51
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
52
|
Hotta O, Oda T. The epipharynx-kidney axis triggers glomerular vasculitis in immunoglobulin A nephropathy. Immunol Res 2020; 67:304-309. [PMID: 31745821 DOI: 10.1007/s12026-019-09099-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Macroscopic hematuria concomitant with acute pharyngitis is a characteristic feature of immunoglobulin A nephropathy (IgAN). Although the underlying mechanism of worsening hematuria has not been fully elucidated, activation of the innate immune system of nasopharynx-associated lymphoid tissue is thought to play an important role. The epipharynx is an immunologically activated site even under normal conditions, and enhanced activation of innate immunity is likely to occur in response to airborne infection. As latent but significant epipharyngitis presents in most IgAN patients, it is plausible that acute pharyngitis due to airway infection may contribute as a trigger of the epipharyngeal innate immune system, which is already upregulated in the chronically inflamed environment. The aim of this review was to discuss the mechanism of epipharynx-kidney axis involvement in glomerular vasculitis responsible for the worsening of hematuria in IgAN.
Collapse
Affiliation(s)
- Osamu Hotta
- Division of Internal Medicine, Hotta Osamu Clinic, Sendai, Japan.,Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takashi Oda
- Department of Nephrology and Blood Purification, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan.
| |
Collapse
|
53
|
Regal-McDonald K, Somarathna M, Lee T, Litovsky SH, Barnes J, Peretik JM, Traylor JG, Orr AW, Patel RP. Assessment of ICAM-1 N-glycoforms in mouse and human models of endothelial dysfunction. PLoS One 2020; 15:e0230358. [PMID: 32208424 PMCID: PMC7092995 DOI: 10.1371/journal.pone.0230358] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Endothelial dysfunction is a critical event in vascular inflammation characterized, in part, by elevated surface expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). ICAM-1 is heavily N-glycosylated, and like other surface proteins, it is largely presumed that fully processed, complex N-glycoforms are dominant. However, our recent studies suggest that hypoglycosylated or high mannose (HM)-ICAM-1 N-glycoforms are also expressed on the cell surface during endothelial dysfunction, and have higher affinity for monocyte adhesion and regulate outside-in endothelial signaling by different mechanisms. Whether different ICAM-1 N-glycoforms are expressed in vivo during disease is unknown. In this study, using the proximity ligation assay, we assessed the relative formation of high mannose, hybrid and complex α-2,6-sialyated N-glycoforms of ICAM-1 in human and mouse models of atherosclerosis, as well as in arteriovenous fistulas (AVF) of patients on hemodialysis. Our data demonstrates that ICAM-1 harboring HM or hybrid epitopes as well as ICAM-1 bearing α-2,6-sialylated epitopes are present in human and mouse atherosclerotic lesions. Further, HM-ICAM-1 positively associated with increased macrophage burden in lesions as assessed by CD68 staining, whereas α-2,6-sialylated ICAM-1 did not. Finally, both HM and α-2,6-sialylated ICAM-1 N-glycoforms were present in hemodialysis patients who had AVF maturation failure compared to successful AVF maturation. Collectively, these data provide evidence that HM- ICAM-1 N-glycoforms are present in vivo, and at levels similar to complex α-2,6-sialylated ICAM-1 underscoring the need to better understand their roles in modulating vascular inflammation.
Collapse
Affiliation(s)
- Kellie Regal-McDonald
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Maheshika Somarathna
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timmy Lee
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Silvio H. Litovsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jarrod Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - J. M. Peretik
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - J. G. Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - A. Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
54
|
Myers D, Lester P, Adili R, Hawley A, Durham L, Dunivant V, Reynolds G, Crego K, Zimmerman Z, Sood S, Sigler R, Fogler W, Magnani J, Holinstat M, Wakefield T. A new way to treat proximal deep venous thrombosis using E-selectin inhibition. J Vasc Surg Venous Lymphat Disord 2020; 8:268-278. [PMID: 32067728 PMCID: PMC9006622 DOI: 10.1016/j.jvsv.2019.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/16/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE There is an inter-relationship between thrombosis and inflammation. Previously, we have shown the importance of P-selectin in thrombogenesis and thrombus resolution in many preclinical animal models. The role of E-selectin has been explored in rodent models and in a small pilot study of clinical calf vein deep venous thrombosis. The purpose of this study was to determine the role of E-selectin in thrombosis in a primate model of proximal iliac vein thrombosis, a model close to the human condition. METHODS Iliac vein thrombosis was induced with a well-characterized primate model. Through a transplant incision, the hypogastric vein and iliac vein branches were ligated. Thrombus was induced by balloon occlusion of the proximal and distal iliac vein for 6 hours. The balloons were then deflated, and the primates recovered. Starting on postocclusion day 2, animals were treated with the E-selectin inhibitor GMI-1271, 25 mg/kg subcutaneously, once daily until day 21 (n = 4). Nontreated control animals received no treatment (n = 5). All animals were evaluated by magnetic resonance venography (MRV); evaluation of vessel area by ultrasound, protein analysis, hematology (complete blood count), and coagulation tests (bleeding time, prothrombin time, activated partial thromboplastin time, fibrinogen, and thromboelastography) were performed at baseline, day 2, day 7, day 14, and day 21 with euthanasia. In addition, platelet function and CD44 expression on leukocytes were determined. RESULTS E-selectin inhibition by GMI-1271 significantly increased vein recanalization by MRV vs control animals on day 14 (P < .05) and day 21 (P < .0001). GMI-1271 significantly decreased vein wall inflammation by MRV with gadolinium vein wall enhancement vs control also on day 14 (P < .0001) and day 21 (P < .0001). The thromboelastographic measure of clot strength (maximum amplitude) showed significant decreases in animals treated with GMI-1271 vs controls at day 2 (P < .05) and day 7 (P < .05). Animals treated with GMI-1271 had significant vessel area increase by day 21 vs controls (P < .05) by ultrasound. Vein wall intimal thickening (P < .001) and intimal fibrosis (P < .05) scores were significantly decreased in GMI-1271-treated animals vs controls. Importantly, no significant differences in hematology or coagulation test results were noted between all groups, suggesting that E-selectin inhibition carries no bleeding potential. GMI-1271 did not affect platelet function or aggregation or CD44 expression on leukocytes. In addition, no episodes of bleeding were noted in either group. CONCLUSIONS This study suggests that E-selectin modulates venous thrombus progression and that its inhibition will increase thrombus recanalization and decrease vein wall inflammation, without affecting coagulation. The use of an E-selectin inhibitor such as GMI-1271 could potentially change how we treat deep venous thrombosis.
Collapse
Affiliation(s)
- Daniel Myers
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich; Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Mich.
| | - Patrick Lester
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Mich
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann Arbor, Mich
| | - Angela Hawley
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich
| | - Laura Durham
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich
| | - Veronica Dunivant
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich
| | - Garrett Reynolds
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich
| | - Kiley Crego
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich
| | - Zoe Zimmerman
- Department of Pharmacology, University of Michigan, Ann Arbor, Mich
| | - Suman Sood
- Division of Hematology/Oncology, University of Michigan, Ann Arbor, Mich
| | - Robert Sigler
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Mich
| | | | | | | | - Thomas Wakefield
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich
| |
Collapse
|
55
|
Lopreiato V, Minuti A, Morittu VM, Britti D, Piccioli-Cappelli F, Loor JJ, Trevisi E. Short communication: Inflammation, migration, and cell-cell interaction-related gene network expression in leukocytes is enhanced in Simmental compared with Holstein dairy cows after calving. J Dairy Sci 2019; 103:1908-1913. [PMID: 31837777 DOI: 10.3168/jds.2019-17298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 01/21/2023]
Abstract
The aim of this study was to investigate changes in the abundance of genes involved in leukocyte function between cows highly specialized for milk production (Holstein, n = 12) and cows selected for meat and milk (Simmental, n = 13). Blood was collected on d 3 after calving in PAXgene tubes (Preanalytix, Hombrechtikon, Switzerland) to measure mRNA abundance of 33 genes. Normalized gene abundance data were subjected to MIXED model ANOVA using SAS (SAS Institute Inc. Cary, NC). Simmental cows had greater transcript abundance of proinflammatory cytokines and receptor genes (IL1B, TNF, IL1R, TNFRSF1A), cell migration- and adhesion-related genes (CX3CR1, ITGB2, CD44, LGALS8), and the antimicrobial IDO1 gene. In contrast, compared with Holstein cows, Simmental cows had lower abundance of the toll-like receptor (TLR) recognition-related gene TLR2, the antimicrobial-related gene LTF, and S100A8, which is involved in cell maturation, regulation of inflammatory processes, and immune response. These results revealed that breed plays an important role in the modulation of genes involved in immune adaptation and inflammatory response, and the immune system of Simmental cows could potentially have a more acute response in early lactation. In turn, this might be beneficial for mounting a more efficient response after calving and allow for a smoother homeorhetic adaptation to lactation.
Collapse
Affiliation(s)
- V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - V M Morittu
- Interdepartmental Services Centre of Veterinary for Human and Animal Health, Department of Health Science, Magna Græcia University, Catanzaro 88100, Italy
| | - D Britti
- Interdepartmental Services Centre of Veterinary for Human and Animal Health, Department of Health Science, Magna Græcia University, Catanzaro 88100, Italy
| | - F Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
56
|
Intermittent rolling is a defect of the extravasation cascade caused by Myosin1e-deficiency in neutrophils. Proc Natl Acad Sci U S A 2019; 116:26752-26758. [PMID: 31811025 DOI: 10.1073/pnas.1902502116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extravasation is a migratory event in response to inflammation that depends on cytoskeletal dynamics regulated by myosins. Myosin-1e (Myo1e) is a long-tailed class-I myosin that has not yet been studied in the context of neutrophil-endothelial interactions and neutrophil extravasation. Intravital microscopy of TNFα-inflamed cremaster muscles in Myo1e-deficient mice revealed that Myo1e is required for efficient neutrophil extravasation. Specifically, Myo1e deficiency caused increased rolling velocity, decreased firm adhesion, aberrant crawling, and strongly reduced transmigration. Interestingly, we observed a striking discontinuous rolling behavior termed "intermittent rolling," during which Myo1e-deficient neutrophils showed alternating rolling and jumping movements. Surprisingly, chimeric mice revealed that these effects were due to Myo1e deficiency in leukocytes. Vascular permeability was not significantly altered in Myo1e KO mice. Myo1e-deficient neutrophils showed diminished arrest, spreading, uropod formation, and chemotaxis due to defective actin polymerization and integrin activation. In conclusion, Myo1e critically regulates adhesive interactions of neutrophils with the vascular endothelium and neutrophil extravasation. Myo1e may therefore be an interesting target in chronic inflammatory diseases characterized by excessive neutrophil recruitment.
