51
|
Woods S, Charlton S, Cheung K, Hao Y, Soul J, Reynard LN, Crowe N, Swingler TE, Skelton AJ, Piróg KA, Miles CG, Tsompani D, Jackson RM, Dalmay T, Clark IM, Barter MJ, Young DA. microRNA-seq of cartilage reveals an overabundance of miR-140-3p which contains functional isomiRs. RNA (NEW YORK, N.Y.) 2020; 26:1575-1588. [PMID: 32660984 PMCID: PMC7566571 DOI: 10.1261/rna.075176.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/06/2020] [Indexed: 05/15/2023]
Abstract
miR-140 is selectively expressed in cartilage. Deletion of the entire Mir140 locus in mice results in growth retardation and early-onset osteoarthritis-like pathology; however, the relative contribution of miR-140-5p or miR-140-3p to the phenotype remains to be determined. An unbiased small RNA sequencing approach identified miR-140-3p as significantly more abundant (>10-fold) than miR-140-5p in human cartilage. Analysis of these data identified multiple miR-140-3p isomiRs differing from the miRBase annotation at both the 5' and 3' end, with >99% having one of two seed sequences (5' bases 2-8). Canonical (miR-140-3p.2) and shifted (miR-140-3p.1) seed isomiRs were overexpressed in chondrocytes and transcriptomics performed to identify targets. miR-140-3p.1 and miR-140-3p.2 significantly down-regulated 694 and 238 genes, respectively, of which only 162 genes were commonly down-regulated. IsomiR targets were validated using 3'UTR luciferase assays. miR-140-3p.1 targets were enriched within up-regulated genes in rib chondrocytes of Mir140-null mice and within down-regulated genes during human chondrogenesis. Finally, through imputing the expression of miR-140 from the expression of the host gene WWP2 in 124 previously published data sets, an inverse correlation with miR-140-3p.1 predicted targets was identified. Together these data suggest the novel seed containing isomiR miR-140-3p.1 is more functional than original consensus miR-140-3p seed containing isomiR.
Collapse
Affiliation(s)
- Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Sarah Charlton
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Kat Cheung
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Yao Hao
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
- Orthopedics Department, First Hospital of Shanxi Medical University, Yingze District, Taiyuan, 030000, China
| | - Jamie Soul
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Louise N Reynard
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Natalie Crowe
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Tracey E Swingler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Andrew J Skelton
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Katarzyna A Piróg
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Colin G Miles
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Dimitra Tsompani
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Robert M Jackson
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Ian M Clark
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Matt J Barter
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - David A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
52
|
MicroRNA miR-181-A Rheostat for TCR Signaling in Thymic Selection and Peripheral T-Cell Function. Int J Mol Sci 2020; 21:ijms21176200. [PMID: 32867301 PMCID: PMC7503384 DOI: 10.3390/ijms21176200] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
The selection of T cells during intra-thymic d evelopment is crucial to obtain a functional and simultaneously not self-reactive peripheral T cell repertoire. However, selection is a complex process dependent on T cell receptor (TCR) thresholds that remain incompletely understood. In peripheral T cells, activation, clonal expansion, and contraction of the active T cell pool, as well as other processes depend on TCR signal strength. Members of the microRNA (miRNA) miR-181 family have been shown to be dynamically regulated during T cell development as well as dependent on the activation stage of T cells. Indeed, it has been shown that expression of miR-181a leads to the downregulation of multiple phosphatases, implicating miR-181a as ‘‘rheostat’’ of TCR signaling. Consistently, genetic models have revealed an essential role of miR-181a/b-1 for the generation of unconventional T cells as well as a function in tuning TCR sensitivity in peripheral T cells during aging. Here, we review these broad roles of miR-181 family members in T cell function via modulating TCR signal strength.
Collapse
|
53
|
Tsetsarkin KA, Acklin JA, Liu G, Kenney H, Teterina NL, Pletnev AG, Lim JK. Zika virus tropism during early infection of the testicular interstitium and its role in viral pathogenesis in the testes. PLoS Pathog 2020; 16:e1008601. [PMID: 32614902 PMCID: PMC7331987 DOI: 10.1371/journal.ppat.1008601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Sexual transmission and persistence of Zika virus (ZIKV) in the testes pose new challenges for controlling virus outbreaks and developing live-attenuated vaccines. It has been shown that testicular infection of ZIKV is initiated in the testicular interstitium, followed by spread of the virus in the seminiferous tubules. This leads to testicular damage and/or viral dissemination into the epididymis and eventually into semen. However, it remains unknown which cell types are targeted by ZIKV in the testicular interstitium, and what is the specific order of infectious events leading to ZIKV invasion of the seminiferous tubules. Here, we demonstrate that interstitial leukocytes expressing mir-511-3p microRNA are the initial targets of ZIKV in the testes, and infection of mir-511-3p-expressing cells in the testicular interstitium is necessary for downstream infection of the seminiferous tubules. Mir-511-3p is expressed concurrently with CD206, a marker of lineage 2 (M2) macrophages and monocyte derived dendritic cells (moDCs). Selective restriction of ZIKV infection of CD206-expressing M2 macrophages/moDCs results in the attenuation of macrophage-associated inflammatory responses in vivo and prevents the disruption of the Sertoli cell barrier in vitro. Finally, we show that targeting of viral genome for mir-511-3p significantly attenuates early ZIKV replication not only in the testes, but also in many peripheral organs, including spleen, epididymis, and pancreas. This incriminates M2 macrophages/moDCs as important targets for visceral ZIKV replication following hematogenous dissemination of the virus from the site of infection.
