51
|
Sugimoto YA, McKeon PO, Rhea CK, Schmitz RJ, Henson RA, Mattacola CG, Ross SE. Understanding the effects of a sudden directional shift in somatosensory feedback and increasing task complexity on postural adaptation in individuals with and without chronic ankle instability. Gait Posture 2024; 109:158-164. [PMID: 38309127 DOI: 10.1016/j.gaitpost.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Individuals with chronic ankle instability (CAI) present somatosensory dysfunction following an initial ankle sprain. However, little is known about how individuals with CAI adapt to a sudden sensory perturbation of instability with increasing task and environmental constraints to maintain postural stability. METHODS Forty-four individuals with and without unilateral CAI performed the Adaptation Test to a sudden somatosensory inversion and plantarflexion perturbations (environment) in double-, injured-, and uninjured- limbs. Mean sway energy scores were analyzed using 2 (group) × 2 (somatosensory perturbations) × 3 (task) repeated measures analysis of variance. RESULTS There were significant interactions between the group, environment, and task (P=.025). The CAI group adapted faster than healthy controls to a sudden somatosensory inversion perturbation in the uninjured- (P=.002) and injured- (P<.001) limbs, as well as a sudden somatosensory plantarflexion perturbation in the double- (P=.033) and uninjured- (P=.035) limbs. The CAI and healthy groups presented slower postural adaptation to a sudden inversion perturbation than a sudden somatosensory plantarflexion perturbation in double-limb (P<.001). Whereas both groups demonstrated faster postural adaptation to a sudden somatosensory inversion perturbation compared to somatosensory plantarflexion perturbation while maintaining posture in the injured- (P<.001) and uninjured- (P<.001) limbs. The CAI and healthy groups adapted faster to a sudden somatosensory inversion perturbation in the injured- (P<.001) and uninjured- (P<.001) limbs than in double-limb, respectively. DISCUSSION Postural adaptation in individuals with and without CAI depended on environmental (somatosensory perturbations) and task constraints. The CAI group displayed comparable and faster postural adaptation to a sudden somatosensory inversion and plantarflexion in double-, injured-, and uninjured- limbs, which may reflect a centrally mediated alteration in neuromuscular control in CAI.
Collapse
Affiliation(s)
- Yuki A Sugimoto
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Kinesiology, The University of North Carolina at Greensboro, Greensboro, NC 27402.
| | - Patrick O McKeon
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY 14850
| | - Christopher K Rhea
- Department of Kinesiology, The University of North Carolina at Greensboro, Greensboro, NC 27402; College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Randy J Schmitz
- Department of Kinesiology, The University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Robert A Henson
- Department of Kinesiology, The University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Carl G Mattacola
- Department of Kinesiology, The University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Scott E Ross
- Department of Kinesiology, The University of North Carolina at Greensboro, Greensboro, NC 27402
| |
Collapse
|
52
|
Mangalam M, Kelty-Stephen DG, Seleznov I, Popov A, Likens AD, Kiyono K, Stergiou N. Older adults and individuals with Parkinson's disease control posture along suborthogonal directions that deviate from the traditional anteroposterior and mediolateral directions. Sci Rep 2024; 14:4117. [PMID: 38374371 PMCID: PMC10876602 DOI: 10.1038/s41598-024-54583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
A rich and complex temporal structure of variability in postural sway characterizes healthy and adaptable postural control. However, neurodegenerative disorders such as Parkinson's disease, which often manifest as tremors, rigidity, and bradykinesia, disrupt this healthy variability. This study examined postural sway in young and older adults, including individuals with Parkinson's disease, under different upright standing conditions to investigate the potential connection between the temporal structure of variability in postural sway and Parkinsonism. A novel and innovative method called oriented fractal scaling component analysis was employed. This method involves decomposing the two-dimensional center of pressure (CoP) planar trajectories to pinpoint the directions associated with minimal and maximal temporal correlations in postural sway. As a result, it facilitates a comprehensive assessment of the directional characteristics within the temporal structure of sway variability. The results demonstrated that healthy young adults control posture along two orthogonal directions closely aligned with the traditional anatomical anteroposterior (AP) and mediolateral (ML) axes. In contrast, older adults and individuals with Parkinson's disease controlled posture along suborthogonal directions that significantly deviate from the AP and ML axes. These findings suggest that the altered temporal structure of sway variability is evident in individuals with Parkinson's disease and underlies postural deficits, surpassing what can be explained solely by the natural aging process.
Collapse
Affiliation(s)
- Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, 12561, USA
| | - Ivan Seleznov
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Anton Popov
- Department of Electronic Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, 03056, Ukraine
- Faculty of Applied Sciences, Ukrainian Catholic University, Lviv, 79011, Ukraine
| | - Aaron D Likens
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Nick Stergiou
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
- Department of Department of Physical Education, and Sport Science, Aristotle University, 570 01, Thessaloniki, Greece
| |
Collapse
|
53
|
Lheureux A, Lejeune T, Doncev I, Jeanne A, Stoquart G. Comparison of the effects of rhythmic vibrotactile stimulations and rhythmic auditory stimulations on Parkinson's disease patients' gait variability: a pilot study. Acta Neurol Belg 2024; 124:161-168. [PMID: 37597161 DOI: 10.1007/s13760-023-02360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
INTRODUCTION Parkinson's disease patients' gait is characterized by shorter step length, reduced gait velocity and deterioration of temporal organization of stride duration variability (modified Long Range Autocorrelations). The objective of this study was to compare effects of rhythmic auditory stimulations (RAS) and Rhythmic Vibrotactile Stimulations (RVS) on Parkinson's disease patients' gait. METHODS Ten Parkinson's disease patients performed three walking conditions lasting 5-7 min each: control condition (CC), RAS condition and RVS condition. Inertial measurement units were used to assess spatiotemporal gait parameters. Stride duration variability was assessed in terms of magnitude using coefficient of variation and in terms of temporal organization (i.e., Long Range Autocorrelations computation) using the evenly spaced averaged Detrended Fluctuation Analysis (α-DFA exponent). RESULTS Gait velocity was significantly higher during RAS condition than during CC (Cohen's d = 0.52) and similar to RVS condition (Cohen's d = 0.17). Cadence was significantly higher during RAS (Cohen's d = 0.77) and RVS (Cohens' d = 0.56) conditions than during CC. Concerning variability, no difference was found either for mean coefficient of variation or mean α-DFA between conditions. However, a great variability of individual results between the RAS and the RVS conditions is to be noted concerning α-DFA. CONCLUSIONS RAS and RVS improved similarly PD patients' spatiotemporal gait parameters, without modifying stride duration variability in terms of magnitude and temporal organization at group level. Future studies should evaluate the relevant parameters for administering the right cueing type for the right patient. TRIAL REGISTRATION ClinicalTrial.gov registration number NCT05790759, date of registration: 16/03/2023, retrospectively registered.
Collapse
Affiliation(s)
- Alexis Lheureux
- Cliniques Universitaires Saint-Luc, Brussels, Belgium.
- Université Catholique de Louvain, Louvain-La-Neuve, Belgium.
| | - Thierry Lejeune
- Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Ivan Doncev
- Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Alix Jeanne
- Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Gaëtan Stoquart
- Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
54
|
Cofré Lizama LE, He X, Kalincik T, Galea MP, Panisset MG. Sample Entropy Improves Assessment of Postural Control in Early-Stage Multiple Sclerosis. SENSORS (BASEL, SWITZERLAND) 2024; 24:872. [PMID: 38339590 PMCID: PMC10857195 DOI: 10.3390/s24030872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Postural impairment in people with multiple sclerosis (pwMS) is an early indicator of disease progression. Common measures of disease assessment are not sensitive to early-stage MS. Sample entropy (SE) may better identify early impairments. We compared the sensitivity and specificity of SE with linear measurements, differentiating pwMS (EDSS 0-4) from healthy controls (HC). 58 pwMS (EDSS ≤ 4) and 23 HC performed quiet standing tasks, combining a hard or foam surface with eyes open or eyes closed as a condition. Sway was recorded at the sternum and lumbar spine. Linear measures, mediolateral acceleration range with eyes open, mediolateral jerk with eyes closed, and SE in the anteroposterior and mediolateral directions were calculated. A multivariate ANOVA and AUC-ROC were used to determine between-groups differences and discriminative ability, respectively. Mild MS (EDSS ≤ 2.0) discriminability was secondarily assessed. Significantly lower SE was observed under most conditions in pwMS compared to HC, except for lumbar and sternum SE when on a hard surface with eyes closed and in the anteroposterior direction, which also offered the strongest discriminability (AUC = 0.747), even for mild MS. Overall, between-groups differences were task-dependent, and SE (anteroposterior, hard surface, eyes closed) was the best pwMS classifier. SE may prove a useful tool to detect subtle MS progression and intervention effectiveness.
Collapse
Affiliation(s)
- L. Eduardo Cofré Lizama
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (X.H.); (M.P.G.); (M.G.P.)
| | - Xiangyu He
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (X.H.); (M.P.G.); (M.G.P.)
| | - Tomas Kalincik
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC 3052, Australia;
- Clinical Outcomes Research Unit, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Mary P. Galea
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (X.H.); (M.P.G.); (M.G.P.)
- Department of Rehabilitation, Royal Melbourne Hospital, Melbourne, VIC 3052, Australia
- Australian Rehabilitation Research Centre, Royal Melbourne Hospital, Melbourne, VIC 3052, Australia
| | - Maya G. Panisset
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (X.H.); (M.P.G.); (M.G.P.)
| |
Collapse
|
55
|
Guerrero-Henriquez J, Mendez-Rebolledo G, LLancaleo L, Vargas M. Effects of dominance and vision on unipedal balance tests in futsal players using a triaxial accelerometer. Sports Biomech 2024:1-10. [PMID: 38193463 DOI: 10.1080/14763141.2024.2301987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
Optimal postural control improves performance and reduces the risk of injury in futsal. In this context, wearable accelerometers may detect velocity changes of the centre of mass during a task, enabling the analysis of postural control in different environments. This work aimed to determine the influence of vision and dominance on unipodal static postural balance in non-professional athletes. Twenty-four university male futsal players performed a unipodal balance test to assess their body sway using a triaxial accelerometer. To assess dominance, the preferred limb for kicking the ball was considered, while vision was manipulated by asking participants to close their eyes during the test. Root mean square (RMS) and sample entropy (SaEn) of centre of mass variables were analysed. For statistical analysis, a multivariate analysis of variance model was used. Our results suggest an effect of vision, but not of dominance nor the interaction between vision and limb dominance. Specifically, a higher-acceleration RMS in the mediolateral axis was observed, as well as an increased SaEn in the three axes. To conclude, unipodal postural demand in futsal players under visual input suppression was not influenced by their limb dominancy.
Collapse
Affiliation(s)
- Juan Guerrero-Henriquez
- Rehabilitation and Human Movement Sciences Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Guillermo Mendez-Rebolledo
- Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Talca, Chile
- Magíster en Ciencias de la Actividad Física y del Deporte Aplicadas al Entrenamiento, Rehabilitación y Reintegro Deportivo, Facultad de Salud, Universidad Santo Tomás, Talca, Chile
| | - Leandro LLancaleo
- Rehabilitation and Human Movement Sciences Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Martin Vargas
- Rehabilitation and Human Movement Sciences Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
56
|
Konrad JD, Marrus N, Lohse KR, Thuet KM, Lang CE. Associations Between Coordination and Wearable Sensor Variables Vary by Recording Context but Not Assessment Type. J Mot Behav 2024; 56:339-355. [PMID: 38189355 PMCID: PMC10957306 DOI: 10.1080/00222895.2023.2300969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Motor coordination is an important driver of development and improved coordination assessments could facilitate better screening, diagnosis, and intervention for children at risk of developmental disorders. Wearable sensors could provide data that enhance the characterization of coordination and the clinical utility of that data may vary depending on how sensor variables from different recording contexts relate to coordination. We used wearable sensors at the wrists to capture upper-limb movement in 85 children aged 6-12. Sensor variables were extracted from two recording contexts. Structured recordings occurred in the lab during a unilateral throwing task. Unstructured recordings occurred during free-living activity. The objective was to determine the influence of recording context (unstructured versus structured) and assessment type (direct vs. indirect) on the association between sensor variables and coordination. The greatest associations were between six sensor variables from the structured context and the direct measure of coordination. Worse coordination scores were associated with upper-limb movements that had higher peak magnitudes, greater variance, and less smoothness. The associations were consistent across both arms, even though the structured task was unilateral. This finding suggests that wearable sensors could be paired with a simple, structured task to yield clinically informative variables that relate to motor coordination.
