51
|
AL-MOALEMI HAFEDHAHMED, IZWAN ABD RAZAK SAIFUL, BOHARI SITIPAULIENAMOHD. ELECTROSPUN SODIUM ALGINATE/POLY(ETHYLENE OXIDE) NANOFIBERS FOR WOUND HEALING APPLICATIONS: CHALLENGES AND FUTURE DIRECTIONS. CELLULOSE CHEMISTRY AND TECHNOLOGY 2022; 56:251-270. [DOI: 10.35812/cellulosechemtechnol.2022.56.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Alginate is an interesting natural biopolymer to be considered for biomedical applications due to its advantages and good biological properties. These biological properties make electrospun alginate nanofibers suitable for various uses in the biomedical field, such as wound healing dressings, drug delivery systems, or both. Unfortunately, the fabrication of alginate nanofibers by electrospinning is very challenging because of the high viscosity of the solution, high surface tension and rigidity in water due to hydrogen bonding, and also their diaxial linkages. This review presents an overview of the factors affecting the electrospinning process of sodium alginate/poly(ethylene oxide) (SA/PEO), the application of SA/PEO in drug delivery systems for wound healing applications, and the degradation and swelling properties of SA/PEO. The challenges and future directions of SA/PEO in the medical field are also discussed.
Collapse
|
52
|
Bora D, Jayaramudu J, Saikia P, Bohra RC, Phukan L, S PS, Ray SS, Sadiku E. Effect of boehmite alumina nanoparticles on the physical and chemical characteristics of eco-friendly sodium alginate/polyvinyl alcohol bio-nanocomposite film. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2022. [DOI: 10.1080/1023666x.2022.2061749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dipjyoti Bora
- Polymer, Petroleum and Coal Chemistry Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research, (AcSIR) Ghaziabad, India
| | - J. Jayaramudu
- Polymer, Petroleum and Coal Chemistry Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research, (AcSIR) Ghaziabad, India
| | - Prasenjit Saikia
- Polymer, Petroleum and Coal Chemistry Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research, (AcSIR) Ghaziabad, India
| | - Ramesh C. Bohra
- Polymer, Petroleum and Coal Chemistry Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research, (AcSIR) Ghaziabad, India
| | - Lachit Phukan
- Polymer, Petroleum and Coal Chemistry Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research, (AcSIR) Ghaziabad, India
| | - Periyar Selvam S
- Department of Food Process Engineering, Postharvest Research Lab, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - S. S. Ray
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - E.R. Sadiku
- Tshwane University of Technology, Department of Chemical, Metallurgical and Materials Engineering (Polymer Division), Pretoria, South Africa
| |
Collapse
|
53
|
Latiyan S, Kumar TSS, Doble M. Fabrication and evaluation of multifunctional agarose based electrospun scaffolds for cutaneous wound repairs. J Tissue Eng Regen Med 2022; 16:653-664. [PMID: 35460335 DOI: 10.1002/term.3308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
Abstract
Despite several advances in chronic wound management, natural product based scaffolds with high exude absorption and mechanical strength are still a hotspot in the medical field. Thus, present study illustrates the fabrication of agarose (AG; 10% w/v)/polyvinyl alcohol 12% w/v) based multifunctional nanofibrous electrospun scaffolds. Zinc citrate (1%, 3% and 5% w/w of the polymer) was used as a potential antibacterial agent. The fabricated scaffolds exhibit a swelling of ∼550% in phosphate buffer saline and mechanical strength of 10.11 ± 0.31 MPa which is suitable for most of the wound healing applications that require high strength. In vitro study revealed an increased migration and proliferation of L929 fibroblasts with AG blends when compared to the control. The fabricated scaffolds exhibited antibacterial properties against both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) bacterial strains. Hence, a multifunctional (ability to protect wounds from bacterial infections along with effective swelling and mechanical support), natural product based, eco-friendly scaffold to serve as a potential wound dressing material has been successfully fabricated.
Collapse
Affiliation(s)
- Sachin Latiyan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.,Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
54
|
Al-Hatamleh MAI, Alshaer W, Hatmal MM, Lambuk L, Ahmed N, Mustafa MZ, Low SC, Jaafar J, Ferji K, Six JL, Uskoković V, Mohamud R. Applications of Alginate-Based Nanomaterials in Enhancing the Therapeutic Effects of Bee Products. Front Mol Biosci 2022; 9:865833. [PMID: 35480890 PMCID: PMC9035631 DOI: 10.3389/fmolb.2022.865833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Since the ancient times, bee products (i.e., honey, propolis, pollen, bee venom, bee bread, and royal jelly) have been considered as natural remedies with therapeutic effects against a number of diseases. The therapeutic pleiotropy of bee products is due to their diverse composition and chemical properties, which is independent on the bee species. This has encouraged researchers to extensively study the therapeutic potentials of these products, especially honey. On the other hand, amid the unprecedented growth in nanotechnology research and applications, nanomaterials with various characteristics have been utilized to improve the therapeutic efficiency of these products. Towards keeping the bee products as natural and non-toxic therapeutics, the green synthesis of nanocarriers loaded with these products or their extracts has received a special attention. Alginate is a naturally produced biopolymer derived from brown algae, the desirable properties of which include biodegradability, biocompatibility, non-toxicity and non-immunogenicity. This review presents an overview of alginates, including their properties, nanoformulations, and pharmaceutical applications, placing a particular emphasis on their applications for the enhancement of the therapeutic effects of bee products. Despite the paucity of studies on fabrication of alginate-based nanomaterials loaded with bee products or their extracts, recent advances in the area of utilizing alginate-based nanomaterials and other types of materials to enhance the therapeutic potentials of bee products are summarized in this work. As the most widespread and well-studied bee products, honey and propolis have garnered a special interest; combining them with alginate-based nanomaterials has led to promising findings, especially for wound healing and skin tissue engineering. Furthermore, future directions are proposed and discussed to encourage researchers to develop alginate-based stingless bee product nanomedicines, and to help in selecting suitable methods for devising nanoformulations based on multi-criteria decision making models. Also, the commercialization prospects of nanocomposites based on alginates and bee products are discussed. In conclusion, preserving original characteristics of the bee products is a critical challenge in developing nano-carrier systems. Alginate-based nanomaterials are well suited for this task because they can be fabricated without the use of harsh conditions, such as shear force and freeze-drying, which are often used for other nano-carriers. Further, conjunction of alginates with natural polymers such as honey does not only combine the medicinal properties of alginates and honey, but it could also enhance the mechanical properties and cell adhesion capacity of alginates.