Collapse
Affiliation(s)
- Konstantin A. Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Joshua A. Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Guangping Liu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Heather Kenney
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Natalia L. Teterina
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Alexander G. Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
54
|
Whipple AJ, Breton-Provencher V, Jacobs HN, Chitta UK, Sur M, Sharp PA. Imprinted Maternally Expressed microRNAs Antagonize Paternally Driven Gene Programs in Neurons. Mol Cell 2020; 78:85-95.e8. [PMID: 32032531 PMCID: PMC7176019 DOI: 10.1016/j.molcel.2020.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/03/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022]
Abstract
Imprinted genes with parental-biased allelic expression are frequently co-regulated and enriched in common biological pathways. Here, we functionally characterize a large cluster of microRNAs (miRNAs) expressed from the maternally inherited allele ("maternally expressed") to explore the molecular and cellular consequences of imprinted miRNA activity. Using an induced neuron (iN) culture system, we show that maternally expressed miRNAs from the miR-379/410 cluster direct the RNA-induced silencing complex (RISC) to transcriptional and developmental regulators, including paternally expressed transcripts like Plagl1. Maternal deletion of this imprinted miRNA cluster resulted in increased protein levels of several targets and upregulation of a broader transcriptional program regulating synaptic transmission and neuronal function. A subset of the transcriptional changes resulting from miR-379/410 deletion can be attributed to de-repression of Plagl1. These data suggest maternally expressed miRNAs antagonize paternally driven gene programs in neurons.
Collapse
Affiliation(s)
- Amanda J Whipple
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Vincent Breton-Provencher
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hannah N Jacobs
- Biological Sciences Department, Wellesley College, Wellesley, MA 02481, USA
| | - Udbhav K Chitta
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
55
|
Wells AC, Pobezinskaya EL, Pobezinsky LA. Non-coding RNAs in CD8 T cell biology. Mol Immunol 2020; 120:67-73. [PMID: 32085976 PMCID: PMC7093237 DOI: 10.1016/j.molimm.2020.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
CD8 T cells are among the most vigorous soldiers of the immune system that fight viral infections and cancer. CD8 T cell development, maintenance, activation and differentiation are under the tight control of multiple transcriptional and post-transcriptional networks. Over the last two decades it has become clear that non-coding RNAs (ncRNAs), which consist of microRNAs (miRNAs) and long ncRNAs (lncRNAs), have emerged as global biological regulators. While our understanding of the function of specific miRNAs has increased since the discovery of RNA interference, it is still very limited, and the field of lncRNAs is just starting to blossom. Here we will summarize our knowledge on the role of ncRNAs in CD8 T cell biology, including differentiation into memory and exhausted cells.
Collapse
Affiliation(s)
- Alexandria C Wells
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, United States.
| | - Elena L Pobezinskaya
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States.
| | - Leonid A Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
56
|
ncRNAs in Type-2 Immunity. Noncoding RNA 2020; 6:ncrna6010010. [PMID: 32155783 PMCID: PMC7151598 DOI: 10.3390/ncrna6010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Immunological diseases, including asthma, autoimmunity and immunodeficiencies, affect a growing percentage of the population with significant unmet medical needs. As we slowly untangle and better appreciate these complex genetic and environment-influenced diseases, new therapeutically targetable pathways are emerging. Non-coding RNA species, which regulate epigenetic, transcriptional and translational responses are critical regulators of immune cell development, differentiation and effector function, and may represent one such new class of therapeutic targets. In this review we focus on type-2 immune responses, orchestrated by TH2 cell-derived cytokines, IL-4, IL-5 and IL-13, which stimulate a variety of immune and tissue responses- commonly referred to as type-2 immunity. Evolved to protect us from parasitic helminths, type-2 immune responses are observed in individuals with allergic diseases, including Asthma, atopic dermatitis and food allergy. A growing number of studies have identified the involvement of various RNA species, including microRNAs (miRNA) and long non-coding (lncRNA), in type-2 immune responses and in both clinical and pre-clinical disease settings. We highlight these recent findings, identify gaps in our understanding and provide a perspective on how our current understanding can be harnessed for novel treat opportunities to treat type-2 immune-mediated diseases.
Collapse
|
57
|
Fernández-Messina L, Rodríguez-Galán A, de Yébenes VG, Gutiérrez-Vázquez C, Tenreiro S, Seabra MC, Ramiro AR, Sánchez-Madrid F. Transfer of extracellular vesicle-microRNA controls germinal center reaction and antibody production. EMBO Rep 2020; 21:e48925. [PMID: 32073750 PMCID: PMC7132182 DOI: 10.15252/embr.201948925] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Intercellular communication orchestrates effective immune responses against disease‐causing agents. Extracellular vesicles (EVs) are potent mediators of cell–cell communication. EVs carry bioactive molecules, including microRNAs, which modulate gene expression and function in the recipient cell. Here, we show that formation of cognate primary T‐B lymphocyte immune contacts promotes transfer of a very restricted set of T‐cell EV‐microRNAs (mmu‐miR20‐a‐5p, mmu‐miR‐25‐3p, and mmu‐miR‐155‐3p) to the B cell. Transferred EV‐microRNAs target key genes that control B‐cell function, including pro‐apoptotic BIM and the cell cycle regulator PTEN. EV‐microRNAs transferred during T‐B cognate interactions also promote survival, proliferation, and antibody class switching. Using mouse chimeras with Rab27KO EV‐deficient T cells, we demonstrate that the transfer of small EVs is required for germinal center reaction and antibody production in vivo, revealing a mechanism that controls B‐cell responses via the transfer of EV‐microRNAs of T‐cell origin. These findings also provide mechanistic insight into the Griscelli syndrome, associated with a mutation in the Rab27a gene, and might explain antibody defects observed in this pathogenesis and other immune‐related and inflammatory disorders.