Collapse
Affiliation(s)
- Jeffrey D Konrad
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, USA
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, USA
| | - Keith R Lohse
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, USA
| | - Kayla M Thuet
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, USA
| | - Catherine E Lang
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, USA
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
57
|
Downer KE, Pariser KM, Donlin MC, Higginson JS. How Important is Position in Adaptive Treadmill Control? J Biomech Eng 2024; 146:011006. [PMID: 37851541 PMCID: PMC10680982 DOI: 10.1115/1.4063823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
To more closely mimic overground walking, researchers are developing adaptive treadmills (ATMs) that update belt speed in real-time based on user gait mechanics. Many existing ATM control schemes are solely based on position on the belt and do not respond to changes in gait mechanics, like propulsive forces, that result in increased overground walking speed. To target natural causal mechanisms to alter speed, we developed an ATM controller that adjusts speed via changes in position, step length, and propulsion. Gains on each input dictate the impact of the corresponding parameter on belt speed. The study objective was to determine the effect of modifying the position gain on self-selected walking speed, measures of propulsion, and step length. Twenty-two participants walked at their self-selected speed with four ATM controllers, each with a unique position gain. Walking speed, anterior and posterior ground reaction force peaks and impulses, net impulse, and step length were compared between conditions. Smaller position gains promoted more equivalent anterior and posterior impulses, resulting in a net impulse closer to zero (p = 0.0043), a characteristic of healthy gait. Walking speed, anterior and posterior ground reaction force peaks and impulses, and step length did not change between conditions (all p > 0.05). These results suggest that reducing the importance of position in the ATM controller may promote more balanced anterior and posterior impulses, possibly improving the efficacy of the ATM for gait rehabilitation by emphasizing changes in gait mechanics instead of position to naturally adjust speed.
Collapse
Affiliation(s)
- Kaitlyn E. Downer
- Department of Mechanical Engineering, University of Delaware, 540 S. College Avenue, STAR Health Sciences Complex, Rm 201, Newark, DE 19713; Department of Mechanical and Aerospace Engineering, University of Florida, 1929 Stadium Dr, Nuclear Sciences Building, Rm 209, Gainesville, FL 32611
| | - Kayla M. Pariser
- Department of Mechanical Engineering, University of Delaware, 540 S. College Avenue, STAR Health Sciences Complex, Rm 201, Newark, DE 19713
| | - Margo C. Donlin
- Department of Biomedical Engineering, University of Delaware, 540 S. College Avenue, STAR Health Sciences Complex, Rm 201, Newark, DE 19713
| | - Jill S. Higginson
- Department of Mechanical Engineering, University of Delaware, 540 S. College Avenue, STAR Health Sciences Complex, Rm 201, Newark, DE 19713; Department of Biomedical Engineering, University of Delaware, 540 S. College Avenue, STAR Health Sciences Complex, Rm 201, Newark, DE 19713
| |
Collapse
|
58
|
Close EL, Garcia MC, Bazett-Jones DM. Pre-pubertal runners demonstrate greater variability in running kinematics than post-pubertal runners. Gait Posture 2024; 107:136-140. [PMID: 37244771 DOI: 10.1016/j.gaitpost.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Adolescents undergo a period of motor incoordination during puberty characterized by high movement variability. It is unknown if differences in running kinematics variability exist among adolescent long-distance runners. RESEARCH QUESTION Is kinematic variability different among male and female adolescent long-distance runners of different stages of physical maturation? METHODS We enrolled 114 adolescent long-distance runners (ages 8-19, F = 55, M = 59) in this secondary analysis of a larger cross-sectional study. Participants completed a three-dimensional overground running analysis at a comfortable self-selected speed. Peak frontal, sagittal, and transverse plane hip, knee, and ankle/shoe joint angles from the right leg were identified during stance phase for at least five trials. Variability in running kinematics was quantified as the standard deviation of the peak joint angles among the running trials for each participant. Participants were stratified by sex and stage of physical maturation (pre-, mid-, post-pubertal) and two-way ANOVAs compared between-subjects variability among groups (p ≤ .05). RESULTS Significant sex by maturation interactions were observed for hip external rotation and ankle external rotation variability. Sex differences were observed for hip internal rotation, with males demonstrating greater variability, and ankle internal rotation, with females demonstrating greater variability. Pre-pubertal runners demonstrated significantly greater variability than mid-pubertal runners for hip flexion, and greater variability than post-pubertal runners for hip flexion, hip adduction, hip internal rotation, and knee flexion. SIGNIFICANCE Pre-pubertal adolescent long-distance runners demonstrate greater stance phase variability in running kinematics than post-pubertal adolescent long-distance runners, while adolescent males and females demonstrate similar variability. Anthropometric and neuromuscular changes that occur during puberty likely influence running patterns and may contribute to more consistent kinematic patterns for post-pubertal runners.
Collapse
Affiliation(s)
- Eryn L Close
- College of Health and Human Services, University of Toledo, Toledo, OH, USA
| | - Micah C Garcia
- College of Health and Human Services, University of Toledo, Toledo, OH, USA.
| | | |
Collapse
|
59
|
Jan YK, Lin CF, Liao F, Singh NB. Editorial: Nonlinear dynamics and complex patterns in the human musculoskeletal system and movement. Front Bioeng Biotechnol 2023; 11:1339376. [PMID: 38162178 PMCID: PMC10756663 DOI: 10.3389/fbioe.2023.1339376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Affiliation(s)
- Yih-Kuen Jan
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Cheng-Feng Lin
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan
| | - Fuyuan Liao
- Department of Biomedical Engineering, Xi’an Technological University, Xi’an, China
| | - Navrag B. Singh
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Singapore-ETH Centre, Future Health Technologies Program, CREATE Campus, Singapore, Singapore
| |
Collapse
|
60
|
Morral-Yepes M, Gonzalo-Skok O, Dos´Santos T, Moras Feliu G. Are change of direction speed and agility different abilities from time and coordinative perspectives? PLoS One 2023; 18:e0295405. [PMID: 38060543 PMCID: PMC10703208 DOI: 10.1371/journal.pone.0295405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to test whether agility and change of direction speed (COD) are independent capacities using the same movement pattern (1) in terms of the completion time and (2) the entropy. Seventeen semi-professional female football players participated in the study. The agility task consisted of a Y-shaped (45° COD) task with three possible exit options (center, right and left) performed pre-planned or in reaction to the movement of two testers (i.e., blocking exit gates). Players' acceleration was measured using an inertial measurement unit. Entropy was calculated from the acceleration signal and completion time was extracted using a magnet-based timing system. Significantly greater times and lower entropy (p<0.001) were found during agility runs to pre-planned COD runs. Furthermore, weak to moderate correlations were found between COD and agility for both completion time (r = 0.29, p<0.001) and entropy (r = 0.53, p<0.001, r2 = 28.1%). These results highlight that COD speed and agility are independent capacities and skills, and as such, should be tested and trained as distinct, separate qualities. Modifying task constraints including a reactive stimulus (i.e., cognitive factors), is essential for increasing task complexity by altering the biomechanical and coordinative aspects of the action.
Collapse
Affiliation(s)
- Mónica Morral-Yepes
- Department of Sports Performance, INEFC, Universitat de Barcelona, Barcelona, Spain
- Department of Health Sciences, Research Group in Technology Applied to High Performance and Health, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oliver Gonzalo-Skok
- Department of Communication and Education, Universidad Loyola Andalucía, Sevilla, Spain
| | - Thomas Dos´Santos
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Center, Manchester Metropolitan University, Manchester, United Kingdom
| | - Gerard Moras Feliu
- Department of Sports Performance, INEFC, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
61
|
Wiles TM, Mangalam M, Sommerfeld JH, Kim SK, Brink KJ, Charles AE, Grunkemeyer A, Kalaitzi Manifrenti M, Mastorakis S, Stergiou N, Likens AD. NONAN GaitPrint: An IMU gait database of healthy young adults. Sci Data 2023; 10:867. [PMID: 38052819 PMCID: PMC10698035 DOI: 10.1038/s41597-023-02704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
An ongoing thrust of research focused on human gait pertains to identifying individuals based on gait patterns. However, no existing gait database supports modeling efforts to assess gait patterns unique to individuals. Hence, we introduce the Nonlinear Analysis Core (NONAN) GaitPrint database containing whole body kinematics and foot placement during self-paced overground walking on a 200-meter looping indoor track. Noraxon Ultium MotionTM inertial measurement unit (IMU) sensors sampled the motion of 35 healthy young adults (19-35 years old; 18 men and 17 women; mean ± 1 s.d. age: 24.6 ± 2.7 years; height: 1.73 ± 0.78 m; body mass: 72.44 ± 15.04 kg) over 18 4-min trials across two days. Continuous variables include acceleration, velocity, position, and the acceleration, velocity, position, orientation, and rotational velocity of each corresponding body segment, and the angle of each respective joint. The discrete variables include an exhaustive set of gait parameters derived from the spatiotemporal dynamics of foot placement. We technically validate our data using continuous relative phase, Lyapunov exponent, and Hurst exponent-nonlinear metrics quantifying different aspects of healthy human gait.
Collapse
Affiliation(s)
- Tyler M Wiles
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Joel H Sommerfeld
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Seung Kyeom Kim
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Kolby J Brink
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Anaelle Emeline Charles
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Alli Grunkemeyer
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Marilena Kalaitzi Manifrenti
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Spyridon Mastorakis
- College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Nick Stergiou
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
- Department of Physical Education and Sport Science, Aristotle University, Thessaloniki, Greece
| | - Aaron D Likens
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| |
Collapse
|
62
|
Muroi D, Kodama K, Tomono T, Saito Y, Koyake A, Higuchi T. Approaching Process in Walking through an Aperture for Individuals with Stroke. J Mot Behav 2023; 56:139-149. [PMID: 38047437 DOI: 10.1080/00222895.2023.2280259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/29/2023] [Indexed: 12/05/2023]
Abstract
Muroi et al. show that individuals with stroke have improved collision avoidance behavior when passing through an aperture while entering from the paretic-side of the body. However, the underlying mechanism remains unknown. We reanalyzed Muroi et al.'s data to reveal how individuals with stroke walk through an aperture by examining changes in walking velocity and behavioral complexity (i.e., sample entropy, an index of (ir)regularity of time series, regarded lower entropy as more regular and less complex) by focusing on the approaching process. The results showed that individuals with stroke reduced their walking velocity and behavioral complexity before passing through the narrow aperture when approaching from the paretic side. We interpreted that the improved obstacle avoidance when penetrating from the paretic side may be due to careful body rotation and adjusting the walking velocity in advance.
Collapse
Affiliation(s)
- Daisuke Muroi
- Division of Physical Therapy, Department of Rehabilitation Sciences, Faculty of Health Care Sciences, Chiba Prefectural University of Health Sciences, Chiba, Japan
- Department of Health Promotion Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kentaro Kodama
- University Education Center, Tokyo Metropolitan University, Tokyo, Japan
| | - Takayuki Tomono
- Faculty of Humanities, Sapporo Gakuin University, Hokkaido, Japan
| | - Yutaro Saito
- Department of Rehabilitation, Kameda Rehabilitation Hospital, Chiba, Japan
| | - Aki Koyake
- Department of Rehabilitation, Kameda Rehabilitation Hospital, Chiba, Japan
| | - Takahiro Higuchi
- University Education Center, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
63
|
Knaier E, Meier CE, Caflisch JA, Huber R, Kakebeeke TH, Jenni OG. Visuomotor adaptation, internal modelling, and compensatory movements in children with developmental coordination disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 143:104624. [PMID: 37972466 DOI: 10.1016/j.ridd.2023.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Developmental coordination disorder (DCD) is one of the most prevalent developmental disorders in school-aged children. The mechanisms and etiology underlying DCD remain somewhat unclear. Altered visuomotor adaptation and internal model deficits are discussed in the literature. AIMS The study aimed to investigate visuomotor adaptation and internal modelling to determine whether and to what extent visuomotor learning might be impaired in children with DCD compared to typically developing children (TD). Further, possible compensatory movements during visuomotor learning were explored. METHODS AND PROCEDURES Participants were 12 children with DCD (age 12.4 ± 1.8, four female) and 18 age-matched TD (12.3 ± 1.8, five female). Visuomotor learning was measured with the Motor task manager. Compensatory movements were parameterized by spatial and temporal variables. OUTCOMES AND RESULTS Despite no differences in visuomotor adaptation or internal modelling, significant main effects for group were found in parameters representing movement accuracy, motor speed, and movement variability between DCD and TD. CONCLUSIONS AND IMPLICATIONS Children with DCD showed comparable performances in visuomotor adaptation and internal modelling to TD. However, movement variability was increased, whereas movement accuracy and motor speed were reduced, suggesting decreased motor acuity in children with DCD.
