51
|
Sauerer T, Lischer C, Weich A, Berking C, Vera J, Dörrie J. Single-Molecule RNA Sequencing Reveals IFNγ-Induced Differential Expression of Immune Escape Genes in Merkel Cell Polyomavirus-Positive MCC Cell Lines. Front Microbiol 2021; 12:785662. [PMID: 35003017 PMCID: PMC8727593 DOI: 10.3389/fmicb.2021.785662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive cancer, which is mainly caused by genomic integration of the Merkel cell polyomavirus and subsequent expression of a truncated form of its large T antigen. The resulting primary tumor is known to be immunogenic and under constant pressure to escape immune surveillance. Because interferon gamma (IFNγ), a key player of immune response, is secreted by many immune effector cells and has been shown to exert both anti-tumoral and pro-tumoral effects, we studied the transcriptomic response of MCC cells to IFNγ. In particular, immune modulatory effects that may help the tumor evade immune surveillance were of high interest to our investigation. The effect of IFNγ treatment on the transcriptomic program of three MCC cell lines (WaGa, MKL-1, and MKL-2) was analyzed using single-molecule sequencing via the Oxford Nanopore platform. A significant differential expression of several genes was detected across all three cell lines. Subsequent pathway analysis and manual annotation showed a clear upregulation of genes involved in the immune escape of tumor due to IFNγ treatment. The analysis of selected genes on protein level underlined our sequencing results. These findings contribute to a better understanding of immune escape of MCC and may help in clinical treatment of MCC patients. Furthermore, we demonstrate that single-molecule sequencing can be used to assess characteristics of large eukaryotic transcriptomes and thus contribute to a broader access to sequencing data in the community due to its low cost of entry.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher Lischer
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Adrian Weich
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Carola Berking
- Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Julio Vera
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
52
|
Colella MP, Morini BC, Niemann F, Lopes MR, Vigorito AC, Aranha FJP, Machado-Neto JA, Saad SO, Favaro P. Expression of transforming growth factor β pathway components in chronic graft-versus-host disease after allogeneic hematopoietic cell transplantation. Transpl Immunol 2021; 70:101514. [PMID: 34922025 DOI: 10.1016/j.trim.2021.101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Chronic graft-versus-host disease (cGvHD), an immunological complication of allogeneic cell transplantation, is the principal cause of non-relapse mortality and morbidity. Even though advances have been made in understanding the pathophysiology of this disorder, many questions remain. We sought to evaluate gene expression of transforming growth factor β (TGF-β) pathway components, through quantitative RT-PCR and PCR array, in patients with cGvHD with different disease activity. We observed an upregulation of SMAD3, BMP2, CDKN1A, IL6, and TGF-β2 genes in the clinical tolerance group, which had never developed cGvHD, or which had been withdrawn from all immunosuppressive treatments (IST) for at least 1 year. In addition, SMAD5 gene upregulation was observed in cGvHD patients undergoing IST, and ordinal regression showed a correlation between SMAD5 expression and disease severity. Our data support the evidence of the important role of TGF-β effects in the pathological process of cGvHD.
Collapse
Affiliation(s)
| | | | - Fernanda Niemann
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | | | | | | | | | - Sara Olalla Saad
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Patricia Favaro
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil; Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil.
| |
Collapse
|
53
|
Tarannum M, Romee R. Cytokine-induced memory-like natural killer cells for cancer immunotherapy. Stem Cell Res Ther 2021; 12:592. [PMID: 34863287 PMCID: PMC8642969 DOI: 10.1186/s13287-021-02655-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer cells are an important part of the innate immune system mediating robust responses to virus-infected and malignant cells without needing prior antigen priming. NK cells have always been thought to be short-lived and with no antigen specificity; however, recent data support the presence of NK cell memory including in the hapten-specific contact hypersensitivity model and in certain viral infections. The memory-like features can also be generated by short-term activation of both murine and human NK cells with cytokine combination of IL-12, IL-15 and IL-18, imparting increased longevity and enhanced anticancer functionality. Preclinical studies and very early clinical trials demonstrate safety and very promising clinical activity of these cytokine-induced memory-like (CIML) NK cells, making them an attractive cell type for developing novel adoptive cellular immunotherapy strategies. Furthermore, efforts are on to arm them with novel gene constructs for enhanced tumor targeting and function.
Collapse
Affiliation(s)
- Mubin Tarannum
- Division of Cellular Therapy and Stem Cell Transplantation, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Rizwan Romee
- Division of Cellular Therapy and Stem Cell Transplantation, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
54
|
NK Cell Regulation in Cervical Cancer and Strategies for Immunotherapy. Cells 2021; 10:cells10113104. [PMID: 34831327 PMCID: PMC8619016 DOI: 10.3390/cells10113104] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer is one of the most prevalent gynaecological malignancies worldwide and is related to human papillomavirus (HPV) infection, viral persistence, progression, and invasion. Therefore, the immune response is linked to HPV status. Natural killer (NK) cells play a central role against virus-infected cells and tumours through a delicate balance between activating and inhibitory receptors and secretion of cytokines and chemokines. These cells also play a crucial role in tumour immunosurveillance. For these reasons, there is growing interest in harnessing NK cells as an immunotherapy for cervical cancer. These studies are diverse and include many strategies such as transferring activated autologous or allogeneic NK cells, improving the activation and cytolytic activity of NK cells using cytokines or analogues and modifying chimeric antigen receptors to increase specificity and targeting NK cells. However, research regarding the application of NK cells in immunotherapy is limited. This article focuses on recent discoveries about using NK cells to prevent and treat cervical cancer and the possibility of cellular immunotherapy becoming one of the best strategies to exploit the immune system to fight tumours.
Collapse
|
55
|
Market M, Tennakoon G, Auer RC. Postoperative Natural Killer Cell Dysfunction: The Prime Suspect in the Case of Metastasis Following Curative Cancer Surgery. Int J Mol Sci 2021; 22:ijms222111378. [PMID: 34768810 PMCID: PMC8583911 DOI: 10.3390/ijms222111378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Surgical resection is the foundation for the curative treatment of solid tumors. However, metastatic recurrence due to the difficulty in eradicating micrometastases remain a feared outcome. Paradoxically, despite the beneficial effects of surgical removal of the primary tumor, the physiological stress resulting from surgical trauma serves to promote cancer recurrence and metastasis. The postoperative environment suppresses critical anti-tumor immune effector cells, including Natural Killer (NK) cells. The literature suggests that NK cells are critical mediators in the formation of metastases immediately following surgery. The following review will highlight the mechanisms that promote the formation of micrometastases by directly or indirectly inducing NK cell suppression following surgery. These include tissue hypoxia, neuroendocrine activation, hypercoagulation, the pro-inflammatory phase, and the anti-inflammatory phase. Perioperative therapeutic strategies designed to prevent or reverse NK cell dysfunction will also be examined for their potential to improve cancer outcomes by preventing surgery-induced metastases.
Collapse
Affiliation(s)
- Marisa Market
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1G 8M5, Canada; (M.M.); (G.T.)
- The Ottawa Hospital Research Institute, Ottawa, ON K1G 4E3, Canada
| | - Gayashan Tennakoon
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1G 8M5, Canada; (M.M.); (G.T.)
| | - Rebecca C. Auer
- The Ottawa Hospital Research Institute, Ottawa, ON K1G 4E3, Canada
- Department of General Surgery, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Correspondence: ; Tel.: +1-613-722-7000
| |
Collapse
|
56
|
Lee EHC, Wong DCP, Ding JL. NK Cells in a Tug-of-War With Cancer: The Roles of Transcription Factors and Cytoskeleton. Front Immunol 2021; 12:734551. [PMID: 34594338 PMCID: PMC8476995 DOI: 10.3389/fimmu.2021.734551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells which play a key role in shaping the immune response against cancer. Initially hailed for their potential to recognise and eliminate tumour cells, their application has been greatly hindered by the immunosuppressive tumour microenvironment (TME) which suppresses NK functions (e.g., cytotoxicity). This dysfunctional state that is accompanied by phenotypic changes such as upregulation of inhibitory receptors and downregulation of activating receptors, forms the basis of what many researchers have referred to as ‘exhausted’ NK cells. However, there is no consensus on whether these phenotypes are sufficient to define an exhausted state of the NK cell. While recent advances in checkpoint inhibition appear to show promise in early-stage pre-clinical studies, much remains to be fully explored and understood in the context of the TME. The TME is where the NK cells are subjected to interaction with various cell types and soluble factors, which could exert an inhibitory effect on NK cytotoxicity. In this review, we provide an overview of the general markers of NK cell exhaustion viz, the surface activating and inhibitory receptors. We also highlight the potential role of T-box transcription factors in characterising such a dysfunctional state and discuss the often-overlooked mechanism of cell cytoskeletal dynamics in regulating NK cell function. These aspects may further contribute to NK exhaustion or NK revival in cancer and may open new avenues to explore cancer treatment strategies.
Collapse
Affiliation(s)
- E Hui Clarissa Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
57
|
Cabo M, Santana-Hernández S, Costa-Garcia M, Rea A, Lozano-Rodríguez R, Ataya M, Balaguer F, Juan M, Ochoa MC, Menéndez S, Comerma L, Rovira A, Berraondo P, Albanell J, Melero I, López-Botet M, Muntasell A. CD137 Costimulation Counteracts TGFβ Inhibition of NK-cell Antitumor Function. Cancer Immunol Res 2021; 9:1476-1490. [PMID: 34580116 DOI: 10.1158/2326-6066.cir-21-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Enhancing natural killer (NK) cell-based cancer immunotherapy by overcoming immunosuppression is an area of intensive research. Here, we have demonstrated that the anti-CD137 agonist urelumab can overcome TGFβ-mediated inhibition of human NK-cell proliferation and antitumor function. Transcriptomic, immunophenotypic, and functional analyses showed that CD137 costimulation modified the transcriptional program induced by TGFβ on human NK cells by rescuing their proliferation in response to IL2, preserving their expression of activating receptors (NKG2D) and effector molecules (granzyme B, IFNγ) while allowing the acquisition of tumor-homing/retention features (CXCR3, CD103). Activated NK cells cultured in the presence of TGFβ1 and CD137 agonist recovered CCL5 and IFNγ secretion and showed enhanced direct and antibody-dependent cytotoxicity upon restimulation with cancer cells. Trastuzumab treatment of fresh breast carcinoma-derived multicellular cultures induced CD137 expression on tumor-infiltrating CD16+ NK cells, enabling the action of urelumab, which fostered tumor-infiltrating NK cells and recapitulated the enhancement of CCL5 and IFNγ production. Bioinformatic analysis pointed to IFNG as the driver of the association between NK cells and clinical response to trastuzumab in patients with HER2-positive primary breast cancer, highlighting the translational relevance of the CD137 costimulatory axis for enhancing IFNγ production. Our data reveals CD137 as a targetable checkpoint for overturning TGFβ constraints on NK-cell antitumor responses.