Collapse
Affiliation(s)
- Lola Fernández-Messina
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Intercellular Communication in the Inflammatory Response. Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Rodríguez-Galán
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Intercellular Communication in the Inflammatory Response. Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Virginia G de Yébenes
- B lymphocyte Biology Lab, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Gutiérrez-Vázquez
- Intercellular Communication in the Inflammatory Response. Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sandra Tenreiro
- CEDOC, Faculdade de Ciências Médicas, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Miguel C Seabra
- CEDOC, Faculdade de Ciências Médicas, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Almudena R Ramiro
- B lymphocyte Biology Lab, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Intercellular Communication in the Inflammatory Response. Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
58
|
Angelou CC, Wells AC, Vijayaraghavan J, Dougan CE, Lawlor R, Iverson E, Lazarevic V, Kimura MY, Peyton SR, Minter LM, Osborne BA, Pobezinskaya EL, Pobezinsky LA. Differentiation of Pathogenic Th17 Cells Is Negatively Regulated by Let-7 MicroRNAs in a Mouse Model of Multiple Sclerosis. Front Immunol 2020; 10:3125. [PMID: 32010153 PMCID: PMC6978752 DOI: 10.3389/fimmu.2019.03125] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a disabling demyelinating autoimmune disorder of the central nervous system (CNS) which is driven by IL-23- and IL-1β-induced autoreactive Th17 cells that traffic to the CNS and secrete proinflammatory cytokines. Th17 pathogenicity in MS has been correlated with the dysregulation of microRNA (miRNA) expression, and specific miRNAs have been shown to promote the pathogenic Th17 phenotype. In the present study, we demonstrate, using the animal model of MS, experimental autoimmune encephalomyelitis (EAE), that let-7 miRNAs confer protection against EAE by negatively regulating the proliferation, differentiation and chemokine-mediated migration of pathogenic Th17 cells to the CNS. Specifically, we found that let-7 miRNAs may directly target the cytokine receptors Il1r1 and Il23r, as well as the chemokine receptors Ccr2 and Ccr5. Therefore, our results identify a novel regulatory role for let-7 miRNAs in pathogenic Th17 differentiation during EAE development, suggesting a promising therapeutic application for disease treatment.
Collapse
Affiliation(s)
- Constance C. Angelou
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Alexandria C. Wells
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Jyothi Vijayaraghavan
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Carey E. Dougan
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
| | - Rebecca Lawlor
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Elizabeth Iverson
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Motoko Y. Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
| | - Lisa M. Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Barbara A. Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Elena L. Pobezinskaya
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Leonid A. Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
59
|
Lim J, Lee A, Lee HG, Lim JS. Modulation of Immunosuppression by Oligonucleotide-Based Molecules and Small Molecules Targeting Myeloid-Derived Suppressor Cells. Biomol Ther (Seoul) 2020; 28:1-17. [PMID: 31431006 PMCID: PMC6939693 DOI: 10.4062/biomolther.2019.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exert suppressive function on the immune response. MDSCs expand in tumor-bearing hosts or in the tumor microenvironment and suppress T cell responses via various mechanisms, whereas a reduction in their activities has been observed in autoimmune diseases or infections. It has been reported that the symptoms of various diseases, including malignant tumors, can be alleviated by targeting MDSCs. Moreover, MDSCs can contribute to patient resistance to therapy using immune checkpoint inhibitors. In line with these therapeutic approaches, diverse oligonucleotide-based molecules and small molecules have been evaluated for their therapeutic efficacy in several disease models via the modulation of MDSC activity. In the current review, MDSC-targeting oligonucleotides and small molecules are briefly summarized, and we highlight the immunomodulatory effects on MDSCs in a variety of disease models and the application of MDSC-targeting molecules for immuno-oncologic therapy.
Collapse
Affiliation(s)
- Jihyun Lim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Aram Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hee Gu Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.,Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
60
|
Robaina MC, Mazzoccoli L, Klumb CE. Germinal Centre B Cell Functions and Lymphomagenesis: Circuits Involving MYC and MicroRNAs. Cells 2019; 8:E1365. [PMID: 31683676 PMCID: PMC6912346 DOI: 10.3390/cells8111365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The transcription factor MYC regulates several biological cellular processes, and its target gene network comprises approximately 15% of all human genes, including microRNAs (miRNAs), that also contribute to MYC regulatory activity. Although miRNAs are emerging as key regulators of immune functions, the specific roles of miRNAs in the regulation/dysregulation of germinal centre B-cells and B-cell lymphomas are still being uncovered. The regulatory network that integrates MYC, target genes and miRNAs is a field of intense study, highlighting potential pathways to be explored in the context of future clinical approaches. METHODS The scientific literature that is indexed in PUBMED was consulted for publications involving MYC and miRNAs with validated bioinformatics analyses or experimental protocols. Additionally, seminal studies on germinal centre B-cell functions and lymphomagenesis were reported. CONCLUSIONS This review summarizes the interactions between MYC and miRNAs through regulatory loops and circuits involving target genes in germinal centre B-cell lymphomas with MYC alterations. Moreover, we provide an overview of the understanding of the regulatory networks between MYC and miRNAs, highlighting the potential implication of this approach for the comprehension of germinal centre B-cell lymphoma pathogenesis. Therefore, circuits involving MYC, target genes and miRNAs provide novel insight into lymphomagenesis that could be useful for new improved therapeutic strategies.
Collapse
Affiliation(s)
- Marcela Cristina Robaina
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| | - Luciano Mazzoccoli
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| | - Claudete Esteves Klumb
- Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, CEP: 20230-130, Brazil.
