51
|
Srivastava N, Choudhury AR. Stimuli-Responsive Polysaccharide-Based Smart Hydrogels and Their Emerging Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| |
Collapse
|
52
|
Zeng F, Ye Y, Liu J, Fei P. Intelligent pH indicator composite film based on pectin/chitosan incorporated with black rice anthocyanins for meat freshness monitoring. Food Chem X 2022; 17:100531. [PMID: 36845515 PMCID: PMC9943846 DOI: 10.1016/j.fochx.2022.100531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
With the improvement of consumer awareness of food safety and the increasing concern about plastic pollution, the development of novel intelligent packaging film is imminent. This project aims to develop an environmentally friendly pH-sensitive intelligent food packaging film for meat freshness monitoring. In this study, anthocyanin-rich extract from black rice (AEBR) was added to composite film formed by the co-polymerisation of pectin and chitosan. AEBR showed strong antioxidant activity, and different colour responses to different conditions. The mechanical properties of the composite film remarkably improved when AEBR was incorporated into. Besides, the introduction of anthocyanins enables the colour of composite film to change from red to blue with the degree of meat spoilage increased which shows the indicative effect of composite films on meat putrification. Therefore, the AEBR-loaded pectin/chitosan film could be used as an indicator to monitor meat freshness in real-time.
Collapse
Affiliation(s)
- Fansen Zeng
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China,College of Food Science and Technology, Nanchang University, Nanchang 330000, PR China
| | - Yanqi Ye
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350000, PR China
| | - Jingna Liu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China,Corresponding authors.
| | - Peng Fei
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China,Corresponding authors.
| |
Collapse
|
53
|
Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
54
|
Bhowmik S, Agyei D, Ali A. Bioactive chitosan and essential oils in sustainable active food packaging: Recent trends, mechanisms, and applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
55
|
Kanha N, Osiriphun S, Rakariyatham K, Klangpetch W, Laokuldilok T. On-package indicator films based on natural pigments and polysaccharides for monitoring food quality: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6804-6823. [PMID: 35716018 DOI: 10.1002/jsfa.12076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/12/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Deterioration of food quality and freshness is mainly due to microbial growth and enzyme activity. Chilled fresh food, especially meat and seafood, as well as pasteurized products, rapidly lose quality and freshness during packing, distribution and storage. Real-time food quality monitoring using on-package indicator films can help consumers make informed purchasing decisions. Interest in the use of intelligent packaging systems for monitoring safety and food quality has increased in recent years. Polysaccharide-based films can be developed into on-package indicator films due to their excellent film-forming properties and biodegradability. Another important component is the use of colorants with visible color changes at various pH levels. Currently, natural pigments are receiving increased attention because of their safety and environmental friendliness. This review highlights the recent findings regarding the role of natural pigments, the effects of incorporating natural pigments and polysaccharides on properties of indicator film, current application and limitations of on-package indicator films based on polysaccharides in some foods, problems and improvement of physical properties and color conversion of indicator film containing natural pigments, and development of polysaccharide-based pH-responsive films. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nattapong Kanha
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sukhuntha Osiriphun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Kanyasiri Rakariyatham
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Wannaporn Klangpetch
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Thunnop Laokuldilok
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
56
|
Ezati P, Khan A, Rhim JW, Roy S, Hassan ZU. Saffron: Perspectives and Sustainability for Active and Intelligent Food Packaging Applications. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
57
|
Kurek MA, Majek M, Onopiuk A, Szpicer A, Napiórkowska A, Samborska K. Encapsulation of anthocyanins from chokeberry (Aronia melanocarpa) with plazmolyzed yeast cells of different species. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
58
|
Kossyvaki D, Contardi M, Athanassiou A, Fragouli D. Colorimetric Indicators Based on Anthocyanin Polymer Composites: A Review. Polymers (Basel) 2022; 14:polym14194129. [PMID: 36236076 PMCID: PMC9571802 DOI: 10.3390/polym14194129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
This review explores the colorimetric indicators based on anthocyanin polymer composites fabricated in the last decade, in order to provide a comprehensive overview of their morphological and compositional characteristics and their efficacy in their various application fields. Notably, the structural properties of the developed materials and the effect on their performance will be thoroughly and critically discussed in order to highlight their important role. Finally, yet importantly, the current challenges and the future perspectives of the use of anthocyanins as components of colorimetric indicator platforms will be highlighted, in order to stimulate the exploration of new anthocyanin sources and the in-depth investigation of all the possibilities that they can offer. This can pave the way for the development of high-end materials and the expansion of their use to new application fields.
Collapse
Affiliation(s)
- Despoina Kossyvaki
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli Studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Correspondence:
| |
Collapse
|
59
|
Mohseni-Shahri F, Mehrzad A, Khoshbin Z, Sarabi-Jamab M, Khanmohamadi F, Verdian A. Polyphenol-loaded bacterial cellulose nanofiber as a green indicator for fish spoilage. Int J Biol Macromol 2022; 224:1174-1182. [DOI: 10.1016/j.ijbiomac.2022.10.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
60
|
Li B, Bao Y, Li J, Bi J, Chen Q, Cui H, Wang Y, Tian J, Shu C, Wang Y, Lang Y, Zhang W, Tan H, Huang Q, Si X. A sub-freshness monitoring chitosan/starch-based colorimetric film for improving color recognition accuracy via controlling the pH value of the film-forming solution. Food Chem 2022; 388:132975. [PMID: 35447591 DOI: 10.1016/j.foodchem.2022.132975] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
Abstract
The demand for intelligent packaging in food sub-freshness monitoring is increasing. Herein, a pH and NH3 responsing colorimetric film (PS-CH-LCA) was fabricated based on potato starch (PS), chitosan (CH) and Lonicera caerulea L. anthocyanins (LCA) via controlling the pH value of the film-forming solution, and was applied to the real-time monitoring of shrimp freshness. The PS-CH-LCA pH 2.5 film exhibited the highest tensile strength (6.43 MPa), the lowest water solubility (33.11%) and the most sensitive color responsiveness. Morphological and structural results revealed that CH was attached to the surface of PS via hydrogen bond, and anthocyanins were well immobilized in the film-forming matrix. The sensitive color change and its high correlation with spoilage indices demonstrated the PS-CH-LCA pH 2.5 film well indicated fresh, sub-fresh, spoiled level of shrimp. The results solved the limitation of chitosan-based packaging films in undistinguishable colorimetric endpoints, providing a new strategy for indicating the sub-freshness of food packaging.