Collapse
Affiliation(s)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Khalid Ferji
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | - Jean-Luc Six
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- *Correspondence: Rohimah Mohamud,
| |
Collapse
|
55
|
Zhou F, Cui C, Sun S, Wu S, Chen S, Ma J, Li CM. Electrospun ZnO-loaded chitosan/PCL bilayer membranes with spatially designed structure for accelerated wound healing. Carbohydr Polym 2022; 282:119131. [DOI: 10.1016/j.carbpol.2022.119131] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 12/21/2022]
|
56
|
Incorporation of Plant Extracted Hydroxyapatite and Chitosan Nanoparticles on the Surface of Orthodontic Micro-Implants: An In-Vitro Antibacterial Study. Microorganisms 2022; 10:microorganisms10030581. [PMID: 35336156 PMCID: PMC8955270 DOI: 10.3390/microorganisms10030581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/02/2022] Open
Abstract
In our study, the structural and morphological applications of hydroxyapatite and chitosan nanoparticles and coated micro-implants were assessed for their ability to combat oral pathogenic bacteria. The hydroxyapatite, as well as chitosan nanoparticles, were synthesized from the Salvadora persica plant. The crystal morphology, phase composition, particle size, and surface functional groups of the nano-samples were analyzed via classical examinations and energy dispersive X-ray analysis. The prepared nanoparticles have been examined for antibacterial activity against four common oral bacterial strains. The antimicrobial effect was also assessed by the Live/Dead BacLight technique in combination with confocal scanning laser microscopy. Titanium micro-implants were coated with regular hydroxyapatite (HAP) and chitosan nanoparticles, and the surface was characterized by scanning electron microscopy. The analysis asserted elemental composition of the prepared nanoparticles and their textural features, metal crystallization, and functional bonds. The antibacterial activity of the nanoparticles was evaluated against oral pathogenic microorganisms by the disc diffusion method, minimum bacterial concentration (MBC), and minimum inhibitory concentration (MIC). Chitosan nanoparticles showed (MICs) of 8 μg mL−1 for (Streptococcus salivarius, Streptococcus mutans and Enterococcus faecalis), and 16 μg mL−1 for Streptococcus sanguinis. HAP nanoparticles showed (MICs) of 16 μg/mL for E. faecalis, and S. sanguis, 8 μg/mL for S. salivarius and finally 4 μg/mL for S. mutans. HAP nanoparticles showed enhanced antibacterial activity and more obvious damage in the bacterial cell membrane than that of synthesized chitosan nanoparticles. The prepared nanoparticles could successfully coat titanium microplates to enhance their efficiency.
Collapse
|
57
|
Munir MU, Mikucioniene D, Khanzada H, Khan MQ. Development of Eco-Friendly Nanomembranes of Aloe vera/PVA/ZnO for Potential Applications in Medical Devices. Polymers (Basel) 2022; 14:1029. [PMID: 35267852 PMCID: PMC8912846 DOI: 10.3390/polym14051029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the current COVID-19 pandemic, there is a crucial need for the development of antimicrobial and antiviral personal protective equipment such as facemasks and gowns. Therefore, in this research we fabricated electrospun nanofibers composite with polyvinyl alcohol, aloe vera, and zinc oxide nanoparticles for end application in medical devices. Electrospun nanofibers were made with varying concentrations of aloe vera (1%, 2%, 3%, 4%) having a constant concentration of ZnO (0.5%) with varying concentrations of ZnO nanoparticles (1%, 2%, 3%, 4%) having a constant concentration of aloe vera (0.5%). To check the morphology and composition, all prepared nanofibers were subjected to different characterization techniques, such as Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR). In addition, its antimicrobial activity was checked both with qualitative and quantitative approaches against gram-positive (Staphylococcus aureus) bacteria and gram-negative (Escherichia coli) bacteria. The results suggest that increasing ZnO concentration kills and inhibits bacterial growth more proficiently compared to increasing aloe vera concentration in electrospun nanofibers; the highest antimicrobial was found with 4% ZnO, killing almost 100% of gram-positive (Staphylococcus aureus) bacteria and 99.2% of gram-negative (Escherichia coli) bacteria. These fabricated nanofibers have potential applications in medical devices and would help control the spread of many diseases.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424 Kaunas, Lithuania;
| | - Daiva Mikucioniene
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424 Kaunas, Lithuania;
| | - Haleema Khanzada
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424 Kaunas, Lithuania;
| | - Muhammad Qamar Khan
- Nanotechnology Research Lab, Department of Textile and Clothing, Faculty of Engineering and Technology, National Textile University Karachi Campus, Karachi 74900, Pakistan;
| |
Collapse
|
58
|
Poly (vinyl alcohol)/chitosan/sodium alginate composite blended membrane: Preparation, characterization, and water‐induced shape memory phenomenon. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
59
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
60
|
Santiago-Castillo K, Torres-Huerta AM, del Ángel-López D, Domínguez-Crespo MA, Dorantes-Rosales H, Palma-Ramírez D, Willcock H. In Situ Growth of Silver Nanoparticles on Chitosan Matrix for the Synthesis of Hybrid Electrospun Fibers: Analysis of Microstructural and Mechanical Properties. Polymers (Basel) 2022; 14:674. [PMID: 35215587 PMCID: PMC8880230 DOI: 10.3390/polym14040674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
A viable alternative for the next generation of wound dressings is the preparation of electrospun fibers from biodegradable polymers in combination with inorganic nanoparticles. A poly(vinyl alcohol)-chitosan-silver nanoparticles (PVA-CTS-Ag NPs) system has been developed for antimicrobial and wound healing applications. Here, the preparation of PVA-CTS-Ag electrospun fibers using a two-step process is reported in order to analyze changes in the microstructural, mechanical, and antibacterial properties and confirm their potential application in the biomedical field. The Ag nanoparticles were well-dispersed into the chitosan matrix and their cubic structure after the electrospinning process was also retained. The Ag NPs displayed an average diameter of ~33 nm into the CTS matrix, while the size increased up to 213 nm in the PVA-CTS-Ag(NPs) fibers. It was observed that strong chemical interactions exist between organic (CTS) and inorganic phases through nitrogenous groups and the oxygen of the glycosidic bonds. A defect-free morphology was obtained in the PVA-CTS-Ag NPs final fibers with an important enhancement of the mechanical properties as well as of the antibacterial activity compared with pure PVA-CTS electrospun fibers. The results of antibacterial activity against E. coli and S. aureus confirmed that PVA-CTS-Ag(NPs) fibers can be potentially used as a material for biomedical applications.
Collapse
Affiliation(s)
- Karina Santiago-Castillo
- CIAMS, CICATA-Altamira, Instituto Politécnico Nacional, Km. 14.5 Carretera Tampico-Puerto Industrial Altamira, Altamira 89600, Mexico;
| | - Aidé Minerva Torres-Huerta
- Departamento de Materiales Nanoestructurados, Unidad Profesional Interdisciplinaria de Ingeniería campus Hidalgo (UPIIH), Instituto Politécnico Nacional, Km. 1 + 500, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42162, Mexico
| | - Deyanira del Ángel-López
- Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
- Área de ciencias químicas, exactas y tecnológicas, Universidad del Noreste, Prolongación Av. Hidalgo 6315 Col Nuevo Aeropuerto, Tampico 89337, Mexico
| | - Miguel Antonio Domínguez-Crespo
- Departamento de Materiales Nanoestructurados, Unidad Profesional Interdisciplinaria de Ingeniería campus Hidalgo (UPIIH), Instituto Politécnico Nacional, Km. 1 + 500, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42162, Mexico
| | - Héctor Dorantes-Rosales
- Departamento de Metalurgia, ESIQIE, Instituto Politécnico Nacional, Ciudad de México 07300, Mexico;
| | - Diana Palma-Ramírez
- Centro Mexicano para la Producción más Limpia (CMPL), Instituto Politécnico Nacional, Av. Acueducto s/n, La Laguna Ticomán, México City 07340, Mexico;
| | - Helen Willcock
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK;
| |
Collapse
|
61
|
Meng X, Li G. Effect of Alginate Gelatin Hydrogel Composited with Nano-Zinc on Cesarean Section Wound Healing. J Biomed Nanotechnol 2022; 18:600-606. [PMID: 35484735 DOI: 10.1166/jbn.2022.3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Surgical procedure of cesarean section (CS) causes a large wound that any delay in its healing could increase the rate of stress, inconvenience, and dissatisfaction among the women who underwent CS procedure about six weeks after childbirth. The present study is trying to evaluate the effect of alginate and gelatin hydrogel composited with nanozinc effective extensibility and compressibility as a wound dressing nursing care after CS. The number of participants was 700 individuals enrolled all who underwent C-sections at Medical College in the Second Affiliated Hospital of Xi'an Jiaotong University (from September 2017 until September 2020). Patients were divided into two groups of case and control consist of 350 cases. The case group was treated with alginate gelatin hydrogel-nZnO+antibacterial wound dress and the control group was treated with wound healing ordinary creams+antibacterial. Three and four weeks following CS, the healing process of the wound was evaluated using REEDA wound scale. In the current study, there was not any significant difference between the studied case and control group in respect to individual's demographical characteristics such as economic status, educational level, BMI, and age. (P > 0.05). Also, we observed that patients treated with alginate gelatin hydrogel-nZnO would experience a significantly lower score for redness, ecchymosis, edema, and approximation of CS wound in comparison to the control group (P < 0.05). Also, slope analysis showed that the healing process was significantly quicker in patients treated with alginate gelatin hydrogel-nZnO in comparison to the control group. Finally, it was observed that more than 80% of patients did not represent any major sign of CS after three weeks, however, in the control case this issue was estimated at 50.6%. No allergic reaction has been observed. Our results showed that using alginate gelatin hydrogel-nZnO wound dress could be a novel treatment in a nursing care setting to decrease the CS wound complication and increase the healing process without any allergic reaction.