Collapse
Affiliation(s)
- Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sara Santana-Hernández
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Anna Rea
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roberto Lozano-Rodríguez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Francesc Balaguer
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Immunology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria C Ochoa
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain
| | - Silvia Menéndez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Comerma
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Ana Rovira
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Pedro Berraondo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain
| | - Joan Albanell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Ignacio Melero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain.,Clínica Universitaria de Navarra, Pamplona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
58
|
Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, Li Z, Pan CX. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol 2021; 14:156. [PMID: 34579759 PMCID: PMC8475356 DOI: 10.1186/s13045-021-01164-5] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Immunotherapies such as immune checkpoint blockade (ICB) and adoptive cell therapy (ACT) have revolutionized cancer treatment, especially in patients whose disease was otherwise considered incurable. However, primary and secondary resistance to single agent immunotherapy often results in treatment failure, and only a minority of patients experience long-term benefits. This review article will discuss the relationship between cancer immune response and mechanisms of resistance to immunotherapy. It will also provide a comprehensive review on the latest clinical status of combination therapies (e.g., immunotherapy with chemotherapy, radiation therapy and targeted therapy), and discuss combination therapies approved by the US Food and Drug Administration. It will provide an overview of therapies targeting cytokines and other soluble immunoregulatory factors, ACT, virotherapy, innate immune modifiers and cancer vaccines, as well as combination therapies that exploit alternative immune targets and other therapeutic modalities. Finally, this review will include the stimulating insights from the 2020 China Immuno-Oncology Workshop co-organized by the Chinese American Hematologist and Oncologist Network (CAHON), the China National Medical Product Administration (NMPA) and Tsinghua University School of Medicine.
Collapse
Affiliation(s)
- Shaoming Zhu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Tian Zhang
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, DUMC 103861, Durham, NC, 27710, USA
| | - Lei Zheng
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hongtao Liu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,University of Chicago, Chicago, IL, USA
| | - Wenru Song
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Kira Pharmaceuticals, Cambridge, MA, USA
| | - Delong Liu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,New York Medical College, Valhalla, NY, USA
| | - Zihai Li
- Chinese American Hematologist and Oncologist Network, New York, NY, USA. .,Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA.
| | - Chong-Xian Pan
- Chinese American Hematologist and Oncologist Network, New York, NY, USA. .,Harvard Medical School, West Roxbury, MA, 02132, USA.
| |
Collapse
|
59
|
Han J, Ke C, Jiang B, Zhou H, Xu H, Xie X. Down-regulation of PR/SET domain 10 underlies natural killer cell dysfunction in hepatocellular carcinoma. Clin Exp Immunol 2021; 206:366-377. [PMID: 34562314 DOI: 10.1111/cei.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the world's leading cause of tumor-related mortalities. Natural killer (NK) cells play a critical role at the first immunological defense line against HCC initiation and progression. NK cell dysfunction is therefore an important mechanism for immune evasion of HCC cells. In the present study using a murine HCC model, we revealed the down-regulation of PR/SET Domain 10 (PRDM10) in hepatic NK cells that were phenotypically and functionally exhausted. PRDM10 silencing diminished the expression of natural killer group 2 member D (NKG2D) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), augmented T cell immunoglobulin and ITIM domain (TIGIT) expression, and decreased the expression of interferon (IFN)-γ, perforin and granzyme B in normal hepatic NK cells in vitro. Consistently, PRDM10-deficient NK cells exhibited impaired cytotoxicity on target cells. In contrast, PRDM10 over-expression promoted NKG2D and Fas ligand (FasL) expression, reduced CD96 expression and enhanced transcripts of IFN-γ, perforin and granzyme B in NK cells in vivo. Moreover, PRDM10 silencing and PRDM10 over-expression down-regulated and up-regulated Eomesodermin (Eomes) expression, respectively. In summary, this study reveals PRDM10 down-regulation as a novel mechanism underlying NK cell dysfunction and identifies PRDM10 as a supporting factor of NK cell function.
Collapse
Affiliation(s)
- Jiantao Han
- The Department of Hepatobiliary and Pancreatic Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Chao Ke
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bin Jiang
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hongjian Zhou
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hanbin Xu
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xingwang Xie
- The Department of Hepatobiliary and Pancreatic Surgery, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
60
|
Mormino A, Bernardini G, Cocozza G, Corbi N, Passananti C, Santoni A, Limatola C, Garofalo S. Enriched Environment Cues Suggest a New Strategy to Counteract Glioma: Engineered rAAV2-IL-15 Microglia Modulate the Tumor Microenvironment. Front Immunol 2021; 12:730128. [PMID: 34552593 PMCID: PMC8450436 DOI: 10.3389/fimmu.2021.730128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Several types of cancer grow differently depending on the environmental stimuli they receive. In glioma, exposure to an enriched environment (EE) increases the overall survival rate of tumor-bearing mice, acting on the cells that participate to define the tumor microenvironment. In particular, environmental cues increase the microglial production of interleukin (IL)-15 which promotes a pro-inflammatory (antitumor) phenotype of microglia and the cytotoxic activity of natural killer (NK) cells, counteracting glioma growth, thus representing a virtuous mechanism of interaction between NK cells and microglia. To mimic the effect of EE on glioma, we investigated the potential of creating engineered microglia as the source of IL-15 in glioma. We demonstrated that microglia modified with recombinant adeno-associated virus serotype 2 (rAAV2) carrying IL-15 (rAAV2-IL-15), to force the production of IL-15, are able to increase the NK cells viability in coculture. Furthermore, the intranasal delivery of rAAV2-IL-15 microglia triggered the interplay with NK cells in vivo, enhancing NK cell recruitment and pro-inflammatory microglial phenotype in tumor mass of glioma-bearing mice, and ultimately counteracted tumor growth. This approach has a high potential for clinical translatability, highlighting the therapeutic efficacy of forced IL-15 production in microglia: the delivery of engineered rAAV2-IL-15 microglia to boost the immune response paves the way to design a new perspective therapy for glioma patients.
Collapse
Affiliation(s)
- Alessandro Mormino
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, Rome, Italy
| | - Germana Cocozza
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Nicoletta Corbi
- Department of Molecular Medicine, CNR-Institute of Molecular Biology and Pathology, Sapienza University, Rome, Italy
| | - Claudio Passananti
- Department of Molecular Medicine, CNR-Institute of Molecular Biology and Pathology, Sapienza University, Rome, Italy
| | - Angela Santoni
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Cristina Limatola
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
61
|
NK Cell Therapy: A Rising Star in Cancer Treatment. Cancers (Basel) 2021; 13:cancers13164129. [PMID: 34439285 PMCID: PMC8394762 DOI: 10.3390/cancers13164129] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary A cancer treatment approach known as immunotherapy has become popular in the medical field. In this case, immune cells are boosted for effective response against cancer. A type of immune cell with significant potential for use in immunotherapy is the natural killer (NK) cell. The number of NK cells in the cancer tissues has been shown to be lower than normal, and this contributes to the growth of cancer cells. Besides, the immune function of the NK cells is compromised, thus interfering with anticancer immunity. Many research studies are being conducted to develop cancer treatment strategies based on increasing the number of NK cells and enhancing their activity. Abstract Immunotherapy has become a robust and routine treatment strategy for patients with cancer; however, there are efficacy and safety issues that should be resolved. Natural killer (NK) cells are important innate immune cells that have attracted increasing attention owing to their major histocompatibility complex-independent immunosurveillance ability. These cells provide the first-line defense against carcinogenesis and are closely related to cancer development. However, NK cells are functionally suppressed owing to multiple immunosuppressive factors in the tumor microenvironment; thus, releasing the suppressed state of NK cells is an emergent project and a promising solution for immunotherapy. As a result, many clinical trials of NK cell therapy alone or in combination with other agents are currently underway. This review describes the current status of NK cell therapy for cancer treatment based on the effector function and releasing the inhibited state of NK cells in the cancer microenvironment.