Collapse
Affiliation(s)
- Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, National Risk Assessment Laboratory of Agro-products Processing Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qinqin Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, National Risk Assessment Laboratory of Agro-products Processing Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuxuan Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuxi Lang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Weijia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qunxing Huang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
61
|
Amorim LFA, Gomes AP, Gouveia IC. Design and Preparation of a Biobased Colorimetric pH Indicator from Cellulose and Pigments of Bacterial Origin, for Potential Application as Smart Food Packaging. Polymers (Basel) 2022; 14:polym14183869. [PMID: 36146013 PMCID: PMC9506293 DOI: 10.3390/polym14183869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Nowadays, worldwide challenges such as global warming, pollution, unsustainable consumption patterns, and scarcity of natural resources are key drivers toward future-oriented bioeconomy strategies, which rely on renewable biobased resources, such as bacterial pigments and bacterial cellulose (BC), for materials production. Therefore, the purpose of this study was to functionalize bacterial cellulose with violacein, flexirubin-type pigment, and prodigiosin and test their suitability as pH indicators, due to the pigments’ sensitivity to pH alterations. The screening of the most suitable conditions to obtain the BC-pigment indicators was achieved using a full factorial design, for a more sustainable functionalization process. Then, the pH response of functionalized BC to buffer solutions was assessed, with color changes at acidic pH (BC-violacein indicator) and at alkaline pH (BC-violacein, BC-prodigiosin, and BC-flexirubin-type pigment indicators). Moreover, the indicators also revealed sensitivity to acid and base vapors. Furthermore, leaching evaluation of the produced indicators showed higher suitability for aqueous foods. Additionally, color stability of the functionalized BC indicators was carried out, after light exposure and storage at 4 °C, to evaluate the indicators’ capacity to maintain color/sensitivity. Thus, BC membranes functionalized with bacterial pigments have the potential to be further developed and used as pH indicators.
Collapse
|
62
|
Wang J, Han X, Zhang C, Liu K, Duan G. Source of Nanocellulose and Its Application in Nanocomposite Packaging Material: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183158. [PMID: 36144946 PMCID: PMC9502214 DOI: 10.3390/nano12183158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 05/12/2023]
Abstract
Food packaging nowadays is not only essential to preserve food from being contaminated and damaged, but also to comply with science develop and technology advances. New functional packaging materials with degradable features will become a hot spot in the future. By far, plastic is the most common packaging material, but plastic waste has caused immeasurable damage to the environment. Cellulose known as a kind of material with large output, wide range sources, and biodegradable features has gotten more and more attention. Cellulose-based materials possess better degradability compared with traditional packaging materials. With such advantages above, cellulose was gradually introduced into packaging field. It is vital to make packaging materials achieve protection, storage, transportation, market, and other functions in the circulation process. In addition, it satisfied the practical value such as convenient sale and environmental protection, reduced cost and maximized sales profit. This review introduces the cellulose resource and its application in composite packaging materials, antibacterial active packaging materials, and intelligent packaging materials. Subsequently, sustainable packaging and its improvement for packaging applications were introduced. Finally, the future challenges and possible solution were provided for future development of cellulose-based composite packaging materials.
Collapse
Affiliation(s)
- Jingwen Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (X.H.); (C.Z.); (G.D.)
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (X.H.); (C.Z.); (G.D.)
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (X.H.); (C.Z.); (G.D.)
| |
Collapse
|
63
|
Păușescu I, Dreavă DM, Bîtcan I, Argetoianu R, Dăescu D, Medeleanu M. Bio-Based pH Indicator Films for Intelligent Food Packaging Applications. Polymers (Basel) 2022; 14:polym14173622. [PMID: 36080695 PMCID: PMC9460188 DOI: 10.3390/polym14173622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The widespread concerns about the environmental problems caused by conventional plastic food packaging and food waste led to a growing effort to develop active and intelligent systems produced from renewable biodegradable polymers for food packaging applications. Among intelligent systems, the most widely used are pH indicators, which are generally based on a pH-sensitive dye incorporated into a solid support. The objective of this study was to develop new intelligent systems based on renewable biodegradable polymers and a new bio-inspired pH-sensitive dye. The structure of the dye was elucidated through FT-IR and 1D and 2D NMR spectroscopic analyses. UV-VIS measurements of the dye solutions at various pH values proved their halochromic properties. Their toxicity was evaluated through theoretical calculations, and no toxicity risks were found. The new anthocyanidin was used for the development of biodegradable intelligent systems based on chitosan blends. The obtained polymeric films were characterized through UV-VIS and FT-IR spectroscopy. Their thermal properties were assessed through a thermogravimetric analysis, which showed a better stability of chitosan–PVA–dye and chitosan–starch–dye films compared to those of chitosan–cellulose–dye films and the dye itself. The films’ sensitivity to pH variations was evaluated through immersion in buffer solutions with pH values ranging from 2 to 12, and visible color changes were observed.