Collapse
|
57
|
Buffone A, Anderson NR, Hammer DA. Human Neutrophils Will Crawl Upstream on ICAM-1 If Mac-1 Is Blocked. Biophys J 2019; 117:1393-1404. [PMID: 31585707 PMCID: PMC6817642 DOI: 10.1016/j.bpj.2019.08.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/31/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
The recruitment of neutrophils to sites of inflammatory insult is a hallmark of the innate immune response. Neutrophil recruitment is regulated by a multistep process that includes cell rolling, activation, adhesion, and transmigration through the endothelium commonly referred to as the leukocyte adhesion cascade. After selectin-mediated braking, neutrophils migrate along the activated vascular endothelium on which ligands, including intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), are expressed. Previous studies have shown that two cells that commonly home from blood vessel to tissue-T cells and hematopoietic stem and progenitor cells-use the integrin lymphocyte functional antigen-1 (LFA-1) to migrate against the direction of shear flow once adherent on ICAM-1 surfaces. Like T cells and hematopoietic stem and progenitor cells, neutrophils express LFA-1, but they also express macrophage-1 antigen (Mac-1), which binds to ICAM-1. Previous reports have shown that neutrophils will not migrate against the direction of flow on ICAM-1, but we hypothesized this was due to the influence of Mac-1. Here, we report that both the HL-60 neutrophil-like cell line and primary human neutrophils can migrate against the direction of fluid flow on ICAM-1 surfaces via LFA-1 if Mac-1 is blocked; otherwise, they migrate downstream. We demonstrate this both on ICAM-1 surfaces and on activated endothelium. In sum, both LFA-1 and Mac-1 binding ICAM-1 play a critical role in determining the direction of neutrophil migration along the endothelium, and their interaction may play an important role in controlling neutrophil trafficking during inflammation.
Collapse
Affiliation(s)
- Alexander Buffone
- Departments of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicholas R Anderson
- Departments of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel A Hammer
- Departments of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
58
|
Ferreira IG, Carrascal M, Mineiro AG, Bugalho A, Borralho P, Silva Z, Dall'olio F, Videira PA. Carcinoembryonic antigen is a sialyl Lewis x/a carrier and an E‑selectin ligand in non‑small cell lung cancer. Int J Oncol 2019; 55:1033-1048. [PMID: 31793656 PMCID: PMC6776192 DOI: 10.3892/ijo.2019.4886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
The formation of distant metastasis resulting from vascular dissemination is one of the leading causes of mortality in non-small cell lung cancer (NSCLC). This metastatic dissemination initiates with the adhesion of circulating cancer cells to the endothelium. The minimal requirement for the binding of leukocytes to endothelial E-selectins and subsequent transmigration is the epitope of the fucosylated glycan, sialyl Lewis x (sLex), attached to specific cell surface glycoproteins. sLex and its isomer sialyl Lewis a (sLea) have been described in NSCLC, but their functional role in cancer cell adhesion to endothelium is still poorly understood. In this study, it was hypothesised that, similarly to leukocytes, sLe glycans play a role in NSCLC cell adhesion to E-selectins. To assess this, paired tumour and normal lung tissue samples from 18 NSCLC patients were analyzed. Immunoblotting and immunohisto-chemistry assays demonstrated that tumour tissues exhibited significantly stronger reactivity with anti-sLex/sLea antibody and E-selectin chimera than normal tissues (2.2- and 1.8-fold higher, respectively), as well as a higher immunoreactive score. High sLex/sLea expression was associated with bone metastasis. The overall α1,3-fucosyltransferase (FUT) activity was increased in tumour tissues, along with the mRNA levels of FUT3, FUT6 and FUT7, whereas FUT4 mRNA expression was decreased. The expression of E-selectin ligands exhibited a weak but significant correlation with the FUT3/FUT4 and FUT7/FUT4 ratios. Additionally, carcinoembryonic antigen (CEA) was identified in only 8 of the 18 tumour tissues; CEA-positive tissues exhibited significantly increased sLex/sLea expression. Tumour tissue areas expressing CEA also expressed sLex/sLea and showed reactivity to E-selectin. Blot rolling assays further demonstrated that CEA immunoprecipitates exhibited sustained adhesive interactions with E-selectin-expressing cells, suggesting CEA acts as a functional protein scaffold for E-selectin ligands in NSCLC. In conclusion, this work provides the first demonstration that sLex/sLea are increased in primary NSCLC due to increased α1,3-FUT activity. sLex/sLea is carried by CEA and confers the ability for NSCLC cells to bind E-selectins, and is potentially associated with bone metastasis. This study contributes to identifying potential future diagnostic/prognostic biomarkers and therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Inês Gomes Ferreira
- Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna I‑40126, Italy
| | - Mylène Carrascal
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Lisbon 1150‑082, Portugal
| | - A Gonçalo Mineiro
- UCIBIO, Department of Life Sciences, Faculty of Sciences and Technology, NOVA University of Lisbon, Caparica 2829‑516, Portugal
| | - António Bugalho
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Lisbon 1150‑082, Portugal
| | - Paula Borralho
- Department of Anatomical Pathology, Faculty of Medicine, University of Lisbon, Lisbon 1649‑028, Portugal
| | - Zélia Silva
- UCIBIO, Department of Life Sciences, Faculty of Sciences and Technology, NOVA University of Lisbon, Caparica 2829‑516, Portugal
| | - Fabio Dall'olio
- Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna I‑40126, Italy
| | - Paula A Videira
- CEDOC, NOVA Medical School, NOVA University of Lisbon, Lisbon 1150‑082, Portugal
| |
Collapse
|
59
|
Spertini C, Baïsse B, Bellone M, Gikic M, Smirnova T, Spertini O. Acute Myeloid and Lymphoblastic Leukemia Cell Interactions with Endothelial Selectins: Critical Role of PSGL-1, CD44 and CD43. Cancers (Basel) 2019; 11:cancers11091253. [PMID: 31461905 PMCID: PMC6770432 DOI: 10.3390/cancers11091253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid and lymphoblastic leukemia are poor prognosis hematologic malignancies, which disseminate from the bone marrow into the blood. Blast interactions with selectins expressed by vascular endothelium promote the development of drug resistance and leukostasis. While the role of selectins in initiating leukemia blast adhesion is established, our knowledge of the involved selectin ligands is incomplete. Using various primary acute leukemia cells and U937 monoblasts, we identified here functional selectin ligands expressed by myeloblasts and lymphoblasts by performing biochemical studies, expression inhibition by RNA interference and flow adhesion assays on recombinant selectins or selectin ligands immunoadsorbed from primary blast cells. Results demonstrate that P-selectin glycoprotein ligand-1 (PSGL-1) is the major P-selectin ligand on myeloblasts, while it is much less frequently expressed and used by lymphoblasts to interact with endothelial selectins. To roll on E-selectin, myeloblasts use PSGL-1, CD44, and CD43 to various extents and the contribution of these ligands varies strongly among patients. In contrast, the interactions of PSGL-1-deficient lymphoblasts with E-selectin are mainly supported by CD43 and/or CD44. By identifying key selectin ligands expressed by acute leukemia blasts, this study offers novel insight into their involvement in mediating acute leukemia cell adhesion with vascular endothelium and may identify novel therapeutic targets.
Collapse
Affiliation(s)
- Caroline Spertini
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Bénédicte Baïsse
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Marta Bellone
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Milica Gikic
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Tatiana Smirnova
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Olivier Spertini
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland.
| |
Collapse
|
60
|
Different Faces for Different Places: Heterogeneity of Neutrophil Phenotype and Function. J Immunol Res 2019; 2019:8016254. [PMID: 30944838 PMCID: PMC6421822 DOI: 10.1155/2019/8016254] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
As the most abundant leukocytes in the circulation, neutrophils are committed to innate and adaptive immune effector function to protect the human body. They are capable of killing intruding microbes through various ways including phagocytosis, release of granules, and formation of extracellular traps. Recent research has revealed that neutrophils are heterogeneous in phenotype and function and can display outstanding plasticity in both homeostatic and disease states. The great flexibility and elasticity arm neutrophils with important regulatory and controlling functions in various disease states such as autoimmunity and inflammation as well as cancer. Hence, this review will focus on recent literature describing neutrophils' variable and diverse phenotypes and functions in different contexts.
Collapse
|
61
|
Weil BR, Neelamegham S. Selectins and Immune Cells in Acute Myocardial Infarction and Post-infarction Ventricular Remodeling: Pathophysiology and Novel Treatments. Front Immunol 2019; 10:300. [PMID: 30873166 PMCID: PMC6400985 DOI: 10.3389/fimmu.2019.00300] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
The glycosciences aim to understand the impact of extracellular and intracellular carbohydrate structures on biological function. These glycans primarily fall into three major groups: lipid-linked carbohydrates that are referred to as glycosphingolipids or simply glycolipids; relatively short carbohydrate chains that are often O- or N-linked to proteins yielding common glycoproteins; and extended linear polymeric carbohydrate structures that are referred to as glycosaminoglycans (GAGs). Whereas, the impact of such carbohydrate structures has been extensively examined in cancer biology, their role in acute and chronic heart disease is less studied. In this context, a growing body of evidence indicates that glycans play an important role in immune mediated cell recruitment to damaged heart tissue to initiate wound healing and repair after injury. This is particularly important following ischemia and reperfusion that occurs in the heart in the setting of acute myocardial infarction. Here, immune system-mediated repair of the damaged myocardium plays a critical role in determining post-infarction ventricular remodeling, cardiac function, and patient outcome. Further, alterations in immune cell activity can promote the development of heart failure. The present review summarizes our current understanding of the phases of immune-mediated repair following myocardial infarction. It discusses what is known regarding glycans in mediating the recruitment of circulating immune cells during the early inflammatory stage of post-infarction repair, with focus on the selectin family of adhesion molecules. It offers future directions for research aimed at utilizing our knowledge of mechanisms underlying immune cell recruitment to either modulate leukocyte recruitment to the injured tissue or enhance the targeted delivery of biologic therapeutics such as stem cells in an attempt to promote repair of the damaged heart.