Collapse
|
62
|
Ma S, Yan J, Barr T, Zhang J, Chen Z, Wang LS, Sun JC, Chen J, Caligiuri MA, Yu J. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J Exp Med 2021; 218:e20210279. [PMID: 34160549 PMCID: PMC8225680 DOI: 10.1084/jem.20210279] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/07/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
N 6-methyladenosine (m6A) is the most prevalent posttranscriptional modification on RNA. NK cells are the predominant innate lymphoid cells that mediate antiviral and antitumor immunity. However, whether and how m6A modifications affect NK cell immunity remain unknown. Here, we discover that YTHDF2, a well-known m6A reader, is upregulated in NK cells upon activation by cytokines, tumors, and cytomegalovirus infection. Ythdf2 deficiency in NK cells impairs NK cell antitumor and antiviral activity in vivo. YTHDF2 maintains NK cell homeostasis and terminal maturation, correlating with modulating NK cell trafficking and regulating Eomes, respectively. YTHDF2 promotes NK cell effector function and is required for IL-15-mediated NK cell survival and proliferation by forming a STAT5-YTHDF2 positive feedback loop. Transcriptome-wide screening identifies Tardbp to be involved in cell proliferation or survival as a YTHDF2-binding target in NK cells. Collectively, we elucidate the biological roles of m6A modifications in NK cells and highlight a new direction to harness NK cell antitumor immunity.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
| | - Jiazhuo Yan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Los Angeles, CA
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Los Angeles, CA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA
| | - Michael A. Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA
| |
Collapse
|
63
|
Filla MS, Meyer KK, Faralli JA, Peters DM. Overexpression and Activation of αvβ3 Integrin Differentially Affects TGFβ2 Signaling in Human Trabecular Meshwork Cells. Cells 2021; 10:1923. [PMID: 34440692 PMCID: PMC8394542 DOI: 10.3390/cells10081923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Studies from our laboratory have suggested that activation of αvβ3 integrin-mediated signaling could contribute to the fibrotic-like changes observed in primary open angle glaucoma (POAG) and glucocorticoid-induced glaucoma. To determine how αvβ3 integrin signaling could be involved in this process, RNA-Seq analysis was used to analyze the transcriptomes of immortalized trabecular meshwork (TM) cell lines overexpressing either a control vector or a wild type (WT) or a constitutively active (CA) αvβ3 integrin. Compared to control cells, hierarchical clustering, PANTHER pathway and protein-protein interaction (PPI) analysis of cells overexpressing WT-αvβ3 integrin or CA-αvβ3 integrin resulted in a significant differential expression of genes encoding for transcription factors, adhesion and cytoskeleton proteins, extracellular matrix (ECM) proteins, cytokines and GTPases. Cells overexpressing a CA-αvβ3 integrin also demonstrated an enrichment for genes encoding proteins found in TGFβ2, Wnt and cadherin signaling pathways all of which have been implicated in POAG pathogenesis. These changes were not observed in cells overexpressing WT-αvβ3 integrin. Our results suggest that activation of αvβ3 integrin signaling in TM cells could have significant impacts on TM function and POAG pathogenesis.
Collapse
Affiliation(s)
- Mark S. Filla
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Kristy K. Meyer
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Jennifer A. Faralli
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Donna M. Peters
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
64
|
Lu T, Ma R, Li Z, Mansour AG, Teng KY, Chen L, Zhang J, Barr T, Caligiuri MA, Yu J. Hijacking TYRO3 from Tumor Cells via Trogocytosis Enhances NK-Cell Effector Functions and Proliferation. Cancer Immunol Res 2021; 9:1229-1241. [PMID: 34326137 DOI: 10.1158/2326-6066.cir-20-1014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/15/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
Trogocytosis is a fast, cell-cell contact-dependent uptake of membrane patches and associated molecules by one cell from another. Here, we report our investigation of trogocytosis of TYRO3, a cell membrane protein, from tumor target cells to natural killer (NK) cells and the associated functional consequences for NK cells. We found that although NK cells did not express endogenous TYRO3 on the cell surface, activated NK cells rapidly acquired TYRO3 from tumor cells via trogocytosis in vitro and in vivo. NK cells that acquired TYRO3, which we termed TYRO3+ NK cells, had significantly enhanced cytotoxicity and IFNγ production as well as higher expression of some activated surface markers compared with TYRO3- NK cells. Furthermore, the activation status of NK cells and TYRO3 expression levels on donor cells, either endogenous or ectopic, positively correlated with trogocytosis levels. When the antigen-presenting cell (APC) K562 leukemia cell line, a feeder cell line to expand NK cells, overexpressed TYRO3, TYRO3 was transferred to NK cells via trogocytosis, which improved NK-cell proliferation ex vivo. This provides a strategy to manufacture NK cells or their engineered counterparts, such as chimeric antigen receptor NK cells, for the treatment of cancer or infectious diseases.
Collapse
Affiliation(s)
- Ting Lu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Rui Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Anthony G Mansour
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Kun-Yu Teng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Li Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, California
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California. .,Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Los Angeles, California.,Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, California.,City of Hope Comprehensive Cancer Center, Los Angeles, California
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California. .,Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Los Angeles, California.,Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, California.,City of Hope Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
65
|
Kong BS, Min SH, Lee C, Cho YM. Mitochondrial-encoded MOTS-c prevents pancreatic islet destruction in autoimmune diabetes. Cell Rep 2021; 36:109447. [PMID: 34320351 PMCID: PMC10083145 DOI: 10.1016/j.celrep.2021.109447] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/08/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are principal metabolic organelles that are increasingly unveiled as immune regulators. However, it is currently not known whether mitochondrial-encoded peptides modulate T cells to induce changes in phenotype and function. In this study, we found that MOTS-c (mitochondrial open reading frame of the 12S rRNA type-c) prevented autoimmune β cell destruction by targeting T cells in non-obese diabetic (NOD) mice. MOTS-c ameliorated the development of hyperglycemia and reduced islet-infiltrating immune cells. Furthermore, adoptive transfer of T cells from MOTS-c-treated NOD mice significantly decreased the incidence of diabetes in NOD-severe combined immunodeficiency (SCID) mice. Metabolic and genomic analyses revealed that MOTS-c modulated T cell phenotype and function by regulating T cell receptor (TCR)/mTOR complex 1 (mTORC1) signaling. Type 1 diabetes (T1D) patients had a lower serum MOTS-c level than did healthy controls. Furthermore, MOTS-c reduced T cell activation by alleviating T cells from the glycolytic stress in T1D patients, suggesting therapeutic potential. Our findings indicate that MOTS-c regulates the T cell phenotype and suppresses autoimmune diabetes.
Collapse
Affiliation(s)
- Byung Soo Kong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Hee Min
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
66
|
Wang M, Zhai X, Li J, Guan J, Xu S, Li Y, Zhu H. The Role of Cytokines in Predicting the Response and Adverse Events Related to Immune Checkpoint Inhibitors. Front Immunol 2021; 12:670391. [PMID: 34367136 PMCID: PMC8339552 DOI: 10.3389/fimmu.2021.670391] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, the overall survival (OS) and progression-free survival (PFS) of patients with advanced cancer has been significantly improved due to the application of immune checkpoint inhibitors (ICIs). Low response rate and high occurrence of immune-related adverse events (irAEs) make urgently need for ideal predictive biomarkers to identity efficient population and guide treatment strategies. Cytokines are small soluble proteins with a wide range of biological activity that are secreted by activated immune cells or tumor cells and act as a bridge between innate immunity, infection, inflammation and cancer. Cytokines can be detected in peripheral blood and suitable for dynamic detection. During the era of ICIs, many studies investigated the role of cytokines in prediction of the efficiency and toxicity of ICIs. Herein, we review the relevant studies on TNF-α, IFN-γ, IL-6, IL-8, TGF-β and other cytokines as biomarkers for predicting ICI-related reactions and adverse events, and explore the immunomodulatory mechanisms. Finally, the most important purpose of this review is to help identify predictors of ICI to screen patients who are most likely to benefit from immunotherapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingyuan Guan
- Department of Cardiology, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Shuhui Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - YuYing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
67
|
Joshi C, Jadeja V, Zhou H. Molecular Mechanisms of Palmitic Acid Augmentation in COVID-19 Pathologies. Int J Mol Sci 2021; 22:7127. [PMID: 34281182 PMCID: PMC8269364 DOI: 10.3390/ijms22137127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed over 2.7 million lives globally. Obesity has been associated with increased severity and mortality of COVID-19. However, the molecular mechanisms by which obesity exacerbates COVID-19 pathologies are not well-defined. The levels of free fatty acids (FFAs) are elevated in obese subjects. This study was therefore designed to examine how excess levels of different FFAs may affect the progression of COVID-19. Biological molecules associated with palmitic acid (PA) and COVID-19 were retrieved from QIAGEN Knowledge Base, and Ingenuity Pathway Analysis tools were used to analyze these datasets and explore the potential pathways affected by different FFAs. Our study found that one of the top 10 canonical pathways affected by PA was the coronavirus pathogenesis pathway, mediated by key inflammatory mediators, including PTGS2; cytokines, including IL1β and IL6; chemokines, including CCL2 and CCL5; transcription factors, including NFκB; translation regulators, including EEF1A1; and apoptotic mediators, including BAX. In contrast, n-3 fatty acids may attenuate PA's activation of the coronavirus pathogenesis pathway by inhibiting the activity of such mediators as IL1β, CCL2, PTGS2, and BAX. Furthermore, PA may modulate the expression of ACE2, the main cell surface receptor for the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
| | | | - Heping Zhou
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (C.J.); (V.J.)
| |
Collapse
|
68
|
Bottino C, Dondero A, Castriconi R. Inhibitory axes impacting on the activity and fate of Innate Lymphoid Cells. Mol Aspects Med 2021; 80:100985. [PMID: 34176653 DOI: 10.1016/j.mam.2021.100985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 01/02/2023]
Abstract
In neoplastic patients, an effective immune response ideally should be achieved by the coordinated action of different immune cells with tumor-suppressive functions. These include the more cytolytic members of the Innate Lymphoid Cells (ILCs) family represented by the Natural Killer (NK) cells, whose activities in cancer patients, however, can be hampered by several inhibitory signals. These are generated by membrane-bound and soluble molecules that, interacting with specific inhibitory receptors, create inhibitory axes impacting the NK cell differentiation and effector functions. These breaks, which now represent major immunotherapeutic targets, may be sensitive to interferon (IFN)-γ, whose source, in vivo, is represented by different cell types including the NK and ILC1. Since also ILCs can express receptors of the inhibitory axes like PD-1 and TIGIT, their therapeutic blockade might further amplify the IFN-γ release that, as an unwanted side effect, would promote the onset of NK cell-resistant tumor variants (NKRTV) expressing ligands involved in inhibitory axes. These variants might also arise from the activity of other cytokines such as IL-27, which can increase the expression of HLA class I and PD-Ls in different cell types, including tumor cells. Besides the amplification of membrane-bound inhibitory axes, tumors can reduce the number of infiltrating cytolytic ILCs, promote the recruitment of poorly cytolytic NK cell subsets, and manipulate to their advantage the infiltrating immune cells, which acquire tumor-promoting activities. This occurs thanks to the production of soluble factors including TGF-β1 and IL-18 that, alone or in combination, modify the activating and chemokine receptor repertoire of NK cells, and induce the ILCs differentiation towards cells ineffective in fighting cancer or, even worse, with tumor-promoting functions. The present review aims to present and discuss major inhibitory axes impacting on ILCs functions, migration, and differentiation with a major focus on tumor context.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy; IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.