| |
Collapse
|
61
|
Intrinsic T-cell regulator miR-142-3p/5p - a novel therapeutic target? Cell Mol Immunol 2019; 18:508-509. [PMID: 31649309 DOI: 10.1038/s41423-019-0317-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 11/08/2022] Open
|
62
|
Nanbakhsh A, Srinivasamani A, Holzhauer S, Riese MJ, Zheng Y, Wang D, Burns R, Reimer MH, Rao S, Lemke A, Tsaih SW, Flister MJ, Lao S, Dahl R, Thakar MS, Malarkannan S. Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells. Cancer Immunol Res 2019; 7:1647-1662. [PMID: 31515257 DOI: 10.1158/2326-6066.cir-18-0934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/14/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells generate proinflammatory cytokines that are required to contain infections and tumor growth. However, the posttranscriptional mechanisms that regulate NK cell functions are not fully understood. Here, we define the role of the microRNA cluster known as Mirc11 (which includes miRNA-23a, miRNA-24a, and miRNA-27a) in NK cell-mediated proinflammatory responses. Absence of Mirc11 did not alter the development or the antitumor cytotoxicity of NK cells. However, loss of Mirc11 reduced generation of proinflammatory factors in vitro and interferon-γ-dependent clearance of Listeria monocytogenes or B16F10 melanoma in vivo by NK cells. These functional changes resulted from Mirc11 silencing ubiquitin modifiers A20, Cbl-b, and Itch, allowing TRAF6-dependent activation of NF-κB and AP-1. Lack of Mirc11 caused increased translation of A20, Cbl-b, and Itch proteins, resulting in deubiquitylation of scaffolding K63 and addition of degradative K48 moieties on TRAF6. Collectively, our results describe a function of Mirc11 that regulates generation of proinflammatory cytokines from effector lymphocytes.
Collapse
Affiliation(s)
- Arash Nanbakhsh
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Anupallavi Srinivasamani
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Sandra Holzhauer
- Laboratory of Lymphocyte Signaling, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Matthew J Riese
- Laboratory of Lymphocyte Signaling, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yongwei Zheng
- Laboratory of B Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Demin Wang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Laboratory of B Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Robert Burns
- Bioinformatics Core, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Michael H Reimer
- Laboratory of Stem Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Laboratory of Stem Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Angela Lemke
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shirng-Wern Tsaih
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael J Flister
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shunhua Lao
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Richard Dahl
- Indiana University School of Medicine, South Bend, Indiana
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin. .,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
63
|
Labi V, Schoeler K, Melamed D. miR-17∼92 in lymphocyte development and lymphomagenesis. Cancer Lett 2019; 446:73-80. [PMID: 30660648 DOI: 10.1016/j.canlet.2018.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/06/2018] [Accepted: 12/31/2018] [Indexed: 01/07/2023]
Abstract
microRNAs (miRNAs) down-modulate the levels of proteins by sequence-specific binding to their respective target mRNAs, causing translational repression or mRNA degradation. The miR-17∼92 cluster encodes for six miRNAs whose target recognition specificities are determined by their distinct sequence. In mice, the four miRNA families generated from the miR-17∼92 cluster coordinate to allow for proper lymphocyte development and effective adaptive immune responses following infection or immunization. Lymphocyte development and homeostasis rely on tight regulation of PI3K signaling to avoid autoimmunity or immunodeficiency, and the miR-17∼92 miRNAs appear as key mediators to appropriately tune PI3K activity. On the other hand, in lymphoid tumors overexpression of the miR-17∼92 miRNAs is a common oncogenic event. In this review, we touch on what we have learned so far about the miR-17∼92 miRNAs, particularly with respect to their role in lymphocyte development, homeostasis and pathology.
Collapse
Affiliation(s)
- Verena Labi
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, 6020, Austria.
| | - Katia Schoeler
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Doron Melamed
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
64
|
Maul J, Alterauge D, Baumjohann D. Micro
RNA
‐mediated regulation of T follicular helper and T follicular regulatory cell identity. Immunol Rev 2019; 288:97-111. [DOI: 10.1111/imr.12735] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Julia Maul
- Institute for ImmunologyBiomedical CenterLudwig‐Maximilians‐Universität München Planegg‐Martinsried Germany
| | - Dominik Alterauge
- Institute for ImmunologyBiomedical CenterLudwig‐Maximilians‐Universität München Planegg‐Martinsried Germany
| | - Dirk Baumjohann
- Institute for ImmunologyBiomedical CenterLudwig‐Maximilians‐Universität München Planegg‐Martinsried Germany
| |
Collapse
|
65
|
MiR-15b and miR-322 inhibit SETD3 expression to repress muscle cell differentiation. Cell Death Dis 2019; 10:183. [PMID: 30796205 PMCID: PMC6385263 DOI: 10.1038/s41419-019-1432-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
SETD3 is a member of SET-domain containing methyltransferase family, which plays critical roles in various biological events. It has been shown that SETD3 could regulate the transcription of myogenic regulatory genes in C2C12 differentiation and promote myoblast determination. However, how SETD3 is regulated during myoblast differentiation is still unknown. Here, we report that two important microRNAs (miRNAs) could repress SETD3 and negatively contribute to myoblast differentiation. Using microRNA (miRNA) prediction engines, we identify and characterize miR-15b and miR-322 as the primary miRNAs that repress the expression of SETD3 through directly targeting the 3’-untranslated region of SETD3 gene. Functionally, overexpression of miR-15b or miR-322 leads to the repression of endogenous SETD3 expression and the inhibition of myoblast differentiation, whereas inhibition of miR-15b or miR-322 derepresses endogenous SETD3 expression and facilitates myoblast differentiation. In addition, knockdown SETD3 in miR-15b or miR-322 repressed myoblasts is able to rescue the facilitated differentiation phenotype. More interestingly, we revealed that transcription factor E2F1 or FAM3B positively or negatively regulates miR-15b or miR-322 expression, respectively, during muscle cell differentiation, which in turn affects SETD3 expression. Therefore, our results establish two parallel cascade regulatory pathways, in which transcription factors regulate microRNAs fates, thereby controlling SETD3 expression and eventually determining skeletal muscle differentiation.