Collapse
Affiliation(s)
- Brian R Weil
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Sriram Neelamegham
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, United States.,Department of Chemical & Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
62
|
Adrover JM, Del Fresno C, Crainiciuc G, Cuartero MI, Casanova-Acebes M, Weiss LA, Huerga-Encabo H, Silvestre-Roig C, Rossaint J, Cossío I, Lechuga-Vieco AV, García-Prieto J, Gómez-Parrizas M, Quintana JA, Ballesteros I, Martin-Salamanca S, Aroca-Crevillen A, Chong SZ, Evrard M, Balabanian K, López J, Bidzhekov K, Bachelerie F, Abad-Santos F, Muñoz-Calleja C, Zarbock A, Soehnlein O, Weber C, Ng LG, Lopez-Rodriguez C, Sancho D, Moro MA, Ibáñez B, Hidalgo A. A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity 2019; 50:390-402.e10. [PMID: 30709741 DOI: 10.1016/j.immuni.2019.01.002] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/23/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022]
Abstract
Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.
Collapse
Affiliation(s)
- José M Adrover
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Carlos Del Fresno
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Georgiana Crainiciuc
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Maria Isabel Cuartero
- Unidad de Investigación Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense; Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Casanova-Acebes
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Present address: Tisch Cancer Institute, Mount Sinai School of Medicine, New York City, New York, USA
| | - Linnea A Weiss
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Present address: Centro Nacional de Biotecnología, Madrid, Spain
| | - Hector Huerga-Encabo
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona
| | - Carlos Silvestre-Roig
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität München; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, Germany
| | - Itziar Cossío
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana V Lechuga-Vieco
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jaime García-Prieto
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Mónica Gómez-Parrizas
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Juan A Quintana
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ivan Ballesteros
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Sandra Martin-Salamanca
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Alejandra Aroca-Crevillen
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, Singapore
| | - Karl Balabanian
- Inserm Unité Mixte de Recherche (UMR) S996, Université Paris-Sud, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Clamart, France
| | - Jorge López
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | - Kiril Bidzhekov
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität München
| | - Françoise Bachelerie
- Inserm Unité Mixte de Recherche (UMR) S996, Université Paris-Sud, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Clamart, France
| | - Francisco Abad-Santos
- Department of Clinical Pharmacology, Instituto Teófilo Hernando, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität München; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität München; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, Singapore
| | - Cristina Lopez-Rodriguez
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona
| | - David Sancho
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María A Moro
- Unidad de Investigación Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense; Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Borja Ibáñez
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Department of Cardiology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Madrid, Spain
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität München.
| |
Collapse
|
63
|
Joy SS, Siddiqui K. Molecular and Pathophysiological Mechanisms of Diabetic Retinopathy in Relation to Adhesion Molecules. Curr Diabetes Rev 2019; 15:363-371. [PMID: 30332969 DOI: 10.2174/1573399814666181017103844] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/11/2018] [Accepted: 10/11/2018] [Indexed: 01/13/2023]
Abstract
Diabetic Retinopathy (DR) is considered as a most common microvascular complication of diabetes affected by one in three people who are suffered for diabetes. Several pathophysiological mechanisms and adhesion molecules may play an etiologic role in the development of diabetes and its complications. The adhesion molecules located on both leucocytes and endothelial cells and considered as important molecules which can assessed the endothelial function. The functions of adhesion molecules involved in the cellular margination, slow rolling and transmigration of leukocytes. Hyperglycemia and its immediate biochemical sequelae or the low-grade inflammation directly alter endothelial function or influence endothelial cell functioning indirectly by induce oxidative stress and activates leukocytosis and leukocyte-endothelial cell interactions by the increased expression of adhesion molecules, growth factors, inflammatory factors, chemokines etc. and results DR. This review summarized the several pathophysiological mechanisms and role of adhesion molecules in disruption of homeostasis of vasculature by leukocytes in the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Salini Scaria Joy
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
64
|
Morikis VA, Simon SI. Neutrophil Mechanosignaling Promotes Integrin Engagement With Endothelial Cells and Motility Within Inflamed Vessels. Front Immunol 2018; 9:2774. [PMID: 30546362 PMCID: PMC6279920 DOI: 10.3389/fimmu.2018.02774] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are the most motile of mammalian cells, a feature that enables them to protect the host against the rapid spread of pathogens from tissue into the circulatory system. A critical process is the recruitment of neutrophils to inflamed endothelium within post-capillary venules. This occurs through cooperation between at least four families of adhesion molecules and G-protein coupled signaling receptors. These adhesion molecules convert the drag force induced by blood flow acting on the cell surface into bond tension that resists detachment. A common feature of selectin-glycoprotein tethering and integrin-ICAM bond formation is the mechanics by which force acting on these specific receptor-ligand pairs influences their longevity, strength, and topographic organization on the plasma membrane. Another distinctly mechanical aspect of neutrophil guidance is the capacity of adhesive bonds to convert external mechanical force into internal biochemical signals through the transmission of force from the outside-in at focal sites of adhesive traction on inflamed endothelium. Within this region of the plasma membrane, we denote the inflammatory synapse, Ca2+ release, and intracellular signaling provide directional cues that guide actin assembly and myosin driven motive force. This review provides an overview of how bond formation and outside-in signaling controls neutrophil recruitment and migration relative to the hydrodynamic shear force of blood flow.
Collapse
Affiliation(s)
- Vasilios A Morikis
- Simon Lab, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Scott I Simon
- Simon Lab, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
65
|
Maas SL, Soehnlein O, Viola JR. Organ-Specific Mechanisms of Transendothelial Neutrophil Migration in the Lung, Liver, Kidney, and Aorta. Front Immunol 2018; 9:2739. [PMID: 30538702 PMCID: PMC6277681 DOI: 10.3389/fimmu.2018.02739] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Immune responses are dependent on the recruitment of leukocytes to the site of inflammation. The classical leukocyte recruitment cascade, consisting of capture, rolling, arrest, adhesion, crawling, and transendothelial migration, is thoroughly studied but mostly in model systems, such as the cremasteric microcirculation. This cascade paradigm, which is widely accepted, might be applicable to many tissues, however recruitment mechanisms might substantially vary in different organs. Over the last decade, several studies shed light on organ-specific mechanisms of leukocyte recruitment. An improved awareness of this matter opens new therapeutic windows and allows targeting inflammation in a tissue-specific manner. The aim of this review is to summarize the current understanding of the leukocyte recruitment in general and how this varies in different organs. In particular we focus on neutrophils, as these are the first circulating leukocytes to reach the site of inflammation. Specifically, the recruitment mechanism in large arteries, as well as vessels in the lungs, liver, and kidney will be addressed.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Physiology and Pharmacology (FyFa) and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joana R Viola
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
66
|
Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, Zhao K, Zhang Q, Liu X, Liu J, Liu B, Cao X. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell 2018; 175:1336-1351.e17. [PMID: 30318148 DOI: 10.1016/j.cell.2018.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 08/04/2018] [Accepted: 09/07/2018] [Indexed: 01/20/2023]
Abstract
As a critical step during innate response, the cytoplasmic β subunit (IFN-γR2) of interferon-γ receptor (IFN-γR) is induced and translocates to plasma membrane to join α subunit to form functional IFN-γR to mediate IFN-γ signaling. However, the mechanism driving membrane translocation and its significance remain largely unknown. We found, unexpectedly, that mice deficient in E-selectin, an endothelial cell-specific adhesion molecule, displayed impaired innate activation of macrophages upon Listeria monocytogenes infection yet had increased circulating IFN-γ. Inflammatory macrophages from E-selectin-deficient mice had less surface IFN-γR2 and impaired IFN-γ signaling. BTK elicited by extrinsic E-selectin engagement phosphorylates cytoplasmic IFN-γR2, facilitating EFhd2 binding and promoting IFN-γR2 trafficking from Golgi to cell membrane. Our findings demonstrate that membrane translocation of cytoplasmic IFN-γR2 is required to activate macrophage innate response against intracellular bacterial infection, identifying the assembly of functional cytokine receptors on cell membrane as an important layer in innate activation and cytokine signaling.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China; National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China
| | - Jia Xu
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Jiacheng Wu
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Ye Hu
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Yanmei Han
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China
| | - Yan Gu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China
| | - Kai Zhao
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China
| | - Xingguang Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China
| | - Juan Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China
| | - Bing Liu
- Translational Medicine Center, Academy of Military Medical Sciences, 100024 Beijing, China
| | - Xuetao Cao
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China; National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 200433 Shanghai, China; College of Life Science, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
67
|
Gómez-Moreno D, Adrover JM, Hidalgo A. Neutrophils as effectors of vascular inflammation. Eur J Clin Invest 2018; 48 Suppl 2:e12940. [PMID: 29682731 DOI: 10.1111/eci.12940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
Vascular inflammation underlies most forms of cardiovascular disease, which remains a prevalent cause of death among the global population. Advances in the biology of neutrophils, as well as insights into their dynamics in tissues, have revealed that these cells are prominent drivers of vascular inflammation though derailed activation within blood vessels. The development of powerful imaging techniques, as well as identification of cells and molecules that regulate their activation within vessels, including platelets and catecholamines, has been instrumental to better understand the mechanisms through which neutrophils protect or damage the organism. Other advances in our understanding of how these leucocytes exert detrimental functions on neighbouring cells, including the formation of DNA-based extracellular traps, constitute milestones in defining neutrophil-driven inflammation. Here, we review emerging mechanisms that regulate intravascular activation and effector functions of neutrophils, and discuss specific pathologies in which these processes are relevant. We argue that identification of pathways and mechanisms specifically engaged within the vasculature may provide effective therapies to treat this prevalent group of pathologies.