| |
Collapse
|
69
|
Behringer V, Deimel C, Stevens JMG, Kreyer M, Lee SM, Hohmann G, Fruth B, Heistermann M. Cell-Mediated Immune Ontogeny Is Affected by Sex but Not Environmental Context in a Long-Lived Primate Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.629094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ecoimmunology conceptualizes the role of immunity in shaping life history in a natural context. Within ecoimmunology, macroimmunology is a framework that explains the effects of habitat and spatial differences on variation in immune phenotypes across populations. Within these frameworks, immune ontogeny—the development of the immune system across an individual life span—has received little attention. Here, we investigated how immune ontogeny from birth until adulthood is affected by age, sex, and developmental environment in a long-lived primate species, the bonobo. We found a progressive, significant decline of urinary neopterin levels, a marker for the cell-mediated immune response, from birth until 5 years of age in both sexes. The overall pattern of age-related neopterin changes was sex-specific, with males having higher urinary neopterin levels than females in the first 3 years of life, and females having higher levels than males between 6 and 8 years. Environmental condition (zoo-housed vs. wild) did not influence neopterin levels, nor did age-related changes in neopterin levels differ between environments. Our data suggest that the post-natal development of cell-mediated immune ontogeny is sex-specific but does not show plasticity in response to environmental conditions in this long-lived primate species. This indicates that cell-mediated immune ontogeny in the bonobo follows a stereotypic and maybe a genetically determined pattern that is not affected by environmental differences in pathogen exposure and energy availability, but that sex is an important, yet often overlooked factor shaping patterns of immune ontogeny. Investigating the causes and consequences of variation in immunity throughout life is critical for our understanding of life-history evolution and strategies, mechanisms of sexual selection, and population dynamics with respect to pathogen susceptibility. A general description of sex-specific immune ontogeny as done here is a crucial step in this direction, particularly when it is considered in the context of a species’ ecology and evolutionary history.
Collapse
|
70
|
Chaudhry K, Dowlati E, Bollard CM. Chimeric antigen receptor-engineered natural killer cells: a promising cancer immunotherapy. Expert Rev Clin Immunol 2021; 17:643-659. [PMID: 33821731 DOI: 10.1080/1744666x.2021.1911648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction:Widespread success of CD19 chimeric antigen receptor (CAR) T cells for the treatment of hematological malignancies have shifted the focus from conventional cancer treatments toward adoptive immunotherapy. There are major efforts to improve CAR constructs and to identify new target antigens. Even though the Food and Drug Administration has approved commercialization of some CD19 CART cell therapies, there are still some limitations that restrict their widespread clinical use. The manufacture of autologous products for individual patients is logistically cumbersome and expensive and allogeneic T cell products may pose an appreciable risk of graft-versus-host disease (GVHD).Areas covered:Natural killer (NK) cells are an attractive alternative for CART-based immunotherapies. They have the innate ability to detect and eliminate malignant cells and are safer in the 'off-the-shelf' setting. This review discusses the current progress within the CAR NK cell field, including the challenges, and future prospects. Gene engineered NK cells was used as the search term in PubMed and Google Scholar through to December 2020.Expert opinion:CAR NK cell therapies hold promise as an 'off-the-shelf' cell therapy for cancer. It is hoped that an enhanced understanding of their immunobiology and molecular mechanisms of action will improve their in vivo potency.
Collapse
Affiliation(s)
- Kajal Chaudhry
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, WA, USA
| | - Ehsan Dowlati
- Department of Neurosurgery, Georgetown University Medical Center, Washington, WA, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, WA, USA.,GW Cancer Center, George Washington University, Washington, DC, WA, USA.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, WA, USA
| |
Collapse
|
71
|
Kim BG, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-β pathway. J Hematol Oncol 2021; 14:55. [PMID: 33823905 PMCID: PMC8022551 DOI: 10.1186/s13045-021-01053-x] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
The TGF-β signaling pathway governs key cellular processes under physiologic conditions and is deregulated in many pathologies, including cancer. TGF-β is a multifunctional cytokine that acts in a cell- and context-dependent manner as a tumor promoter or tumor suppressor. As a tumor promoter, the TGF-β pathway enhances cell proliferation, migratory invasion, metastatic spread within the tumor microenvironment and suppresses immunosurveillance. Collectively, the pleiotropic nature of TGF-β signaling contributes to drug resistance, tumor escape and undermines clinical response to therapy. Based upon a wealth of preclinical studies, the TGF-β pathway has been pharmacologically targeted using small molecule inhibitors, TGF-β-directed chimeric monoclonal antibodies, ligand traps, antisense oligonucleotides and vaccines that have been now evaluated in clinical trials. Here, we have assessed the safety and efficacy of TGF-β pathway antagonists from multiple drug classes that have been evaluated in completed and ongoing trials. We highlight Vactosertib, a highly potent small molecule TGF-β type 1 receptor kinase inhibitor that is well-tolerated with an acceptable safety profile that has shown efficacy against multiple types of cancer. The TGF-β ligand traps Bintrafusp alfa (a bifunctional conjugate that binds TGF-β and PD-L1), AVID200 (a computationally designed trap of TGF-β receptor ectodomains fused to an Fc domain) and Luspatercept (a recombinant fusion that links the activin receptor IIb to IgG) offer new ways to fight difficult-to-treat cancers. While TGF-β pathway antagonists are rapidly emerging as highly promising, safe and effective anticancer agents, significant challenges remain. Minimizing the unintentional inhibition of tumor-suppressing activity and inflammatory effects with the desired restraint on tumor-promoting activities has impeded the clinical development of TGF-β pathway antagonists. A better understanding of the mechanistic details of the TGF-β pathway should lead to more effective TGF-β antagonists and uncover biomarkers that better stratify patient selection, improve patient responses and further the clinical development of TGF-β antagonists.
Collapse
Affiliation(s)
- Byung-Gyu Kim
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Ehsan Malek
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sung Hee Choi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - James J Ignatz-Hoover
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - James J Driscoll
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
72
|
Yao B, Wang L, Wang H, Bao J, Li Q, Yu F, Zhu W, Zhang L, Li W, Gu Z, Fei K, Zhang P, Zhang F, Huang X. Seven interferon gamma response genes serve as a prognostic risk signature that correlates with immune infiltration in lung adenocarcinoma. Aging (Albany NY) 2021; 13:11381-11410. [PMID: 33839701 PMCID: PMC8109098 DOI: 10.18632/aging.202831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022]
Abstract
Interferon-gamma (IFN-γ) plays a complex role in modulating tumor microenvironment during lung adenocarcinoma (LUAD) development. In order to define the role of IFN-γ response genes in LUAD progression, we characterized the gene expression, mutation profile, protein-protein interaction of 24 IFN-γ response genes, which exhibited significant hazard ratio in overall survival. Two subgroups of LUAD from the TCGA cohort, which showed significant difference in the survival rate, were identified based on the expression of these genes. Furthermore, LASSO penalized cox regression model was used to derive a risk signature comprising seven IFN-γ response genes, including CD74, CSF2RB, PTPN6, MT2A, NMI, LATS2, and PFKP, which can serve as an independent prognostic predictor of LUAD. The risk signature was validated in an independent LUAD cohort. The high risk group is enriched with genes regulating cell cycle and DNA replication, as well as a high level of pro-tumor immune cells. In addition, the risk score is negatively correlated with the expression of immune metagenes, but positively correlated with DNA damage repair genes. Our findings reveal that seven-gene risk signature can be a valuable prognostic predictor for LUAD, and they are crucial participants in tumor microenvironment of LUAD.
Collapse
Affiliation(s)
- Boyang Yao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou 325000, Zhejiang, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China
| | - Lixin Wang
- Department of Traditional Chinese Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Heyong Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jinxia Bao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qiwen Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fengzhi Yu
- Department of Traditional Chinese Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wenjing Zhu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou 325000, Zhejiang, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China
| | - Li Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wang Li
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, Shandong, China
| | - Zhan Gu
- Department of Traditional Chinese Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ke Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China
| | - Fan Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Science and Technology, Shanghai 200433, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
73
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
74
|
Chong W, Shang L, Liu J, Fang Z, Du F, Wu H, Liu Y, Wang Z, Chen Y, Jia S, Chen L, Li L, Chen H. m 6A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer. Am J Cancer Res 2021; 11:2201-2217. [PMID: 33500720 PMCID: PMC7797678 DOI: 10.7150/thno.52717] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022] Open
Abstract
Recent studies have highlighted the biological significance of RNA N6-methyladenosine (m6A) modification in tumorigenicity and progression. However, it remains unclear whether m6A modifications also have potential roles in immune regulation and tumor microenvironment (TME) formation. Methods: In this study, we curated 23 m6A regulators and performed consensus molecular subtyping with NMF algorithm to determine m6A modification patterns and the m6A-related gene signature in colon cancer (CC). The ssGSEA and CIBERSORT algorithms were employed to quantify the relative infiltration levels of various immune cell subsets. An PCA algorithm based m6Sig scoring scheme was used to evaluate the m6A modification patterns of individual tumors with an immune response. Results: Three distinct m6A modification patterns were identified among 1307 CC samples, which were also associated with different clinical outcomes and biological pathways. The TME characterization revealed that the identified m6A patterns were highly consistent with three known immune profiles: immune-inflamed, immune-excluded, and immune-desert, respectively. Based on the m6Sig score, which was extracted from the m6A-related signature genes, CC patients can be divided into high and low score subgroups. Patients with lower m6Sig score was characterized by prolonged survival time and enhanced immune infiltration. Further analysis indicated that lower m6Sig score also correlated with greater tumor mutation loads, PD-L1 expression, and higher mutation rates in SMGs (e.g., PIK3CA and SMAD4). In addition, patients with lower m6Sig scores showed a better immune responses and durable clinical benefits in three independent immunotherapy cohorts. Conclusions: This study highlights that m6A modification is significantly associated with TME diversity and complexity. Quantitatively evaluating the m6A modification patterns of individual tumors will strengthen our understanding of TME characteristics and promote more effective immunotherapy strategies.