Collapse
Affiliation(s)
- Elisa Knaier
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Claudia E Meier
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jon A Caflisch
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Tanja H Kakebeeke
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland.
| |
Collapse
|
64
|
Casartelli L, Maronati C, Cavallo A. From neural noise to co-adaptability: Rethinking the multifaceted architecture of motor variability. Phys Life Rev 2023; 47:245-263. [PMID: 37976727 DOI: 10.1016/j.plrev.2023.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In the last decade, the source and the functional meaning of motor variability have attracted considerable attention in behavioral and brain sciences. This construct classically combined different levels of description, variable internal robustness or coherence, and multifaceted operational meanings. We provide here a comprehensive review of the literature with the primary aim of building a precise lexicon that goes beyond the generic and monolithic use of motor variability. In the pars destruens of the work, we model three domains of motor variability related to peculiar computational elements that influence fluctuations in motor outputs. Each domain is in turn characterized by multiple sub-domains. We begin with the domains of noise and differentiation. However, the main contribution of our model concerns the domain of adaptability, which refers to variation within the same exact motor representation. In particular, we use the terms learning and (social)fitting to specify the portions of motor variability that depend on our propensity to learn and on our largely constitutive propensity to be influenced by external factors. A particular focus is on motor variability in the context of the sub-domain named co-adaptability. Further groundbreaking challenges arise in the modeling of motor variability. Therefore, in a separate pars construens, we attempt to characterize these challenges, addressing both theoretical and experimental aspects as well as potential clinical implications for neurorehabilitation. All in all, our work suggests that motor variability is neither simply detrimental nor beneficial, and that studying its fluctuations can provide meaningful insights for future research.
Collapse
Affiliation(s)
- Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E. MEDEA, Italy
| | - Camilla Maronati
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy
| | - Andrea Cavallo
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy; C'MoN Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
65
|
Halkiadakis Y, Davidson N, Morgan KD. Time series modeling characterizes stride time variability to identify individuals with neurodegenerative disorders. Hum Mov Sci 2023; 92:103152. [PMID: 37898010 DOI: 10.1016/j.humov.2023.103152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/18/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
The progressive death and dysfunction of neurons causes altered stride-to-stride variability in individuals with Amyotrophic Lateral Sclerosis (ALS) and Huntington's Disease (HD). Yet these altered gait dynamics can manifest differently in these populations based on how and where these neurodegenerative disorders attack the central nervous system. Time series analyses can quantify differences in stride time variability which can help contribute to the detection and identification of these disorders. Here, autoregressive modeling time series analysis was utilized to quantify differences in stride time variability amongst the Controls, the individuals with ALS, and the individuals with HD. For this study, fifteen Controls, 12 individuals with ALS and 15 individuals with HD walked up and down a hallway continuously for 5-min. Participants wore force sensitive resistors in their shoes to collect stride time data. A second order autoregressive (AR) model was fit to the time series created from the stride time data. The mean stride time and two AR model coefficients served as metrics to identify differences in stride time variability amongst the three groups. The individuals with HD walked with significantly greater stride time variability indicating a more chaotic gait while the individuals with ALS adopted more ordered, less variable stride time dynamics (p < 0.001). A plot of the stride time metrics illustrated how each group exhibited significantly different stride time dynamics. The stride time metrics successfully quantified differences in stride time variability amongst individuals with neurodegenerative disorders. This work provided valuable insight about how these neuromuscular disorders disrupt motor coordination leading to the adoption of new gait dynamics.
Collapse
Affiliation(s)
- Yannis Halkiadakis
- Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT, USA
| | - Noah Davidson
- Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT, USA
| | - Kristin D Morgan
- Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
66
|
Larson DJ, Brown SHM. Effects of trunk extensor muscle fatigue on repetitive lift (re)training using an augmented tactile feedback approach. ERGONOMICS 2023; 66:1919-1934. [PMID: 36636970 DOI: 10.1080/00140139.2023.2168769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Augmented tactile and performance feedback has been used to (re)train a modified lifting technique to reduce lumbar spine flexion, which has been associated with low back disorder development during occupational repetitive lifting tasks. However, it remains unknown if the presence of trunk extensor neuromuscular fatigue influences learning of this modified lifting technique. Therefore, we compared the effectiveness of using augmented tactile and performance feedback to reduce lumbar spine flexion during a repetitive lifting task, in both unfatigued and fatigued states. Participants completed repetitive lifting tests immediately before and after training, and 1-week later, with half of the participants completing training after fatiguing their trunk extensor muscles. Both groups demonstrated learning of the modified lifting technique as demonstrated by increased thorax-pelvis coordination variability and reduced lumbar range of motion variability; however, experiencing trunk extensor neuromuscular fatigue during lift (re)training may have slight negative influences on learning the modified lifting technique. Practitioner summary: An augmented lift (re)training paradigm using tactile cueing and performance feedback regarding key movement features (i.e. lumbar spine flexion) can effectively (re)train a modified lifting technique to reduce lumbar flexion and redistribute motion to the hips and knees. However, performing (re)training while fatigued could slightly hinder learning this lifting technique.
Collapse
Affiliation(s)
- Dennis J Larson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
67
|
Jordão S, Stergiou N, Brandão R, Pezarat-Correia P, Oliveira R, Cortes N, Vaz JR. Muscle activity variability patterns and stride to stride fluctuations of older adults are positively correlated during walking. Sci Rep 2023; 13:20721. [PMID: 38007498 PMCID: PMC10676363 DOI: 10.1038/s41598-023-47828-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023] Open
Abstract
It has been found that fractal-like patterns are present in the temporal structure of the variability of healthy biological rhythms, while pathology and disease lead to their deterioration. Interestingly, it has recently been suggested that these patterns in biological rhythms are related with each other, reflecting overall health or lack of it, due to their interaction. However, the underlying neurophysiological mechanisms responsible for such dependency remain unknown. In addition, this relationship between different elements needs to be first verified before we even pursue understanding their interaction. This study aimed to investigate the relationship between two elements of the neuromuscular system, gait and muscle activity variability patterns in older adults. Twenty-one older adults walked at their preferred walking speed on a treadmill. Inter-stride intervals were obtained through an accelerometer placed on the lateral malleoli to assess the temporal structure of variability of stride-to-stride fluctuations. Inter muscle peak intervals were obtained through the electromyographic signal of the gastrocnemius to assess the temporal structure of the variability of the simultaneous muscle activity. The temporal structure of variability from both signals was evaluated through the detrended fluctuation analysis, while their magnitude of variability was evaluated using the coefficient of variation. The Pearson's Correlation coefficient was used to identify the relationship between the two dependent variables. A significant strong positive correlation was found between the temporal structure of gait and muscle activity patterns. This result suggests that there is an interdependency between biological rhythms that compose the human neuromuscular system.
Collapse
Affiliation(s)
- Sofia Jordão
- CIPER, Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, Monte da Caparica, 2829 - 511, Caparica, Portugal
- Hospital da Ordem Terceira Chiado, Lisbon, Portugal
| | - Nick Stergiou
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Physical Education and Sport Science, Aristotle University, Thessaloniki, Greece
| | - Rita Brandão
- CIPER, Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Pedro Pezarat-Correia
- CIPER, Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Raúl Oliveira
- CIPER, Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Nelson Cortes
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - João R Vaz
- CIPER, Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal.
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, Monte da Caparica, 2829 - 511, Caparica, Portugal.
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
68
|
Gaiesky SKT, Fridman L, Michie T, Blazey P, Tran N, Schneeberg A, Napier C. The one-week and three-month reliability of acceleration outcomes from an insole-embedded inertial measurement unit during treadmill running. Sports Biomech 2023:1-15. [PMID: 37941419 DOI: 10.1080/14763141.2023.2275258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Inertial measurement units (IMUs) represent an exciting opportunity for researchers to broaden our understanding of running-related injuries, and for clinicians to expand their application of running gait analysis. The primary aim of our study was to investigate the 1-week (short-term) and 3-month (long-term) reliability of peak resultant, vertical, and anteroposterior accelerations derived from insole-embedded IMUs. The secondary aim was to assess the reliability of peak acceleration variability and left-right limb symmetry in all directions over the short and long term. A sample of healthy adult rearfoot runners (n = 23; age 41.7 ± 11.2 years) ran at a variety of speeds (2.5 m/s, 3.0 m/s, and 3.5 m/s) on a treadmill in standardised footwear with insole-embedded IMUs in each shoe. Peak accelerations exhibited good to excellent short-term reliability and moderate to excellent long-term reliability in all directions. Peak acceleration variability showed poor to good short- and long-term reliability, whereas the symmetry of peak accelerations demonstrated moderate to excellent and moderate to good short- and long-term reliability, respectively. Our results demonstrate how insole-embedded IMUs represent a viable option for clinicians to measure peak accelerations within the clinic.
Collapse
Affiliation(s)
- Sean K T Gaiesky
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Metro Vancouver, BC, Canada
| | | | - Tom Michie
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Metro Vancouver, BC, Canada
- Centre for Aging SMART, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Paul Blazey
- Centre for Aging SMART, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | | | | | - Christopher Napier
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Metro Vancouver, BC, Canada
- Centre for Aging SMART, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| |
Collapse
|
69
|
Winter L, Taylor P, Bellenger C, Grimshaw P, Crowther RG. The application of the Lyapunov Exponent to analyse human performance: A systematic review. J Sports Sci 2023; 41:1994-2013. [PMID: 38326239 DOI: 10.1080/02640414.2024.2308441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Variability is a normal component of human movement, allowing one to adapt to environmental perturbations. It can be analysed from linear or non-linear perspectives. The Lyapunov Exponent (LyE) is a commonly used non-linear technique, which quantifies local dynamic stability. It has been applied primarily to walking gait and appears to be limited application in other movements. Therefore, this systematic review aims to summarise research methodologies applying the LyE to movements, excluding walking gait. Four databases were searched using keywords related to movement variability, dynamic stability, LyE and divergence exponent. Articles written in English, using the LyE to analyse movements, excluding walking gait were included for analysis. 31 papers were included for data extraction. Quality appraisal was conducted and information related to the movement, data capture method, data type, apparatus, sampling rate, body segment/joint, number of strides/steps, state space reconstruction, algorithm, filtering, surrogation and time normalisation were extracted. LyE values were reported in supplementary materials (Appendix 2). Running was the most prevalent non-walking gait movement assessed. Methodologies to calculate the LyE differed in various aspects resulting in different LyE values being generated. Additionally, test-retest reliability, was only conducted in one study, which should be addressed in future.
Collapse
Affiliation(s)
- Lachlan Winter
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Paul Taylor
- School of Behavioural and Health Sciences, Australian Catholic University, North Sydney, New South Wales, Australia
| | - Clint Bellenger
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Paul Grimshaw
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Faculty of Sciences, Engineering and Technology, Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert G Crowther
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
70
|
Troiano M, Thompson X, Boukhechba M, Hertel J, Resch JE. An Absence of Persistent Postural Stability Deficits Following a Sport Concussion in Collegiate Athletes. J Head Trauma Rehabil 2023; 38:425-433. [PMID: 36951470 DOI: 10.1097/htr.0000000000000873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
OBJECTIVE The purpose of our study was to determine whether persistent postural stability deficits exist in athletes following sport concussion (SC) in comparison with preinjury (baseline) values using Sample Entropy (SampEn). SETTING Sports medicine clinic. PATIENTS OR OTHER PARTICIPANTS Participants consisted of 71 collegiate athletes (44 male, 27 female) with an average age of 19.9 ± 0.96 years who had a history of 1 concussion that occurred during their time as a collegiate athlete. DESIGN In our prospective, cohort design participants completed the Sensory Organization Test (SOT) at baseline, upon reporting symptom-free following a diagnosed SC, and upon establishing a new baseline prior to the start of the subsequent sport season. MAIN OUTCOME MEASURES The SOT's condition scores were calculated and analyzed in alignment with the manufacturer's instructions. SampEn was calculated in the anterior-posterior (AP) and medial-lateral (ML) directions from the center-of-pressure oscillations over the 20-second time series for each SOT condition. The SOT and SampEn outcome scores for each condition were analyzed with repeated-measures analyses of variance. RESULTS Significant main effects were observed for the SOT's conditions 3 ( F1.6, 114.8 = 7.83, P = .001, η2 = 0.10 [0.02-0.20]), 5 ( F1.8, 126.8 = 11.53, P < .001, η2 = 0.14 [0.04-0.25]), and 6 ( F1.9, 134.5 = 25.11, P < .001, η2 = 0.26 [0.14-0.37]), with significant improvements across time. Significant main effects were also observed for SampEn in the AP direction for conditions 3 ( F2, 140 = 7.59, P = .001, η2 = 0.10 [0.02-0.19]) and 6 ( F2, 140 = 6.22, P = .003, η2 = 0.08 [0.011-0.170]), with significant improvements across time. CONCLUSIONS Following a diagnosed SC, our results suggest that collegiate athletes returned if not exceeded baseline values at the symptom-free and new baseline assessments. The application of linear and nonlinear measures of postural stability following a SC yielded similar outcomes in conjunction with a baseline assessment. Our findings support the clinical utility of the baseline SC assessment when evaluating persisting balance deficits when using linear or nonlinear measures.