Collapse
Affiliation(s)
- Diego Gómez-Moreno
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José María Adrover
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
68
|
Ishikane S, Hosoda H, Nojiri T, Tokudome T, Mizutani T, Miura K, Akitake Y, Kimura T, Imamichi Y, Kawabe S, Toyohira Y, Yanagihara N, Takahashi-Yanaga F, Miyazato M, Miyamoto K, Kangawa K. Angiotensin II promotes pulmonary metastasis of melanoma through the activation of adhesion molecules in vascular endothelial cells. Biochem Pharmacol 2018; 154:136-147. [DOI: 10.1016/j.bcp.2018.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022]
|
69
|
Carrascal MA, Talina C, Borralho P, Gonçalo Mineiro A, Henriques AR, Pen C, Martins M, Braga S, Sackstein R, Videira PA. Staining of E-selectin ligands on paraffin-embedded sections of tumor tissue. BMC Cancer 2018; 18:495. [PMID: 29716546 PMCID: PMC5930952 DOI: 10.1186/s12885-018-4410-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/18/2018] [Indexed: 01/07/2023] Open
Abstract
Background The E-selectin ligands expressed by cancer cells mediate adhesion of circulating cancer cells to endothelial cells, as well as within tissue microenvironments important for tumor progression and metastasis. The identification of E-selectin ligands within cancer tissue could yield new biomarkers for patient stratification and aid in identifying novel therapeutic targets. The determinants of selectin ligands consist of sialylated tetrasaccharides, the sialyl Lewis X and A (sLeX and sLeA), displayed on protein or lipid scaffolds. Standardized procedures for immunohistochemistry make use of the antibodies against sLeX and/or sLeA. However, antibody binding does not define E-selectin binding activity. Methods In this study, we developed an immunohistochemical staining technique, using E-selectin-human Ig Fc chimera (E-Ig) to characterize the expression and localization of E-selectin binding sites on paraffin-embedded sections of different cancer tissue. Results E-Ig successfully stained cancer cells with high specificity. The E-Ig staining show high reactivity scores in colon and lung adenocarcinoma and moderate reactivity in triple negative breast cancer. Compared with reactivity of antibody against sLeX/A, the E-Ig staining presented higher specificity to cancer tissue with better defined borders and less background. Conclusions The E-Ig staining technique allows the qualitative and semi-quantitative analysis of E-selectin binding activity on cancer cells. The development of accurate techniques for detection of selectin ligands may contribute to better diagnostic and better understanding of the molecular basis of tumor progression and metastasis. Electronic supplementary material The online version of this article (10.1186/s12885-018-4410-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mylène A Carrascal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal.,CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina Talina
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Paula Borralho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Hospital CUF Descobertas, Lisbon, Portugal
| | - A Gonçalo Mineiro
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Raquel Henriques
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cláudia Pen
- Centro Hospitalar de Lisboa Central, EPE e Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Manuela Martins
- Centro Hospitalar de Lisboa Central, EPE e Serviço de Anatomia Patológica, Lisbon, Portugal
| | | | - Robert Sackstein
- Departments of Dermatology and Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, USA.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, USA
| | - Paula A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal. .,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
| |
Collapse
|
70
|
Anderson NR, Lee D, Hammer DA. An Experimentally Determined State Diagram for Human CD4 + T Lymphocyte CXCR4-Stimulated Adhesion Under Shear Flow. Cell Mol Bioeng 2018; 11:91-98. [PMID: 30271505 DOI: 10.1007/s12195-018-0519-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction The leukocyte adhesion cascade is important for the maintenance of homeostasis and the ability of immune cells to access sites of infection and inflammation. Despite much work identifying the molecular components of the cascade, and numerous simulations to predict the relationship between molecule density, identity, and adhesion, these relationships have not been measured experimentally. Methods Using surfaces functionalized with recombinant ICAM-1 and/or E-selectin along with immobilized SDF-1α, we used a flow chamber to measure rates of tethering, rolling and arrest of primary naïve human CD4+ T lymphocytes on different surface densities of ligand. Results Cells required a minimum level of ligand density to progress beyond tethering. E-selectin and ICAM-1 were found to have a synergistic relationship in promoting cell arrest. Surfaces with both ligands had the highest levels of arrest, while surfaces containing only E-selectin hindered the cell's ability to progress beyond rolling. In contrast, surfaces of ICAM-1 allowed only tethering or arrest. Cells maintained constant rolling velocity and time to stop over large variations in surface density and composition. In addition, surface densities of only O(101) sites/μm2 allowed for rolling while surface densities of O(102) sites/μm2 promoted arrest, approximately equal to previously determined simulated values. Conclusions We have systematically and experimentally mapped out the state diagram of T-cell adhesion under flow, directly demonstrating the quantitative requirements for each dynamic state of adhesion, and showing how multiple adhesion molecules can act in synergy to secure arrest.
Collapse
Affiliation(s)
- Nicholas R Anderson
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd St, Philadelphia, PA 19104 USA
| | - Dooyoung Lee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
- Present Address: Applied BioMath, LLC, Lincoln, MA 01773 USA
| | - Daniel A Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd St, Philadelphia, PA 19104 USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
71
|
De Sanctis F, Ugel S, Facciponte J, Facciabene A. The dark side of tumor-associated endothelial cells. Semin Immunol 2018; 35:35-47. [PMID: 29490888 DOI: 10.1016/j.smim.2018.02.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
Angiogenesis is a hallmark of cancer and a requisite that tumors must achieve to fulfill their metabolic needs of nutrients and oxygen. As a critical step in cancer progression, the 'angiogenic switch' allows tumor cells to survive and grow, and provides them access to vasculature resulting in metastatic progression and dissemination. Tumor-dependent triggering of the angiogenic switch has critical consequences on tumor progression which extends from an increased nutrient supply and relies instead on the ability of the tumor to hijack the host immune response for the generation of a local immunoprivileged microenvironment. Tumor angiogenic-mediated establishment of endothelial anergy is responsible for this process. However, tumor endothelium can also promote immune tolerance by unbalanced expression of co-stimulatory and co-inhibitory molecules and by releasing soluble factors that restrain T cell function and induce apoptosis. In this review, we discuss the molecular properties of the tumor endothelial barrier and endothelial anergy and discuss the main immunosuppressive mechanisms triggered by the tumor endothelium. Lastly, we describe the current anti-angiogenic therapeutic landscape and how targeting tumor angiogenesis can contribute to improve clinical benefits for patients.
Collapse
Affiliation(s)
- Francesco De Sanctis
- Immunology Section, Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, 37134, Verona, Italy
| | - John Facciponte
- Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea Facciabene
- Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
72
|
Lee CH, Zhang HH, Singh SP, Koo L, Kabat J, Tsang H, Singh TP, Farber JM. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. eLife 2018; 7:32532. [PMID: 29469805 PMCID: PMC5869018 DOI: 10.7554/elife.32532] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Many mediators and regulators of extravasation by bona fide human memory-phenotype T cells remain undefined. Mucosal-associated invariant T (MAIT) cells are innate-like, antibacterial cells that we found excelled at crossing inflamed endothelium. They displayed abundant selectin ligands, with high expression of FUT7 and ST3GAL4, and expressed CCR6, CCR5, and CCR2, which played non-redundant roles in trafficking on activated endothelial cells. MAIT cells selectively expressed CCAAT/enhancer-binding protein delta (C/EBPδ). Knockdown of C/EBPδ diminished expression of FUT7, ST3GAL4 and CCR6, decreasing MAIT cell rolling and arrest, and consequently the cells' ability to cross an endothelial monolayer in vitro and extravasate in mice. Nonetheless, knockdown of C/EBPδ did not affect CCR2, which was important for the step of transendothelial migration. Thus, MAIT cells demonstrate a program for extravasastion that includes, in part, C/EBPδ and C/EBPδ-regulated genes, and that could be used to enhance, or targeted to inhibit T cell recruitment into inflamed tissue.
Collapse
Affiliation(s)
- Chang Hoon Lee
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Hongwei H Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Lily Koo
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Hsinyi Tsang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Tej Pratap Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Joshua M Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
73
|
Khaustova NA, Maltseva DV, Oliveira-Ferrer L, Stürken C, Milde-Langosch K, Makarova JA, Rodin S, Schumacher U, Tonevitsky AG. Selectin-independent adhesion during ovarian cancer metastasis. Biochimie 2017; 142:197-206. [PMID: 28919578 DOI: 10.1016/j.biochi.2017.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE Ovarian cancer (OvCa) progression mainly takes place by intraperitoneal spread. Adhesion of tumor cells to the mesothelial cells which form the inner surface of the peritoneum is a crucial step in this process. Cancer cells use in principle different molecules of the leukocyte adhesion cascade to facilitate adhesion. This cascade is initiated by selectin-ligand interactions followed by integrin - extracellular matrix protein interactions. Here we address the question whether all tumor cells predominantly employ selectin-dependent leukocyte-like adhesion cascade (SDAC) or whether they use integrin mediated adhesion for OvCa progression as well. METHODS A comparative transcriptomic analysis of the human OvCa cell lines OVCAR8 and SKOV3 was performed. Intraperitoneal xenograft model of OVCAR8 cells was used to determine whether there is a correlation between SDAC gene expression and the metastatic potential of the control cells and the cells overexpressing c-Fos. Transcriptomic analysis of OVCAR8 and SKOV3 samples was performed using microarrays. RESULTS One-third of the protein-coding genes involved in SDAC exhibited lower expression levels in OVCAR8 than in SKOV3 cells. In contrast to SKOV3 cells, c-Fos overexpression in OVCAR8 cells did not significantly influence the expression of SDAC genes. Intraperitoneal xenograft model of OVCAR8 cells unexpectedly demonstrated that the aggressiveness of OVCAR8 tumors was not depended on the c-Fos expression level and was comparable to that of SKOV3 control tumors. Gene expression analysis of tumors suggests that SKOV3-derived tumor progression was mainly depended on SDAC. Progression of OVCAR8 tumors relied on other cell adhesion molecules that do not interact with selectins. CONCLUSIONS High expression of c-Fos in ovarian cancer cells is not always associated with reduced metastatic potential. Low expression level of SDAC genes may not ensure low OvCa metastatic potential hence alternative adhesion mechanisms involving laminin-integrin interactions exist as well.
Collapse
Affiliation(s)
| | | | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.
| | - Christine Stürken
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.
| | - Karin Milde-Langosch
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.
| | - Julia A Makarova
- P. Herzen Moscow Oncology Research Institute, Moscow, 125284, Russia.
| | - Sergey Rodin
- SRC Bioclinicum, Moscow, 115088, Russia; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.
| | | |
Collapse
|
74
|
Guerra FE, Borgogna TR, Patel DM, Sward EW, Voyich JM. Epic Immune Battles of History: Neutrophils vs. Staphylococcus aureus. Front Cell Infect Microbiol 2017; 7:286. [PMID: 28713774 PMCID: PMC5491559 DOI: 10.3389/fcimb.2017.00286] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood and the first line of defense after bacteria have breached the epithelial barriers. After migration to a site of infection, neutrophils engage and expose invading microorganisms to antimicrobial peptides and proteins, as well as reactive oxygen species, as part of their bactericidal arsenal. Ideally, neutrophils ingest bacteria to prevent damage to surrounding cells and tissues, kill invading microorganisms with antimicrobial mechanisms, undergo programmed cell death to minimize inflammation, and are cleared away by macrophages. Staphylococcus aureus (S. aureus) is a prevalent Gram-positive bacterium that is a common commensal and causes a wide range of diseases from skin infections to endocarditis. Since its discovery, S. aureus has been a formidable neutrophil foe that has challenged the efficacy of this professional assassin. Indeed, proper clearance of S. aureus by neutrophils is essential to positive infection outcome, and S. aureus has developed mechanisms to evade neutrophil killing. Herein, we will review mechanisms used by S. aureus to modulate and evade neutrophil bactericidal mechanisms including priming, activation, chemotaxis, production of reactive oxygen species, and resolution of infection. We will also highlight how S. aureus uses sensory/regulatory systems to tailor production of virulence factors specifically to the triggering signal, e.g., neutrophils and defensins. To conclude, we will provide an overview of therapeutic approaches that may potentially enhance neutrophil antimicrobial functions.