Collapse
|
64
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ghasemlou M, Ariffin F, Singh Z, Al-Hassan A. Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
65
|
Santos LG, Alves-Silva GF, Martins VG. Active-intelligent and biodegradable sodium alginate films loaded with Clitoria ternatea anthocyanin-rich extract to preserve and monitor food freshness. Int J Biol Macromol 2022; 220:866-877. [PMID: 35998854 DOI: 10.1016/j.ijbiomac.2022.08.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
The aim of this study was to develop and characterize sodium alginate films loaded with 10-40 % Clitoria ternatea extract (CTE) and apply to monitoring the quality of milk, pork and shrimp. Films loaded with CTE showed high light barrier capacity and improved tensile strength by 3.8 times over control films. The incorporation of CTE in alginate films improved the thermal stability of the materials due to intermolecular interactions and crosslinking of polymeric networks. The addition of 40 % of CTE generated films with antibacterial action against E. coli. The alginate films showed biodegradable characteristics in soil and beach sand in 15 days. The food simulant test revealed that the loaded films show good compatibility with aqueous and acidic foods due to the release of higher levels of polyphenols and anthocyanins. The films showed great colorimetric potential due to their ability to change color at different pH (pink-green), ammonia gas (blue-green) and sterilization process (blue-yellow). When the film loaded with 40 % CTE (F40) was applied to monitor the freshness of milk and meat products (shrimp and pork), its blue color changed to purple and green, respectively. Therefore, the F40 has great potential to be used as a biodegradable indicator of freshness.
Collapse
Affiliation(s)
- Luan Gustavo Santos
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| | - Gisele Fernanda Alves-Silva
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
66
|
Agarwal A, Shaida B, Rastogi M, Singh NB. Food Packaging Materials with Special Reference to Biopolymers-Properties and Applications. CHEMISTRY AFRICA 2022. [PMCID: PMC9389508 DOI: 10.1007/s42250-022-00446-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Food is an important material for survival. The increasing world population, urbanization, and globalization are responsible for more food. This has increased challenges in food storage and safety. Therefore, it is necessary to preserve food by suitable packaging materials. The packaging materials are useful for giving longer life to the food and improving quality during transportation, storage and distribution. Innovations and developments in food packaging, have become very important in the food industry. Variety of packaging materials such as plastics, paper, metal, and glass are used in food packaging. Most widely used packaging materials are non-biodegradable plastics but these are harmful to environment and human health. Therefore, the food industry is in search of environment friendly replacement of non-biodegradable plastics by biodegradable plastics. However, no systematic literature is available on the subject, so there is a need to summarise the available information in a systematic way. Polymer packaging materials with special reference to biodegradable plastics have been discussed in detail. Different type of biodegradable plastics with their functionality and applications in food packaging have been summarised. Literature available has shown that biodegradable plastics are much better for food packaging as compared to other packaging materials. Increasing fundamental research in the use of biodegradable polymers in food packaging and effort to protect the environment, requires deep understanding and there are lot of challenges for commercialization, which are to be tackled. All these aspects have been discussed in this review article.
Collapse
|
67
|
Sutharsan J, Zhao J. Physicochemical and Biological Properties of Chitosan Based Edible Films. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jenani Sutharsan
- Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| | - Jian Zhao
- Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW, Australia
| |
Collapse
|
68
|
He J, Ye S, Correia P, Fernandes I, Zhang R, Wu M, Freitas V, Mateus N, Oliveira H. Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Compr Rev Food Sci Food Saf 2022; 21:3096-3128. [PMID: 35534086 DOI: 10.1111/1541-4337.12970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023]
Abstract
Over the years, anthocyanins have emerged as one of the most enthralling groups of natural phenolic compounds and more than 700 distinct structures have already been identified, illustrating the exceptional variety spread in nature. The interest raised around anthocyanins goes way beyond their visually appealing colors and their acknowledged structural and biological properties have fueled intensive research toward their application in different contexts. However, the high susceptibility of monoglycosylated anthocyanins to degradation under certain external conditions might compromise their application. In that regard, polyglycosylated anthocyanins (PGA) might offer an alternative to overcome this issue, owing to their peculiar structure and consequent less predisposition to degradation. The most recent scientific and technological findings concerning PGA and their food sources are thoroughly described and discussed in this comprehensive review. Different issues, including their physical-chemical characteristics, consumption, bioavailability, and biological relevance in the context of different pathologies, are covered in detail, along with the most relevant prospective technological applications. Due to their complex structure and acyl groups, most of the PGA exhibit an overall higher stability than the monoglycosylated ones. Their versatility allows them to act in a wide range of pathologies, either by acting directly in molecular pathways or by modulating the disease environment attributing an added value to their food sources. Their recent usage for technological applications has also been particularly successful in different industry fields including food and smart packaging or in solar energy production systems. Altogether, this review aims to put into perspective the current state and future research on PGA and their food sources.