Collapse
Affiliation(s)
- Mia Troiano
- Departments of Kinesiology (Ms Troiano, Mr Thompson, and Drs Hertel and Resch) and Engineering Systems and Environment (Dr Boukhechba), University of Virginia, Charlottesville
| | | | | | | | | |
Collapse
|
71
|
Baracchini G, Zhou Y, da Silva Castanheira J, Hansen JY, Rieck J, Turner GR, Grady CL, Misic B, Nomi J, Uddin LQ, Spreng RN. The biological role of local and global fMRI BOLD signal variability in human brain organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563476. [PMID: 37961684 PMCID: PMC10634715 DOI: 10.1101/2023.10.22.563476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Variability drives the organization and behavior of complex systems, including the human brain. Understanding the variability of brain signals is thus necessary to broaden our window into brain function and behavior. Few empirical investigations of macroscale brain signal variability have yet been undertaken, given the difficulty in separating biological sources of variance from artefactual noise. Here, we characterize the temporal variability of the most predominant macroscale brain signal, the fMRI BOLD signal, and systematically investigate its statistical, topographical and neurobiological properties. We contrast fMRI acquisition protocols, and integrate across histology, microstructure, transcriptomics, neurotransmitter receptor and metabolic data, fMRI static connectivity, and empirical and simulated magnetoencephalography data. We show that BOLD signal variability represents a spatially heterogeneous, central property of multi-scale multi-modal brain organization, distinct from noise. Our work establishes the biological relevance of BOLD signal variability and provides a lens on brain stochasticity across spatial and temporal scales.
Collapse
Affiliation(s)
- Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Yigu Zhou
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jason da Silva Castanheira
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Justine Y. Hansen
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Gary R. Turner
- Department of Psychology, York University, Toronto, ON, Canada
| | - Cheryl L. Grady
- Rotman Research Institute at Baycrest, and Department of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jason Nomi
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
72
|
Wilson TJ, Mangalam M, Stergiou N, Likens AD. Multifractality in stride-to-stride variations reveals that walking involves more movement tuning and adjusting than running. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1294545. [PMID: 37928059 PMCID: PMC10621042 DOI: 10.3389/fnetp.2023.1294545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Introduction: The seemingly periodic human gait exhibits stride-to-stride variations as it adapts to the changing task constraints. The optimal movement variability hypothesis (OMVH) states that healthy stride-to-stride variations exhibit "fractality"-a specific temporal structure in consecutive strides that are ordered, stable but also variable, and adaptable. Previous research has primarily focused on a single fractality measure, "monofractality." However, this measure can vary across time; strideto-stride variations can show "multifractality." Greater multifractality in stride-tostride variations would highlight the ability to tune and adjust movements more. Methods: We investigated monofractality and multifractality in a cohort of eight healthy adults during self-paced walking and running trials, both on a treadmill and overground. Footfall data were collected through force-sensitive sensors positioned on their heels and feet. We examined the effects of self-paced walking vs. running and treadmill vs. overground locomotion on the measure of monofractality, α-DFA, in addition to the multifractal spectrum width, W, and the asymmetry in the multifractal spectrum, WAsym, of stride interval time series. Results: While the α-DFA was larger than 0.50 for almost all conditions, α-DFA was higher in running and locomoting overground than walking and locomoting on a treadmill. Similarly, W was greater while locomoting overground than on a treadmill, but an opposite trend indicated that W was greater in walking than running. Larger WAsym values in the negative direction suggest that walking exhibits more variation in the persistence of shorter stride intervals than running. However, the ability to tune and adjust movements does not differ between treadmill and overground, although both exhibit more variation in the persistence of shorter stride intervals. Discussion: Hence, greater heterogeneity in shorter than longer stride intervals contributed to greater multifractality in walking compared to running, indicated by larger negative WAsym values. Our results highlight the need to incorporate multifractal methods to test the predictions of the OMVH.
Collapse
Affiliation(s)
- Taylor J. Wilson
- Division of Biomechanics and Research Development, Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States
| | - Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States
| | - Nick Stergiou
- Division of Biomechanics and Research Development, Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States
- Department of Physical Education and Sport Science, Aristotle University, Thessaloniki, Greece
| | - Aaron D. Likens
- Division of Biomechanics and Research Development, Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States
| |
Collapse
|
73
|
Lorås H, Sandseter EBH, Sando OJ, Storli L. Distinct clusters of movement entropy in children's exploration of a virtual reality balance beam. Front Psychol 2023; 14:1227469. [PMID: 37915527 PMCID: PMC10616470 DOI: 10.3389/fpsyg.2023.1227469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Although assessing motor competence is vital to advancing current understandings of motor development and its significance in various fields, no consensus exists on how the construct should be operationalised and measured. Existing approaches to assessing motor competence in children typically involve applying qualitative and/or quantitative scoring procedures in which children's performance is evaluated according to certain levels of assessment-specific task performance dependent upon predefined sets of instructions and procedures. Building upon ecological dynamics as a framework, different levels of motor competence can be identified in children's attempts to coordinate their degrees of freedom while trying to complete the interactive task and environmental constraints. Given the dynamic, nonlinear features of that coordinating process, assessments need to consider the inherit structure of inter- and intra-individual variability in patterns of movement. Against that background, we investigated 7-10-year-old children's (n = 58) whole-body joint kinematics as they freely explored a balance beam in a virtual reality playground. Specifically, we used exploratory cluster analysis to examine the discriminatory capability of utilising joint-specific sample entropy as a window into individual differences in movement coordination that emerged from children's exploration of the constraints embedded in the virtual task. Among the results, three clusters of children with distinct profiles of movement variability emerged, all of which showed heterogeneous levels of repeatability in joint movements in combination with the level of spatiotemporal exploration on the balance beam that could not be explained by between-cluster differences in age and gender distributions. Those findings suggest that entropy from whole-body movements can be used to cluster children into distinct groups with different profiles regarding the structure of movement variability, which can inform new understandings and the development of gross motor competence assessments for children.
Collapse
Affiliation(s)
- Håvard Lorås
- Department of Teacher Education, Faculty of Social and Educational Sciences, NTNU, Trondheim, Norway
- Department of Physical Education and Health, Queen Maud University College of Early Childhood Education, Trondheim, Norway
| | - Ellen Beate Hansen Sandseter
- Department of Physical Education and Health, Queen Maud University College of Early Childhood Education, Trondheim, Norway
| | - Ole Johan Sando
- Department of Physical Education and Health, Queen Maud University College of Early Childhood Education, Trondheim, Norway
| | - Lise Storli
- Department of Physical Education and Health, Queen Maud University College of Early Childhood Education, Trondheim, Norway
| |
Collapse
|
74
|
Rong P, Benson J. Intergenerational choral singing to improve communication outcomes in Parkinson's disease: Development of a theoretical framework and an integrated measurement tool. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 25:722-745. [PMID: 36106430 DOI: 10.1080/17549507.2022.2110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Purpose: This study presented an initial step towards developing the evidence base for intergenerational choral singing as a communication-focussed rehabilitative approach for Parkinson's disease (PD).Method: A theoretical framework was established to conceptualise the rehabilitative effect of intergenerational choral singing on four domains of communication impairments - motor drive, timing mechanism, sensorimotor integration, higher-level cognitive and affective functions - as well as activity/participation, and quality of life. A computer-assisted multidimensional acoustic analysis was developed to objectively assess the targeted domains of communication impairments. Voice Handicap Index and the World Health Organization's Quality of Life assessment-abbreviated version were used to obtain patient-reported outcomes at the activity/participation and quality of life levels. As a proof of concept, a single subject with PD was recruited to participate in 9 weekly 1-h intergenerational choir rehearsals. The subject was assessed before, 1 week post, and 8 weeks post-choir.Result: Notable trends of improvement were observed in multiple domains of communication impairments at 1 week post-choir. Some improvements were maintained at 8 weeks post-choir. Patient-reported outcomes exhibited limited pre-post changes.Conclusion: This study provided the theoretical groundwork and an empirical measurement tool for future validation of intergenerational choral singing as a novel rehabilitation for PD.
Collapse
Affiliation(s)
- Panying Rong
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, KS, USA and
| | | |
Collapse
|
75
|
Tuyà Viñas S, Fernández-Valdés Villa B, Pérez-Chirinos Buxadé C, González J, Moras Feliu G. Decision making influences movement variability and performance of high-level female football players in an elastic resistance task. Front Psychol 2023; 14:1175248. [PMID: 37790226 PMCID: PMC10542582 DOI: 10.3389/fpsyg.2023.1175248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/23/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction The inclusion of sport-specific constraints in resistance training promotes the development of player abilities in an integrated way, which maximises the effectiveness of player adaptations induced by training. Considering that perceptual-cognitive abilities play a fundamental role in football, decision making could be introduced to enhance the cognitive similarity of resistance tasks to sport actions. However, it is unknown how decision making as a constraint could affect the player during an elastic resistance task. Therefore, the aim of this study was to investigate the effects of decision making of high-level female football players on movement variability and performance during an elastic band resistance task. Methods Twenty-three high-level female football players performed the elastic resistance task with a ball, both as attackers and as defenders without decision making (NDM) and with decision making (DM). The movement variability was quantified using the sample entropy derived from the acceleration recorded with an accelerometer placed at the lower back of each player. The passing accuracy of the attacker was quantified using a scoring scale. Results Results revealed that adding decision making to an elastic resistance task increased the movement variability of the defender but did not affect the movement variability of the attacker. In contrast, the passing accuracy of the attacker was reduced. Overall, the attacker had a higher movement variability compared to the defender. Discussion These findings suggest that decision making, as a football-specific constraint, can enhance the potential of an elastic resistance task in training. This is due to the fact that it reduces control and regularity of movement for the defensive role player and increases technical difficulty for the attacking role player. Furthermore, these effects are beneficial, as they can promote the adaptive processes necessary to optimise the performance of the players.
Collapse
Affiliation(s)
- Sílvia Tuyà Viñas
- Department of Sports Performance, Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Bruno Fernández-Valdés Villa
- Department of Health Sciences, Research Group in Technology Applied to High Performance and Health, TecnoCampus, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carla Pérez-Chirinos Buxadé
- Department of Health Sciences, Research Group in Technology Applied to High Performance and Health, TecnoCampus, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jacob González
- Department of Strength and Conditioning, Futbol Club Barcelona, Sant Joan Despí, Spain
| | - Gerard Moras Feliu
- Department of Sports Performance, Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
76
|
Pereira MJ, Dias G, Mendes R, Martins F, Gomes R, Castro MA, Vaz V. Movement variability in Pilates: a scoping review. Front Psychol 2023; 14:1195055. [PMID: 37780172 PMCID: PMC10540319 DOI: 10.3389/fpsyg.2023.1195055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Objective This scoping review aimed to identify studies that analyzed movement variability in Pilates. Following a systematic approach to mapping evidence on this topic would highlight concepts, theories, sources, and knowledge gaps in this area. Methods This review used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) criteria for the selection, reading, and analysis of studies in this area. We searched five literature databases (Web of Science, SCOPUS, library catalog of the Faculty of Sport and Physical Education of the University of Coimbra-EBSCO Discovery Services, MEDLINE, and Google Scholar). Eligible articles contained the word "Pilates," and the human movement variability was analyzed. Any type of study (except reviews) could be eligible and must have been published between 1 January 2002 and 30 November 2022, in Portuguese, Spanish, French, or English. Results Our search identified five eligible entries. Only one study used the Pilates method in its intervention, pointing to a more significant variability of hip-knee coordination, suggesting more diversified coordination patterns, and maintaining the variability of the angular position of the joint. Conclusion Very few studies have examined movement variability in Pilates, and only one applied an ecological framework.