Collapse
|
66
|
Anandagoda N, Willis JC, Hertweck A, Roberts LB, Jackson I, Gökmen MR, Jenner RG, Howard JK, Lord GM. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest 2019; 129:1257-1271. [PMID: 30741720 PMCID: PMC6391082 DOI: 10.1172/jci124725] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023] Open
Abstract
Tregs play a fundamental role in immune tolerance via control of self-reactive effector T cells (Teffs). This function is dependent on maintenance of a high intracellular cAMP concentration. A number of microRNAs are implicated in the maintenance of Tregs. In this study, we demonstrate that peripheral immune tolerance is critically dependent on posttranscriptional repression of the cAMP-hydrolyzing enzyme phosphodiesterase-3b (Pde3b) by microRNA-142-5p (miR-142-5p). In this manner, miR-142-5p acts as an immunometabolic regulator of intracellular cAMP, controlling Treg suppressive function. Mir142 was associated with a super enhancer bound by the Treg lineage–determining transcription factor forkhead box P3 (FOXP3), and Treg-specific deletion of miR-142 in mice (TregΔ142) resulted in spontaneous, lethal, multisystem autoimmunity, despite preserved numbers of phenotypically normal Tregs. Pharmacological inhibition and genetic ablation of PDE3B prevented autoimmune disease and reversed the impaired suppressive function of Tregs in TregΔ142 animals. These findings reveal a critical molecular switch, specifying Treg function through the modulation of a highly conserved, cell-intrinsic metabolic pathway. Modulation of this pathway has direct relevance to the pathogenesis and treatment of autoimmunity and cancer.
Collapse
Affiliation(s)
- Nelomi Anandagoda
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Joanna Cd Willis
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Arnulf Hertweck
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,UCL Cancer Institute, University College London, London, United Kingdom
| | - Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Ian Jackson
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - M Refik Gökmen
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Richard G Jenner
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Jane K Howard
- School of Life Course Sciences, King's College London, London, United Kingdom
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
67
|
Venturella M, Carpi FM, Zocco D. Standardization of Blood Collection and Processing for the Diagnostic Use of Extracellular Vesicles. CURRENT PATHOBIOLOGY REPORTS 2019. [DOI: 10.1007/s40139-019-00189-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
68
|
Jasinski-Bergner S, Kielstein H. Adipokines Regulate the Expression of Tumor-Relevant MicroRNAs. Obes Facts 2019; 12:211-225. [PMID: 30999294 PMCID: PMC6547259 DOI: 10.1159/000496625] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing prevalence of obesity requires the investigation of respective comorbidities, including tumor diseases like colorectal, renal, post-menopausal breast, prostate cancer, and leukemia. To date, molecular mechanisms of the malignant transformation of these peripheral tissues induced by obesity remain unclear. Adipose tissue secretes factors with hormone-like functions, the adipokines, and is therefore categorized as an endocrine organ. Current research demonstrates the ability of adipose tissue to alter DNA methylation and gene expression in peripheral tissues, probably affecting microRNA (miR) expression. METHODS Literature was analyzed for adipokine-regulated miRs. Many of these adipokine upregulated or downregulated miRs exert either oncogenic or anti-tumoral potential. RESULTS The three selected and analyzed adipokines, adiponectin, leptin, and resistin, induce more strongly oncogenic miRs and simultaneously reduce anti-tumoral miRs than vice versa. This effect is not only true for the pure number of regulated miRs, it is also the case by consideration of the abundance of the respective miR expression based on actual data sets derived from next-generation sequencing. CONCLUSION The link of obesity and cancer is analyzed under the aspect of adipokine-regulated miRs. At the same time the impact of miR abundance is considered as a regulatory variable. This context offers new strategies for tumor therapy and diagnostics.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany,
| | - Heike Kielstein
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
69
|
Tsetsarkin KA, Maximova OA, Liu G, Kenney H, Teterina N, Bloom ME, Grabowski JM, Mlera L, Nagata BM, Moore I, Martens C, Amaro-Carambot E, Lamirande EW, Whitehead SS, Pletnev AG. Routes of Zika virus dissemination in the testis and epididymis of immunodeficient mice. Nat Commun 2018; 9:5350. [PMID: 30559387 PMCID: PMC6297220 DOI: 10.1038/s41467-018-07782-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023] Open
Abstract
Sexual transmission and persistence of Zika virus (ZIKV) in the male reproductive tract (MRT) poses new challenges for controlling virus outbreaks and developing live-attenuated vaccines. To elucidate routes of ZIKV dissemination in the MRT, we here generate microRNA-targeted ZIKV clones that lose the infectivity for (1) the cells inside seminiferous tubules of the testis, or (2) epithelial cells of the epididymis. We trace ZIKV dissemination in the MRT using an established mouse model of ZIKV pathogenesis. Our results support a model in which ZIKV infects the testis via a hematogenous route, while infection of the epididymis can occur via two routes: (1) hematogenous/lymphogenous and (2) excurrent testicular. Co-targeting of the ZIKV genome with brain-, testis-, and epididymis-specific microRNAs restricts virus infection of these organs, but does not affect virus-induced protective immunity in mice and monkeys. These defined alterations of ZIKV tropism represent a rational design of a safe live-attenuated ZIKV vaccine.
Collapse
Affiliation(s)
- Konstantin A Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892-3203, MD, USA
| | - Olga A Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892-3203, MD, USA
| | - Guangping Liu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892-3203, MD, USA
| | - Heather Kenney
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892-3203, MD, USA
| | - Natalia Teterina
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892-3203, MD, USA
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 59840, MT, USA
| | - Jeffrey M Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 59840, MT, USA
| | - Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 59840, MT, USA
| | - Bianca M Nagata
- Infectious Disease and Pathogenesis Section, Comparative Medicine Branch, NIAID, NIH, Rockville, 20892, MD, USA
| | - Ian Moore
- Infectious Disease and Pathogenesis Section, Comparative Medicine Branch, NIAID, NIH, Rockville, 20892, MD, USA
| | - Craig Martens
- Research Technologies (RT) Section, RT Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 58940, MT, USA
| | | | | | | | - Alexander G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892-3203, MD, USA.