Collapse
Affiliation(s)
- Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Shuxin Ye
- Yun-Hong Group Co. Ltd, Wuhan, China
| | - Patrícia Correia
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
69
|
Abdillah AA, Lin HH, Charles AL. Development of halochromic indicator film based on arrowroot starch/iota-carrageenan using Kyoho skin extract to monitor shrimp freshness. Int J Biol Macromol 2022; 211:316-327. [PMID: 35568153 DOI: 10.1016/j.ijbiomac.2022.05.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 01/14/2023]
Abstract
Increasing trends in food safety awareness drive consumer demands for fresher healthier diets and has led to the development of low-cost pH-sensitive indicator films to evaluate deterioration levels in fresh foods. Arrowroot starch/iota-carrageenan-based films were combined with 10, 30, 50% Kyoho skin extract (KSE) to produce indicator films with halochromic abilities. The KSE indicator films were characterized based on their physico-mechanical, functional, and crystallinity properties; thermal stability; and their pH-dependent color changes in in situ anthocyanin-based monitoring of shrimp freshness. All KSE indicator films displayed compact structure under scanning electron microscope analysis and increased tensile strength, exhibited UV-vis barrier ability, and presented low water wettability. Moreover, FTIR signaled strong hydrogen bond interactions among polymers and KSE that strengthened peak crystallinity in XRD analysis and lowered weight loss at melting temperature, which indicated thermal stability of the indicator films. Furthermore, pH-sensitivity of the indicator films integrated with natural KSE anthocyanin demonstrated color changes from purple to red under acidic conditions, purple to green in an ammonium environment, and yellow appeared in high alkaline conditions. Finally, this study demonstrated the food packaging and halochromic capacity of biopolymer-based pH-sensitivity of the KSE indicator films in real-time monitoring of shrimp at room storage temperatures.
Collapse
Affiliation(s)
- Annur Ahadi Abdillah
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology,1 Shuefu Road, Neipu, Pingtung, Taiwan 91201; Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Hsin-Hung Lin
- Chung Hwa University of Medical Technology, 89 Wenhua 1st, Rende, Tainan, Taiwan 71703; Pao-Can Biomedical Co., Ltd., 20 Shangding, Yongkang, Tainan, Taiwan 710
| | - Albert Linton Charles
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology,1 Shuefu Road, Neipu, Pingtung, Taiwan 91201.
| |
Collapse
|
70
|
Almasi H, Forghani S, Moradi M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
71
|
Hu D, Liu X, Qin Y, Yan J, Yang Q. A novel intelligent film with high stability based on chitosan/sodium alginate and coffee peel anthocyanin for monitoring minced beef freshness. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dongsheng Hu
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| | - Xiaogang Liu
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| | - Yuyue Qin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| | - Jiatong Yan
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| | - Qiliang Yang
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| |
Collapse
|
72
|
Tavassoli M, Alizadeh Sani M, Khezerlou A, Ehsani A, Jahed-Khaniki G, McClements DJ. Smart Biopolymer-Based Nanocomposite Materials Containing pH-Sensing Colorimetric Indicators for Food Freshness Monitoring. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103168. [PMID: 35630645 PMCID: PMC9143397 DOI: 10.3390/molecules27103168] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Nanocomposite biopolymer materials containing colorimetric pH-responsive indicators were prepared from gelatin and chitosan nanofibers. Plant-based extracts from barberry and saffron, which both contained anthocyanins, were used as pH indicators. Incorporation of the anthocyanins into the biopolymer films increased their mechanical, water-barrier, and light-screening properties. Infrared spectroscopy and scanning electron microscopy analysis indicated that a uniform biopolymer matrix was formed, with the anthocyanins distributed evenly throughout them. The anthocyanins in the composite films changed color in response to alterations in pH or ammonia gas levels, which was used to monitor changes in the freshness of packaged fish during storage. The anthocyanins also exhibited antioxidant and antimicrobial activity, which meant that they could also be used to slow down the degradation of the fish. Thus, natural anthocyanins could be used as both freshness indicators and preservatives in biopolymer-based nanocomposite packaging materials. These novel materials may therefore be useful alternatives to synthetic plastics for some food packaging applications, thereby improving the environmental friendliness and sustainability of the food supply.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran; (M.T.); (A.K.)
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran; (M.A.S.); (G.J.-K.)
| | - Arezou Khezerlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran; (M.T.); (A.K.)
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Ali Ehsani
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Correspondence: (A.E.); (D.J.M.)
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran; (M.A.S.); (G.J.-K.)
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Correspondence: (A.E.); (D.J.M.)
| |
Collapse
|
73
|
Magnaghi LR, Zanoni C, Alberti G, Quadrelli P, Biesuz R. Towards intelligent packaging: BCP-EVOH@ optode for milk freshness measurement. Talanta 2022; 241:123230. [DOI: 10.1016/j.talanta.2022.123230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
|
74
|
Boonsiriwit A, Itkor P, Sirieawphikul C, Lee YS. Characterization of Natural Anthocyanin Indicator Based on Cellulose Bio-Composite Film for Monitoring the Freshness of Chicken Tenderloin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092752. [PMID: 35566103 PMCID: PMC9103511 DOI: 10.3390/molecules27092752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022]
Abstract
Intelligent packaging with indicators that provide information about the quality of food products can inform the consumer regarding food safety and reduce food waste. A solid material for a pH-responsive indicator was developed from hydroxypropyl methylcellulose (HPMC) composited with microcrystalline cellulose (MCC). MCC at 5%, 10%, 20%, and 30% w/w was introduced into the HPMC matrix and the physical, barrier, thermal, and optical properties of the HPMC/MCC bio-composite (HMB) films were analyzed. At 5, 10, and 20% MCC, improved mechanical, transparency, and barrier properties were observed, where HMB with 20% of MCC (H20MB) showed the best performance. Therefore, H20MB was selected as the biodegradable solid material for fabricating Roselle anthocyanins (RA) pH sensing indicators. The performance of the RA-H20MB indicator was evaluated by monitoring its response to ammonia vapor and tracking freshness status of chicken tenderloin. The RA-H20MB showed a clear color change with respect to ammonia exposure and quality change of chicken tenderloin; the color changed from red to magenta, purple and green, respectively. These results indicated that RA-H20MB can be used as a biodegradable pH sensing indicator to determine food quality and freshness.