Collapse
Affiliation(s)
- Mário José Pereira
- Faculdade de Ciências do Desporto e Educação Física, Universidade de Coimbra, Coimbra, Portugal
| | - Gonçalo Dias
- Faculdade de Ciências do Desporto e Educação Física, Universidade de Coimbra, Coimbra, Portugal
- Escola Superior de Educação de Coimbra, Instituto Politécnico de Coimbra, Coimbra, Portugal
- Laboratório RoboCorp, IIA, Instituto Politécnico de Coimbra, Coimbra, Portugal
- CIDAF (UID/DTP/04213/2020), Universidade de Coimbra, Coimbra, Portugal
- ESEC-UNICID-ASSERT, Instituto Politécnico de Coimbra, Coimbra, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, Covilhã, Portugal
| | - Rui Mendes
- Escola Superior de Educação de Coimbra, Instituto Politécnico de Coimbra, Coimbra, Portugal
- Laboratório RoboCorp, IIA, Instituto Politécnico de Coimbra, Coimbra, Portugal
- CIDAF (UID/DTP/04213/2020), Universidade de Coimbra, Coimbra, Portugal
- ESEC-UNICID-ASSERT, Instituto Politécnico de Coimbra, Coimbra, Portugal
| | - Fernando Martins
- Escola Superior de Educação de Coimbra, Instituto Politécnico de Coimbra, Coimbra, Portugal
- Laboratório RoboCorp, IIA, Instituto Politécnico de Coimbra, Coimbra, Portugal
- ESEC-UNICID-ASSERT, Instituto Politécnico de Coimbra, Coimbra, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, Covilhã, Portugal
| | - Ricardo Gomes
- Escola Superior de Educação de Coimbra, Instituto Politécnico de Coimbra, Coimbra, Portugal
- Laboratório RoboCorp, IIA, Instituto Politécnico de Coimbra, Coimbra, Portugal
- CIDAF (UID/DTP/04213/2020), Universidade de Coimbra, Coimbra, Portugal
- ESEC-UNICID-ASSERT, Instituto Politécnico de Coimbra, Coimbra, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, Covilhã, Portugal
| | - Maria António Castro
- Laboratório RoboCorp, IIA, Instituto Politécnico de Coimbra, Coimbra, Portugal
- Escola Superior de Saúde, Instituto Politécnico de Leiria, Leiria, Portugal
| | - Vasco Vaz
- Faculdade de Ciências do Desporto e Educação Física, Universidade de Coimbra, Coimbra, Portugal
- CIDAF (UID/DTP/04213/2020), Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
77
|
Lantis K, Schnell P, Bland CR, Wilder J, Hock K, Vargo C, Glover NA, Hackney ME, Lustberg MB, Worthen-Chaudhari L. Biomechanical effect of neurologic dance training (NDT) for breast cancer survivors with chemotherapy-induced neuropathy: study protocol for a randomized controlled trial and preliminary baseline data. Trials 2023; 24:564. [PMID: 37658464 PMCID: PMC10472642 DOI: 10.1186/s13063-023-07554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is among the most common forms of cancer experienced by women. Up to 80% of BC survivors treated with chemotherapy experience chemotherapy-induced neuropathy (CIN), which degrades motor control, sensory function, and quality of life. CIN symptoms include numbness, tingling, and/or burning sensations in the extremities; deficits in neuromotor control; and increased fall risk. Physical activity (PA) and music-based medicine (MBM) are promising avenues to address sensorimotor symptoms. Therefore, we propose that we can combine the effects of music- and PA-based medicine through neurologic dance training (NDT) through partnered Adapted Tango (NDT-Tango). We will assess the intervention effect of NDT-Tango v. home exercise (HEX) intervention on biomechanically-measured variables. We hypothesize that 8 weeks of NDT-Tango practice will improve the dynamics of posture and gait more than 8 weeks of HEX. METHODS In a single-center, prospective, two-arm randomized controlled clinical trial, participants are randomly assigned (1:1 ratio) to the NDT-Tango experimental or the HEX active control intervention group. Primary endpoints are change from baseline to after intervention in posture and gait. Outcomes are collected at baseline, midpoint, post, 1-month follow-up, and 6-month follow-up. Secondary and tertiary outcomes include clinical and biomechanical tests of function and questionnaires used to compliment primary outcome measures. Linear mixed models will be used to model changes in postural, biomechanical, and PROs. The primary estimand will be the contrast representing the difference in mean change in outcome measure from baseline to week 8 between treatment groups. DISCUSSION The scientific premise of this study is that NDT-Tango stands to achieve more gains than PA practice alone through combining PA with MBM and social engagement. Our findings may lead to a safe non-pharmacologic intervention that improves CIN-related deficits. TRIAL REGISTRATION This trial was first posted on 11/09/21 at ClinicalTrials.gov under the identifier NCT05114005.
Collapse
Affiliation(s)
- Kristen Lantis
- College of Medicine, Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA.
| | - Patrick Schnell
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Courtney R Bland
- College of Medicine, Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
| | - Jacqueline Wilder
- College of Medicine, Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
| | - Karen Hock
- Comprehensive Cancer Center, The Ohio State University, 281 W Lane Ave, Columbus, OH, 43210, USA
| | - Craig Vargo
- Comprehensive Cancer Center, The Ohio State University, 281 W Lane Ave, Columbus, OH, 43210, USA
| | - Nelson A Glover
- George Mason University, 4400 University Dr, Fairfax, VA, 22030, USA
| | - Madeleine E Hackney
- Department of Medicine, Division of Geriatrics and Gerontology, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, 2015 Uppergate Dr, Atlanta, GA, 30307, USA
| | | | - Lise Worthen-Chaudhari
- College of Medicine, Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
78
|
Kurz MJ, Hutchinson JR. Visual feedback influences the consistency of the locomotor pattern in Asian elephants ( Elephas maximus). Biol Lett 2023; 19:20230260. [PMID: 37753637 PMCID: PMC10523196 DOI: 10.1098/rsbl.2023.0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Elephants are atypical of most quadrupeds in that they maintain the same lateral sequence footfall pattern across all locomotor speeds. It has been speculated that the preservation of the footfall patterns is necessary to maintain a statically stable support polygon. This should be a particularly important constraint in large, relatively slow animals. This suggests that elephants must rely on available sensory feedback mechanisms to actively control their massive pillar-like limbs for proper foot placement and sequencing. How the nervous system of elephants integrates the available sensory information for a stable gait is unknown. Here we explored the role that visual feedback plays in the control of the locomotor pattern in Asian elephants. Four Asian elephants (Elephas maximus) walked with and without a blindfold as we measured their stride time intervals. Coefficient of variation was used to assess changes in the overall variability of the stride time intervals, while approximate entropy was used to measure the stride-to-stride consistency of the time intervals. We show that visual feedback plays a role in the stride-to-stride consistency of the locomotor pattern in Asian elephants. These results suggest that elephants use visual feedback to correct and maintain proper sequencing of the limbs during locomotion.
Collapse
Affiliation(s)
- Max J. Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE 68010, USA
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK
| |
Collapse
|
79
|
van Bergen NG, Soekarjo K, Van der Kamp J, Orth D. Reliability and Validity of Functional Grip Strength Measures Across Holds and Body Positions in Climbers: Associations With Skill and Climbing Performance. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:627-637. [PMID: 35452375 PMCID: PMC10503502 DOI: 10.1080/02701367.2022.2035662] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Purpose: In climbing, exceptional levels of fingertip strength across different holds and body positions are considered essential for performance. There is no commonly agreed upon way to measure such "grip strength variability." Furthermore, the accurate and reliable monitoring of strength is necessary to achieve safe, progressive improvement in strength. Therefore, this study aimed to develop reliability and criterion validity for assessment of grip strength across multiple holds and body positions. Methods: Twenty-two advanced toelite climbers (age = 28.5 ± 8.6 years) performed maximal voluntary isometric contractions on two occasions (for test-retest reliability). Conditions included two hold types (edge and sloper) tested in two postures (elbow flexion [90°] and self-preferred). Climbing performance was determined on two "difficulty" routes (difficulty increases with each hold): one route composed of only edges and another only of slopers. Results: Test-retest reliability was high (ICC between 0.94-0.99). Significant positive correlations were observed for the forces produced on the sloper test and climbing distance on the sloper route (r = 0.512,p < .05), and for the forces produced on the edge test and climbing distance on the edge route (ρ = 0.579, p < .01). Conclusion: These findings support reliability and validity of the method used to measure grip strength variability with different holds and body positions and suggest that improving strength across different grasping types supports adaptive climbing performance.
Collapse
Affiliation(s)
| | | | | | - Dominic Orth
- Vrije Universiteit Amsterdam
- Swinburne University of Technology
| |
Collapse
|
80
|
Mangalam M, Kelty-Stephen DG, Sommerfeld JH, Stergiou N, Likens AD. Temporal organization of stride-to-stride variations contradicts predictive models for sensorimotor control of footfalls during walking. PLoS One 2023; 18:e0290324. [PMID: 37616227 PMCID: PMC10449478 DOI: 10.1371/journal.pone.0290324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Walking exhibits stride-to-stride variations. Given ongoing perturbations, these variations critically support continuous adaptations between the goal-directed organism and its surroundings. Here, we report that stride-to-stride variations during self-paced overground walking show cascade-like intermittency-stride intervals become uneven because stride intervals of different sizes interact and do not simply balance each other. Moreover, even when synchronizing footfalls with visual cues with variable timing of presentation, asynchrony in the timings of the cue and footfall shows cascade-like intermittency. This evidence conflicts with theories about the sensorimotor control of walking, according to which internal predictive models correct asynchrony in the timings of the cue and footfall from one stride to the next on crossing thresholds leading to the risk of falling. Hence, models of the sensorimotor control of walking must account for stride-to-stride variations beyond the constraints of threshold-dependent predictive internal models.
Collapse
Affiliation(s)
- Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States of America
| | - Damian G. Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, United States of America
| | - Joel H. Sommerfeld
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States of America
| | - Nick Stergiou
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States of America
- Department of Department of Physical Education, & Sport Science, Aristotle University, Thessaloniki, Greece
| | - Aaron D. Likens
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, United States of America
| |
Collapse
|
81
|
Alcock L, Vitório R, Stuart S, Rochester L, Pantall A. Faster Walking Speeds Require Greater Activity from the Primary Motor Cortex in Older Adults Compared to Younger Adults. SENSORS (BASEL, SWITZERLAND) 2023; 23:6921. [PMID: 37571703 PMCID: PMC10422240 DOI: 10.3390/s23156921] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Gait speed declines with age and slower walking speeds are associated with poor health outcomes. Understanding why we do not walk faster as we age, despite being able to, has implications for rehabilitation. Changes in regional oxygenated haemoglobin (HbO2) across the frontal lobe were monitored using functional near infrared spectroscopy in 17 young and 18 older adults while they walked on a treadmill for 5 min, alternating between 30 s of walking at a preferred and fast (120% preferred) speed. Gait was quantified using a triaxial accelerometer (lower back). Differences between task (preferred/fast) and group (young/old) and associations between regional HbO2 and gait were evaluated. Paired tests indicated increased HbO2 in the supplementary motor area (right) and primary motor cortex (left and right) in older adults when walking fast (p < 0.006). HbO2 did not significantly change in the young when walking fast, despite both groups modulating gait. When evaluating the effect of age (linear mixed effects model), greater increases in HbO2 were observed for older adults when walking fast (prefrontal cortex, premotor cortex, supplementary motor area and primary motor cortex) compared to young adults. In older adults, increased step length and reduced step length variability were associated with larger increases in HbO2 across multiple regions when walking fast. Walking fast required increased activation of motor regions in older adults, which may serve as a therapeutic target for rehabilitation. Widespread increases in HbO2 across the frontal cortex highlight that walking fast represents a resource-intensive task as we age.
Collapse
Affiliation(s)
- Lisa Alcock
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (L.A.); (L.R.)