Collapse
Affiliation(s)
- Xiaohong Meng
- Department of Nursing, Nanyang Medical College, Nanyang, 473061, China
| | - Guozheng Li
- Department of Nursing, Nanyang Medical College, Nanyang, 473061, China
| |
Collapse
|
62
|
Akram Ghumman S, Mahmood A, Noreen S, Rana M, Hameed H, Ijaz B, Hasan S, Aslam A, Fayyaz ur Rehman M. Formulation and evaluation of quince seeds mucilage - sodium alginate microspheres for sustained delivery of cefixime and its toxicological studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
63
|
Kumar A, Sood A, Han SS. Poly (vinyl alcohol)-alginate as potential matrix for various applications: A focused review. Carbohydr Polym 2022; 277:118881. [PMID: 34893284 DOI: 10.1016/j.carbpol.2021.118881] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/23/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
Advances in polymers have made significant contribution in diverse application oriented fields. Multidisciplinary applicability of polymers generates a range of strategies, which is pertinent in a wide range of fields. Blends of natural and synthetic polymers have spawned a different class of materials with synergistic effects. Specifically, poly (vinyl alcohol) (PVA) and alginate (AG) blends (PVAG) have demonstrated some promising results in almost every segment, ranging from biomedical to industrial sector. Combination of PVAG with other materials, immobilization with specific moieties and physical and chemical crosslinking could result in amendments in the structure and properties of the PVAG matrices. Here, we provide an overview of the recent developments in designing PVAG based matrix and complexes with their structural and functional properties. The article also provides a comprehensive outline on the applicability of PVAG matrix in wastewater treatment, biomedical, photocatalysis, food packaging, and fuel cells and sheds light on the challenges that need to be addressed. Finally, the review elaborates the future prospective of PVAG matrices in other unexplored fields like aircraft industry, nuclear science and space exploration.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
64
|
Lu H, Kong M, Jia J, Rahim Khan N, Muhammad B H, Muhammad M N, Wahab A. Resveratrol Loaded Ionically Cross-Linked Hydrogel Film for Burn Wound Healing Potential in Animals. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.122.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
65
|
Kumar M, Pakshirajan K. Immobilized biogenic copper nanoparticles from metallic wastewater as catalyst for triazole synthesis by click reaction using water as solvent. NEW J CHEM 2022. [DOI: 10.1039/d2nj02882d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, biogenic copper nanoparticles from metallic wastewater were examined for triazoles synthesis by click reaction. The size of the copper nanoparticles obtained by biogenic sulfate reduction of synthetic...
Collapse
|
66
|
Gulsun T, Inal M, Akdag Y, Izat N, Oner L, Sahin S. The development and characterization of electrospun gelatin nanofibers containing indomethacin and curcumin for accelerated wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
67
|
Skin Involved Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_31-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
68
|
Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. EMERGENT MATERIALS 2022; 5:873-921. [PMID: 34849454 PMCID: PMC8614084 DOI: 10.1007/s42247-021-00319-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
The greater awareness of non-renewable natural resources preservation needs has led to the development of more ecological high-performance polymeric materials with new functionalities. In this regard, biobased composites are considered interesting options, especially those obtained from agro-industrial wastes and by-products. These are low-cost raw materials derived from renewable sources, which are mostly biodegradable and would otherwise typically be discarded. In this review, recent and innovative academic studies on composites obtained from biopolymers, natural fillers and active agents, as well as green-synthesized nanoparticles are presented. An in-depth discussion of biobased composites structures, properties, manufacture, and life-cycle assessment (LCA) is provided along with a wide up-to-date overview of the most recent works in the field with appropriate references. Potential uses of biobased composites from agri-food residues such as active and intelligent food packaging, agricultural inputs, tissue engineering, among others are described, considering that the specific characteristics of these materials should match the proposed application.
Collapse
Affiliation(s)
- Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7 (8000), Bahía Blanca, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| |
Collapse
|
69
|
Cellulose nanofibers aerogels functionalized with AgO: Preparation, characterization and antibacterial activity. Int J Biol Macromol 2022; 194:58-65. [PMID: 34863833 DOI: 10.1016/j.ijbiomac.2021.11.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022]
Abstract
In the experiment, a chemical oxidation method was used to prepare nano-divalent silver oxide powder with a particle size of about 10 nm. Compared with silver nanoparticles and monovalent silver compounds, nano‑silver oxide has better antibacterial properties. The cellulose antibacterial aerogel was prepared by combining it with cellulose nanofibrils and using freeze-thaw cycles and freeze-drying methods. The microscopic morphology, mechanical properties, in vitro release of silver ions, antibacterial properties and biodegradability of composite aerogels were studied. The porosity of the cellulose antibacterial aerogel can reach 94%, the swelling rate was greater than 1000%, and the pore size was between 13 and 15 nm, which showed a larger storage space and attachment site for the aerogel. The diameter of the inhibition zone of the aerogel against Escherichia coli and Staphylococcus aureus was 23 mm and 20 mm respectively, and the aerogels still exhibited significant antibacterial activities with more than 99.5% reductions in Escherichia coli and Staphylococcus aureus, which shows highly effective antibacterial properties. This research proposes an economical and novel preparation method of antibacterial cellulose aerogel, making it a candidate material with high efficiency, broad-spectrum antibacterial and more suitable for life needs.