Collapse
|
75
|
Yang R, Mele F, Worley L, Langlais D, Rosain J, Benhsaien I, Elarabi H, Croft CA, Doisne JM, Zhang P, Weisshaar M, Jarrossay D, Latorre D, Shen Y, Han J, Ogishi M, Gruber C, Markle J, Al Ali F, Rahman M, Khan T, Seeleuthner Y, Kerner G, Husquin LT, Maclsaac JL, Jeljeli M, Errami A, Ailal F, Kobor MS, Oleaga-Quintas C, Roynard M, Bourgey M, El Baghdadi J, Boisson-Dupuis S, Puel A, Batteux F, Rozenberg F, Marr N, Pan-Hammarström Q, Bogunovic D, Quintana-Murci L, Carroll T, Ma CS, Abel L, Bousfiha A, Di Santo JP, Glimcher LH, Gros P, Tangye SG, Sallusto F, Bustamante J, Casanova JL. Human T-bet Governs Innate and Innate-like Adaptive IFN-γ Immunity against Mycobacteria. Cell 2020; 183:1826-1847.e31. [PMID: 33296702 PMCID: PMC7770098 DOI: 10.1016/j.cell.2020.10.046] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αβ T and non-classic CD4+ αβ TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αβ T, and CD4+ αβ TH1∗ cells unable to compensate for this deficit.
Collapse
Affiliation(s)
- Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.
| | - Federico Mele
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland
| | - Lisa Worley
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - David Langlais
- Department of Human Genetics, Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Ibithal Benhsaien
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Houda Elarabi
- Pediatrics Department, Hassan II Hospital, 80030 Dakhla, Morocco
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France; University of Paris, 75006 Paris, France
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Marc Weisshaar
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - David Jarrossay
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland
| | - Daniela Latorre
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Yichao Shen
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jing Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Janet Markle
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar
| | | | - Taushif Khan
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Lucas T Husquin
- Human Evolutionary Genetics Unit, CNRS UMR2000, Institut Pasteur, 75015 Paris, France
| | - Julia L Maclsaac
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Mohamed Jeljeli
- University of Paris, 75006 Paris, France; Immunology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Abderrahmane Errami
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Michael S Kobor
- BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Manon Roynard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Mathieu Bourgey
- McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics, Montreal, QC H3A 0G1, Canada
| | | | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Fréderic Batteux
- University of Paris, 75006 Paris, France; Immunology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Flore Rozenberg
- University of Paris, 75006 Paris, France; Virology Laboratory, Cochin Hospital, AH-HP, 75014 Paris, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, PO 26999, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, PO 34110, Qatar
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, CNRS UMR2000, Institut Pasteur, 75015 Paris, France; Chair of Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U1223, 75015 Paris, France
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Philippe Gros
- McGill University Genome Center, McGill Research Centre on Complex Traits, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, NSW, Australia
| | - Federica Sallusto
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6500 Bellinzona, Switzerland; Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France; Study Center for Primary Immunodeficiencies, Necker Children Hospital, AP-HP, 75015 Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
76
|
Domagala J, Lachota M, Klopotowska M, Graczyk-Jarzynka A, Domagala A, Zhylko A, Soroczynska K, Winiarska M. The Tumor Microenvironment-A Metabolic Obstacle to NK Cells' Activity. Cancers (Basel) 2020; 12:cancers12123542. [PMID: 33260925 PMCID: PMC7761432 DOI: 10.3390/cancers12123542] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
NK cells have unique capabilities of recognition and destruction of tumor cells, without the requirement for prior immunization of the host. Maintaining tolerance to healthy cells makes them an attractive therapeutic tool for almost all types of cancer. Unfortunately, metabolic changes associated with malignant transformation and tumor progression lead to immunosuppression within the tumor microenvironment, which in turn limits the efficacy of various immunotherapies. In this review, we provide a brief description of the metabolic changes characteristic for the tumor microenvironment. Both tumor and tumor-associated cells produce and secrete factors that directly or indirectly prevent NK cell cytotoxicity. Here, we depict the molecular mechanisms responsible for the inhibition of immune effector cells by metabolic factors. Finally, we summarize the strategies to enhance NK cell function for the treatment of tumors.
Collapse
Affiliation(s)
- Joanna Domagala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Marta Klopotowska
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Antoni Domagala
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland;
- Department of Urology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Karolina Soroczynska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Correspondence: ; Tel.: +48-225-992-199
| |
Collapse
|
77
|
Galunisertib Drives Treg Fragility and Promotes Dendritic Cell-Mediated Immunity against Experimental Lymphoma. iScience 2020; 23:101623. [PMID: 33089111 PMCID: PMC7559877 DOI: 10.1016/j.isci.2020.101623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/08/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Galunisertib (LY2157299) is a selective ATP-mimetic inhibitor of TGF-β receptor-I activation, currently under clinical trial in a variety of cancers. We have tested the combined effects of galunisertib- and interleukin-15-activated dendritic cells in an aggressive and highly metastatic murine lymphoma. Based on the tumor-draining lymph node architecture, and its histology, the combination therapy results in better prognosis, including disappearance of the disease-exacerbating regulatory T cells. Our data suggest that galunisertib significantly enhances the success of immunotherapy with IL-15-activated dendritic cells by limiting the regulatory T cells generation with consequent downregulation of regulatory T cells in the tumor-draining lymph nodes and vascularized organ like spleen. This is also associated with consistent loss p-SMAD2 and downregulation of Neuropilin-1, leading to better prognosis and positive outcome. These results connect the role of combined therapy with the consequent elimination of disease-exacerbating T regulatory cells in a metastatic murine lymphoma. Galunisertib (LY2157299) + IL-15-activated DC is tumoricidal against DL lymphoma The binary therapy downregulates Treg cell generation in lymph nodes Loss of p-SMAD2 and Neuropilin-1 in lymph nodes with improved prognosis Critical role of central CD8+ memory T cells and Treg cells for therapeutic success
Collapse
|
78
|
Al Okaily F, Alrashidi S, Mustafa M, Alrashdan FB. Genetic Polymorphisms in Transforming Growth Factor-β, Interferon-γ and Interleukin-6 Genes and Susceptibility to Behcet's Disease in Saudi Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:253-259. [PMID: 32801836 PMCID: PMC7402853 DOI: 10.2147/pgpm.s249361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/28/2020] [Indexed: 11/23/2022]
Abstract
Background Behcet’s disease (BD) is a complex, inflammatory, immune-mediated multi-systemic disease of unknown etiology. Cytokines play major roles in the pathophysiology of BD, and its production may be affected by polymorphism in cytokine genes. Hence, the present study was planned to investigate any possible association between the polymorphism in TGF-β, IFN-γ, and IL-6 genes and BD in the Saudi population. Materials and Methods The present study includes 79 BD cases and 117 age-matched controls. Polymerase chain reaction with restriction fragment length polymorphism (PCR-RFLP) and amplification refractory mutation systems (ARMS) PCR methods were used for polymorphic analysis. Results The heterozygous (CT) and (CT+TT) combined genotypes of TGF-β (509-C/T), heterozygous (AT), variant (TT), and (AT+TT) combined genotypes of IFN-γ (874-A/T) were significantly (P<0.05) associated with BD in the Saudi population. No significant differences were observed for IL-6 (174-G/C) genotypes and alleles between BD cases and controls. Gender does not reflect any significant genotypic and allelic association with males and females. Conclusion CT genotype of TGF-β, and AT and TT genotypes of IFN-γ could be associative genetic risk factors for BD in Saudis. Regulatory region polymorphism in cytokines gene can increase inflammation and deregulated immune response, which could be risk factor for BD.
Collapse
Affiliation(s)
- Fahdah Al Okaily
- Department of Rheumatology, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Seham Alrashidi
- Department of Rheumatology, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Mustafa
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Faris Bander Alrashdan
- Department of Internal Medicine, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
79
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
80
|
Trophoblast cell influence on peripheral blood natural killer cell proliferation and phenotype in non-pregnant women and women in early pregnancy. Immunobiology 2020; 225:151910. [DOI: 10.1016/j.imbio.2020.151910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 11/22/2022]
|
81
|
Strait AA, Wang XJ. The role of transforming growth factor-beta in immune suppression and chronic inflammation of squamous cell carcinomas. Mol Carcinog 2020; 59:745-753. [PMID: 32301180 DOI: 10.1002/mc.23196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Despite a decline in the incidence of squamous cell carcinomas (SCCs) over the past 20 years, their survival rate has remained nearly the same, indicating that treatment options have not improved relative to other cancer types. Immunotherapies have a high potential for a sustained effect in SCC patients, but their response rate is low. Here, we review the suppressive role of transforming growth factor-beta (TGFβ) on the antitumor immune response in SCC and present its potential as a therapeutic target in combination with the current range of immunotherapies available for SCC patients. We conclude that SCCs are an optimal cancer type to study the effectiveness of TGFβ inhibition due to the prevalence of dysregulated TGFβ signaling in them.
Collapse
Affiliation(s)
- Alexander A Strait
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| |
Collapse
|
82
|
Wang N, Dang M, Zhang W, Lei Y, Liu Z. Galectin-3 is associated with severe heart failure and death: A hospital-based study in Chinese patients. Scand J Immunol 2020; 91:e12826. [PMID: 31514240 DOI: 10.1111/sji.12826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is a serious disease syndrome characterized by elevated pro-inflammatory cytokines and inflammatory mediators presume to have significant contribution on disease progression. Galectins are carbohydrate-binding proteins responsible of various physiological functions. Role of galectins in heart failure has been ill-defined. In the present case-controls study, 136 patients clinically diagnosed with heart failure and 125 healthy Chinese controls were recruited. Levels of galectins (Gal-1, 3 and 9) and cytokines (IFN-γ, IL-17A, IL-4 and TGF-β) were quantified by ELISA. Increased levels of galectin-1 and 3 was observed in HF patients and associated with clinical severity. In addition, pro-inflammatory cytokines such as IFN-γ and IL-17A were increased in patients whereas, anti-inflammatory TGFβ was decreased. Galectin-3 was positively correlated with IFN-γ, IL-17A and inversely with TGF-β. Furthermore, ROC curve analysis suggested galectin-3 as a promising biomarker for diagnosis and HF and clinical severity. Interestingly, a two-year follow-up indicated significant association of elevated galectin-3 with mortality due to HF. In conclusion, galectin-3 associated with HF and clinical manifestations possibly by inducing pro-inflammatory cytokines and could be a possible biomarker of HF and severe clinical conditions.
