60, the BOLD signal increases in both SC remained at the same level as the normal group at P28 though they were significantly lower than the normal group at P60. These observations suggested the residual visual functions on both sides of the subcortical brain, despite the damages to the entire ipsilesional visual cortex. The results of this study constitute important evidence on the progressive maturation of visual functions and hemodynamic responses in the normal subcortical brain, and its functional plasticity upon neonatal HI injury.
Collapse
|
89
|
Miller LJ, Nielsen DM, Schoen SA, Brett-Green BA. Perspectives on sensory processing disorder: a call for translational research. Front Integr Neurosci 2009; 3:22. [PMID: 19826493 PMCID: PMC2759332 DOI: 10.3389/neuro.07.022.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 09/03/2009] [Indexed: 11/13/2022] Open
Abstract
THIS ARTICLE EXPLORES THE CONVERGENCE OF TWO FIELDS, WHICH HAVE SIMILAR THEORETICAL ORIGINS: a clinical field originally known as sensory integration and a branch of neuroscience that conducts research in an area also called sensory integration. Clinically, the term was used to identify a pattern of dysfunction in children and adults, as well as a related theory, assessment, and treatment method for children who have atypical responses to ordinary sensory stimulation. Currently the term for the disorder is sensory processing disorder (SPD). In neuroscience, the term sensory integration refers to converging information in the brain from one or more sensory domains. A recent subspecialty in neuroscience labeled multisensory integration (MSI) refers to the neural process that occurs when sensory input from two or more different sensory modalities converge. Understanding the specific meanings of the term sensory integration intended by the clinical and neuroscience fields and the term MSI in neuroscience is critical. A translational research approach would improve exploration of crucial research questions in both the basic science and clinical science. Refinement of the conceptual model of the disorder and the related treatment approach would help prioritize which specific hypotheses should be studied in both the clinical and neuroscience fields. The issue is how we can facilitate a translational approach between researchers in the two fields. Multidisciplinary, collaborative studies would increase knowledge of brain function and could make a significant contribution to alleviating the impairments of individuals with SPD and their families.
Collapse
Affiliation(s)
- Lucy J Miller
- Sensory Processing Disorder Foundation Greenwood Village, CO, USA
| | | | | | | |
Collapse
|