Collapse
|
70
|
Skin Involved Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_31-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
71
|
Golestannejad Z, Khozeimeh F, Mehrasa M, Mirzaeei S, Sarfaraz D. A novel drug delivery system using acyclovir nanofiber patch for topical treatment of recurrent herpes labialis: A randomized clinical trial. Clin Exp Dent Res 2021; 8:184-190. [PMID: 34865318 PMCID: PMC8874070 DOI: 10.1002/cre2.512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 12/04/2022] Open
Abstract
Objectives Topical treatment with acyclovir cream has shown low efficacy in recent studies. Nano drug delivery systems, have received much attention in recent decades. The aim of this study was to compare the efficacy of acyclovir nanofiber patch with acyclovir cream. Material and Methods In this double‐blind three‐armed randomized clinical trial, a total of 60 patients with recurrent labial herpes, were randomly divided into three groups, each consisting of 20. The patients in the first, second, and third groups were treated with acyclovir nanofiber patch, placebo nanofiber patch, and acyclovir cream, respectively. A numerical scale was used by the patients to record the self‐reported symptoms. Symptoms score, crusting time and healing time were assessed by the clinician. Kruskal‐Wallis test was used to compare the symptoms between the three groups, a survival test was also performed to evaluate the crusting and healing time. Data were analyzed in SPSS V22 at P‐value < 0.05. Results The mean scores of symptoms at baseline were 1.6, 1.5, and 1.4 in the first, second, and third groups, respectively. The symptoms were not significantly different between the three groups on different treatment days. The mean crusting time was 2.3, 2.4, and 2.6 days in the three groups, and the mean healing time was 7.4, 7.2, and 7.7 days, respectively. Crusting time and healing time were not significantly different between the three groups. Conclusions Acyclovir nanofiber patches are recommended for accelerating symptom relief in recurrent labial herpes, however, they are not effective in shortening the crusting or healing time. Clinical Trial Registration Number: IRCT20141124020073N2. Registered in: Iranian Registry of Clinical Trials (www.irct.ir).
Collapse
Affiliation(s)
- Zahra Golestannejad
- Department of Oral Medicine, Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Khozeimeh
- Department of Oral Medicine, Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehrasa
- Department of Biotechnology, School of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dorna Sarfaraz
- Dental Students Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
72
|
Hou Y, Gao Y, Wang X, Zhang Y, Li J, Zhang H, Li X. Alginate-aloe vera film contains zinc oxide nanoparticles with high degradability and biocompatibility on post-cesarean wounds. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
73
|
Kalemtas A, Kocer HB, Aydin A, Terzioglu P, Aydin G. Mechanical and antibacterial properties of ZnO/chitosan bio-composite films. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2021-0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the current study, ZnO/chitosan bio-composite films were produced via solution-casting method. Two different ZnO powders, micrometer (d50 ≅ 1.5 μm) and nanometer sized (d50 ≅ 100 nm), were used to investigate the effect of ZnO particle size and concentration (0, 2, and 8% w/w of chitosan) on the mechanical and antibacterial properties of the ZnO/chitosan bio-composite films. The incorporation of the ZnO powders into the chitosan film resulted in an increase in the tensile strength (TS) and a decrease in the elongation at break (EB) values. Mechanical test results revealed that TS and EB properties were considerably affected (p < 0.05) by the concentration and particle size of the ZnO reinforcement. Disc diffusion method demonstrated good antibacterial activities of bio-composite films containing high amount of ZnO (8% w/w of chitosan) against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Bacillus subtilis. The growth-limiting effect of the films was more pronounced for S. aureus and K. pneumoniae. Due to enhanced TS and imparted antibacterial activity of the produced ZnO/chitosan bio-composite films, these materials are promising candidates for applications such as food packaging, wound dressing, and antibacterial coatings for various surfaces.
Collapse
Affiliation(s)
- Ayse Kalemtas
- Department of Metallurgical and Materials Engineering , Bursa Technical University , Bursa , Turkey
| | - Hasan B. Kocer
- Department of Polymer Materials Engineering , Bursa Technical University , Bursa , Turkey
| | - Ahmet Aydin
- Department of Polymer Materials Engineering , Bursa Technical University , Bursa , Turkey
| | - Pinar Terzioglu
- Department of Polymer Materials Engineering , Bursa Technical University , Bursa , Turkey
| | - Gulsum Aydin
- Department of Biotechnology , Selcuk University , Konya 42130 , Turkey
| |
Collapse
|
74
|
Yu X, Tian H, Lv C, Xiang A, Wu H. Analysis of poly(vinyl alcohol) crystallizability: the hindering effect of octa(γ-chloropropyl) POSS. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02834-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
75
|
Bioactive films based on barley β-glucans and ZnO for wound healing applications. Carbohydr Polym 2021; 272:118442. [PMID: 34420708 DOI: 10.1016/j.carbpol.2021.118442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023]
Abstract
In this study, mixtures based on β-glucans and proteins are extracted from barley, in mild (MA) and high (HA) alkaline conditions, and employed with zinc oxide (ZnO) to prepare bioactive films for wound healing. Composition of extracts and properties of resulting films depend on pH extraction conditions. MA based samples show weak physical interactions among mixture components, whereas in HA films the extent of these interactions is larger. Consequently, their chemico-physical properties are significantly different, as demonstrated by FT-IR, thermal, mechanical and morphological analyses. ZnO with its bound water molecules acts as a slight plasticizer in MA, as shown by the lower Tg and the decrease of elastic modulus. In HA, this effect is evidenced up to ZnO 1%, and above this concentration an increase of strength at break is observed. Finally, MA and HA films show intrinsic antimicrobial properties, enhanced by ZnO, which make them exploitable as wound dressings.
Collapse
|
76
|
Harandi FN, Khorasani AC, Shojaosadati SA, Hashemi-Najafabadi S. Living Lactobacillus-ZnO nanoparticles hybrids as antimicrobial and antibiofilm coatings for wound dressing application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112457. [PMID: 34702533 DOI: 10.1016/j.msec.2021.112457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
Probiotic bacteria are able to produce antimicrobial substances as well as to synthesize green metal nanoparticles (NPs). New antimicrobial and antibiofilm coatings (LAB-ZnO NPs), composed of Lactobacillus strains and green ZnO NPs, were employed for the modification of gum Arabic-polyvinyl alcohol-polycaprolactone nanofibers matrix (GA-PVA-PCL) against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The physicochemical properties of ZnO NPs biologically synthesized by L. plantarum and L. acidophilus, LAB-ZnO NPs hybrids and LAB-ZnO NPs@GA-PVA-PCL were studied using FE-SEM, EDX, EM, FTIR, XRD and ICP-OES. The morphology of LAB-ZnO NPs hybrids was spherical in range of 4.56-91.61 nm with an average diameter about 34 nm. The electrospun GA-PVA-PCL had regular, continuous and without beads morphology in the scale of nanometer and micrometer with an average diameter of 565 nm. Interestingly, the LAB not only acted as a biosynthesizer in the green synthesis of ZnO NPs but also synergistically enhanced the antimicrobial and antibiofilm efficacy of LAB-ZnO NPs@GA-PVA-PCL. Moreover, the low cytotoxicity of ZnO NPs and ZnO NPs@GA-PVA-PCL on the mouse embryonic fibroblasts cell line led to make them biocompatible. These results suggest that LAB-ZnO NPs@GA-PVA-PCL has potential as a safe promising antimicrobial and antibiofilm dressing in wound healing against pathogens.