Collapse
Affiliation(s)
- Athip Boonsiriwit
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (P.I.)
- Rattanakosin International College of Creative Entrepreneurship (RICE), Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170, Thailand;
| | - Pontree Itkor
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (P.I.)
| | - Chanutwat Sirieawphikul
- Rattanakosin International College of Creative Entrepreneurship (RICE), Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170, Thailand;
| | - Youn Suk Lee
- Department of Packaging, Yonsei University, Wonju 220-710, Korea; (A.B.); (P.I.)
- Correspondence: ; Tel.: +82-33-760-2395
| |
Collapse
|
75
|
Dong Z, Du Z, Wu X, Zhai K, Wei Z, Rashed MMA. Fabrication and characterization of ZnO nanofilms using extracted pectin of Premna microphylla Turcz leaves and carboxymethyl cellulose. Int J Biol Macromol 2022; 209:525-532. [PMID: 35405155 DOI: 10.1016/j.ijbiomac.2022.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
Abstract
The current study sought to fabricate pectin nano-films from Premna microphylla Turcz (PMTP) leaves using a combination of ZnO-carboxymethyl cellulose. The rheological and physical properties of fabricated nano-ZnO films were studied. Spectroscopy FT-IR, microscopic study (SEM), thermogravimetry (TG), and XRD were applied to characterize the fabricated film. The antibacterial activity of the nanofilm was determined using the antibacterial circle method. The findings showed that the addition of PMTP can reduce the nanofilm color, water solubility/hydrophilicity, air permeability, and ultraviolet light permeability of the nanofilm. Treatment CPN0.5 achieved the optimized Tensile strength (TS) of 4.50 Mpa, significant differences compared to CPN2 (3.99 Mpa) and CPN1 (3.65 Mpa). In addition, treatment CPN1 achieved the lowest WVP value (29.35) compared to the highest value (41.62) achieved by CPN0.5 treatment with no significant differences with CPN3 (29.7) and CPN1 (30.98) treatments. Elongation (E%) at break was the best for each CP10 (74.9) and CPN0.5 (73.03). Moreover, ZnO can enhance the nanofilm activity and the nanofilm water swelling ratio. Furthermore, adding ZnO to the nano-formula improved the antibacterial activity of the fabricated film against Staphylococcus aureus. In sum, nanofilms fabricated of PMTP and ZnO possess promising prospects as antibacterial agents in packaging applications.
Collapse
Affiliation(s)
- Zeng Dong
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China
| | - Ziqing Du
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China
| | - Xingyue Wu
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China
| | - Kefeng Zhai
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China
| | - Zhaojun Wei
- School of Food and Biotechnology Engineering, Hefei University of Technology, Hefei 230009, China
| | - Marwan M A Rashed
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; Natural Products and Functional Food Engineering Technology Research Center of Suzhou, Suzhou University, Suzhou 234000, China.
| |
Collapse
|
76
|
Zheng L, Liu L, Yu J, Shao P. Novel trends and applications of natural pH-responsive indicator film in food packaging for improved quality monitoring. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
77
|
Luo X, Zaitoon A, Lim LT. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Compr Rev Food Sci Food Saf 2022; 21:2489-2519. [PMID: 35365965 DOI: 10.1111/1541-4337.12942] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Intelligent food packaging system exhibits enhanced communication function by providing dynamic product information to various stakeholders (e.g., consumers, retailers, distributors) in the supply chain. One example of intelligent packaging involves the use of colorimetric indicators, which when subjected to external stimuli (e.g., moisture, gas/vapor, electromagnetic radiation, temperature), display discernable color changes that can be correlated with real-time changes in product quality. This type of interactive packaging system allows continuous monitoring of product freshness during transportation, distribution, storage, and marketing phases. This review summarizes the colorimetric indicator technologies for intelligent packaging systems, emphasizing on the types of indicator dyes, preparation methods, applications in different food products, and future considerations. Both food and nonfood indicator materials integrated into various carriers (e.g., paper-based substrates, polymer films, electrospun fibers, and nanoparticles) with material properties optimized for specific applications are discussed, targeting perishable products, such as fresh meat and fishery products. Colorimetric indicators can supplement the traditional "Best Before" date label by providing real-time product quality information to the consumers and retailers, thereby not only ensuring product safety, but also promising in reducing food waste. Successful scale-up of these intelligent packaging technologies to the industrial level must consider issues related to regulatory approval, consumer acceptance, cost-effectiveness, and product compatibility.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, Canada
| |
Collapse
|
78
|
Wang G, Huang S, He H, Cheng J, Zhang T, Fu Z, Zhang S, Zhou Y, Li H, Liu X. Fabrication of a "progress bar" colorimetric strip sensor array by dye-mixing method as a potential food freshness indicator. Food Chem 2022; 373:131434. [PMID: 34731803 DOI: 10.1016/j.foodchem.2021.131434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022]
Abstract
Colorimetric sensing is a low-cost, intuitive method for monitoring the freshness of food. We prepared a colorimetric strip sensor array by mixing different amounts of bromophenol blue (BPB) and bromocresol green (BCG). As results of NH3 simulation, the array strip turned from yellow to blue, and the number of blue spots increased with the increasing NH3, like a progress bar. Although the actual color is quite different, the color-changing trend was consistent with the simulated model calculated by a computer. The progress bar results remained stable under three lighting conditions. Furthermore, in the Cod preservation experiment, the color-changing progress of the strip sensor array is consistent with the simulation and can indicate Cod freshness while providing more distinguish levels. Therefore, a "progress bar" indicator built by this strategy possess the potential of realizing nondestructive, more accurate, and commercially available food quality monitoring through the naked eye and smart equipment recognition.