- National Institute for Health and Care Research (NIHR), Newcastle Biomedical Research Centre (BRC), Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Rodrigo Vitório
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (R.V.); (S.S.)
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (R.V.); (S.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lynn Rochester
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (L.A.); (L.R.)
- National Institute for Health and Care Research (NIHR), Newcastle Biomedical Research Centre (BRC), Newcastle University, Newcastle upon Tyne NE4 5PL, UK
- The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Annette Pantall
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
82
|
Ghamari N, Ghaderpanah R, Sadrian SH, Fallah N. Effect of a visual dual task on postural stability-A comparative study using linear and nonlinear methods. Health Sci Rep 2023; 6:e1437. [PMID: 37520463 PMCID: PMC10375842 DOI: 10.1002/hsr2.1437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Background and Aims The dual-task experimental paradigm is used to study the attentional demands of postural control. Postural control is impaired in poststroke patients, and dual-task balance studies address the visual needs of postural control in stroke patients. A nonlinear approach can help us understand the overall behavior of the dynamic system. Methods A total of 20 chronic stroke patients and 20 healthy subjects with similar age, height, and weight participated in this study. The stability and complexity of postural control were assessed using linear and nonlinear methods. All data and parameters (center of pressure [COP] velocity, anteroposterior and mediolateral directions displacement, length of COP path, and phase plane) were analyzed using the Kolmogorov-Smirnov test. Results When postural control was examined based on linear analysis, the results showed that the main effect of the group was not significant, but the main impact of position was significant for all parameters of the COP variation (p < 0.05). Examination of postural control based on nonlinear analysis also showed that the main effect of the group was not significant, and the main effect of status was significant only for the parameters of approximate entropy in both directions and short-term Lyapunov view in the anterior-posterior direction (p < 0.05). Conclusion According to the results of this study, the assessment of postural control and gait performance in poststroke patients, as well as the dual tasks they have to perform in daily life, is crucial for their independence in activities of daily living.
Collapse
Affiliation(s)
- Narges Ghamari
- Bone and Joint Diseases Research CenterShiraz University of Medical SciencesShirazIran
| | - Rezvan Ghaderpanah
- Department of Physical Medicine and Rehabilitation, Students Research Committee, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Seyed Hassan Sadrian
- Department of Physical Medicine and Rehabilitation, Students Research Committee, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Nahid Fallah
- Department of Health, Sports Physiotherapy Research CommitteeUniversity of Bath, Claverton DownBathUK
| |
Collapse
|
83
|
Tuyà Viñas S, Fernández-Valdés Villa B, Pérez-Chirinos Buxadé C, Morral-Yepes M, Del Campo Montoliu L, Moras Feliu G. Adding mechanical vibration to a half squat with different ballasts and rhythms increases movement variability. PLoS One 2023; 18:e0284863. [PMID: 37498880 PMCID: PMC10374075 DOI: 10.1371/journal.pone.0284863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/11/2023] [Indexed: 07/29/2023] Open
Abstract
The aim of this study was to determine whether whole body vibration increases movement variability while performing a half squat with different ballasts and rhythms through entropy. A total of 12 male athletes (age: 21.24 ± 2.35 years, height: 176.83 ± 5.80 cm, body mass: 70.63 ± 8.58 kg) performed a half squat with weighted vest, dumbbells and bar with weights suspended with elastic bands, with and without vibration at the squat rhythm of 40 and 60 bpm. Each ballast corresponded to 15% of the body mass. The movement variability was analysed by calculating the sample entropy of the acceleration signal, recorded at the waist using an accelerometer. With vibration, differences were found between weighted vest and dumbbells (t(121) = -8.81, p < 0.001 at 40 bpm; t(121) = -8.18, p < 0.001 at 60 bpm) and between weighted vest and bar at both rhythms (t(121) = -8.96, p < 0.001 at 40 bpm; t(121) = -8.83, p < 0.001 at 60 bpm). Furthermore, a higher sample entropy was obtained at 40 bpm with all ballasts (t(121) = 5.65, p < 0.001 with weighted vest; t(121) = 6.27, p < 0.001 with dumbbells; t(121) = 5.78, p < 0.001 with bar). No differences were found without vibration. These findings reveal that adding mechanical vibration to a half squat produces a non-proportional increase in movement variability, being larger when the ballast is placed on the upper limbs and when performed at a slow rhythm.
Collapse
Affiliation(s)
- Sílvia Tuyà Viñas
- Department of Sports Performance, Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Bruno Fernández-Valdés Villa
- Department of Health Sciences, Research Group in Technology Applied to High Performance and Health, TecnoCampus, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carla Pérez-Chirinos Buxadé
- Department of Health Sciences, Research Group in Technology Applied to High Performance and Health, TecnoCampus, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mónica Morral-Yepes
- Department of Sports Performance, Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
- Department of Health Sciences, Research Group in Technology Applied to High Performance and Health, TecnoCampus, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lucas Del Campo Montoliu
- Department of Sports Performance, Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
- Department of Strength and Conditioning, Futbol Club Barcelona, Sant Joan Despí, Spain
| | - Gerard Moras Feliu
- Department of Sports Performance, Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
84
|
Monroe DC, Berry NT, Fino PC, Rhea CK. A Dynamical Systems Approach to Characterizing Brain-Body Interactions during Movement: Challenges, Interpretations, and Recommendations. SENSORS (BASEL, SWITZERLAND) 2023; 23:6296. [PMID: 37514591 PMCID: PMC10385586 DOI: 10.3390/s23146296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Brain-body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations. First, they rely on interpretations of 'brain' activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they employ methodological approaches that are inconsistent with a dynamical systems approach to neuromotor control. These limitations represent a fundamental challenge to the use of BBIs for answering basic and applied research questions in neuroimaging and neurorehabilitation. Thus, this review is written as a tutorial to address both limitations for those interested in studying BBIs through a dynamical systems lens. First, we outline current best practices for acquiring, interpreting, and cleaning scalp-measured electroencephalography (EEG) acquired during whole-body movement. Second, we discuss historical and current theories for modeling EEG and kinematic data as dynamical systems. Third, we provide worked examples from both canonical model systems and from empirical EEG and kinematic data collected from two subjects during an overground walking task.
Collapse
Affiliation(s)
- Derek C Monroe
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Nathaniel T Berry
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
- Under Armour, Inc., Innovation, Baltimore, MD 21230, USA
| | - Peter C Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher K Rhea
- College of Health Sciences, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
85
|
Lantis KD, Schne P, Bland CR, Wilder J, Hock K, Glover NA, Hackney ME, Lustberg MB, Worthen-Chaudhari L. Biomechanical effect of neurologic dance training (NDT) for breast cancer survivors with chemotherapy-induced neuropathy: study protocol for a randomized controlled trail and preliminary baseline data. RESEARCH SQUARE 2023:rs.3.rs-2988661. [PMID: 37461666 PMCID: PMC10350217 DOI: 10.21203/rs.3.rs-2988661/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Background Breast cancer (BC) is among the most common forms of cancer experienced by women. Up to 80% of BC survivors treated with chemotherapy experience chemotherapy-induced neuropathy (CIN), which degrades motor control, sensory function, and quality of life. CIN symptoms include numbness, tingling, and/or burning sensations in the extremities; deficits in neuromotor control; and increased fall risk. Physical activity (PA) and music-based medicine (MBM) are promising avenues to address sensorimotor symptoms. Therefore, we propose that we can combine the effects of music- and PA-based medicine through Neurologic Dance Training (NDT) through partnered Adapted Tango (NDT-Tango). We will assess the intervention effect of NDT-Tango v. home exercise (HEX) intervention on biomechanically-measured variables. We hypothesize that 8 weeks of NDT-Tango practice will improve the dynamics of posture and gait more than 8 weeks of HEX. Methods In a single-center, prospective, two-arm randomized controlled clinical trial, participants are randomly assigned (1:1 ratio) to the NDT-Tango experimental or the HEX active control intervention group. Primary endpoints are change from baseline to after intervention in posture and gait. Outcomes are collected at baseline, midpoint, post, 1mo follow up, and 6mo follow up. Secondary and tertiary outcomes include clinical and biomechanical tests of function and questionnaires used to compliment primary outcome measures. Linear mixed models will be used to model changes in postural, biomechanical, and PROs. The primary estimand will be the contrast representing the difference in mean change in outcome measure from baseline to week 8 between treatment groups. Discussion The scientific premise of this study is that NDT-Tango stands to achieve more gains than PA practice alone through combining PA with MBM and social engagement. Our findings may lead to a safe non-pharmacologic intervention that improves CIN-related deficits. Trial Registration This trial was first posted on 11/09/21 at ClinicalTrials.gov under the identifier NCT05114005.
Collapse
Affiliation(s)
- Kristen D Lantis
- College of Medicine, Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, Ohio
| | - Patrick Schne
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, Ohio
| | - Courtney R Bland
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, Ohio
| | - Jacqueline Wilder
- College of Medicine, Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, Ohio
| | - Karen Hock
- Comprehensive Cancer Center, The Ohio State University, Columbus OH
| | | | - Madeleine E Hackney
- Department of Medicine, Division of Geriatrics and Gerontology, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta, GA
| | | | - Lise Worthen-Chaudhari
- College of Medicine, Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, Ohio
| |
Collapse
|
86
|
Hunter B, Karsten B, Greenhalgh A, Burnley M, Muniz-Pumares D. The Application of non-linear methods to quantify changes to movement dynamics during running: A scoping review. J Sports Sci 2023:1-14. [PMID: 37330658 DOI: 10.1080/02640414.2023.2225014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
The aim of this scoping review was to evaluate research approaches that quantify changes to non-linear movement dynamics during running in response to fatigue, different speeds, and fitness levels. PubMed and Scopus were used to identify appropriate research articles. After the selection of eligible studies, study details and participant characteristics were extracted and tabulated to identify methodologies and findings. Twenty-seven articles were included in the final analysis. To evaluate non-linearities in the time series, a range of approaches were identified including motion capture, accelerometery, and foot switches. Common methods of analysis included measures of fractal scaling, entropy, and local dynamic stability. Conflicting findings were evident when studies examined non-linear features in fatigued states when compared to non-fatigued. More pronounced alterations to movement dynamics are evident when running speed is changed markedly. Greater fitness levels resulted in more stable and predictable running patterns. The mechanisms by which these changes are underpinned require further examination. These could include the physiological demand of running, biomechanical constraints of the runner, and the attentional demands of the task. Moreover, the practical implications are yet to be elucidated. This review has identified gaps in the literature which should be addressed for further understanding of the field.
Collapse
Affiliation(s)
- Ben Hunter
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- School of Human Sciences, London Metropolitan University, London, UK
| | - Bettina Karsten
- EUFH, Hochschule für Gesundheit, Soziales und Pädagogik, Berlin, Germany
| | - Andrew Greenhalgh
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough,UK
| | | |
Collapse
|
87
|
Alsubaie AM, Mazaheri M, Martinez-Valdes E, Falla D. Is movement variability altered in people with chronic non-specific low back pain? A systematic review. PLoS One 2023; 18:e0287029. [PMID: 37315096 DOI: 10.1371/journal.pone.0287029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Variability in spine kinematics is a common motor adaptation to pain, which has been measured in various ways. However, it remains unclear whether low back pain (LBP) is typically characterised by increased, decreased or unchanged kinematic variability. Therefore, the aim of this review was to synthesise the evidence on whether the amount and structure of spine kinematic variability is altered in people with chronic non-specific LBP (CNSLBP). METHODS Electronic databases, grey literature, and key journals were searched from inception up to August 2022, following a published and registered protocol. Eligible studies must investigated kinematic variability in CNSLBP people (adults ≥18 years) while preforming repetitive functional tasks. Two reviewers conducted screening, data extraction, and quality assessment independently. Data synthesis was conducted per task type and individual results were presented quantitatively to provide a narrative synthesis. The overall strength of evidence was rated using the Grading of Recommendations, Assessment, Development and Evaluation guidelines. FINDINGS Fourteen observational studies were included in this review. To facilitate the interpretation of the results, the included studies were grouped into four categories according to the task preformed (i.e., repeated flexion and extension, lifting, gait, and sit to stand to sit task). The overall quality of evidence was rated as a very low, primarily due to the inclusion criteria that limited the review to observational studies. In addition, the use of heterogeneous metrics for analysis and varying effect sizes contributed to the downgrade of evidence to a very low level. INTERPRETATION Individuals with chronic non-specific LBP exhibited altered motor adaptability, as evidenced by differences in kinematic movement variability during the performance of various repetitive functional tasks. However, the direction of the changes in movement variability was not consistent across studies.