| |
Collapse
|
70
|
Roat R, Hossain MM, Christopherson J, Free C, Guay C, Regazzi R, Guo Z. Circulating miRNA-150-5p is associated with immune-mediated early β-cell loss in a humanized mouse model. Xenotransplantation 2018; 26:e12474. [PMID: 30461074 DOI: 10.1111/xen.12474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/06/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aberrant microRNA (miRNA) expression levels are associated with various graft rejections. We used our humanized mouse model with transplanted human islets to identify miRNAs in islet grafts related to xenograft rejection and circulating miRNAs associated with xenograft rejection-mediated β-cell loss. METHODS Diabetic immunodeficient NOD.scid mice were transplanted with human islets and subsequently achieved stable normoglycemia. Lymphocytes from NOD mice were then adoptively transferred to the humanized mice to induce human β-cell destruction. Islet graft and plasma were collected immediately once blood glucose reached >200 mg/dL. miRNAs in the islet grafts and in the plasma with or without adoptive lymphocyte transfer (ALT) were measured using NanoString nCounter® miRNA Expression Assay and qPCR. RESULTS A set of immune-related miRNAs was significantly increased in human islet grafts of ALT-treated mice compared to control mice. Of these miRNAs, miR-150-5p was significantly increased in the circulation of ALT-treated mice at tissue collection and the increase was a result of immune activation rather than simply the presence of lymphocytes in circulation. Furthermore, miR-150-5p was significantly increased in human islet graft and circulation prior to the development of hyperglycemia in the ALT-treated mice. CONCLUSIONS Our data demonstrated that immune-related miRNAs are associated with human islet xenograft rejection in mice. miR-150-5p is increased in human islet graft and in the circulation during islet xenograft rejection and β-cell destruction prior to hyperglycemia and may be an early biomarker for islet xenograft rejection.
Collapse
Affiliation(s)
- Regan Roat
- Sanford Research, Sioux Falls, South Dakota
| | | | | | | | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Zhiguang Guo
- Sanford Research, Sioux Falls, South Dakota.,Departments of Pediatrics and Surgery, University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
71
|
Kunze-Schumacher H, Winter SJ, Imelmann E, Krueger A. miRNA miR-21 Is Largely Dispensable for Intrathymic T-Cell Development. Front Immunol 2018; 9:2497. [PMID: 30455689 PMCID: PMC6230590 DOI: 10.3389/fimmu.2018.02497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Development of T cells in the thymus is tightly controlled to continually produce functional, but not autoreactive, T cells. miRNAs provide a layer of post-transcriptional gene regulation to this process, but the role of many individual miRNAs in T-cell development remains unclear. miR-21 is prominently expressed in immature thymocytes followed by a steep decline in more mature cells. We hypothesized that such a dynamic expression was indicative of a regulatory function in intrathymic T-cell development. To test this hypothesis, we analyzed T-cell development in miR-21-deficient mice at steady state and under competitive conditions in mixed bone-marrow chimeras. We complemented analysis of knock-out animals by employing over-expression in vivo. Finally, we assessed miR-21 function in negative selection in vivo as well as differentiation in co-cultures. Together, these experiments revealed that miR-21 is largely dispensable for physiologic T-cell development. Given that miR-21 has been implicated in regulation of cellular stress responses, we assessed a potential role of miR-21 in endogenous regeneration of the thymus after sublethal irradiation. Again, miR-21 was completely dispensable in this process. We concluded that, despite prominent and highly dynamic expression in thymocytes, miR-21 expression was not required for physiologic T-cell development or endogenous regeneration.
Collapse
Affiliation(s)
| | - Samantha J Winter
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Esther Imelmann
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
72
|
Scoville SD, Nalin AP, Chen L, Chen L, Zhang MH, McConnell K, Beceiro Casas S, Ernst G, Traboulsi AAR, Hashi N, Williams M, Zhang X, Hughes T, Mishra A, Benson DM, Saultz JN, Yu J, Freud AG, Caligiuri MA, Mundy-Bosse BL. Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function. Blood 2018; 132:1792-1804. [PMID: 30158248 PMCID: PMC6202909 DOI: 10.1182/blood-2018-03-838474] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) can evade the mouse and human innate immune system by suppressing natural killer (NK) cell development and NK cell function. This is driven in part by the overexpression of microRNA (miR)-29b in the NK cells of AML patients, but how this occurs is unknown. In the current study, we demonstrate that the transcription factor aryl hydrocarbon receptor (AHR) directly regulates miR-29b expression. We show that human AML blasts activate the AHR pathway and induce miR-29b expression in NK cells, thereby impairing NK cell maturation and NK cell function, which can be reversed by treating NK cells with an AHR antagonist. Finally, we show that inhibition of constitutive AHR activation in AML blasts lowers their threshold for apoptosis and decreases their resistance to NK cell cytotoxicity. Together, these results identify the AHR pathway as a molecular mechanism by which AML impairs NK cell development and function. The results lay the groundwork in establishing AHR antagonists as potential therapeutic agents for clinical development in the treatment of AML.
Collapse
MESH Headings
- Animals
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Mice
- MicroRNAs/biosynthesis
- Receptors, Aryl Hydrocarbon/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
| | - Ansel P Nalin
- Medical Scientist Training Program
- Comprehensive Cancer Center
| | - Luxi Chen
- Medical Scientist Training Program
- Comprehensive Cancer Center
| | | | | | | | | | | | | | | | | | | | - Tiffany Hughes
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
| | - Anjali Mishra
- Comprehensive Cancer Center
- Division of Dermatology, Department of Internal Medicine, and
| | - Don M Benson
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
| | - Jennifer N Saultz
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
| | - Jianhua Yu
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
| | - Aharon G Freud
- Comprehensive Cancer Center
- Department of Pathology, The Ohio State University, Columbus, OH; and
| | | | | |
Collapse
|
73
|
Blume J, Ziętara N, Witzlau K, Liu Y, Sanchez OO, Puchałka J, Winter SJ, Kunze-Schumacher H, Saran N, Düber S, Roy B, Weiss S, Klein C, Wurst W, Łyszkiewicz M, Krueger A. miR-191 modulates B-cell development and targets transcription factors E2A, Foxp1, and Egr1. Eur J Immunol 2018; 49:121-132. [PMID: 30281154 DOI: 10.1002/eji.201847660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
Abstract
The interdependence of posttranscriptional gene regulation via miRNA and transcriptional regulatory networks in lymphocyte development is poorly understood. Here, we identified miR-191 as direct upstream modulator of a transcriptional module comprising the transcription factors Foxp1, E2A, and Egr1. Deletion as well as ectopic expression of miR-191 resulted in developmental arrest in B lineage cells, indicating that fine tuning of the combined expression levels of Foxp1, E2A, and Egr1, which in turn control somatic recombination and cytokine-driven expansion, constitutes a prerequisite for efficient B-cell development. In conclusion, we propose that miR-191 acts as a rheostat in B-cell development by fine tuning a key transcriptional program.