Collapse
Affiliation(s)
- Fermin E Guerra
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Timothy R Borgogna
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Delisha M Patel
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Eli W Sward
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| |
Collapse
|
75
|
Morita Y, Zhang R, Leslie M, Adhikari S, Hasan N, Chervoneva I, Rui H, Tanaka T. Pathologic evaluation of tumor-associated macrophage density and vessel inflammation in invasive breast carcinomas. Oncol Lett 2017; 14:2111-2118. [PMID: 28789438 PMCID: PMC5530034 DOI: 10.3892/ol.2017.6466] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are major constituents of the tumor microenvironment in solid tumors and have been implicated as mediators of tumor progression, invasion and metastasis. Correspondingly, accumulation of TAMs is associated with unfavorable clinical outcomes in numerous types of solid tumors. E-selectin is a hallmark of inflammation and a key adhesion molecule that accommodates the initial contact of circulating immune cells with the inflamed vessel surface. Currently, the association between E-selectin and TAMs is not fully elucidated; therefore, the present study investigated the association between vessel inflammation, TAM infiltration, and clinical outcome in breast cancer. A total of 53 procedure-naïve invasive breast cancer cases were immunohistochemically analyzed for the presence of cluster of differentiation (CD)68+ TAMs, E-selectin+ vessels and tumor inflammation. The association between CD68 and E-selectin expression, and tumor inflammation as well as overall survival was evaluated using Kaplan-Meier survival curves and multivariable Cox's proportional hazards regression analysis. The abundance of TAMs was identified to be positively associated with tumor inflammation, estrogen receptor and E-selectin expression levels. A greater prevalence of TAMs and tumor inflammation was significantly associated with shorter overall survival times. E-selectin expression levels were significantly higher in tumor vessels among elderly patients, but were not associated with overall survival. The abundance of TAMs was associated with the presence of E-selectin-expressing inflamed tumor vessels and tumor inflammation, as well as overall survival in patients with invasive breast carcinoma.
Collapse
Affiliation(s)
- Yoshihiro Morita
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Roy Zhang
- Department of Pathology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Macall Leslie
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Smita Adhikari
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Nafis Hasan
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Inna Chervoneva
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA
| | - Takemi Tanaka
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Pathology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
76
|
Li Q, Wayman A, Lin J, Fang Y, Zhu C, Wu J. Flow-Enhanced Stability of Rolling Adhesion through E-Selectin. Biophys J 2017; 111:686-699. [PMID: 27558713 DOI: 10.1016/j.bpj.2016.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/10/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022] Open
Abstract
Selectin-ligand interactions mediate tethering and rolling of circulating leukocytes on the vessel wall during inflammation. Extensive study has been devoted to elucidating the kinetic and mechanical constraints of receptor-ligand-interaction-mediated leukocyte adhesion, yet many questions remain unanswered. Here, we describe our design of an inverted flow chamber to compare adhesions of HL-60 cells to E-selectin in the upright and inverted orientations. This new, to our knowledge, design allowed us to evaluate the effect of gravity and to investigate the mechanisms of flow-enhanced adhesion. Cell rolling in the two orientations was qualitatively similar, and the quantitative differences can be explained by the effect of gravity, which promotes free-flowing cells to tether and detached cells to reattach to the surface in the upright orientation but prevents such attachment from happening in the inverted orientation. We characterized rolling stability by the lifetime of rolling adhesion and detachment of rolling cells, which could be easily measured in the inverted orientation, but not in the upright orientation because of the reattachment of transiently detached cells. Unlike the transient tether lifetime of E-selectin-ligand interaction, which exhibited triphasic slip-catch-slip bonds, the lifetime of rolling adhesion displayed a biphasic trend that first increased with the wall shear stress, reached a maximum at 0.4 dyn/cm(2), and then decreased gradually. We have developed a minimal mathematical model for the probability of rolling adhesion. Comparison of the theoretical predictions to data has provided model validation and allowed evaluation of the effective two-dimensional association on-rate, kon, and the binding affinity, Ka, of the E-selectin-ligand interaction. kon increased with the wall shear stress from 0.1 to 0.7 dyn/cm(2). Ka first increased with the wall shear stress, reached a maximum at 0.4 dyn/cm(2), and then decreased gradually. Our results provide insights into how the interplay between flow-dependent on-rate and off-rate of E-selectin-ligand bonds determine flow-enhanced cell rolling stability.
Collapse
Affiliation(s)
- Quhuan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Annica Wayman
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Jiangguo Lin
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Ying Fang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia.
| | - Jianhua Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
77
|
Abstract
Neutrophils are professional phagocytes that constitute the first line of defense in humans. The primary function of neutrophils is to eliminate invading pathogens through oxidative and nonoxidative mechanisms. Because neutrophils rapidly migrate into inflammatory foci via diapedesis and chemotaxis, neutrophil recruitment has long been considered a hallmark of inflammation. Recent advances in intravital microscopic technologies using animal model systems have enabled researchers to directly visualize neutrophil trafficking. Consequently, the specific mechanisms of neutrophil transmigration have been identified, and even the reverse migration of neutrophils can be verified visually. Moreover, the detailed phenomena of neutrophil infiltration into various organs, such as the liver, lymphoid organs, and CNS have been identified. This progress in the study of neutrophil migration from the blood vessels to organs results in a deeper understanding of these immune cells' motility and morphology, which are closely related to the spatiotemporal regulation of the overall immune response. In this review, we discuss our current understanding of neutrophil trafficking in various organs.
Collapse
Affiliation(s)
- Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
78
|
Saha AK, Osmulski P, Dallo SF, Gaczynska M, Huang THM, Ramasubramanian AK. Cholesterol Regulates Monocyte Rolling through CD44 Distribution. Biophys J 2017; 112:1481-1488. [PMID: 28402890 DOI: 10.1016/j.bpj.2017.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 10/19/2022] Open
Abstract
Cholesterol is an important risk factor of atherosclerosis, due to its active uptake by monocytes/macrophages. Monocyte recruitment from flowing blood to atherosclerotic foci is the key first step in the development of atherosclerosis. Cholesterol content alters cell membrane stiffness, and lateral lipid and protein diffusion. We hypothesized that cholesterol content will modulate the recruitment of monocytes to inflamed endothelial surface by altering the dynamics of adhesion receptors. We depleted or enriched the cellular cholesterol levels using methyl-β-cyclodextran in freshly isolated human monocytes. We investigated the effect of these changes on the mechanics of monocyte rolling on E-selectin surfaces at 1 dyn/cm2 in microchannels. Using imaging flow cytometry and atomic force microscopy, we characterized the distribution of lipid rafts and the E-selectin counterreceptor CD44 on the monocyte surface. We observed that lower levels of cholesterol resulted in the uniform, CD44-mediated rolling of monocytes on the E-selectin-coated surfaces. We also observed that cells depleted of cholesterol had higher membrane fluidity, and more uniform distribution of CD44 counterreceptor, which resulted in smooth motion of the cells compared to cells enriched with cholesterol. This work demonstrates that cholesterol can modulate monocyte adhesion by regulating the receptor mobility, and our results provide insights into the biophysical regulation of inflammation for the better understanding of diseases like atherosclerosis and hypercholesterolemia.
Collapse
Affiliation(s)
- Amit K Saha
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas
| | - Pawel Osmulski
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Shatha F Dallo
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas
| | - Maria Gaczynska
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Tim H-M Huang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Anand K Ramasubramanian
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas; Department of Biomedical, Chemical and Materials Engineering, San José State University, San José, California.
| |
Collapse
|
79
|
Culmer DL, Dunbar ML, Hawley AE, Sood S, Sigler RE, Henke PK, Wakefield TW, Magnani JL, Myers DD. E-selectin inhibition with GMI-1271 decreases venous thrombosis without profoundly affecting tail vein bleeding in a mouse model. Thromb Haemost 2017; 117:1171-1181. [PMID: 28300869 DOI: 10.1160/th16-04-0323] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
Selectins, such as E-selectin (CD62E), function in venous thrombosis by binding and activating immune cells to initiate the coagulation cascade. GMI-1271 is a small molecule antagonist that inhibits E-selectin activity. Here we determine whether inhibition of E-selectin is sufficient to decrease acute venous thrombosis and associated inflammatory events in both prophylactic and treatment protocols without significantly affecting haemostasis. Male C57BL/6 mice underwent surgery for experimental thrombosis induction and were harvested at peak thrombus formation in our animal model, two days post induction. Groups included non-thrombosed true controls, shams, controls, and prophylactic or treatment groups of GMI-1271 (10 mg/kg intraperitoneal BID (twice a day) and low-molecular-weight heparin (LMWH, Lovenox 6 mg/kg subcutaneously (SC), once a day (SID). Compared with control animals, prophylaxis or treatment with LMWH and GMI-1271 in a dose-dependent manner significantly decreased thrombosis. GMI-1271 significantly lowered tail bleeding times when compared to LMWH. GMI-1271 and LMWH prophylactically administered significantly decreased vein wall neutrophil cell extravasation. However, all treatment and prophylactic therapies significantly decreased vein wall monocyte extravasation versus controls. GMI-1271 prophylactic therapy significantly decreased intra-thrombus cell counts versus control animals and other treatment groups. Immunohistochemistry confirmed that both treatments with GMI-1271 and LMWH significantly decreased activated leukocyte migration. GMI-1271 therapy significantly decreased thrombus weight and resulted in significantly lower bleeding times than LMWH. GMI-1271 treated mice showed decreased local and systemic inflammatory effects while modulating neutrophil activation, suggesting that GMI-1271 is a viable therapeutic candidate for venous thrombosis prophylaxis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Daniel D Myers
- Daniel D. Myers, Jr., DVM, MPH, DACLAM, University of Michigan, North Campus Research Complex, Building 26, Room 263N, 2800 Plymouth Road, Ann Arbor, MI 48109-2800, USA, Tel.: +1 734 763 0940, E-mail:
| |
Collapse
|
80
|
Kourtzelis I, Mitroulis I, von Renesse J, Hajishengallis G, Chavakis T. From leukocyte recruitment to resolution of inflammation: the cardinal role of integrins. J Leukoc Biol 2017; 102:677-683. [PMID: 28292945 DOI: 10.1189/jlb.3mr0117-024r] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/23/2022] Open
Abstract
Integrins constitute a large group of adhesion receptors that are formed as heterodimers of α and β subunits. Their presence and activation status on the surface of leukocytes modulate a broad spectrum of processes in inflammation and immunity. This mini review critically outlines research advances with regard to the function of leukocyte integrins in regulating and integrating the onset and resolution of acute inflammation. Specifically, we summarize and discuss relevant, current literature that supports the multifunctional role of integrins and their partners. The latter include molecules that physically associate with integrins or regulate their activity in the context of the following: 1) leukocyte recruitment to an inflamed tissue, 2) recognition and phagocytosis of apoptotic neutrophils (efferocytosis), and 3) egress of efferocytic macrophages from the inflamed site to lymphoid tissues. The understanding of the fine-tuning mechanisms of the aforementioned processes by integrins and their functional partners may enable the design of therapeutic tools to counteract destructive inflammation and promote more efficient resolution of inflammation.