Collapse
Affiliation(s)
- Guannan Wang
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Shaoyun Huang
- Department of Graphic Information Processing, Jingchu University of Technology, Jingmen 448000, China
| | - Hui He
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Jiawei Cheng
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Tao Zhang
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Zhiqiang Fu
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Shasha Zhang
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yuzhi Zhou
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Houbin Li
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China.
| | - Xinghai Liu
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
79
|
Wang Y, Zhang J, Zhang L. An active and pH-responsive film developed by sodium carboxymethyl cellulose/polyvinyl alcohol doped with rose anthocyanin extracts. Food Chem 2022; 373:131367. [PMID: 34731797 DOI: 10.1016/j.foodchem.2021.131367] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022]
Abstract
Many anthocyanins were used in active and pH-responsive packaging. The purpose of the study was to prepare an active and pH-responsive sensitive film based on sodium carboxymethyl cellulose/polyvinyl alcohol (CPVA) by a casting process, which contained rose anthocyanin extracts (RAEs) to monitor the freshness of pork. The concentration of RAEs had an important influence on the physicochemical property of RAEs-CPVA films, especially excellent anti-oxidation and light barrier properties. Importantly, the 160-RAEs-CPVA film had a strong response to pH, showing different color at different pHs. Furthermore, when monitoring the freshness of pork stored at 25 °C, the light green color of the 160-RAEs-CPVA film indicated that the freshness of the pork was higher, while the dark green and orange appearance indicated that the pork was spoiled. Therefore, 160-RAEs-CPVA film can be used as a smart indicator for freshness monitoring of pork.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Zhang
- The Food College of Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; The Food College of Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
80
|
Nano-biocomposite based color sensors: Investigation of structure, function, and applications in intelligent food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100789] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
81
|
Flórez M, Guerra-Rodríguez E, Cazón P, Vázquez M. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
82
|
Shi C, Ji Z, Zhang J, Jia Z, Yang X. Preparation and characterization of intelligent packaging film for visual inspection of tilapia fillets freshness using cyanidin and bacterial cellulose. Int J Biol Macromol 2022; 205:357-365. [PMID: 35182567 DOI: 10.1016/j.ijbiomac.2022.02.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/29/2022]
Abstract
An intelligent pH-sensitive film was developed by incorporating cyanidin-3-glucoside (C3G) into bacterial cellulose (BC), and its application as a freshness indicator for tilapia fillets was investigated. The physical properties of the film were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results demonstrated the mechanical properties of the film were significantly changed due to higher crystallinity induced by C3G. XRD and FTIR analysis showed the increased crystallinity and transmittance intensity of the BC-C3G film. Moreover, this film exhibited distinctive color changes from red to green when exposed to buffers with a pH of 3 to 10. In accordance with changes in total volatile basic nitrogen (TVB-N) and total viable count (TVC) of tilapia fillets, the indicator demonstrated visualized color changes as rose-red (fresh), purple (still suitable), and lavender (spoiled) during storage at both 25 °C and 4 °C. The results suggest that this film has great potential to be used as an intelligent indicator to monitor the freshness of fish.
Collapse
Affiliation(s)
- Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Zengtao Ji
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jiaran Zhang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China.
| | - Zhixin Jia
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China.
| | - Xinting Yang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
83
|
|
84
|
Evaluation of milk deterioration using simple biosensor. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
85
|
Siddiqui J, Taheri M, Alam AU, Deen MJ. Nanomaterials in Smart Packaging Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101171. [PMID: 34514693 DOI: 10.1002/smll.202101171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/01/2021] [Indexed: 05/22/2023]
Abstract
Food wastage is a critical and world-wide issue resulting from an excess of food supply, poor food storage, poor marketing, and unstable markets. Since food quality depends on consumer standards, it becomes necessary to monitor the quality to ensure it meets those standards. Embedding sensors with active nanomaterials in food packaging enables customers to monitor the quality of their food in real-time. Though there are many different sensors that can monitor food quality and safety, pH sensors and time-temperature indicators (TTIs) are the most critical metrics in indicating quality. This review showcases some of the recent progress, their importance, preconditions, and the various future needs of pH sensors and TTIs in food packaging for smart sensors in food packaging applications. In discussing these topics, this review includes the materials used to make these sensors, which vary from polymers, metals, metal-oxides, carbon-based materials; and their modes of fabrication, ranging from thin or thick film deposition methods, solution-based chemistry, and electrodeposition. By discussing the use of these materials, novel fabrication process, and problems for the two sensors, this review offers solutions to a brighter future for the use of nanomaterials for pH indicator and TTIs in food packaging applications.