Collapse
Affiliation(s)
- Jonas Blume
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Natalia Ziętara
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Katrin Witzlau
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Yanshan Liu
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | | | - Jacek Puchałka
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Samantha J Winter
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Namita Saran
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Sandra Düber
- Molecular Immunology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Bishnudeo Roy
- Molecular Immunology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Siegfried Weiss
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Molecular Immunology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Centre Munich, Germany.,Technische Universität München-Weihenstephan, Neuherberg/Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marcin Łyszkiewicz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
74
|
Baumjohann D, Heissmeyer V. Posttranscriptional Gene Regulation of T Follicular Helper Cells by RNA-Binding Proteins and microRNAs. Front Immunol 2018; 9:1794. [PMID: 30108596 PMCID: PMC6079247 DOI: 10.3389/fimmu.2018.01794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022] Open
Abstract
T follicular helper (Tfh) cells are critically involved in the establishment of potent antibody responses against infectious pathogens, such as viruses and bacteria, but their dysregulation may also result in aberrant antibody responses that frequently coincide with autoimmune diseases or allergies. The fate and identity of Tfh cells is tightly controlled by gene regulation on the transcriptional and posttranscriptional level. Here, we provide deeper insights into the posttranscriptional mechanisms that regulate Tfh cell differentiation, function, and plasticity through the actions of RNA-binding proteins (RBPs) and small endogenously expressed regulatory RNAs called microRNAs (miRNAs). The Roquin family of RBPs has been shown to dampen spontaneous activation and differentiation of naïve CD4+ T cells into Tfh cells, since CD4+ T cells with Roquin mutations accumulate as Tfh cells and provide inappropriate B cell help in the production of autoantibodies. Moreover, Regnase-1, an endoribonuclease that regulates a set of targets, which strongly overlaps with that of Roquin, is crucial for the prevention of autoantibody production. Interestingly, both Roquin and Regnase-1 proteins are cleaved and inactivated after TCR stimulation by the paracaspase MALT1. miRNAs are expressed in naïve CD4+ T cells and help preventing spontaneous differentiation into effector cells. While most miRNAs are downregulated upon T cell activation, several miRNAs have been shown to regulate the fate of these cells by either promoting (e.g., miR-17-92 and miR-155) or inhibiting (e.g., miR-146a) Tfh cell differentiation. Together, these different aspects highlight a complex and dynamic regulatory network of posttranscriptional gene regulation in Tfh cells that may also be active in other T helper cell populations, including Th1, Th2, Th17, and Treg.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
75
|
Xu X, Li Y, Liang Y, Yin M, Yu Z, Zhang Y, Huang L, Ni J. MiR-18a and miR-17 are positively correlated with circulating PD-1 +ICOS + follicular helper T cells after hepatitis B vaccination in a chinese population. BMC Immunol 2018; 19:25. [PMID: 30055570 PMCID: PMC6064088 DOI: 10.1186/s12865-018-0263-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/20/2018] [Indexed: 01/26/2023] Open
Abstract
Background While vaccination remains the most effective method to control hepatitis B virus (HBV) infection, 5–10% of recipients exhibit non-responsiveness to the HB vaccine. Immunological analysis of strong, weak or absent protective antibody responses to the HB vaccine should provide insights into the mechanisms that contribute to non-responsiveness. Results We investigated the potential involvement of follicular helper T (Tfh) cells in the immune response to HB vaccine, and associations between the miR-17–92 cluster and Tfh cells. We recruited 12 adults who had completed the HB vaccination course during childhood. Following a booster dose of HB vaccine, hepatitis B surface antibody (HBsAb) titers, percentage of PD-1+ICOS+ circulating Tfh (cTfh) and plasma cells, and expression of miR-17–92 were assessed at baseline (before immunization) and after vaccination on days 7 and 14. Notably, the HBsAb level gradually increased after HB vaccination while the proportion of PD-1+ICOS+ cTfh cells was significantly increased on day 7 relative to baseline, so as plasma cells. Expression of miR-18a and miR-17 within the miR-17–92 cluster and HBsAb titers in CD4+ T cells were positively correlated with the PD-1+ICOS+ cTfh cells proportions after HB vaccination. Conclusions The increase in HBsAb titers was positively associated with expression of all the components of the miR-17–92 cluster except miR-19a. Our findings indicate that the miR-17–92 cluster contributes to antibody production, and miR-18a and miR-17 are involved in Tfh cells differentiation after HB vaccination.