Collapse
Affiliation(s)
- Fereshte Nazemi Harandi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
77
|
Novel scaffold based graphene oxide doped electrospun iota carrageenan/polyvinyl alcohol for wound healing and pathogen reduction: in-vitro and in-vivo study. Sci Rep 2021; 11:20456. [PMID: 34650075 PMCID: PMC8516857 DOI: 10.1038/s41598-021-00069-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Wound healing is a complicated multicellular process that involves several kinds of cells including macrophages, fibroblasts, endothelial cells, keratinocytes and platelets that are leading to their differentiation towards an anti-inflammatory response for producing several chemokines, cytokine and growth factors. In this study, electrospun nanofiber scaffold named (MNS) is composed of polyvinyl alcohol (PVA)/iota carrageenan (IC) and doped with partially reduced graphene oxide (prGO) that is successfully synthesized for wound healing and skin repair. The fabricated MNS was tested in case of infection and un-infection with E. coli and Staphylococcus and in both of the presence and in the absence of yeast as a natural nutritional supplement. Numerous biochemical parameters including total protein, albumin, urea and LDH, and hematological parameters were evaluated. Results revealed that the MNS was proved to be effective on most of the measured parameters and had exhibited efficient antibacterial inhibition activity. Whereas it can be used as an effective antimicrobial agent in wound healing, however, histopathological findings confirmed that the MNS caused re-epithelialization and the presence of yeast induced hair follicles growth and subsequently it may be used to hide formed head wound scar.
Collapse
|
78
|
Wiesmann N, Mendler S, Buhr CR, Ritz U, Kämmerer PW, Brieger J. Zinc Oxide Nanoparticles Exhibit Favorable Properties to Promote Tissue Integration of Biomaterials. Biomedicines 2021; 9:biomedicines9101462. [PMID: 34680579 PMCID: PMC8533365 DOI: 10.3390/biomedicines9101462] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
Due to the demographic change, medicine faces a growing demand for tissue engineering solutions and implants. Often, satisfying tissue regeneration is difficult to achieve especially when co-morbidities hamper the healing process. As a novel strategy, we propose the incorporation of zinc oxide nanoparticles (ZnO NPs) into biomaterials to improve tissue regeneration. Due to their wide range of biocompatibility and their antibacterial properties, ZnO NPs are already discussed for different medical applications. As there are versatile possibilities of modifying their form, size, and function, they are becoming increasingly attractive for tissue engineering. In our study, in addition to antibacterial effects of ZnO NPs, we show for the first time that ZnO NPs can foster the metabolic activity of fibroblasts as well as endothelial cells, both cell types being crucial for successful implant integration. With the gelatin sponge method performed on the chicken embryo’s chorioallantoic membrane (CAM), we furthermore confirmed the high biocompatibility of ZnO NPs. In summary, we found ZnO NPs to have very favorable properties for the modification of biomaterials. Here, incorporation of ZnO NPs could help to guide the tissue reaction and promote complication-free healing.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-17-4034
| | - Simone Mendler
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| | - Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| |
Collapse
|
79
|
Malik S, Subramanian S, Hussain T, Nazir A, Ramakrishna S. Electrosprayed Nanoparticles as Drug Delivery systems for Biomedical Applications. Curr Pharm Des 2021; 28:368-379. [PMID: 34587881 DOI: 10.2174/1381612827666210929114621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanotechnology is a tool being used intensely in the area of drug delivery systems in the biomedical field. Electrospraying is one of the nanotechnological methods, which is growing due to its importance in the development of nanoparticles comprising bioactive compounds. It is helpful in improving the efficacy, reducing side effects of active drug elements, and is useful in targeted drug delivery. When compared to other conventional methods like nanoprecipitation, emulsion diffusion, and double emulsification, electrospraying offers better advantages to produce micro/nanoparticles due to its simplicity, cost-effectiveness, and single-step process. OBJECTIVE The aim of this paper is to highlight the use of electrosprayed nanoparticles for biomedical applications. METHODS We conducted a literature review on the usage of natural and synthetic materials to produce nanoparticles, which can be used as a drug delivery system for medical purposes. RESULTS We summarized a possible key role of electrosprayed nanoparticles in different therapeutic applications (tissue regeneration, cancer). CONCLUSION The modest literature production denotes that further investigation is needed to assess and validate the promising role of drug-loaded nanoparticles through the electrospraying process as noninvasive materials in the biomedical field.
Collapse
Affiliation(s)
- Sairish Malik
- Electrospun Materials & Polymeric Membranes Research Group (EMPMRG), National Textile University, Sheikhupura road, 37610, Faisalabad . Pakistan
| | - Sundarrajan Subramanian
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 . Singapore
| | - Tanveer Hussain
- Electrospun Materials & Polymeric Membranes Research Group (EMPMRG), National Textile University, Sheikhupura road, 37610, Faisalabad . Pakistan
| | - Ahsan Nazir
- Electrospun Materials & Polymeric Membranes Research Group (EMPMRG), National Textile University, Sheikhupura road, 37610, Faisalabad . Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 . Singapore
| |
Collapse
|
80
|
Kadhim IAU. Biocompatibility of Alginate -Graphene Oxide Film for Tissue Engineering Applications. KEY ENGINEERING MATERIALS 2021; 900:26-33. [DOI: 10.4028/www.scientific.net/kem.900.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The present paper indicates promising potential of Sodium Alginate) Alg)/Graphene oxide (Go) films in fields bone tissue engineering (TE). The Sodium Alginate (Alg)/Graphene oxide (Go) films, were fabricated via (solvent casting method). The interaction of Sodium Alginate (Alg) with Graphene oxide (Go) via hydrogen bonding was confirmed by FTIR analysis. The swelling degree of Sodium Alginate (Alg)/Graphene oxid (Go) films was also studied. Furthermore, the biocompatibility of Sodium Alginate (Alg)/Graphene oxide (Go) films disclosed its non-cytotoxic effect on the cell lines (MG-63) in-vitro test, the viability of cell lines on the films, and hence its appropriateness as potent biomaterial for tissue engineering.
Collapse
|
81
|
Current Trends in Advanced Alginate-Based Wound Dressings for Chronic Wounds. J Pers Med 2021; 11:jpm11090890. [PMID: 34575668 PMCID: PMC8471591 DOI: 10.3390/jpm11090890] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic wounds represent a major public health issue, with an extremely high cost worldwide. In healthy individuals, the wound healing process takes place in different stages: inflammation, cell proliferation (fibroblasts and keratinocytes of the dermis), and finally remodeling of the extracellular matrix (equilibrium between metalloproteinases and their inhibitors). In chronic wounds, the chronic inflammation favors exudate persistence and bacterial film has a special importance in the dynamics of chronic inflammation in wounds that do not heal. Recent advances in biopolymer-based materials for wound healing highlight the performance of specific alginate forms. An ideal wound dressing should be adherent to the wound surface and not to the wound bed, it should also be non-antigenic, biocompatible, semi-permeable, biodegradable, elastic but resistant, and cost-effective. It has to give protection against bacterial, infectious, mechanical, and thermal agents, to modulate the level of wound moisture, and to entrap and deliver drugs or other molecules This paper explores the roles of alginates in advanced wound-dressing forms with a particular emphasis on hydrogels, nanofibers networks, 3D-scaffolds or sponges entrapping fibroblasts, keratinocytes, or drugs to be released on the wound-bed. The latest research reports are presented and supported with in vitro and in vivo studies from the current literature.