Collapse
Affiliation(s)
- Junaid Siddiqui
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - Mahtab Taheri
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - Arif Ul Alam
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - M Jamal Deen
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
86
|
Zhang X, Ismail BB, Cheng H, Jin TZ, Qian M, Arabi SA, Liu D, Guo M. Emerging chitosan-essential oil films and coatings for food preservation - A review of advances and applications. Carbohydr Polym 2021; 273:118616. [PMID: 34561014 DOI: 10.1016/j.carbpol.2021.118616] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/28/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Abstract
With the rising demand for fresh and ready-to-eat foods, antimicrobial packaging has been developed to control or prevent microbial growth as well as maintain food quality and safety. Chitosan is an advanced biomaterial for antimicrobial packaging to meet the growing needs of safe and biodegradable packaging. The application of natural essential oils as antimicrobial agents effectively controls the growth of spoilage and pathogenic microbes. Thus, chitosan edible coatings and films incorporated with essential oils have expanded the general applications of antimicrobial packaging in food products. This review summarized the effect of essential oils on modifying the physicochemical characteristics of chitosan-based films. Notably, the antimicrobial efficacy of the developed composite films or coatings was highlighted. The advances in the preparation methods and application of chitosan films were also discussed. Broadly, this review will promote the potential applications of chitosan-essential oils composite films or coatings in antimicrobial packaging for food preservation.
Collapse
Affiliation(s)
- Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Tony Z Jin
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
87
|
Shao P, Liu L, Yu J, Lin Y, Gao H, Chen H, Sun P. An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
88
|
A halochromic indicator based on polylactic acid and anthocyanins for visual freshness monitoring of minced meat, chicken fillet, shrimp, and fish roe. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102864] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
89
|
Romero A, Sharp JL, Dawson PL, Darby D, Cooksey K. Evaluation of two intelligent packaging prototypes with a pH indicator to determine spoilage of cow milk. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
90
|
Zhu J, Liu Z, Chen H, Liu H, Bao X, Li C, Chen L, Yu L. Designing and developing biodegradable intelligent package used for monitoring spoilage seafood using aggregation-induced emission indicator. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
91
|
Aslam R, Alam MS, Singh S, Kumar S. Aqueous ozone sanitization of whole peeled onion: Process optimization and evaluation of keeping quality during refrigerated storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
92
|
Wen Y, Liu J, Jiang L, Zhu Z, He S, He S, Shao W. Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100709] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
93
|
Chatterjee NS, Dara PK, Perumcherry Raman S, Vijayan DK, Sadasivam J, Mathew S, Ravishankar CN, Anandan R. Nanoencapsulation in low-molecular-weight chitosan improves in vivo antioxidant potential of black carrot anthocyanin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5264-5271. [PMID: 33646598 DOI: 10.1002/jsfa.11175] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Anthocyanins are flavonoids that are potential antioxidant, anti-inflammatory, anti-obesity, and anti-carcinogenic nutraceutical ingredients. However, low chemical stability and low bioavailability limit the use of anthocyanins in food. Nanoencapsulation using biopolymers is a recent successful strategy for stabilization of anthocyanins. This study reports the development, characterization, and antioxidant activity of black carrot anthocyanin-loaded chitosan nanoparticles (ACNPs). RESULTS The ionic gelation technique yielded the ACNPs. The mean hydrodynamic diameter d and polydispersity index PDI of chitosan nanoparticles and ACNPs were found to be d = 455 nm and PDI = 0.542 respectively for chitosan nanoparticles and d = 274 nm and PDI = 0.376 respectively for ACNPs. The size distribution was bimodal. The surface topography revealed that the ACNPs are spherical and display a coacervate structure. Fourier transform infrared analysis revealed physicochemical interactions of anthocyanins with chitosan. The loading process could achieve an encapsulation efficiency of 70%. The flow behavior index η of encapsulated ACNPs samples revealed Newtonian and shear thickening characteristics. There was a marginal reduction in the in vitro antioxidant potential of anthocyanins after nanoencapsulation, as evidenced from 2,2-diphenyl-1-picrylhydrazyl, ferric reducing antioxidant power, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays. Interestingly, the in vivo antioxidant potential of anthocyanins improved following nanoencapsulation, as observed in the serum antioxidant assays. CONCLUSION The optimized nanoencapsulation process resulted in spherical nanoparticles with appreciable encapsulation efficiency. The nanoencapsulation process improved the in vivo antioxidant activity of anthocyanins, indicating enhanced stability and bioavailability. The promising antioxidant activity of the ACNPs suggests a potential for utilization as a nutraceutical supplement. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Pavan Kumar Dara
- Biochemistry and Nutrition Division, ICAR- Central Institute of Fisheries Technology, Cochin, India
| | | | - Divya K Vijayan
- Center of Excellence in Food Processing Technology, KUFOS, Cochin, India
| | | | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR- Central Institute of Fisheries Technology, Cochin, India
| | | | - Rangasamy Anandan
- Biochemistry and Nutrition Division, ICAR- Central Institute of Fisheries Technology, Cochin, India
| |
Collapse
|
94
|
Luo Q, Hossen A, Sameen DE, Ahmed S, Dai J, Li S, Qin W, Liu Y. Recent advances in the fabrication of pH-sensitive indicators films and their application for food quality evaluation. Crit Rev Food Sci Nutr 2021; 63:1102-1118. [PMID: 34382866 DOI: 10.1080/10408398.2021.1959296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Over a few decades, anthocyanin (ACN)-based colorimetric indicators in intelligent packaging systems have been widely used to monitor the freshness or spoilage of perishable food products. Most of the perishable food products are highly susceptible to enzymatic/microbial spoilage and produce several volatile or nonvolatile organic acid and nitrogenous compounds. As a result, the natural pH of fresh foods significantly changes. Fabrication of CAN-based colorimetric indicators in intelligent packaging systems is an advanced technique that monitors the freshness or spoilage of perishable foods based on the display of color variations at varying pH values. This study focuses on the advancement of pH-sensitive indicators and extraction of colorimetric indicators from commercially available natural sources. Moreover, the fabrication techniques and widespread industrial applications of such indicators have also been discussed. In addition, readers will get information about the color-changing and antioxidant mechanisms of ACN-based indicator films in food packaging.