Collapse
Affiliation(s)
- Amal M Alsubaie
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Masood Mazaheri
- Department of Plastic and Reconstructive Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
88
|
Raffalt PC, Yentes JM, Spedden ME. Isometric force complexity may not fully originate from the nervous system. Hum Mov Sci 2023; 90:103111. [PMID: 37327749 DOI: 10.1016/j.humov.2023.103111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
In humans and animals, spatial and temporal information from the nervous system are translated into muscle force enabling movements of body segments. To gain deeper understanding of this translation of information into movements, we investigated the motor control dynamics of isometric contractions in children, adolescents, young adults and older adults. Twelve children, thirteen adolescents, fourteen young adults, and fifteen older adults completed two minutes of submaximal isometric plantar- and dorsiflexion. Simultaneously, sensorimotor cortex EEG, tibialis anterior and soleus EMG and plantar- and dorsiflexion force was recorded. Surrogate analysis suggested that all signals were from a deterministic origin. Multiscale entropy analysis revealed an inverted U-shape relationship between age and complexity for the force but not for the EEG and EMG signals. This suggests that temporal information in from the nervous system is modulated by the musculoskeletal system during the transmission into force. The entropic half-life analyses indicated that this modulation increases the time scale of the temporal dependency in the force signal compared to the neural signals. Together this indicates that the information embedded in produced force does not exclusively reflect the information embedded in the underlying neural signal.
Collapse
Affiliation(s)
- Peter C Raffalt
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jennifer M Yentes
- Department of Health & Kinesiology, Texas A&M University, 4243 TAMU, College Station 77843, TX, USA
| | - Meaghan E Spedden
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Allé 51, 2200 Copenhagen N, Denmark; Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
| |
Collapse
|
89
|
Raffalt PC, Yentes JM, Freitas SR, Vaz JR. Calculating sample entropy from isometric torque signals: methodological considerations and recommendations. Front Physiol 2023; 14:1173702. [PMID: 37324377 PMCID: PMC10267410 DOI: 10.3389/fphys.2023.1173702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
We investigated the effect of different sampling frequencies, input parameters and observation times for sample entropy (SaEn) calculated on torque data recorded from a submaximal isometric contraction. Forty-six participants performed sustained isometric knee flexion at 20% of their maximal contraction level and torque data was sampled at 1,000 Hz for 180 s. Power spectral analysis was used to determine the appropriate sampling frequency. The time series were downsampled to 750, 500, 250, 100, 50, and 25 Hz to investigate the effect of different sampling frequency. Relative parameter consistency was investigated using combinations of vector lengths of two and three and tolerance limits of 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4, and data lengths between 500 and 18,000 data points. The effect of different observations times was evaluated using Bland-Altman plot for observations times between 5 and 90 s. SaEn increased at sampling frequencies below 100 Hz and was unaltered above 250 Hz. In agreement with the power spectral analysis, this advocates for a sampling frequency between 100 and 250 Hz. Relative consistency was observed across the tested parameters and at least 30 s of observation time was required for a valid calculation of SaEn from torque data.
Collapse
Affiliation(s)
- Peter C. Raffalt
- Department of Biology, University of Southern Denmark, Odense, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer M. Yentes
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX, United States
| | - Sandro R. Freitas
- Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - João R. Vaz
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, Almada, Portugal
| |
Collapse
|
90
|
Oomen NMCW, Graham RB, Fischer SL. Exploring the role of task on kinematic variability and assessing consistency in individual responses across repetitive manual tasks. ERGONOMICS 2023; 66:749-761. [PMID: 36102976 DOI: 10.1080/00140139.2022.2125178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/05/2022] [Indexed: 05/24/2023]
Abstract
To gain a greater understanding of motor variability (MV) as an individual trait, the effect of task type on MV and individual consistency in MV across three tasks was investigated. Twenty participants performed repetitive carrying, lifting, and simulated sawing tasks. MV was assessed using the linear measure of mean point-by-point standard deviation in three-dimensional upper body joint angles. Task type affected MV, where carrying showed higher MV compared to sawing (23-29%) and lifting (12-19%). Furthermore, MV was higher in lifting compared to sawing (12-25%). Poor to moderate individual consistency (ICC = 0.42-0.63) was found across tasks. Task type determined MV and only some support for MV as an individual trait across tasks was found. Based on this work, differences in degrees of freedom afforded by the task influence the opportunity to exploit MV, and possibly individual consistency in MV magnitude is specific to the degrees of freedom afforded by the task. Practitioner summary: In repetitive tasks, movement variability has been proposed as an individual characteristic independent of task characteristics, where repeaters show consistently low variability, while replacers show consistently high variability. In the current study, only moderate support was demonstrated for variability as a consistent individual characteristic across different manual tasks.AbbreviationMV: Motor variability; WRMSDs: Work-related musculoskeletal disorders; DOF: Degrees of freedom; meanSD: Mean standard deviation; SD: Standard deviation; H: Handle (of simulated sawing setup); T: Track (of simulated sawing setup); F: Frame (of simulated sawing setup); ICC: Intraclass correlation; UE: Upper extremity; MMH: Manual material handling; EMG: Electromyography.
Collapse
Affiliation(s)
- Nathalie M C W Oomen
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | - Ryan B Graham
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Steven L Fischer
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| |
Collapse
|
91
|
Winter L, Bellenger C, Grimshaw P, Crowther RG. Analysis of Movement Variability in Cycling: An Exploratory Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:4972. [PMID: 37430887 DOI: 10.3390/s23104972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
The purpose of this study was to determine the test-retest repeatability of Blue Trident inertial measurement units (IMUs) and VICON Nexus kinematic modelling in analysing the Lyapunov Exponent (LyE) during a maximal effort 4000 m cycling bout in different body segments/joints. An additional aim was to determine if changes in the LyE existed across a trial. Twelve novice cyclists completed four sessions of cycling; one was a familiarisation session to determine a bike fit and become better accustomed to the time trial position and pacing of a 4000 m effort. IMUs were attached to the head, thorax, pelvis and left and right shanks to analyse segment accelerations, respectively, and reflective markers were attached to the participant to analyse neck, thorax, pelvis, hip, knee and ankle segment/joint angular kinematics, respectively. Both the IMU and VICON Nexus test-retest repeatability ranged from poor to excellent at the different sites. In each session, the head and thorax IMU acceleration LyE increased across the bout, whilst pelvic and shank acceleration remained consistent. Differences across sessions were evident in VICON Nexus segment/joint angular kinematics, but no consistent trend existed. The improved reliability and the ability to identify a consistent trend in performance, combined with their improved portability and reduced cost, advocate for the use of IMUs in analysing movement variability in cycling. However, additional research is required to determine the applicability of analysing movement variability during cycling.
Collapse
Affiliation(s)
- Lachlan Winter
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, SA 5001, Australia
| | - Clint Bellenger
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, SA 5001, Australia
| | - Paul Grimshaw
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
- Faculty of Sciences, Engineering and Technology, Computer and Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Robert George Crowther
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), University of South Australia, Adelaide, SA 5001, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC 3065, Australia
| |
Collapse
|
92
|
Filter A, Olivares-Jabalera J, Dos'Santos T, Madruga M, Lozano J, Molina A, Santalla A, Requena B, Loturco I. High-intensity Actions in Elite Soccer: Current Status and Future Perspectives. Int J Sports Med 2023. [PMID: 37130547 DOI: 10.1055/a-2013-1661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Over the years, soccer has become more physically demanding; the number and frequency of high-intensity actions have increased, and these activities are decisive in determining the match outcome. Importantly, the reductionist approach commonly used to analyze high-intensity actions does not contemplate a more contextualized perspective on soccer performance. Traditionally, most investigations have only provided quantitative data regarding sprints (i. e. time, distances, frequency) without examining "how" (e. g. type of trajectory or starting position) and "why" (e. g. tactical role) soccer players sprint. In fact, other high-intensity actions, apart from running, are not even mentioned (i. e. curve sprints, change of direction, and specific-jump tasks). This has led to the use of tests and interventions that do not accurately reflect real game actions. Given the true technical-tactical-physical demands of each playing position, this narrative review collected a wide-spectrum of current soccer-related articles and provided a discussion regarding high-intensity actions, with a positional-based approach. In this narrative review, practitioners are encouraged to contemplate and consider the different elements that characterize high-intensity actions in soccer, in order to assess and train soccer players under a more sport-specific and integrative perspective.
Collapse
Affiliation(s)
- Alberto Filter
- FSI Lab, Football Science Institute, Granada, Spain
- Research Group Physical Activity, Health and Sport CTS-948, Pablo de Olavide University, Sevilla, Spain
| | - Jesús Olivares-Jabalera
- FSI Lab, Football Science Institute, Granada, Spain
- Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Universidad de Granada, Granada, Spain
| | - Thomas Dos'Santos
- Department of Sport and Exercise, Manchester Metropolitan University, Manchester, United Kingdom of Great Britain and Northern Ireland
- Manchester Institute of Sport, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Marc Madruga
- Physical Therapy Department, International University of Catalonia, Barcelona, Spain
- Sport Performance Area, Barcelona Football Club, Barcelona, Spain
- Return to Play and Sports Training Center, reQ, Barcelona, Spain
| | | | - Alejandro Molina
- Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Campus Universitario, University of San Jorge Faculty of Health Sciences, Villanueva de Gallego, Spain
| | - Alfredo Santalla
- FSI Lab, Football Science Institute, Granada, Spain
- Research Group Physical Activity, Health and Sport CTS-948, Pablo de Olavide University, Sevilla, Spain
| | | | - Irineu Loturco
- Sport Science, NAR - Nucleus of High Performance in Sport, São Paulo, Brazil
- Department of Human Movement Sciences, Federal University of Sao Paulo, Sao Paulo, Brazil
- Sport and Exercise Science, University of South Wales, Pontypridd, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
93
|
Lafe CW, Liu F, Simpson TW, Moon CH, Collinger JL, Wittenberg GF, Urbin MA. Force oscillations underlying precision grip in humans with lesioned corticospinal tracts. Neuroimage Clin 2023; 38:103398. [PMID: 37086647 PMCID: PMC10173012 DOI: 10.1016/j.nicl.2023.103398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/24/2023]
Abstract
Stability of precision grip depends on the ability to regulate forces applied by the digits. Increased frequency composition and temporal irregularity of oscillations in the force signal are associated with enhanced force stability, which is thought to result from increased voluntary drive along the corticospinal tract (CST). There is limited knowledge of how these oscillations in force output are regulated in the context of dexterous hand movements like precision grip, which are often impaired by CST damage due to stroke. The extent of residual CST volume descending from primary motor cortex may help explain the ability to modulate force oscillations at higher frequencies. Here, stroke survivors with longstanding hand impairment (n = 17) and neurologically-intact controls (n = 14) performed a precision grip task requiring dynamic and isometric muscle contractions to scale and stabilize forces exerted on a sensor by the index finger and thumb. Diffusion spectrum imaging was used to quantify total white matter volume within the residual and intact CSTs of stroke survivors (n = 12) and CSTs of controls (n = 14). White matter volumes within the infarct region and an analogous portion of overlap with the CST, mirrored onto the intact side, were also quantified in stroke survivors. We found reduced ability to stabilize force and more restricted frequency ranges in force oscillations of stroke survivors relative to controls; though, more broadband, irregular output was strongly related to force-stabilizing ability in both groups. The frequency composition and temporal irregularity of force oscillations observed in stroke survivors did not correlate with maximal precision grip force, suggesting that it is not directly related to impaired force-generating capacity. The ratio of residual to intact CST volumes contained within infarct and mirrored compartments was associated with more broadband, irregular force oscillations in stroke survivors. Our findings provide insight into granular aspects of dexterity altered by corticospinal damage and supply preliminary evidence to support that the ability to modulate force oscillations at higher frequencies is explained, at least in part, by residual CST volume in stroke survivors.