Collapse
|
82
|
A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv Colloid Interface Sci 2021; 295:102495. [PMID: 34375877 DOI: 10.1016/j.cis.2021.102495] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
Recently, zinc oxide nanoparticles (ZnONPs) are gaining much interest of nanobiotechnologists due to their profound biomedical applications. ZnONPs are used as antibacterial agents, which cause both gram-positive and negative bacterial cell death through the generation of reactive free radicals as well as membrane rupture. ZnONPs show excellent antioxidant properties in normal mammalian cells via the scavenging of reactive free radicals and up-regulation of antioxidant enzyme activities. Besides, it also shows hypoglycaemic effect in diabetic animals via pancreatic β-cells mediated increased insulin secretion and glucose uptake by liver, skeletal muscles and adipose tissues. Among the other potential applications, ZnONPs-induced bone and soft-tissue regeneration open a new horizon in the field of tissue engineering. Here, first we reviewed the complete synthesis routes of ZnONPs by physical, chemical, and biological pathways as well as outlined the advantages and disadvantages of the techniques. Further, we discussed the several important aspects of physicochemical analysis of ZnONPs. Additionally, we extensively reviewed the important biomedical applications of ZnONPs as antibacterial, antioxidant, and antidiabetic agents, and in the field of tissue engineering with special emphasis on their mechanisms of actions. Furthermore, the future perspectives of the ZnONPs are also discussed.
Collapse
|
83
|
Lu H, Butler JA, Britten NS, Venkatraman PD, Rahatekar SS. Natural Antimicrobial Nano Composite Fibres Manufactured from a Combination of Alginate and Oregano Essential Oil. NANOMATERIALS 2021; 11:nano11082062. [PMID: 34443893 PMCID: PMC8398160 DOI: 10.3390/nano11082062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022]
Abstract
Alginate is a linear biodegradable polysaccharide polymer, which is bio-renewable and widely used for various biomedical applications. For the next generation of medical textiles, alginate nanofibres are desirable for their use in wound dressings that are biocompatible, sustainable, and abundantly available. This study has developed a unique manufacturing process for producing alginate nanofibres with exceptional antimicrobial properties of oregano essential oil (OEO) as a natural antimicrobial agent. OEO with varying degrees of concentration was incorporated in an aqueous alginate solution. Appropriate materials and electrospinning process parameter selection allowed us to manufacture alginate fibres with a range of diameters between 38 and 105 nm. A unique crosslinking process for alginate nanofibres using extended water soaking was developed. Mechanical characterisation using micro-mechanical testing of nonwoven electrospun alginate/oregano composite nanofibres revealed that it was durable. An extensive antimicrobial study was carried out on alginate/oregano composite nanofibres using a range of Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA) and Listeria monocytogenes) and Gram-negative bacteria (Klebsiella pneumoniae and Salmonella enterica), which are common wound and food pathogens. The results indicated that increasing the concentration of OEO from 2 to 3 wt % showed improved antimicrobial activity against all pathogens, and activity was significantly improved against MRSA compared to a non-alginate-based control disk containing OEO. Therefore, our research suggests that all-natural alginate/oregano nanofibre composite textiles offer a new generation of medical textiles for advanced wound dressing technology as well as for food packaging applications.
Collapse
Affiliation(s)
- Hao Lu
- Enhanced Composites and Structures Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK;
| | - Jonathan A. Butler
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (J.A.B.); (N.S.B.)
| | - Nicole S. Britten
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (J.A.B.); (N.S.B.)
| | - Prabhuraj D. Venkatraman
- Manchester Fashion Institute, Faculty of Arts and Humanities, Manchester Metropolitan University, Cavendish Street, Manchester M15 6BH, UK
- Correspondence: (P.D.V.); (S.S.R.)
| | - Sameer S. Rahatekar
- Enhanced Composites and Structures Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK;
- Correspondence: (P.D.V.); (S.S.R.)
| |
Collapse
|
84
|
Arida IA, Ali IH, Nasr M, El-Sherbiny IM. Electrospun polymer-based nanofiber scaffolds for skin regeneration. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
85
|
Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? ANTIBIOTICS (BASEL, SWITZERLAND) 2021; 10:antibiotics10070884. [PMID: 34356805 DOI: 10.3389/fphy.2021.641481] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 05/22/2023]
Abstract
The use of metal oxide nanoparticles is one of the promising ways for overcoming antibiotic resistance in bacteria. Iron oxide nanoparticles (IONPs) have found wide applications in different fields of biomedicine. Several studies have suggested using the antimicrobial potential of IONPs. Iron is one of the key microelements and plays an important role in the function of living systems of different hierarchies. Iron abundance and its physiological functions bring into question the ability of iron compounds at the same concentrations, on the one hand, to inhibit the microbial growth and, on the other hand, to positively affect mammalian cells. At present, multiple studies have been published that show the antimicrobial effect of IONPs against Gram-negative and Gram-positive bacteria and fungi. Several studies have established that IONPs have a low toxicity to eukaryotic cells. It gives hope that IONPs can be considered potential antimicrobial agents of the new generation that combine antimicrobial action and high biocompatibility with the human body. This review is intended to inform readers about the available data on the antimicrobial properties of IONPs, a range of susceptible bacteria, mechanisms of the antibacterial action, dependence of the antibacterial action of IONPs on the method for synthesis, and the biocompatibility of IONPs with eukaryotic cells and tissues.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy E Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maksim B Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| | - Anastasia A Semenova
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey B Lisitsyn
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|
86
|
Gong Z, Chan HT, Chen Q, Chen H. Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources. NANOMATERIALS 2021; 11:nano11071792. [PMID: 34361182 PMCID: PMC8308365 DOI: 10.3390/nano11071792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/07/2022]
Abstract
Toxic heavy metal contamination in food and water from environmental pollution is a significant public health issue. Heavy metals do not biodegrade easily yet can be enriched hundreds of times by biological magnification, where toxic substances move up the food chain and eventually enter the human body. Nanotechnology as an emerging field has provided significant improvement in heavy metal analysis and removal from complex matrices. Various techniques have been adapted based on nanomaterials for heavy metal analysis, such as electrochemical, colorimetric, fluorescent, and biosensing technology. Multiple categories of nanomaterials have been utilized for heavy metal removal, such as metal oxide nanoparticles, magnetic nanoparticles, graphene and derivatives, and carbon nanotubes. Nanotechnology-based heavy metal analysis and removal from food and water resources has the advantages of wide linear range, low detection and quantification limits, high sensitivity, and good selectivity. There is a need for easy and safe field application of nanomaterial-based approaches.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hiu Ting Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
- Correspondence: (Q.C.); (H.C.); Tel.: +852-6649-4275 (Q.C.); +852-3411-2060 (H.C.)
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
- Correspondence: (Q.C.); (H.C.); Tel.: +852-6649-4275 (Q.C.); +852-3411-2060 (H.C.)
| |
Collapse
|
87
|
Abstract
In this study, chitosan (CS)/poly(vinyl alcohol) (PVA) (CS/PVA) blend nanofibers with varying weight ratios and silver (Ag)/copper (Cu)/CS/PVA composite fibers have been prepared successfully by the electrospinning process. The tip-to-collector distance was kept at 15 cm, and the applied voltage was varied from 15 to 25 kV. The effects of the weight ratios and applied voltage on the morphology and diameter of the fibers were investigated. The resultant fibers were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The SEM results showed that increasing the amount of chitosan in the CS/PVA blend resulted in a decrease in the fiber diameter from 162 to 89 nm while an increase in the voltage from 15 to 25 kV led to a decrease in the fiber diameters. Furthermore, the SEM results indicated that an increase in the fiber diameter from 161 to 257 nm was observed while morphological changes were also observed upon the Ag/Cu addition. The latter changes are perceived to be a result of increased conductivity and higher charge density.
Collapse
|
88
|
Fabrication of Hybrid Nanofibers from Biopolymers and Poly (Vinyl Alcohol)/Poly (ε-Caprolactone) for Wound Dressing Applications. Polymers (Basel) 2021; 13:polym13132104. [PMID: 34206747 PMCID: PMC8271691 DOI: 10.3390/polym13132104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.