Collapse
Affiliation(s)
- Na Wang
- Department of Cardiovascular, Zhoukou Central Hospital, Zhoukou City, China
| | - Minyan Dang
- Innoscience Research Sdn Bhd, Subang Jaya, Malaysia
| | - Wenzhi Zhang
- Innoscience Research Sdn Bhd, Subang Jaya, Malaysia
| | - Yan Lei
- Innoscience Research Sdn Bhd, Subang Jaya, Malaysia
| | - Zhaochuan Liu
- Department of Cardiology, Army No.82 Group Military Hospital, Baoding, China
| |
Collapse
|
83
|
Regis S, Dondero A, Caliendo F, Bottino C, Castriconi R. NK Cell Function Regulation by TGF-β-Induced Epigenetic Mechanisms. Front Immunol 2020; 11:311. [PMID: 32161594 PMCID: PMC7052483 DOI: 10.3389/fimmu.2020.00311] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
TGF-β is a potent immunosuppressive cytokine that severely affects the function of NK cells. Tumor cells can take advantage of this ability, enriching their surrounding microenvironment with TGF-β. TGF-β can alter the expression of effector molecules and of activating and chemokine receptors, influence metabolism, induce the NK cell conversion toward the less cytolytic ILC1s. These and other changes possibly occur by the induction of complex gene expression programs, involving epigenetic mechanisms. While most of these programs are at present unexplored, the role of certain transcription factors, microRNAs and chromatin changes determined by TGF-β in NK cells start to be elucidated in human and/or mouse NK cells. The deep understanding of these mechanisms will be useful to design therapies contributing to restore the full NK function.
Collapse
Affiliation(s)
- Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Fabio Caliendo
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Cristina Bottino
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, CEBR, University of Genoa, Genoa, Italy
| |
Collapse
|
84
|
Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity 2019; 50:924-940. [PMID: 30995507 DOI: 10.1016/j.immuni.2019.03.024] [Citation(s) in RCA: 1405] [Impact Index Per Article: 281.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
Collapse
|
85
|
Khummuang S, Chuensirikulchai K, Pata S, Laopajon W, Chruewkamlow N, Mahasongkram K, Sugiura N, Watanabe H, Tateno H, Kamuthachad L, Wongratanacheewin S, Takheaw N, Kasinrerk W. Characterization and functional analysis of novel circulating NK cell sub-populations. Int Immunol 2019; 31:515-530. [PMID: 30859183 DOI: 10.1093/intimm/dxz027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 03/09/2019] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells having potent cytolytic function that provide host defense against microbial infections and tumors. Using our generated monoclonal antibody (mAb), named FE-1H10, new NK cell sub-populations in peripheral blood were identified. The molecules recognized by mAb FE-1H10 were expressed on a sub-population of CD3-CD56dim NK cells. The epitope recognized by mAb FE-1H10 was demonstrated to be N-glycan and proven to be different from CD57. Upon K562 stimulation, the CD56dimFE-1H10+ NK cell sub-population exhibited significantly lower cytolytic function with low ability to degranulate and release cytolytic granules compared to the CD56dimFE-1H10- NK cell sub-population. Moreover, the CD56dimFE-1H10+ NK cells produced less IFN-γ and TNF-α than the CD56dimFE-1H10- NK cells. We demonstrated here that mAb FE-1H10 could identify two sub-populations of circulating CD56dim NK cells with different functions. Our discovery of new sub-populations of NK cells improves our understanding of NK cell biology and may lead to the development of new approaches for NK cell therapy.
Collapse
Affiliation(s)
| | | | - Supansa Pata
- Division of Clinical Immunology, Department of Medical Technology.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Witida Laopajon
- Division of Clinical Immunology, Department of Medical Technology.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapol Chruewkamlow
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kodchakorn Mahasongkram
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Ludthawun Kamuthachad
- Department of Microbiology, Faculty of Medicine and Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Surasakdi Wongratanacheewin
- Department of Microbiology, Faculty of Medicine and Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
86
|
Dong W, Wu X, Ma S, Wang Y, Nalin AP, Zhu Z, Zhang J, Benson DM, He K, Caligiuri MA, Yu J. The Mechanism of Anti-PD-L1 Antibody Efficacy against PD-L1-Negative Tumors Identifies NK Cells Expressing PD-L1 as a Cytolytic Effector. Cancer Discov 2019; 9:1422-1437. [PMID: 31340937 DOI: 10.1158/2159-8290.cd-18-1259] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
Blockade of PD-L1 expression on tumor cells via anti-PD-L1 monoclonal antibody (mAb) has shown great promise for successful cancer treatment by overcoming T-cell exhaustion; however, the function of PD-L1 on natural killer (NK) cells and the effects of anti-PD-L1 mAb on PD-L1+ NK cells remain unknown. Moreover, patients with PD-L1 - tumors can respond favorably to anti-PD-L1 mAb therapy for unclear reasons. Here, we show that some tumors can induce PD-L1 on NK cells via AKT signaling, resulting in enhanced NK-cell function and preventing cell exhaustion. Anti-PD-L1 mAb directly acts on PD-L1+ NK cells against PD-L1 - tumors via a p38 pathway. Combination therapy with anti-PD-L1 mAb and NK cell-activating cytokines significantly improves the therapeutic efficacy of human NK cells against PD-L1 - human leukemia when compared with monotherapy. Our discovery of a PD-1-independent mechanism of antitumor efficacy via the activation of PD-L1+ NK cells with anti-PD-L1 mAb offers new insights into NK-cell activation and provides a potential explanation as to why some patients lacking PD-L1 expression on tumor cells still respond to anti-PD-L1 mAb therapy. SIGNIFICANCE: Targeting PD-L1 expressed on PD-L1+ tumors with anti-PD-L1 mAb successfully overcomes T-cell exhaustion to control cancer, yet patients with PD-L1 - tumors can respond to anti-PD-L1 mAb. Here, we show that anti-PD-L1 mAb activates PD-L1+ NK cells to control growth of PD-L1 - tumors in vivo, and does so independent of PD-1.This article is highlighted in the In This Issue feature, p. 1325.
Collapse
Affiliation(s)
- Wenjuan Dong
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California
| | - Xiaojin Wu
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yufeng Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ansel P Nalin
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio
| | - Zheng Zhu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California
| | - Don M Benson
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Kai He
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California. .,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California.,Department of Immuno-Oncology, Duarte, California.,City of Hope Comprehensive Cancer Center, Duarte, California
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California. .,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California.,Department of Immuno-Oncology, Duarte, California.,City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
87
|
Abstract
Interferon gamma has long been studied as a critical mediator of tumor immunity. In recent years, the complexity of cellular interactions that take place in the tumor microenvironment has become better appreciated in the context of immunotherapy. While checkpoint inhibitors have dramatically improved remission rates in cancer treatment, IFN-γ and related effectors continue to be identified as strong predictors of treatment success. In this review, we provide an overview of the multiple immunosuppressive barriers that IFN-γ has to overcome to eliminate tumors, and potential avenues for modulating the immune response in favor of tumor rejection.
Collapse
Affiliation(s)
- J Daniel Burke
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Howard A Young
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
88
|
Khan AM, Devarakonda S, Bumma N, Chaudhry M, Benson DM. Potential of NK cells in multiple Myeloma therapy. Expert Rev Hematol 2019; 12:425-435. [PMID: 31070067 DOI: 10.1080/17474086.2019.1617128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Despite rapid advances in myeloma treatment with the development of new drugs, curative therapies remain elusive. Relapsed/refractory disease related to progressive dysregulation of immune system and acquired genetic abnormalities continues to be a major obstacle in achieving cure. Immune-based therapy harnessing the host defense mechanism of natural killer (NK) cells is a promising avenue in the treatment of myeloma. Areas covered: Here, we discuss the biology and cytotoxic activity of NK cells and the potential role of these innate immune cells in defense against cancer and specifically multiple myeloma. We also discuss the role of NK cells in the anti-myeloma effects of autologous and allogeneic stem cell transplantation, various novel drugs, and treatment modalities such as chimeric antigen receptor therapy. Immune evasion, either directly or indirectly involving NK cell dysfunction, may be a key and under-recognized mechanism in myeloma progression. We reviewed extensive literature identified using the keywords immunotherapy, natural killer cells, and multiple myeloma. Expert opinion: Novel treatment approaches in myeloma utilizing the immunomodulatory and cytotoxic properties of NK cells to eradicate resistant and quiescent clones could pave the way for potentially curative interventions.
Collapse
Affiliation(s)
- Abdullah M Khan
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Srinivas Devarakonda
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Naresh Bumma
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Maria Chaudhry
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Don M Benson
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| |
Collapse
|
89
|
Abstract
Interferon gamma, referred to here as IFN-γ, is a major component in immunological cell signaling and is a critical regulatory protein for overall immune system function. First discovered in 1965 (Wheelock Science 149: (3681)310-311, 1965), IFN-γ is the only Type II interferon identified. Its expression is both positively and negatively controlled by different factors. In this chapter, we will review the transcriptional and post-transcriptional control of IFN-γ expression. In the transcriptional control part, the regular activators and suppressors are summarized, we will also focus on the epigenetic control, such as chromosome access, DNA methylation, and histone acetylation. The more we learn about the control of this regulatory protein will allow us to apply this knowledge in the future to effectively manipulate IFN-γ expression for the treatment of infections, cancer, inflammation, and autoimmune diseases.