Collapse
Affiliation(s)
- Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; and
| | - Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; and
| | - Janusz von Renesse
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; and
| | - George Hajishengallis
- Department of Microbiology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; and
| |
Collapse
|
81
|
Morita Y, Kamal M, Kang SA, Zhang R, Lokesh GL, Thiviyanathan V, Hasan N, Woo S, Zhao D, Leslie M, Suh S, Razaq W, Rui H, Gorenstein DG, Volk DE, Tanaka T. E-selectin Targeting PEGylated-thioaptamer Prevents Breast Cancer Metastases. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e399. [PMID: 27959340 DOI: 10.1038/mtna.2016.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023]
Abstract
E-selectin is an adhesion molecule expressed on the luminal surface of inflamed blood vessels that mediates hematogenous metastasis by assisting shear-resistant adhesion of circulating tumor cells to the vessel surface under dynamic blood flow. Previously, we developed an E-selectin antagonistic thioaptamer (ESTA) for the prevention of hematogenous metastasis through the blockade of CD44high breast cancer cells (BCa) adhesion to E-selectin-expressing premetastatic endothelial niche. The current study focuses on developing a PEGylated E-selectin targeting thioaptamer with improved pharmaceutical properties. A serial deletion of stem-loops reveled that loop-1 and -2 (ESTA7) are the minimally effective backbone structure necessary to obtain inhibition of the E-selectin/CD44 interaction and shear resistant adhesion of CD44high BCa to E-selectin-expressing human endothelial cells (HMVECs) at a level equal to ESTA. Chemical conjugation of methoxy-polyethylene-glycol (PEG) at the sizes of 5 and 10 kDa did not interfere with ESTA7-mediated shear-resistant adhesion. However, in vivo study demonstrated that only 10 kDa PEG-conjugated ESTA7 (ESTA7-p10) retains the activity to inhibit metastases at a level equal to parental ESTA. Additionally, a single intravenous injection of ESTA7-p10 inhibited the development of lung, brain, and bone metastases of MDA-MB-231, through the blockade of E-selectin. Moreover, PEGylation led to an extension of elimination half-life and increase of AUC, resulting in superior inhibition of metastasis development compared to parental ESTA with a longer interval between dosing in a spontaneous metastasis model. Lastly, repeated intravenous administration of ESTA7-p10 was tolerated in mice, highlighting the potential prophylactic application of ESTA7-p10 for metastasis prevention.
Collapse
Affiliation(s)
- Yoshihiro Morita
- University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Mohamed Kamal
- University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Shin-Ae Kang
- University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Roy Zhang
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ganesh Lr Lokesh
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Varatharasa Thiviyanathan
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nafis Hasan
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Daniel Zhao
- University of Oklahoma Health Sciences Center, College of Public Health, Oklahoma City, Oklahoma, USA
| | - Macall Leslie
- University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Stephen Suh
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Wajeeha Razaq
- Department of Hematology and Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin, USA
| | - David G Gorenstein
- AM Biotechnologies, Houston, Texas, USA.,Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - David E Volk
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Takemi Tanaka
- University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA.,Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
82
|
Monocytic thrombomodulin promotes cell adhesion through interacting with its ligand, Lewis y. Immunol Cell Biol 2016; 95:372-379. [PMID: 27808085 PMCID: PMC5415637 DOI: 10.1038/icb.2016.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
Abstract
The leukocyte adhesion cascade involves multiple events that efficiently localize circulating leukocytes into the injured sites to mediate inflammatory responses. From rolling to firm adhesion, the interactions between adhesion molecules have pivotal roles in increasing the avidity of leukocytes to endothelial cells. Thrombomodulin (TM), an essential anticoagulant protein in the vasculature, is also expressed on leukocytes. We previously demonstrated that Lewisy (Ley), a specific ligand of TM, is upregulated in inflamed endothelium and is involved in leukocyte adhesion. The current study aimed to investigate whether leukocyte-expressed TM promotes cell adhesion by interacting with Ley. Using human monocytic THP-1 cells as an in vitro cell model, we showed that TM increases THP-1 cell adhesion to inflamed endothelium as well as to Ley-immobilized surface. When THP-1 adhered to activated endothelium and Ley-immobilized surface, the TM distribution became polarized. Addition of soluble Ley to a suspension of THP-1 cells with TM expression triggered an increase in the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), which enabled THP-1 to adhere firmly to intercellular adhesion molecule (ICAM)-1 by activating β2 integrins. In vivo, macrophage infiltration and neointima formation following arterial ligation-induced vascular injury were higher in wild-type TM (TMflox/flox) than in myeloid-specific TM-deficient (LysMcre/TMflox/flox) mice. Taken together, these results suggest a novel function for TM as an adhesion molecule in monocytes, where it enhances cell adhesion by binding Ley, leading to β2 integrin activation via p38 MAPK.
Collapse
|
83
|
Pleiotropic regulations of neutrophil receptors response to sepsis. Inflamm Res 2016; 66:197-207. [DOI: 10.1007/s00011-016-0993-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/24/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
|
84
|
Barra PA, Ribeiro AJM, Ramos MJ, Jiménez VA, Alderete JB, Fernandes PA. Binding free energy calculations on E-selectin complexes with sLex
oligosaccharide analogs. Chem Biol Drug Des 2016; 89:114-123. [DOI: 10.1111/cbdd.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/01/2016] [Accepted: 08/06/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Pabla A. Barra
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad de Concepción; Concepción Chile
| | | | - Maria J. Ramos
- Faculdade de Ciencias; Universidad do Porto; Porto Portugal
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas; Facultad de Ciencias Exactas; Universidad Andres Bello Sede Concepción; Talcahuano Chile
| | - Joel B. Alderete
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad de Concepción; Concepción Chile
| | | |
Collapse
|
85
|
Using CRISPR-Cas9 to quantify the contributions of O-glycans, N-glycans and Glycosphingolipids to human leukocyte-endothelium adhesion. Sci Rep 2016; 6:30392. [PMID: 27458028 PMCID: PMC4960646 DOI: 10.1038/srep30392] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/30/2016] [Indexed: 01/20/2023] Open
Abstract
There is often interest in dissecting the relative contributions of the N-glycans, O-glycans and glycosphingolipids (GSLs) in regulating complex biological traits like cell signaling, adhesion, development and metastasis. To address this, we developed a CRISPR-Cas9 toolkit to selectively truncate each of these commonly expressed glycan-types. Here, O-glycan biosynthesis was truncated by knocking-out Core 1 β3Gal-T Specific Molecular Chaperone (COSMC), N-glycans by targeting the β1,2 GlcNAc-transferase (MGAT1) and GSLs by deleting UDP-glucose ceramide glucosyltransferase (UGCG). These reagents were applied to reveal the glycoconjugates regulating human myeloid cell adhesion to selectins under physiological shear-flow observed during inflammation. These functional studies show that leukocyte rolling on P- and L-selectin is ablated in cells lacking O-glycans, with N-glycan truncation also increasing cell rolling velocity on L-selectin. All three glycan families contributed to E-selectin dependent cell adhesion with N-glycans contributing to all aspects of the leukocyte adhesion cascade, O-glycans only being important during initial recruitment, and GSLs stabilizing slow cell rolling and the transition to firm arrest. Overall, the genome editing tools developed here may be broadly applied in studies of cellular glycosylation.
Collapse
|
86
|
Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 2016; 127:2173-81. [DOI: 10.1182/blood-2016-01-688887] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Abstract
Neutrophils are polymorphonuclear leukocytes of the phagocytic system that act as first line of host defense against invading pathogens but are also important mediators of inflammation-induced injury. In contrast to other members of the innate immune system, neutrophils are classically considered a homogenous population of terminally differentiated cells with a well-defined and highly conserved function. Indeed, their short lifespan, the absent proliferative capacity, their limited ability to produce large amounts of cytokines, and the failure to recirculate from the tissue to the bloodstream have sustained this idea. However, increasing evidence over the last decade has demonstrated an unexpected phenotypic heterogeneity and functional versatility of the neutrophil population. Far beyond their antimicrobial functions, neutrophils are emerging as decision-shapers during innate and adaptive immune responses. These emerging discoveries open a new door to understand the role of neutrophils during homeostatic but also pathogenic immune processes. Thus, this review details novel insights of neutrophil phenotypic and functional heterogeneity during homeostasis and disease.
Collapse
|
87
|
Moesin regulates neutrophil rolling velocity in vivo. Cell Immunol 2016; 304-305:59-62. [PMID: 27131737 DOI: 10.1016/j.cellimm.2016.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/27/2016] [Accepted: 04/20/2016] [Indexed: 01/08/2023]
Abstract
During inflammation, the selectin-induced slow rolling of neutrophils on venules cooperates with chemokine signaling to mediate neutrophil recruitment into tissues. Previous studies identified P-selectin glycoprotein ligand-1 (PSGL-1) and CD44 as E-selectin ligands that activate integrins to induce slow rolling. We show here that in TNF-α-treated cremaster muscle venules, slow leukocyte rolling was impaired in mice deficient in moesin, a member of the ezrin-radixin-moesin (ERM) family. Accordingly, neutrophil recruitment in a peritonitis model was decreased in moesin-deficient mice when chemokine signaling was blocked with pertussis toxin. These results suggest that moesin contributes to the slow rolling and subsequent recruitment of neutrophils during inflammation.