Collapse
|
89
|
Active agents loaded extracellular matrix mimetic electrospun membranes for wound healing applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
90
|
Bandeira M, Chee BS, Frassini R, Nugent M, Giovanela M, Roesch-Ely M, Crespo JDS, Devine DM. Antimicrobial PAA/PAH Electrospun Fiber Containing Green Synthesized Zinc Oxide Nanoparticles for Wound Healing. MATERIALS 2021; 14:ma14112889. [PMID: 34072271 PMCID: PMC8198200 DOI: 10.3390/ma14112889] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Wound infections are the main complication when treating skin wounds. This work reports a novel antimicrobial material using green synthesized zinc oxide nanoparticles (ZnONPs) incorporated in polymeric fibers for wound healing purposes. ZnONPs are a promising antimicrobial nanomaterial with high activity against a range of microorganisms, including drug-resistant bacteria. The electrospun fibers were obtained using polyacrylic acid (PAA) and polyallylamine hydrochloride (PAH) and were loaded with ZnONPs green synthesized from Ilex paraguariensis leaves with a spherical shape and ~18 nm diameter size. The fibers were produced using the electrospinning technique and SEM images showed a uniform morphology with a diameter of ~230 nm. EDS analysis proved a consistent dispersion of Zn in the fiber mat, however, particle agglomerates with varying sizes were observed. FTIR spectra confirmed the interaction of PAA carboxylic groups with the amine of PAH molecules. Although ZnONPs presented higher antimicrobial activity against S. aureus than E. coli, resazurin viability assay revealed that the PAA/PAH/ZnONPs composite successfully inhibited both bacteria strains growth. Photomicrographs support these results where bacteria clusters were observed only in the control samples. The PAA/PAH/ZnONPs composite developed presents antimicrobial activity and mimics the extracellular matrix morphology of skin tissue, showing potential for wound healing treatments.
Collapse
Affiliation(s)
- Marina Bandeira
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (M.G.); (J.d.S.C.)
- Correspondence: (M.B.); (D.M.D.)
| | - Bor Shin Chee
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
| | - Rafaele Frassini
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (R.F.); (M.R.-E.)
| | - Michael Nugent
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
| | - Marcelo Giovanela
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (M.G.); (J.d.S.C.)
| | - Mariana Roesch-Ely
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (R.F.); (M.R.-E.)
| | - Janaina da Silva Crespo
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (M.G.); (J.d.S.C.)
| | - Declan M. Devine
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
- Correspondence: (M.B.); (D.M.D.)
| |
Collapse
|
91
|
Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar Drugs 2021; 19:md19050264. [PMID: 34068547 PMCID: PMC8150954 DOI: 10.3390/md19050264] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Alginates are naturally occurring polysaccharides extracted from brown marine algae and bacteria. Being biocompatible, biodegradable, non-toxic and easy to gel, alginates can be processed into various forms, such as hydrogels, microspheres, fibers and sponges, and have been widely applied in biomedical field. The present review provides an overview of the properties and processing methods of alginates, as well as their applications in wound healing, tissue repair and drug delivery in recent years.
Collapse
|
92
|
Yadav S, Asthana A, Singh AK, Chakraborty R, Vidya SS, Susan MABH, Carabineiro SAC. Adsorption of cationic dyes, drugs and metal from aqueous solutions using a polymer composite of magnetic/β-cyclodextrin/activated charcoal/Na alginate: Isotherm, kinetics and regeneration studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124840. [PMID: 33482479 DOI: 10.1016/j.jhazmat.2020.124840] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
In this work, we successfully synthesized novel polymer gel beads based on functionalized iron oxide (Fe3O4), activated charcoal (AC) particles with β-cyclodextrin (CD) and sodium alginate (SA) polymer (Fe3O4/CD/AC/SA), by a simple, reproducible and inexpensive method. These beads proved to be versatile and strong adsorbents with magnetic properties and high adsorption capacity. The composites were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, vibrating sample magnetometry, adsorption at -196 °C, high resolution transmission electron microscopy, thermogravimetric analysis and point of zero charge measurements. Two dyes, two drugs and one metal were used to test the adsorption capability of the prepared polymer nanocomposite. The adsorbent showed good removal efficiencies for the studied pollutants, especially the cationic dyes and the metal, when compared to other low-cost adsorbents. The saturated adsorption capacity of Fe3O4/CD/AC/SA reached 5.882 mg g-1 for methyl violet (MV), 2.283 mg g-1 for brilliant green (BG), 2.551 mg g-1 for norfloxacin (NOX), 3.125 mg g-1 for ciprofloxacin (CPX), 10.10 mg g-1 for copper metal ion (Cu(II)). The adsorption isotherm studies showed that data fitted well with Langmuir and Temkin isotherms models. The kinetic data showed good correlation coefficient with low error function for the pseudo-second order kinetic model. The data analysis was carried out using error and regression coefficient functions for the estimation of best-fitting isotherm and kinetic models, namely: chi-square test (χ2) and sum of the squares of errors (SSE). The activation energy was found to be 47.68 kJ mol-1 for BG, 29.09 kJ mol-1 for MV, 28.93 kJ mol-1 for NOX, 4.53 kJ mol-1 for CPX and 17.08 kJ mol-1 for Cu(II), which represent chemisorption and physisorption behavior of sorbent molecules. The polymer composites can be regenerated and easily separated from aqueous solution without any weight loss. After regeneration, the Fe3O4/CD/AC/SA beads still have good adsorption capacities up to four cycles of desorption and adsorption. The results indicate that the polymer gel beads are promising adsorbents for the removal of different categories of toxicants (like dyes, drugs and metal) in single adsorbate aqueous systems. Thus, the novel Fe3O4/CD/AC/SA beads can be effectively employed for a large-scale applications as environmentally compatible materials for the adsorption of different categories of pollutants.
Collapse
Affiliation(s)
- Sushma Yadav
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg, 491001 Chhattisgarh, India
| | - Anupama Asthana
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg, 491001 Chhattisgarh, India
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg, 491001 Chhattisgarh, India.
| | - Rupa Chakraborty
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg, 491001 Chhattisgarh, India
| | - S Sree Vidya
- Department of Chemistry, Kalyan PG College, Durg, India
| | | | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
93
|
Hemmatgir F, Koupaei N, Poorazizi E. Characterization of a novel semi-interpenetrating hydrogel network fabricated by polyethylene glycol diacrylate/polyvinyl alcohol/tragacanth gum as a wound dressing. Burns 2021; 48:146-155. [PMID: 34686391 DOI: 10.1016/j.burns.2021.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
In this research, a novel semi-interpenetrating hydrogel network comprised of polyethylene glycol diacrylate (PEGDA)/polyvinyl alcohol (PVA)/tragacanth gum (TG) with adaptable mechanical, biological, and physical characteristics was fabricated for wound healing purposes. The chemical structure of the films and the surface morphology were examined by FTIR and SEM, respectively. In addition, swelling ratio, mechanical characteristics, water vapor transmission rate (WVTR), gel fraction, and degradability of the hydrogels were assessed. To evaluate their cytocompatibility, MTT assay and cell attachment studies were performed. The FTIR results showed that the vinyl peaks were eliminated during crosslinking between PEGDA chains. The results also showed that incorporating PVA into the networks increases the swelling ration and decreases the porosity. Furthermore, as the ratio of PEGDA to PVA increased, WVTR ratio, cell adhesion, and elongation of the networks increased. It was also found that, when the amount of PEGDA reduced, degradation rate of the networks decreased. The results verified the non-toxic nature of PEGDA/PVA/TG hydrogel networks. Finally, the antibacterial results demonstrated that the highest antibacterial activities against bacterial pathogens is related to the TG-containing film. Therefore, PEGDA/PVA/TG hydrogel networks can be favorable wound dressings.