Collapse
|
90
|
Novel Immunoregulatory Functions of IL-18, an Accomplice of TGF-β1. Cancers (Basel) 2019; 11:cancers11010075. [PMID: 30641867 PMCID: PMC6356463 DOI: 10.3390/cancers11010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
TGF-β1 is a pleiotropic factor exerting a strong regulatory role in several cell types, including immune cells. In NK cells it profoundly alters the surface expression of crucial activating and chemokine receptors. To understand which soluble signals might better contrast these effects, we cultured human NK cells in the presence of TGF-β1 and different innate and adaptive cytokines, generally referred as “immunostimulatory”. These included IL-2, IL-15, IL-21, IL-27, and IL-18. Unexpectedly, IL-18 strengthened rather than contrasting important TGF-β1-mediated functions. In particular, IL-18 further reduced the expression of CX3CR1 and NKp30, leading to the virtual abrogation of the triggering capability of this activating receptor. Moreover, IL-18 further increased the expression of CXCR4. The IL-18-mediated additive effect on NKp30 and CXCR4 expression involved transcriptional regulation and activation of MEK/ERK and/or p38MAPK. A proteomic approach quantified both surface and intracellular proteins significantly modified in cytokine-treated NK cells, thus giving global information on the biological processes involving TGF-β1 and IL-18. Our data support the concept that IL-18 may have a different behavior depending on the type of soluble factors characterizing the microenvironment. In a TGF-β1 rich milieu such as tumors, it may contribute to the impairment of both NK cells recruitment and killing capability.
Collapse
|
91
|
Wang Y, Zhang Y, Yi P, Dong W, Nalin AP, Zhang J, Zhu Z, Chen L, Benson DM, Mundy-Bosse BL, Freud AG, Caligiuri MA, Yu J. The IL-15-AKT-XBP1s signaling pathway contributes to effector functions and survival in human NK cells. Nat Immunol 2019; 20:10-17. [PMID: 30538328 PMCID: PMC6293989 DOI: 10.1038/s41590-018-0265-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 10/18/2018] [Indexed: 01/21/2023]
Abstract
Interleukin 15 (IL-15) is one of the most important cytokines that regulate the biology of natural killer (NK) cells1. Here we identified a signaling pathway-involving the serine-threonine kinase AKT and the transcription factor XBP1s, which regulates unfolded protein response genes2,3-that was activated in response to IL-15 in human NK cells. IL-15 induced the phosphorylation of AKT, which led to the deubiquitination, increased stability and nuclear accumulation of XBP1s protein. XBP1s bound to and recruited the transcription factor T-BET to the gene encoding granzyme B, leading to increased transcription. XBP1s positively regulated the cytolytic activity of NK cells against leukemia cells and was also required for IL-15-mediated NK cell survival through an anti-apoptotic mechanism. Thus, the newly identified IL-15-AKT-XBP1s signaling pathway contributes to enhanced effector functions and survival of human NK cells.
Collapse
Affiliation(s)
- Yufeng Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yibo Zhang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ping Yi
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Third Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Wenjuan Dong
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ansel P Nalin
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Jianying Zhang
- Division of Biostatistics, Department of Information Sciences, City of Hope National Medical Center, Duarte, CA, USA
| | - Zheng Zhu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Lichao Chen
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Don M Benson
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bethany L Mundy-Bosse
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Aharon G Freud
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianhua Yu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA.
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA.
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
92
|
Pahl JHW, Cerwenka A, Ni J. Memory-Like NK Cells: Remembering a Previous Activation by Cytokines and NK Cell Receptors. Front Immunol 2018; 9:2796. [PMID: 30546366 PMCID: PMC6279934 DOI: 10.3389/fimmu.2018.02796] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022] Open
Abstract
Natural Killer (NK) cells are cytotoxic innate lymphoid cells serving at the front line against infection and cancer. In inflammatory microenvironments, multiple soluble and contact-dependent signals modulate NK cell responsiveness. Besides their innate cytotoxic and immunostimulatory activity, it has been uncovered in recent years that NK cells constitute a heterogeneous and versatile cell subset. Persistent memory-like NK populations that mount a robust recall response were reported during viral infection, contact hypersensitivity reactions, and after stimulation by pro-inflammatory cytokines or activating receptor pathways. In this review, we highlight recent findings on the generation, functionality, and clinical applicability of memory-like NK cells and describe common features in comparison to other recent concepts of memory NK cells. Understanding of these features will facilitate the conception and design of novel NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Jens H W Pahl
- Department for Immunobiochemistry, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Adelheid Cerwenka
- Department for Immunobiochemistry, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Jing Ni
- Department for Immunobiochemistry, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany.,Innate Immunity, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
93
|
Tognarelli S, Wirsching S, von Metzler I, Rais B, Jacobs B, Serve H, Bader P, Ullrich E. Enhancing the Activation and Releasing the Brakes: A Double Hit Strategy to Improve NK Cell Cytotoxicity Against Multiple Myeloma. Front Immunol 2018; 9:2743. [PMID: 30542346 PMCID: PMC6277768 DOI: 10.3389/fimmu.2018.02743] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/07/2018] [Indexed: 01/16/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes with a strong antitumor ability. In tumor patients, such as multiple myeloma (MM) patients, an elevated number of NK cells after stem cell transplantation (SCT) has been reported to be correlated with a higher overall survival rate. With the aim of improving NK cell use for adoptive cell therapy, we also addressed the cytotoxicity of patient-derived, cytokine-stimulated NK cells against MM cells at specific time points: at diagnosis and before and after autologous stem cell transplantation. Remarkably, after cytokine stimulation, the patients' NK cells did not significantly differ from those of healthy donors. In a small cohort of MM patients, we were able to isolate autologous tumor cells, and we could demonstrate that IL-2/15 stimulated autologous NK cells were able to significantly improve their killing capacity of autologous tumor cells. With the aim to further improve the NK cell killing capacity against MM cells, we investigated the potential use of NK specific check point inhibitors with focus on NKG2A because this inhibitory NK cell receptor was upregulated following ex vivo cytokine stimulation and MM cells showed HLA-E expression that could even be increased by exposure to IFN-γ. Importantly, blocking of NKG2A resulted in a significant increase in the NK cell-mediated lysis of different MM target cells. Finally, these results let suggest that combining cytokine induced NK cell activation and the specific check point inhibition of the NKG2A-mediated pathways can be an effective strategy to optimize NK cell therapeutic approaches for treatment of multiple myeloma.
Collapse
Affiliation(s)
- Sara Tognarelli
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Sebastian Wirsching
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Ivana von Metzler
- Department of Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Bushra Rais
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Benedikt Jacobs
- Department of Haematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Hubert Serve
- Department of Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bader
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
94
|
TGFβ Imprinting During Activation Promotes Natural Killer Cell Cytokine Hypersecretion. Cancers (Basel) 2018; 10:cancers10110423. [PMID: 30400618 PMCID: PMC6267005 DOI: 10.3390/cancers10110423] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor-beta (TGFβ) is a potent immunosuppressive cytokine that inhibits the anti-tumor responses of NK cells and T cells. However, the stimulation of natural killer (NK) cells with pro-inflammatory cytokines decreases NK cell sensitivity to TGFβ. Herein, we sought to determine if TGFβ imprinting (TGFβi) during NK cell activation and expansion would decrease NK cell sensitivity to TGFβ suppression. To this end, we demonstrate that the activation of NK cells during chronic IL-2 stimulation and TGFβi potently induces NK cell hypersecretion of interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα) in response to tumor targets which persists for at least one month in vitro after the removal of TGFβ. TGFβi NK cell cytokine hypersecretion is induced following both cytokine and tumor activation. Further, TGFβi NK cells have a marked suppression of SMAD3 and T-bet which is associated with altered chromatin accessibility. In contrast to their heightened cytokine secretion, TGFβi NK cells downregulate several activating receptors, granzyme and perforin, and upregulate TRAIL, leading to cell-line-specific alterations in cytotoxicity. These findings may impact our understanding of how TGFβ affects NK cell development and anti-tumor function.
Collapse
|
95
|
Wang Y, Chu J, Yi P, Dong W, Saultz J, Wang Y, Wang H, Scoville S, Zhang J, Wu LC, Deng Y, He X, Mundy-Bosse B, Freud AG, Wang LS, Caligiuri MA, Yu J. SMAD4 promotes TGF-β-independent NK cell homeostasis and maturation and antitumor immunity. J Clin Invest 2018; 128:5123-5136. [PMID: 30183689 DOI: 10.1172/jci121227] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
SMAD4 is the only common SMAD in TGF-β signaling that usually impedes immune cell activation in the tumor microenvironment. However, we demonstrated here that selective deletion of Smad4 in NK cells actually led to dramatically reduced tumor cell rejection and augmented tumor cell metastases, reduced murine CMV clearance, as well as impeded NK cell homeostasis and maturation. This was associated with a downregulation of granzyme B (Gzmb), Kit, and Prdm1 in Smad4-deficient NK cells. We further unveiled the mechanism by which SMAD4 promotes Gzmb expression. Gzmb was identified as a direct target of a transcriptional complex formed by SMAD4 and JUNB. A JUNB binding site distinct from that for SMAD4 in the proximal Gzmb promoter was required for transcriptional activation by the SMAD4-JUNB complex. In a Tgfbr2 and Smad4 NK cell-specific double-conditional KO model, SMAD4-mediated events were found to be independent of canonical TGF-β signaling. Our study identifies and mechanistically characterizes unusual functions and pathways for SMAD4 in governing innate immune responses to cancer and viral infection, as well as NK cell development.