Collapse
Affiliation(s)
- Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
95
|
Ezati P, Priyadarshi R, Bang YJ, Rhim JW. CMC and CNF-based intelligent pH-responsive color indicator films integrated with shikonin to monitor fish freshness. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
96
|
Ahari H, Soufiani SP. Smart and Active Food Packaging: Insights in Novel Food Packaging. Front Microbiol 2021; 12:657233. [PMID: 34305829 PMCID: PMC8299788 DOI: 10.3389/fmicb.2021.657233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/05/2021] [Indexed: 12/02/2022] Open
Abstract
The demand for more healthy foods with longer shelf life has been growing. Food packaging as one of the main aspects of food industries plays a vital role in meeting this demand. Integration of nanotechnology with food packaging systems (FPSs) revealed promising promotion in foods’ shelf life by introducing novel FPSs. In this paper, common classification, functionalities, employed nanotechnologies, and the used biomaterials are discussed. According to our survey, FPSs are classified as active food packaging (AFP) and smart food packaging (SFP) systems. The functionality of both systems was manipulated by employing nanotechnologies, such as metal nanoparticles and nanoemulsions, and appropriate biomaterials like synthetic polymers and biomass-derived biomaterials. “Degradability and antibacterial” and “Indicating and scavenging” are the well-known functions for AFP and SFP, respectively. The main purpose is to make a multifunctional FPS to increase foods’ shelf life and produce environmentally friendly and smart packaging without any hazard to human life.
Collapse
Affiliation(s)
- Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Solmaz P Soufiani
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
97
|
Al-Qahtani SD, Azher OA, Felaly R, Subaihi A, Alkabli J, Alaysuy O, El-Metwaly NM. Development of sponge-like cellulose colorimetric swab immobilized with anthocyanin from red-cabbage for sweat monitoring. Int J Biol Macromol 2021; 182:2037-2047. [PMID: 34087294 DOI: 10.1016/j.ijbiomac.2021.05.201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022]
Abstract
Novel sponge-like biochromic swab was developed via immobilization of natural anthocyanin (Cy) biomolecular probe into microporous cellulose aerogel. The current biosensor is characterized with simple preparation, environmentally-friendly, biocompatibility, biodegradability, flexibility, portability and reversibility. This biochromic sponge-like aerogel detector displayed a color change from pink to green-yellow in response to the biochemical changes occurs to sweat. This could be ascribed to intramolecular charge transfer occurs to the molecular system of Cy. Thus, the anthocyanin probe displayed colorimetric variations in UV-Vis absorption spectra via a blue shifting from 620 to 529 nm when raising the pH value of the prepared mimic sweat solution. Natural pH sensitive anthocyanin spectroscopic probe was extracted from red-cabbage plant, characterized by HPLC, and encapsulated into microporous cellulose. The microporous sponge-like cellulose swab was prepared by activating wood pulp utilizing phosphoric acid, and then subjected to freeze-drying. This anthocyanin probe is highly soluble in water. Thus, it was encapsulated as a direct dye into cellulose substrate during the freeze-drying process. To allow a better fixation of this water-soluble anthocyanin probe to the cellulose substrate, potash alum was added to the freeze-dried mixture to act as a fixing agent or mordant (M) generating Cy/M coordination complex. The produced Cy/M nanoparticles (NPs) were explored by transmission electron microscopy (TEM). The morphological features of the generated aerogels were investigated by scan electron microscope (SEM), energy-dispersive X-ray (EDX) spectra, and Fourier-transform infrared spectra (FT-IR). The cytotoxicity of the prepared aerogel-based biosensor was also evaluated. The naked-eye colorimetric changes were studied by exploring color strength, UV-Vis spectra and CIE Lab colorimetric coordinates.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omer A Azher
- Department of Laboratory Medicine, Faculty of Applied Biomedical Sciences, Al-Baha University, Saudi Arabia
| | - Rasha Felaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Abdu Subaihi
- Department of Chemistry, University College in Al-Qunfudah, Umm-Al-Qura University, Saudi Arabia
| | - J Alkabli
- Department of Chemistry, College of Science and Arts-Alkamil, University of Jeddah, Jeddah, 23218, Saudi Arabia
| | - Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Egypt.
| |
Collapse
|
98
|
A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100641] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
99
|
Sani MA, Azizi-Lalabadi M, Tavassoli M, Mohammadi K, McClements DJ. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1331. [PMID: 34070054 PMCID: PMC8158105 DOI: 10.3390/nano11051331] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Interest in the development of smart and active biodegradable packaging materials is increasing as food manufacturers try to improve the sustainability and environmental impact of their products, while still maintaining their quality and safety. Active packaging materials contain components that enhance their functionality, such as antimicrobials, antioxidants, light blockers, or oxygen barriers. Smart packaging materials contain sensing components that provide an indication of changes in food attributes, such as alterations in their quality, maturity, or safety. For instance, a smart sensor may give a measurable color change in response to a deterioration in food quality. This article reviews recent advances in the development of active and smart biodegradable packaging materials in the food industry. Moreover, studies on the application of these packaging materials to monitor the freshness and safety of food products are reviewed, including dairy, meat, fish, fruit and vegetable products. Finally, the potential challenges associated with the application of these eco-friendly packaging materials in the food industry are discussed, as well as potential future directions.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran;
| | - Milad Tavassoli
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran;
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | | |
Collapse
|
100
|
Roy S, Rhim JW. Fabrication of cellulose nanofiber-based functional color indicator film incorporated with shikonin extracted from Lithospermum erythrorhizon root. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106566] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|