Collapse
|
88
|
Mondal N, Stolfa G, Antonopoulos A, Zhu Y, Wang SS, Buffone A, Atilla-Gokcumen GE, Haslam SM, Dell A, Neelamegham S. Glycosphingolipids on Human Myeloid Cells Stabilize E-Selectin-Dependent Rolling in the Multistep Leukocyte Adhesion Cascade. Arterioscler Thromb Vasc Biol 2016; 36:718-27. [PMID: 26868209 DOI: 10.1161/atvbaha.115.306748] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Recent studies suggest that the E-selectin ligands expressed on human leukocytes may differ from those in other species, particularly mice. To elaborate on this, we evaluated the impact of glycosphingolipids expressed on human myeloid cells in regulating E-selectin-mediated cell adhesion. APPROACH AND RESULTS A series of modified human cell lines and primary neutrophils were created by targeting UDP-Glucose Ceramide Glucosyltransferase using either lentivirus-delivered shRNA or CRISPR-Cas9-based genome editing. Enzymology and mass spectrometry confirm that the modified cells had reduced or abolished glucosylceramide biosynthesis. Glycomics profiling showed that UDP-Glucose Ceramide Glucosyltransferase disruption also increased prevalence of bisecting N-glycans and reduced overall sialoglycan expression on leukocyte N- and O-glycans. Microfluidics-based flow chamber studies demonstrated that both the UDP-Glucose Ceramide Glucosyltransferase knockouts and knockdowns display ≈60% reduction in leukocyte rolling and firm adhesion on E-selectin bearing stimulated endothelial cells, without altering cell adhesion to P-selectin. Consistent with the concept that the glycosphingolipids support slow rolling and the transition to firm arrest, inhibiting UDP-Glucose Ceramide Glucosyltransferase activity resulted in frequent leukocyte detachment events, skipping motion, and reduced diapedesis across the endothelium. Cells bearing truncated O- and N-glycans also sustained cell rolling on E-selectin, although their ability to be recruited from free fluid flow was diminished. CONCLUSIONS Glycosphingolipids likely contribute to human myeloid cell adhesion to E-selectin under fluid shear, particularly the transition of rolling cells to firm arrest.
Collapse
Affiliation(s)
- Nandini Mondal
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Gino Stolfa
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Aristotelis Antonopoulos
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Yuqi Zhu
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Shuen-Shiuan Wang
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Alexander Buffone
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - G Ekin Atilla-Gokcumen
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Stuart M Haslam
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Anne Dell
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.)
| | - Sriram Neelamegham
- From the Department of Chemical and Biological Engineering (N.M., G.S., Y.Z., S.-S.W., A.B., S.N.), Department of Chemistry (G.E.A.-G.), and The NY State Center for Excellence in Bioinformatics and Life Sciences (S.N.), State University of New York, Buffalo; and Department of Life Sciences, Imperial College London, London, UK (A.A., S.M.H., A.D.).
| |
Collapse
|
89
|
Yamamoto H, Kuroda N, Uekita H, Kochi I, Matsumoto A, Niinaga R, Funahashi T, Shimomura I, Kihara S. E-selectin ligand-1 (ESL-1) is a novel adiponectin binding protein on cell adhesion. Biochem Biophys Res Commun 2016; 470:425-430. [PMID: 26792720 DOI: 10.1016/j.bbrc.2016.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adiponectin (APN) is an adipocyte-derived bioactive molecule with anti-diabetic and anti-atherogenic properties. Although anti-diabetic effects are mostly mediated by the adiponectin receptors AdipoR1 and AdipoR2, the anti-atherogenic mechanisms have not been fully elucidated. METHODS AND RESULTS In this study, we identified E-selectin ligand (ESL)-1 as a novel APN-binding protein by mass spectrometry analysis of HepG2 cell-derived immunoprecipitant with an anti-APN antibody. Cell adhesion assays using fluorescence-labelled monocyte cell line THP-1 cells and human umbilical vein endothelial cells (HUVECs) revealed that APN-pre-treated THP-1 cells had reduced binding ability to HUVECs. This APN-mediated suppressive effect on monocyte binding to endothelial cells was partially abrogated by targeting ESL-1 with shRNA in THP-1 cells. In addition, serial mutagenesis analysis disclosed that five extracellular amino acids close to the N-terminus of ESL-1 were essential for binding with APN. CONCLUSION Our results highlight the fact that interaction between APN and ESL-1 could provide a fundamental mechanism underlying the anti-atherogenic properties of APN.
Collapse
Affiliation(s)
- Hiroyasu Yamamoto
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nana Kuroda
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiromi Uekita
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ikoi Kochi
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akane Matsumoto
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryu Niinaga
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tohru Funahashi
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Kihara
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
90
|
Leiva M, Quintana JA, Ligos JM, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun 2016; 7:10222. [PMID: 26742601 PMCID: PMC4729861 DOI: 10.1038/ncomms10222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/17/2015] [Indexed: 01/11/2023] Open
Abstract
The life-long maintenance of haematopoietic stem and progenitor cells (HSPCs) critically relies on environmental signals produced by cells that constitute the haematopoietic niche. Here we report a cell-intrinsic mechanism whereby haematopoietic cells limit proliferation within the bone marrow, and show that this pathway is repressed by E-selectin ligand 1 (ESL-1). Mice deficient in ESL-1 display aberrant HSPC quiescence, expansion of the immature pool and reduction in niche size. Remarkably, the traits were transplantable and dominant when mutant and wild-type precursors coexisted in the same environment, but were independent of E-selectin, the vascular receptor for ESL-1. Instead, quiescence is generated by unrestrained production of the cytokine TGFβ by mutant HSPC, and in vivo or in vitro blockade of the cytokine completely restores the homeostatic properties of the haematopoietic niche. These findings reveal that haematopoietic cells, including the more primitive compartment, can actively shape their own environment. Hematopoietic stem and progenitor cell (HSPCs) proliferation is controlled by signals from the niche. Here, Leiva et al. show in vivo in mice that deletion of E-selectin ligand 1 causes quiescence of HSPCs and a reduction in niche size, which is mediated by changes of TGFß levels in the bone marrow.
Collapse
Affiliation(s)
- Magdalena Leiva
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Juan A Quintana
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - José M Ligos
- Cellomics Unit, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany
| |
Collapse
|
91
|
Hughes AD, Marsh G, Waugh RE, Foster DG, King MR. Halloysite Nanotube Coatings Suppress Leukocyte Spreading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13553-13560. [PMID: 26605493 PMCID: PMC5097672 DOI: 10.1021/acs.langmuir.5b03288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The nanoscale topography of adhesive surfaces is known to be an important factor governing cellular behavior. Previous work has shown that surface coatings composed of halloysite nanotubes enhance the adhesion, and therefore capture of, rare target cells such as circulating tumor cells. Here we demonstrate a unique feature of these coatings in their ability to reduce the adhesion of leukocytes and prevent leukocyte spreading. Surfaces were prepared with coatings of halloysite nanotubes and functionalized for leukocyte adhesion with E-selectin, and the dilution of nanotube concentration revealed a threshold concentration below which cell spreading became comparable to smooth surfaces. Evaluation of surface roughness characteristics determined that the average distance between discrete surface features correlated with adhesion metrics, with a separation distance of ∼2 μm identified as the critical threshold. Computational modeling of the interaction of leukocytes with halloysite nanotube-coated surfaces of varying concentrations demonstrates that the geometry of the cell surface and adhesive counter-surface produces a significantly diminished effective contact area compared to a leukocyte interacting with a smooth surface.
Collapse
Affiliation(s)
- Andrew D. Hughes
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853
| | - Graham Marsh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627
| | - Richard E. Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627
| | - David G. Foster
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627
| | - Michael R. King
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853
| |
Collapse
|
92
|
Selectin-mediated leukocyte trafficking during the development of autoimmune disease. Autoimmun Rev 2015; 14:984-95. [DOI: 10.1016/j.autrev.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/18/2022]
|
93
|
Liao W, Jordaan G, Nham P, Phan RT, Pelegrini M, Sharma S. Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens. BMC Cancer 2015; 15:714. [PMID: 26474785 PMCID: PMC4609092 DOI: 10.1186/s12885-015-1708-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Abstract
Background To determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed. Methods Ten CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system. Results An average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q < 0.05, fold change >2) were identified. Expression of selected DEGs (n = 32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90 % of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis). Skipped exon was the most frequent splicing alteration in CLL specimens with 128 significant events (P-value <0.05, minimum inclusion level difference >0.1). Conclusion The RNA-seq analysis of CLL specimens identifies novel DEG and alternatively spliced genes that are potential prognostic markers and therapeutic targets. High level of validation by qRT-PCR for a number of DEG genes supports the accuracy of this analysis. Global comparison of transcriptomes of B cells, IGVH non-mutated CLL (U-CLL) and mutated CLL specimens (M-CLL) with multidimensional scaling analysis was able to segregate CLL and B cell transcriptomes but the M-CLL and U-CLL transcriptomes were indistinguishable. The analysis of HTS RNA-seq data to identify alternative splicing events and other genetic abnormalities specific to CLL is an added advantage of RNA-seq that is not feasible with other genome wide analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1708-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Liao
- Division of Hematology-Oncology, UCLA-VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Gwen Jordaan
- Division of Hematology-Oncology, UCLA-VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Phillipp Nham
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Ryan T Phan
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Matteo Pelegrini
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, USA.
| | - Sanjai Sharma
- Division of Hematology-Oncology, UCLA-VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA. .,UCLA West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Bldg 304, Rm E1-115, Los Angeles, CA, 90073, USA.
| |
Collapse
|
94
|
Yasmin-Karim S, King MR, Messing EM, Lee YF. E-selectin ligand-1 controls circulating prostate cancer cell rolling/adhesion and metastasis. Oncotarget 2015; 5:12097-110. [PMID: 25301730 PMCID: PMC4322988 DOI: 10.18632/oncotarget.2503] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/16/2014] [Indexed: 12/18/2022] Open
Abstract
Circulating prostate cancer (PCa) cells preferentially roll and adhere on bone marrow vascular endothelial cells, where abundant E-selectin and stromal cell-derived factor 1 (SDF-1) are expressed, subsequently initiating a cascade of activation events that eventually lead to the development of metastases. To elucidate the roles of circulating PCa cells' rolling and adhesion behaviors in cancer metastases, we applied a dynamic cylindrical flow-based microchannel device that is coated with E-selectin and SDF-1, mimicking capillary endothelium. Using this device we captured a small fraction of rolling PCa cells. These rolling cells display higher static adhesion ability, more aggressive cancer phenotypes and stem-like properties. Importantly, mice received rolling PCa cells, but not floating PCa cells, developed cancer metastases. Genes coding for E-selectin ligands and genes associated with cancer stem cells and metastasis were elevated in rolling PCa cells. Knock down of E-selectin ligand 1(ESL-1), significantly impaired PCa cells' rolling capacity and reduced cancer aggressiveness. Moreover, ESL-1 activates RAS and MAP kinase signal cascade, consequently inducing the downstream targets. In summary, circulating PCa cells' rolling capacity contributes to PCa metastasis, and that is in part controlled by ESL-1.