Collapse
Affiliation(s)
- Charley W Lafe
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA
| | - Fang Liu
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tyler W Simpson
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer L Collinger
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - George F Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
94
|
Wilson TJ, Likens AD. Running gait produces long range correlations: A systematic review. Gait Posture 2023; 102:171-179. [PMID: 37028119 DOI: 10.1016/j.gaitpost.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/27/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Walking and running are common forms of locomotion, both of which exhibit variability over many gait cycles. Many studies have investigated the patterns generated from that ebb and flow, and a large proportion suggests human gait exhibits Long Range Correlations (LRCs). LRCs refer to the observation that healthy gait characteristic, like stride times, are positively correlated to themselves over time. Literature on LRCs in walking gait is well known but less attention has been given to LRCs in running gait. RESEARCH QUESTION What is the state of the art concerning LRCs in running gait? METHODS We conducted a systematic review to identify the typical LRC patterns present in human running gait, in addition to disease, injury, and running surface effects on LRCs. Inclusion criteria were human subjects, running related experiments, computed LRCs, and experimental design. Exclusion criteria were studies on animals, non-humans, walking only, non-running, non-LRC analysis, and non-experiments. RESULTS The initial search returned 536 articles. After review and deliberation, our review included 26 articles. Almost every article produced strong evidence for LRCs apparent in running gait and in all running surfaces. Additionally, LRCs tended to decrease due to fatigue, past injury, increased load carriage and seem to be lowest at preferred running speed on a treadmill. No studies investigated disease effects on LRCs in running gait. SIGNIFICANCE LRCs seem to increase with deviations away from preferred running speed. Previously injured runners produced decreased LRCs compared to non-injured runners. LRCs also tended to decrease due to an increase in fatigue rate, which has been associated with increased injury rate. Lastly, there is a need for research on the typical LRCs in an overground environment, for which the typical LRCs found in a treadmill environment may or may not transfer.
Collapse
Affiliation(s)
- Taylor J Wilson
- University of Nebraska at Omaha, 6160 University Drive S., Omaha NE 68182, United States.
| | - Aaron D Likens
- University of Nebraska at Omaha, 6160 University Drive S., Omaha NE 68182, United States
| |
Collapse
|
95
|
Awad LN, Knarr BA, Kudzia P, Buchanan TS. The Interplay Between Walking Speed, Economy, and Stability After Stroke. J Neurol Phys Ther 2023; 47:75-83. [PMID: 36867550 PMCID: PMC10033356 DOI: 10.1097/npt.0000000000000431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND AND PURPOSE Energy minimization is thought to underlie the naturally selected, preferred walking speed; however, people post-stroke walk slower than their most economical speed, presumably to optimize other objectives, such as stability. The purpose of this study was to examine the interplay between walking speed, economy, and stability. METHODS Seven individuals with chronic hemiparesis walked on a treadmill at 1 of 3 randomized speeds: slow, preferred, and fast. Concurrent measurements of speed-induced changes in walking economy (ie, the energy needed to move 1 kg of bodyweight 1 ml O 2 /kg/m) and stability were made. Stability was quantified as the regularity and divergence of the mediolateral motion of the pelvic center of mass (pCoM) during walking, as well as pCoM motion relative to the base of support. RESULTS Slower walking speeds were more stable (ie, pCoM motion was 10% ± 5% more regular and 26% ± 16% less divergent) but 12% ± 5% less economical. Conversely, faster walking speeds were 9% ± 8% more economical, but also less stable (ie, pCoM motion was 17% ± 5% more irregular). Individuals with slower walking speeds had an enhanced energetic benefit when walking faster ( rs = 0.96, P < 0.001). Individuals with greater neuromotor impairment had an enhanced stability benefit when walking slower ( rs = 0.86, P = 0.01). DISCUSSION AND CONCLUSIONS People post-stroke appear to prefer walking speeds that are faster than their most stable speed but slower than their most economical speed. The preferred walking speed after stroke appears to balance stability and economy. To encourage faster and more economical walking, deficits in the stable control of the mediolateral motion of the pCoM may need to be addressed.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A416 ).
Collapse
Affiliation(s)
- Louis N Awad
- Department of Physical Therapy, Boston University, Boston, Massachusetts, and Department of PM&R, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, Massachusetts (L.N.A.); Department of Biomechanics, University of Nebraska at Omaha, Omaha (B.A.K.); Department of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada (P.K.); and Department of Mechanical Engineering, University of Delaware, Newark (T.S.B.)
| | | | | | | |
Collapse
|
96
|
Faisal MAA, Chowdhury MEH, Mahbub ZB, Pedersen S, Ahmed MU, Khandakar A, Alhatou M, Nabil M, Ara I, Bhuiyan EH, Mahmud S, AbdulMoniem M. NDDNet: a deep learning model for predicting neurodegenerative diseases from gait pattern. APPL INTELL 2023. [DOI: 10.1007/s10489-023-04557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
97
|
Stief F, Sohn A, Vogt L, Meurer A, Kirchner M. Characterization of Postural Sway in Women with Osteoporosis and a Control Group by Means of Linear and Nonlinear Methods. Bioengineering (Basel) 2023; 10:bioengineering10040403. [PMID: 37106590 PMCID: PMC10135765 DOI: 10.3390/bioengineering10040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The mechanisms underlying the altered postural control and risk of falling in patients with osteoporosis are not yet fully understood. The aim of the present study was to investigate postural sway in women with osteoporosis and a control group. The postural sway of 41 women with osteoporosis (17 fallers and 24 non-fallers) and 19 healthy controls was measured in a static standing task with a force plate. The amount of sway was characterized by traditional (linear) center-of-pressure (COP) parameters. Structural (nonlinear) COP methods include spectral analysis by means of a 12-level wavelet transform and a regularity analysis via multiscale entropy (MSE) with determination of the complexity index. Patients showed increased body sway in the medial–lateral (ML) direction (standard deviation in mm: 2.63 ± 1.00 vs. 2.00 ± 0.58, p = 0.021; range of motion in mm: 15.33 ± 5.58 vs. 10.86 ± 3.14, p = 0.002) and more irregular sway in the anterior–posterior (AP) direction (complexity index: 13.75 ± 2.19 vs. 11.18 ± 4.44, p = 0.027) relative to controls. Fallers showed higher-frequency responses than non-fallers in the AP direction. Thus, postural sway is differently affected by osteoporosis in the ML and AP directions. Clinically, effective assessment and rehabilitation of balance disorders can benefit from an extended analysis of postural control with nonlinear methods, which may also contribute to the improvement of risk profiles or a screening tool for the identification of high-risk fallers, thereby prevent fractures in women with osteoporosis.
Collapse
Affiliation(s)
- Felix Stief
- Department of Orthopedics (Friedrichsheim), University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-(69)-6301-94862
| | - Anna Sohn
- Department of Orthopedics (Friedrichsheim), University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Lutz Vogt
- Department of Sports Medicine and Exercise Physiology, Institute of Sports Sciences, Goethe University Frankfurt, 60487 Frankfurt am Main, Germany
| | - Andrea Meurer
- Department of Orthopedics (Friedrichsheim), University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Marietta Kirchner
- Institute of Medical Biometry, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
98
|
Deng W, Marmelat V, Vanderbilt DL, Gennaro F, Smith BA. Barcoding, linear and nonlinear analysis of full-day leg movements in infants with typical development and infants at risk of developmental disabilities: Cross-sectional study. INFANCY 2023; 28:650-666. [PMID: 36921012 DOI: 10.1111/infa.12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
Traditional methods do not capture the multidimensional domains and dynamic nature of infant behavioral patterns. We aim to compare full-day, in-home leg movement data between infants with typical development (TD) and infants at risk of developmental disabilities (AR) using barcoding and nonlinear analysis. Eleven infants with TD (2-10 months) and nine infants AR (adjusted age: 2-14 months) wore a sensor on each ankle for 7 days. We calculated the standard deviation for linear variability and sample entropy (SampEn) of leg acceleration and angular velocity for nonlinear variability. Movements were also categorized into 16 barcoding states, and we calculated the SampEn and proportions of the barcoding. All variables were compared between the two groups using independent-samples t-test or Mann-Whitney U test. The AR group had larger linear variability compared to the TD group. SampEn was lower in the AR group compared to TD group for both acceleration and angular velocity. Two barcoding states' proportions were significantly different between the two groups. The results showed that nonlinear analysis and barcoding could be used to identify the difference of dynamic multidimensional movement patterns between infants AR and infants with TD. This information may help early diagnosis of developmental disabilities in the future.
Collapse
Affiliation(s)
- Weiyang Deng
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| | - Vivien Marmelat
- Department of Biomechanics, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Douglas L Vanderbilt
- Division of Developmental-Behavioral Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Federico Gennaro
- Division of Developmental-Behavioral Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Beth A Smith
- Division of Developmental-Behavioral Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, California, USA
| |
Collapse
|
99
|
Blyton SJ, Snodgrass SJ, Pizzari T, Birse SM, Likens AD, Edwards S. The impact of previous musculoskeletal injury on running gait variability: A systematic review. Gait Posture 2023; 101:124-133. [PMID: 36801698 DOI: 10.1016/j.gaitpost.2023.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 01/02/2023] [Accepted: 01/25/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Growing evidence suggests that identifying movement variability alterations in pathological vs. healthy gait may further understanding of injury mechanisms related to gait biomechanics; however, in the context of running and musculoskeletal injuries the role of movement variability remains unclear. RESEARCH QUESTION What is the impact of a previous musculoskeletal injury on running gait variability? METHODS Medline, CINAHL, Embase, Cochrane library and SPORTDiscus were searched from inception until February 2022. Eligibility criteria were (a) included a musculoskeletal injury group, (b) compared running biomechanics data to a control group, (c) measured movement variability for at least one dependent variable, (d) provided a statistical between-group comparison of variability outcomes. Exclusion criteria were neurological conditions impacting gait, upper body musculoskeletal injuries and age < 18 years old. A summative synthesis was performed instead of a meta-analysis due to methodological heterogeneity. RESULTS Seventeen case-control studies were included. The most common deviations in variability observed among the injured groups were: (1) high and low knee-ankle/foot coupling variability and (2) low trunk-pelvis coupling variability. Significant (p < 0.05) between-group differences in movement variability were identified in 8 of 11; 73% of studies of runners with injury-related symptoms, and 3 of 7; 43% of studies of recovered or asymptomatic populations. SIGNIFICANCE This review identified limited to strong evidence that running variability is altered in adults with a recent history of injury for specific joint couplings only. Individuals with ankle instability or pain employed altered running strategies more often than those who have recovered from injury. Altered variability strategies have been proposed to contribute to future running-related injuries, therefore these findings are relevant to clinicians managing active populations.
Collapse
Affiliation(s)
- Sarah J Blyton
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, Australia.
| | - Suzanne J Snodgrass
- Discipline of Physiotherapy, The University of Newcastle, Callaghan, New South Wales, Australia.
| | - Tania Pizzari
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia.
| | - Samantha M Birse
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, Australia.
| | - Aaron D Likens
- Department of Biomechanics and Center for Research in Human Movement Variability, The University of Nebraska, Omaha, United States.
| | - Suzi Edwards
- School of Health Sciences, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
100
|
Caballero C, Barbado D, Moreno FJ. Human Motor Noise Assessed by Electromagnetic Sensors and Its Relationship with the Degrees of Freedom Involved in Movement Control. SENSORS (BASEL, SWITZERLAND) 2023; 23:2256. [PMID: 36850854 PMCID: PMC9964564 DOI: 10.3390/s23042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Motor variability is a prominent feature of the human movement that, nowadays, can be easily measured through different sensors and analyzed using different types of variables, and it seems to be related to functional and adaptative motor behavior. It has been stated that motor variability is related to the system's flexibility needed to choose the right degrees of freedom (DoFs) to adapt to constant environmental changes. However, the potential relationship between motor variability and DoFs is unknown. The aim of this study was to analyze how motor variability, both the amount and structure, changes depending on the mechanical DoFs involved in the movement control. For this purpose, movement variability was assessed by a tracking sensor in five tasks with different DoFs, and the amount, using standard deviation, and the structure of variability, through fuzzy entropy and detrended fluctuation analysis, were also assessed. The results showed a higher amount of variability and a less predictable and more auto-correlated variability structure in the long-term when more mechanical DoFs are implied. The studies that analyze motor variability should consider the type of movement and the DoFs involved in the analyzed task since, as the findings have shown, both factors have a noticeable influence on the amount and the structure of motor variability.
Collapse
Affiliation(s)
- Carla Caballero
- Sport Sciences Department, Miguel Hernandez University of Elche, 03202 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - David Barbado
- Sport Sciences Department, Miguel Hernandez University of Elche, 03202 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Francisco J. Moreno
- Sport Sciences Department, Miguel Hernandez University of Elche, 03202 Alicante, Spain
| |
Collapse
|