Collapse
Affiliation(s)
- Youwei Wang
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Jianhong Chu
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ping Yi
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Third Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Wenjuan Dong
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Jennifer Saultz
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Yufeng Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Hongwei Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Steven Scoville
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | - Lai-Chu Wu
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Youcai Deng
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | | | - Aharon G Freud
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Li-Shu Wang
- Division of Hematology and Oncology at the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, California, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
96
|
Castriconi R, Carrega P, Dondero A, Bellora F, Casu B, Regis S, Ferlazzo G, Bottino C. Molecular Mechanisms Directing Migration and Retention of Natural Killer Cells in Human Tissues. Front Immunol 2018; 9:2324. [PMID: 30364222 PMCID: PMC6193061 DOI: 10.3389/fimmu.2018.02324] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022] Open
Abstract
A large body of data shows that Natural Killer (NK) cells are immune effectors exerting a potent cytolytic activity against tumors and virus infected cells. The discovery and characterization of several inhibitory and activating receptors unveiled most of the mechanisms allowing NK cells to spare healthy cells while selectively attacking abnormal tissues. Nevertheless, the mechanisms ruling NK cell subset recirculation among the different compartments of human body have only lately started to be investigated. This is particularly true for pathological settings such as tumors or infected tissues but also for para-physiological condition like pregnant human uterine mucosa. It is becoming evident that the microenvironment associated to a particular clinical condition can deeply influence the migratory capabilities of NK cells. In this review we describe the main mechanisms and stimuli known to regulate the expression of chemokine receptors and other molecules involved in NK cell homing to either normal or pathological/inflamed tissues, including tumors or organs such as lung and liver. We will also discuss the role played by the chemokine/chemokine receptor axes in the orchestration of physiological events such as NK cell differentiation, lymphoid organ retention/egress and recruitment to decidua during pregnancy.
Collapse
Affiliation(s)
- Roberta Castriconi
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica, University of Genova, Genova, Italy
| | - Paolo Carrega
- Dipartimento di Patologia Umana, University of Messina, Messina, Italy
| | - Alessandra Dondero
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Francesca Bellora
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Beatrice Casu
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Stefano Regis
- Istituto di ricovero e cura a carattere scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| | - Guido Ferlazzo
- Dipartimento di Patologia Umana, University of Messina, Messina, Italy
| | - Cristina Bottino
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy.,Istituto di ricovero e cura a carattere scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| |
Collapse
|
97
|
Shin HW, Lee YJ, Kim J. Role of c-Myb in the regulation of natural killer cell activity. Biochem Biophys Res Commun 2018; 503:2807-2813. [PMID: 30103947 DOI: 10.1016/j.bbrc.2018.08.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
Abstract
The regulation of natural killer (NK) cell activity is an important research goal for the development of immunotherapies. In this study, we identified transcription factors affecting NK cell activity. In particular, we screened transcription factors affected by interleukin-2 (IL-2) and transforming growth factor-beta (TGF-β) by protein/DNA arrays using primary NK cells. We found that celastrol, a c-Myb inhibitor, inhibited NK-92 cells more strongly than any other inhibitors of transcription factor candidates. In addition, c-Myb and c-Myb-related signaling molecules, e.g., Nemo-like kinase (NLK) and c-Myc, were regulated by the activation status of NK cells, suggesting that c-Myb is a key regulator of NK cell activity. We also found that celastrol inhibits NK-92-cell-mediated cytotoxicity via the downregulation of NKG2D and granzyme B. Knockdown studies also showed that c-Myb is important for NK cell activation. In particular, the knockdown of c-Myb did not significantly affect NK cell proliferation and survival but decreased the secretion of IFN-γ and the cytotoxicity of NK cells. Our data demonstrate that c-Myb plays a critical role in the activation of NK cells and therefore is a therapeutic target for cancer and viral diseases.
Collapse
Affiliation(s)
- Hee-Wook Shin
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Yoo-Jin Lee
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Jongsun Kim
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|
98
|
Yi L, Chen L, Guo X, Lu T, Wang H, Ji X, Zhang J, Ren Y, Pan P, Kinghorn AD, Huang X, Wang LS, Fan Z, Caligiuri MA, Yu J. A Synthetic Disaccharide Derivative of Diphyllin, TAARD, Activates Human Natural Killer Cells to Secrete Interferon-Gamma via Toll-Like Receptor-Mediated NF-κB and STAT3 Signaling Pathways. Front Immunol 2018; 9:1509. [PMID: 30072983 PMCID: PMC6058043 DOI: 10.3389/fimmu.2018.01509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/18/2018] [Indexed: 11/29/2022] Open
Abstract
Natural products and their derivatives have long been used as pharmacological agents in the fight against cancer. Human natural killer (NK) cells are critical in our immune system in that they are capable of destroying tumor cells directly. However, there are few reports that elucidate the role of natural products in activating NK cells. In this study, we discovered that a synthetic disaccharide derivative of diphyllin, 4-O-{[2′′,3′′,4′′-tri-O-acetyl-α-D-arabinopyranosyl-(1′′→4′)]-2′,3′-di-O-acetyl-α-L-rhamnopyranosyl}diphyllin (TAARD), can alone stimulate interferon (IFN)-γ secretion in primary human NK cells and the NKL cell line. Additionally, it had an additive effect with IL-12 or IL-15 on IFN-γ production, but little adverse effects on NK cells. Mechanistically, TAARD induced the phosphorylation of NF-κB and STAT3, resulting in their binding on the IFNG promoter, which was dependent on TLR1 and TLR3 signaling, respectively. STAT3 and NF-κB knockdown with lentivirus shRNA as well as the NF-κB-specific inhibitor, N-tosyl-l-phenylalaninechloromethyl ketone, significantly suppressed TAARD-induced IFN-γ generation in primary NK cells. Blockade of TLR1 and TLR3 with neutralizing antibodies considerably decreased TAARD-induced activation of NF-κB and STAT3, respectively, as well as IFN-γ generation in NK cells. Collectively, our data suggest that TAARD can induce NK cell IFN-γ production through TLR1-NF-κB and TLR3-STAT3 signaling pathways, rendering its potential use as an agent for cancer prevention or treatment.
Collapse
Affiliation(s)
- Long Yi
- Research Center for Nutrition and Food Safety and Third Affiliated Hospital, Third Military Medical University, Chongqing, China.,The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Luxi Chen
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Xiaofeng Guo
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Ting Lu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Haixia Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Xiaotian Ji
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Jianying Zhang
- Center for Biostatistics, Department of Bioinformatics, The Ohio State University, Columbus, OH, United States
| | - Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Pan Pan
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN, United States
| | - Li-Shu Wang
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Michael A Caligiuri
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Cancer Hospital, Columbus, OH, United States
| | - Jianhua Yu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Cancer Hospital, Columbus, OH, United States
| |
Collapse
|
99
|
Lian GY, Wang QM, Tang PMK, Zhou S, Huang XR, Lan HY. Combination of Asiatic Acid and Naringenin Modulates NK Cell Anti-cancer Immunity by Rebalancing Smad3/Smad7 Signaling. Mol Ther 2018; 26:2255-2266. [PMID: 30017880 DOI: 10.1016/j.ymthe.2018.06.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 01/01/2023] Open
Abstract
Transforming growth factor β1 (TGF-β1) plays a promoting role in tumor growth via a mechanism associated with hyperactive Smad3 and suppressed Smad7 signaling in the tumor microenvironment. We report that retrieving the balance between Smad3 and Smad7 signaling with asiatic acid (AA, a Smad7 inducer) and naringenin (NG, a Smad3 inhibitor) effectively inhibited tumor progression in mouse models of invasive melanoma (B16F10) and lung carcinoma (LLC) by promoting natural killer (NK) cell development and cytotoxicity against cancer. Mechanistically, we found that Smad3 physically bound Id2 and IRF2 to suppress NK cell production and NK cell-mediated cytotoxicity against cancer. Treatment with AA and NG greatly inhibited Smad3 translation and phosphorylation while it restored Smad7 expression, and, therefore, it largely promoted NK cell differentiation, maturation, and cytotoxicity against cancer via Id2/IRF2-associated mechanisms. In contrast, silencing Id2 or IRF2 blunted the protective effects of AA and NG on NK cell-dependent anti-cancer activities. Thus, treatment with AA and NG produced an additive effect on inactivating TGF-β1/Smad3 signaling, and, therefore, it suppressed melanoma and lung carcinoma growth by promoting NK cell immunity against cancer via a mechanism associated with Id2 and IRF2.
Collapse
Affiliation(s)
- Guang-Yu Lian
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qing-Ming Wang
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuang Zhou
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ru Huang
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
100
|
Wang QM, Tang PMK, Lian GY, Li C, Li J, Huang XR, To KF, Lan HY. Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells. Cancer Immunol Res 2018; 6:965-977. [PMID: 29915022 DOI: 10.1158/2326-6066.cir-17-0491] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/12/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells, early effectors in anticancer immunity, are paralyzed by TGFβ1, an immunosuppressive cytokine produced by cancer cells. Development and activity of NK cells are largely inhibited in the Smad3-dependent tumor microenvironment. Here, we used genetic engineering to generate a stable SMAD3-silencing human NK cell line, NK-92-S3KD, whose cancer-killing activity and cytokine production were significantly enhanced under TGFβ1-rich condition compared with the parental cell line. Interestingly, we identified that the IFNG gene is a direct E4BP4 target gene. Thus, silencing of SMAD3 allows upregulation of E4BP4 that subsequently promoting interferon-γ (IFNγ) production in the NK-92-S3KD cells. More importantly, NK-92-S3KD immunotherapy increases the production of not only IFNγ, but also granzyme B and perforin in tumors; therefore, inhibiting cancer progression in two xenograft mouse models with human hepatoma (HepG2) and melanoma (A375). Thus, the NK-92-S3KD cell line may be useful for the clinical immunotherapy of cancer. Cancer Immunol Res; 6(8); 965-77. ©2018 AACR.
Collapse
Affiliation(s)
- Qing-Ming Wang
- Li Ka Shing Institute of Health Sciences, Department of Medicine & Therapeutics, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Patrick Ming-Kuen Tang
- Li Ka Shing Institute of Health Sciences, Department of Medicine & Therapeutics, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Guang-Yu Lian
- Li Ka Shing Institute of Health Sciences, Department of Medicine & Therapeutics, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunjie Li
- Li Ka Shing Institute of Health Sciences, Department of Medicine & Therapeutics, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinhong Li
- Li Ka Shing Institute of Health Sciences, Department of Medicine & Therapeutics, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ru Huang
- Li Ka Shing Institute of Health Sciences, Department of Medicine & Therapeutics, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences, Department of Medicine & Therapeutics, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|