Collapse
Affiliation(s)
- Forough Hemmatgir
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Narjes Koupaei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Elahe Poorazizi
- Department of Biochemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
94
|
Su Y, Li P, Gao D, Lyu B, Ma J, Zhang J, Lyu L. High-efficiency antibacterial and anti-mildew properties under self-assembly: An environmentally friendly nanocomposite. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
95
|
Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci 2021; 16:280-306. [PMID: 34276819 PMCID: PMC8261255 DOI: 10.1016/j.ajps.2020.10.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp. and Pseudomonas sp. Owing to alginate gel forming capability, it is widely used in food, textile and paper industries; and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration. This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays. However, alginate also has limitation. When in contact with physiological environment, alginate could gelate into softer structure, consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts. To cater this problem, wide range of materials have been added to alginate structure, producing sturdy composite materials. For instance, the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material, which not only possesses better mechanical properties compared to native alginate, but also grants additional healing capability and promote better tissue regeneration. In addition, drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent. In this review, preparation of alginate and alginate composite in various forms (fibre, bead, hydrogel, and 3D-printed matrices) used for biomedical application is described first, followed by the discussion of latest trend related to alginate composite utilization in wound dressing, drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Raha Ahmad Raus
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Wan Mohd Fazli Wan Nawawi
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Ricca Rahman Nasaruddin
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| |
Collapse
|
96
|
Knijnenburg JTN, Kasemsiri P, Amornrantanaworn K, Suwanree S, Iamamornphan W, Chindaprasirt P, Jetsrisuparb K. Entrapment of nano-ZnO into alginate/polyvinyl alcohol beads with different crosslinking ions for fertilizer applications. Int J Biol Macromol 2021; 181:349-356. [PMID: 33781815 DOI: 10.1016/j.ijbiomac.2021.03.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
Zinc oxide nanoparticles (nano-ZnO) are attractive as fertilizer materials but high concentrations may negatively affect the environment. To reduce their dispersion in the environment we entrapped nano-ZnO in biodegradable polymer beads consisting of alginate and polyvinyl alcohol (PVA). The alginate/PVA/ZnO beads were prepared via ionotropic gelation using two different crosslinking ions (Ca2+ and Zn2+), and the effect of alginate crosslinking ion and PVA content on bead structure, water absorption, water retention and zinc release was investigated. The pure CaAlg and ZnAlg beads demonstrated a poor water absorption and retention, which were strongly enhanced by the incorporation of PVA into the beads. The continuous Zn release was measured in a sand column, and it was found that the Zn-crosslinked beads rapidly released high concentrations of Zn followed by a more gradual Zn release, whereas Ca alginates showed only a gradual Zn release. The Zn dissolution kinetics could be tuned by the crosslinking ion composition. The prepared nano-ZnO-containing alginate/PVA beads may be attractive for Zn fertilizer applications under water-limited conditions.
Collapse
Affiliation(s)
- Jesper T N Knijnenburg
- International College, Khon Kaen University, Khon Kaen 40002, Thailand; Sustainable Infrastructure Research and Development Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornnapa Kasemsiri
- Sustainable Infrastructure Research and Development Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Chemical Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Siraprapa Suwanree
- Department of Chemical Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Prinya Chindaprasirt
- Sustainable Infrastructure Research and Development Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Civil Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kaewta Jetsrisuparb
- Sustainable Infrastructure Research and Development Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Chemical Engineering, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
97
|
Shokraei S, Mirzaei E, Shokraei N, Derakhshan MA, Ghanbari H, Faridi‐Majidi R. Fabrication and characterization of chitosan/kefiran electrospun nanofibers for tissue engineering applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.50547] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shabnam Shokraei
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Nasim Shokraei
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Ali Derakhshan
- Department of Medical Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Reza Faridi‐Majidi
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
98
|
Olmos D, González-Benito J. Polymeric Materials with Antibacterial Activity: A Review. Polymers (Basel) 2021; 13:613. [PMID: 33670638 PMCID: PMC7922637 DOI: 10.3390/polym13040613] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Infections caused by bacteria are one of the main causes of mortality in hospitals all over the world. Bacteria can grow on many different surfaces and when this occurs, and bacteria colonize a surface, biofilms are formed. In this context, one of the main concerns is biofilm formation on medical devices such as urinary catheters, cardiac valves, pacemakers or prothesis. The development of bacteria also occurs on materials used for food packaging, wearable electronics or the textile industry. In all these applications polymeric materials are usually present. Research and development of polymer-based antibacterial materials is crucial to avoid the proliferation of bacteria. In this paper, we present a review about polymeric materials with antibacterial materials. The main strategies to produce materials with antibacterial properties are presented, for instance, the incorporation of inorganic particles, micro or nanostructuration of the surfaces and antifouling strategies are considered. The antibacterial mechanism exerted in each case is discussed. Methods of materials preparation are examined, presenting the main advantages or disadvantages of each one based on their potential uses. Finally, a review of the main characterization techniques and methods used to study polymer based antibacterial materials is carried out, including the use of single force cell spectroscopy, contact angle measurements and surface roughness to evaluate the role of the physicochemical properties and the micro or nanostructure in antibacterial behavior of the materials.
Collapse
Affiliation(s)
- Dania Olmos
- Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
| |
Collapse
|
99
|
Li Y, Zhou M, Waterhouse GIN, Sun J, Shi W, Ai S. Efficient removal of cadmium ions from water by adsorption on a magnetic carbon aerogel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5149-5157. [PMID: 32959320 DOI: 10.1007/s11356-020-10859-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Carbon aerogels are attracting much attention as adsorbents due to their high specific surface and large accessible pores. Herein, we describe a successful synthesis of a magnetic carbon aerogel (MCA) using sodium alginate (SA) as the main carbon source, gelatin (G) as a cross-linking agent and secondary carbon source, and Fe3O4 nanoparticles as the magnetic component. A simple pyrolysis treatment at 550 °C under N2 transformed a Fe3O4/SA/G hydrogel precursor into the MCA. The obtained magnetic carbon aerogel possessed a high specific surface area (145.7 m2/g), a hierarchically porous structure, and an abundance of surface hydroxyl (-OH) and carboxyl (-COOH) groups, resulting in outstanding sorption properties for aqueous Cd(II) (an adsorption capacity of 143.88 mg/Lmg/g). The mechanism of Cd(II) adsorption by the MCA was investigated, with the results obtained suggesting that the MCA removed cadmium ions from water by both electrostatic adsorption and complexation. Since the MCAs contained Fe3O4 nanoparticles, they could easily be separated and recovered from water using a magnet. This study thus identifies a promising and efficient technology for removing Cd(II) ions from aqueous solutions.
Collapse
Affiliation(s)
- Yingchao Li
- College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
| | - Mengqi Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
| | - Geoffrey I N Waterhouse
- College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Jianchao Sun
- School of Environment and Materials Engineering, Yantai University, Yantai, 264005, Shandong, People's Republic of China
| | - Weijie Shi
- College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
100
|
Design and in vivo evaluation of alginate-based pH-sensing electrospun wound dressing containing anthocyanins. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02400-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|