Collapse
Affiliation(s)
- Sayeda Yasmin-Karim
- Departments of Urology and Pathology and Laboratory Medicine, and Chemical Engineering, University of Rochester, Rochester, NY 14642
| | - Michael R King
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Edward M Messing
- Departments of Urology and Pathology and Laboratory Medicine, and Chemical Engineering, University of Rochester, Rochester, NY 14642
| | - Yi-Fen Lee
- Departments of Urology and Pathology and Laboratory Medicine, and Chemical Engineering, University of Rochester, Rochester, NY 14642
| |
Collapse
|
95
|
Huang J, Kast J. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5. J Proteome Res 2015; 14:3015-26. [PMID: 26159767 DOI: 10.1021/acs.jproteome.5b00407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.
Collapse
Affiliation(s)
- Jiqing Huang
- †The Biomedical Research Centre, ‡Department of Chemistry, and §Centre for Blood Research, University of British Columbia, Vancouver, B. C. V6T 1Z3, Canada
| | - Juergen Kast
- †The Biomedical Research Centre, ‡Department of Chemistry, and §Centre for Blood Research, University of British Columbia, Vancouver, B. C. V6T 1Z3, Canada
| |
Collapse
|
96
|
Cerda A, Rodrigues AC, Alves C, Genvigir FDV, Fajardo CM, Dorea EL, Gusukuma MC, Pinto GA, Hirata MH, Hirata RDC. Modulation of Adhesion Molecules by Cholesterol-Lowering Therapy in Mononuclear Cells from Hypercholesterolemic Patients. Cardiovasc Ther 2015; 33:168-76. [DOI: 10.1111/1755-5922.12126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Alvaro Cerda
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
- Center of Molecular Biology and Pharmacogenetics; BIOREN-CEGIN; Universidad de La Frontera; Temuco Chile
| | - Alice Cristina Rodrigues
- Department of Pharmacology; Institute of Biomedical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Camila Alves
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Fabiana Dalla Vecchia Genvigir
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Cristina Moreno Fajardo
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | | | | | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
97
|
Mócsai A, Walzog B, Lowell CA. Intracellular signalling during neutrophil recruitment. Cardiovasc Res 2015; 107:373-85. [PMID: 25998986 PMCID: PMC4502828 DOI: 10.1093/cvr/cvv159] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 05/19/2015] [Indexed: 12/29/2022] Open
Abstract
Recruitment of leucocytes such as neutrophils to the extravascular space is a critical step of the inflammation process and plays a major role in the development of various diseases including several cardiovascular diseases. Neutrophils themselves play a very active role in that process by sensing their environment and responding to the extracellular cues by adhesion and de-adhesion, cellular shape changes, chemotactic migration, and other effector functions of cell activation. Those responses are co-ordinated by a number of cell surface receptors and their complex intracellular signal transduction pathways. Here, we review neutrophil signal transduction processes critical for recruitment to the site of inflammation. The two key requirements for neutrophil recruitment are the establishment of appropriate chemoattractant gradients and the intrinsic ability of the cells to migrate along those gradients. We will first discuss signalling steps required for sensing extracellular chemoattractants such as chemokines and lipid mediators and the processes (e.g. PI3-kinase pathways) leading to the translation of extracellular chemoattractant gradients to polarized cellular responses. We will then discuss signal transduction by leucocyte adhesion receptors (e.g. tyrosine kinase pathways) which are critical for adhesion to, and migration through the vessel wall. Finally, additional neutrophil signalling pathways with an indirect effect on the neutrophil recruitment process, e.g. through modulation of the inflammatory environment, will be discussed. Mechanistic understanding of these pathways provide better understanding of the inflammation process and may point to novel therapeutic strategies for controlling excessive inflammation during infection or tissue damage.
Collapse
Affiliation(s)
- Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Tűzoltó utca 37-47, 1094 Budapest, Hungary MTA-SE 'Lendület' Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Barbara Walzog
- Department of Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
98
|
Manwani D, Chen G, Carullo V, Serban S, Olowokure O, Jang J, Huggins M, Cohen HW, Billett H, Atweh GF, Frenette PS, Shi PA. Single-dose intravenous gammaglobulin can stabilize neutrophil Mac-1 activation in sickle cell pain crisis. Am J Hematol 2015; 90:381-5. [PMID: 25616042 DOI: 10.1002/ajh.23956] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 01/19/2023]
Abstract
Intravenous immunoglobulin (IVIG) decreases neutrophil adhesion to endothelium and red blood cell-neutrophil interactions in sickle cell mice undergoing vaso-occlusion. In this Phase I clinical trial of sickle cell anemia (SCA) patients admitted with pain crisis, we evaluated the status of adhesion molecules on neutrophils in control and IVIG-treated subjects pre- and post-infusion up to 800 mg/kg, the same dose used in murine studies. Mac-1 function significantly decreased from baseline in the low-dose IVIG (200-400 mg/kg) cohorts. IVIG-related adverse events may have occurred in the high-dose (600-800 mg/kg) cohorts. There were no significant increases in neutrophil and leukocyte counts, suggesting that IVIG may more selectively inhibit Mac-1 function as opposed to neutrophil adhesion. This study provides the first in-human validation of pre-clinical murine studies that IVIG can decrease Mac-1 function.
Collapse
Affiliation(s)
- Deepa Manwani
- Department of Pediatrics; Albert Einstein College of Medicine; Bronx New York
| | - Grace Chen
- Department of Cell Biology; Albert Einstein College of Medicine; Bronx New York
| | - Veronica Carullo
- Department of Anesthesiology; Albert Einstein College of Medicine; Bronx New York
| | - Stelian Serban
- Department of Anesthesiology; Mount Sinai School of Medicine; New York New York
| | | | - Jungeun Jang
- Department of Cell Biology; Albert Einstein College of Medicine; Bronx New York
| | - Matthew Huggins
- Department of Cell Biology; Albert Einstein College of Medicine; Bronx New York
| | - Hillel W. Cohen
- Department of Epidemiology and Population Health; Albert Einstein College of Medicine; Bronx New York
| | - Henny Billett
- Department of Medicine; Albert Einstein College of Medicine; Bronx New York
| | - George F. Atweh
- Department of Medicine; Mount Sinai School of Medicine; New York New York
| | - Paul S. Frenette
- Department of Cell Biology; Albert Einstein College of Medicine; Bronx New York
- Department of Medicine; Mount Sinai School of Medicine; New York New York
- Department of Medicine; Albert Einstein College of Medicine; Bronx New York
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine; Bronx New York
| | - Patricia A. Shi
- Department of Medicine; Mount Sinai School of Medicine; New York New York
- Department of Medicine; Albert Einstein College of Medicine; Bronx New York
- New York Blood Center; New York New York
| |
Collapse
|
99
|
Witkowska AM, Socha K, Kochanowicz J, Karpińska E, Jakoniuk M, Zujko ME, Wilkiel M, Borawska MH, Mariak Z. Serum Levels of Biomarkers of Immune Activation and Associations With Neurological Impairment in Relapsing-Remitting Multiple Sclerosis Patients During Remission. Biol Res Nurs 2015; 18:113-9. [PMID: 25911236 DOI: 10.1177/1099800415583105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Although much is known about cytokines and adhesion molecules during an active course of multiple sclerosis (MS), there is limited information about their serum levels during remission. OBJECTIVE This study aimed to (1) compare peripheral levels of tumor necrosis factor-α (TNF-α), soluble interleukin-2 receptor α (sIL-2Rα), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble E-selectin (sE-selectin) in MS patients during clinical remission with those of healthy controls and (2) explore possible relationships between the levels of these cytokines and adhesion molecules and neurological impairment. METHODS Initially, 92 patients with relapsing-remitting multiple sclerosis (RRMS) who were in clinical remission and 30 healthy controls were recruited for this study. The severity of neurological impairment was assessed with the Expanded Disability Status Scale (EDSS). Serum concentrations of TNF-α, sIL-2Rα, sICAM-1, and sE-selectin were determined using the sandwich enzyme-linked immunosorbent (ELISA) technique and compared between patients and controls. In a subset of RRMS patients (n = 67), the levels of these cytokines and adhesion molecules were compared between subgroups of patients based on scores on the EDSS subscales, which measure disability level for specific neurological functions. RESULTS The MS patients' TNF-α, sICAM-1, and sE-selectin levels were markedly lower than those of the controls, while their sIL-2Rα level was higher. The serum sICAM-1 concentration was positively associated with EDSS total score (ρ = .291, p = .017) as well as with the EDSS pyramidal (ρ = .267, p = .029) and cerebellar subscores (ρ = .303, p = .013). In the patients with cerebellar deficits and severe brain stem dysfunction, sICAM-1 levels were upregulated. CONCLUSION Although a decreased sICAM-1 concentration was observed in RRMS patients in remission as compared to healthy controls, sICAM-1 seemed to reflect neurological impairment and clinical disability. These data suggest that increasing serum sICAM-1 levels may be associated with progression of cerebellar or brain stem perturbations. However, further studies are required to confirm these findings in a larger population of RRMS patients.
Collapse
Affiliation(s)
- Anna M Witkowska
- Department of Food Commodities Science and Technology, Medical University of Białystok, Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, Białystok, Poland
| | - Jan Kochanowicz
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, Białystok, Poland Department of Invasive Neurology, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Karpińska
- Department of Bromatology, Medical University of Białystok, Białystok, Poland
| | - Marta Jakoniuk
- Non-public Healthcare Facility Kendron, Białystok, Poland
| | - Małgorzata E Zujko
- Department of Food Commodities Science and Technology, Medical University of Białystok, Białystok, Poland
| | - Marianna Wilkiel
- Non-public Healthcare Facility Kendron, Białystok, Poland Individual Nursing Practice, Białystok, Poland
| | - Maria H Borawska
- Department of Bromatology, Medical University of Białystok, Białystok, Poland
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, Białystok, Poland
| |
Collapse
|
100
|
Li Q, Zhang J, Huang B, Ling Y, Fang Y. A method for surface E-selectin site density determination. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1033654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|