Collapse
Affiliation(s)
- Xiaojia Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yulian Li
- Dalang Community Health Service Centers, Dongguan, 523770, China
| | - Yaping Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Mingjuan Yin
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Zuwei Yu
- Dalang Community Health Service Centers, Dongguan, 523770, China
| | - Yan Zhang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Lingfeng Huang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Jindong Ni
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
76
|
Cho S, Lee HM, Yu IS, Choi YS, Huang HY, Hashemifar SS, Lin LL, Chen MC, Afanasiev ND, Khan AA, Lin SW, Rudensky AY, Crotty S, Lu LF. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun 2018; 9:2757. [PMID: 30013024 PMCID: PMC6048122 DOI: 10.1038/s41467-018-05196-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
Reciprocal interactions between B and follicular T helper (Tfh) cells orchestrate the germinal center (GC) reaction, a hallmark of humoral immunity. Abnormal GC responses could lead to the production of pathogenic autoantibodies and the development of autoimmunity. Here we show that miR-146a controls GC responses by targeting multiple CD40 signaling pathway components in B cells; by contrast, loss of miR-146a in T cells does not alter humoral responses. However, specific deletion of both miR-146a and its paralog, miR-146b, in T cells increases Tfh cell numbers and enhanced GC reactions. Thus, our data reveal differential cell-intrinsic regulations of GC B and Tfh cells by miR-146a and miR-146b. Together, members of the miR-146 family serve as crucial molecular brakes to coordinately control GC reactions to generate protective humoral responses without eliciting unwanted autoimmunity. In the germinal center (GC), B and T cells interact to induce the production of protective antibodies against threats. Here the authors show that microRNA miR-146a modulates CD40 signaling in GC B cells, while both miR-146a and miR-146b synergize to control GC T cell responses, thereby implicating intricate controls of GC response by miR-146.
Collapse
Affiliation(s)
- Sunglim Cho
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Hyang-Mi Lee
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Youn Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Department of Medicine, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Hsi-Yuan Huang
- Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | | | - Ling-Li Lin
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Mei-Chi Chen
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Nikita D Afanasiev
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | | | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan-Kettering Cancer Center, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Division of Infectious Diseases, Department of Medicine, University of California, La Jolla, San Diego, CA, 92037, USA
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA. .,Moores Cancer Center, University of California, La Jolla, San Diego, CA, 92093, USA. .,Center for Microbiome Innovation, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
77
|
Zhang P, Lu Q. Genetic and epigenetic influences on the loss of tolerance in autoimmunity. Cell Mol Immunol 2018; 15:575-585. [PMID: 29503444 PMCID: PMC6079019 DOI: 10.1038/cmi.2017.137] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 12/23/2022] Open
Abstract
Immunological tolerance loss is fundamental to the development of autoimmunity; however, the underlying mechanisms remain elusive. Immune tolerance consists of central and peripheral tolerance. Central tolerance, which occurs in the thymus for T cells and bone marrow for B cells, is the primary way that the immune system discriminates self from non-self. Peripheral tolerance, which occurs in tissues and lymph nodes after lymphocyte maturation, controls self-reactive immune cells and prevents over-reactive immune responses to various environment factors. Loss of tolerance results in autoimmune disorders, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes (T1D) and primary biliary cirrhosis (PBC). The etiology and pathogenesis of autoimmune diseases are highly complicated. Both genetic predisposition and epigenetic modifications are implicated in the loss of tolerance and autoimmunity. In this review, we will discuss the genetic and epigenetic influences on tolerance breakdown in autoimmunity. Genetic and epigenetic influences on autoimmune diseases, such as SLE, RA, T1D and PBC, will also be briefly discussed.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, 410011, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, 410011, Changsha, Hunan, China.
| |
Collapse
|
78
|
Kuo G, Wu CY, Yang HY. MiR-17-92 cluster and immunity. J Formos Med Assoc 2018; 118:2-6. [PMID: 29857952 DOI: 10.1016/j.jfma.2018.04.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (MiR, MiRNA) are small single-stranded non-coding RNAs that play an important role in the regulation of gene expression. MircoRNAs exert their effect by binding to complementary nucleotide sequences of the targeted messenger RNA, thus forming an RNA-induced silencing complex. The mircoRNA-17-92 cluster encoded by the miR-17-92 host gene is first found in malignant B-cell lymphoma. Recent research identifies the miR-17-92 cluster as a crucial player in the development of the immune system, the heart, the lung, and oncogenic events. In light of the miR-17-92 cluster's increasing role in regulating the immune system, our review will discuss the latest knowledge regarding its involvement in cells of both innate and adaptive immunity, including B cells, subsets of T cells such as Th1, Th2, T follicular helper cells, regulatory T cells, monocytes/macrophages, NK cells, and dendritic cells, and the possible targets that are regulated by its members.
Collapse
Affiliation(s)
- George Kuo
- Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
79
|
Wang R, Wang CF, Qin HM, Lu YL, Wei GJ, Huang HT, Xiang Y, Wang JL, Lan Y, Wei YS. Association between polymorphisms in the promoter region of miR-17-92 cluster and systemic lupus erythematosus in a Chinese population. J Cell Mol Med 2018; 22:4016-4020. [PMID: 29770567 PMCID: PMC6050484 DOI: 10.1111/jcmm.13672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to investigate the association of genetic polymorphisms in the promoter region of miR-17-92 with systemic lupus erythematosus (SLE). The gene polymorphism was analysed using SNaPshot in 312 SLE patients and 396 controls. Relative expression of miR-17-92 was measured by quantitative real-time PCR. Association was found between rs9515692 and a decreased risk of SLE (CT vs CC: OR = 0.65, 95%CI, 0.46-0.92, P = .014; CT+TT vs CC: OR = 0.64, 95%CI, 0.46-0.90, P = .009; T vs C: OR = 0.69, 95%CI, 0.52-0.92, P = .010, respectively). Haplotype analysis showed that C-G-G, C-A-A haplotypes were associated with an increased SLE risk (OR=4.46, 95%CI, 2.17-9.17, P < 0.001; OR=2.33, 95%CI, 1.44-3.76, P < 0.001, respectively). T allele and CT+TT genotypes in rs9515692 were associated with decreased risk of anti-dsDNA in SLE (CT+TT vs CC: OR = 0.42, 95%CI = 0.24-0.72, P = .002; T vs A: OR = 0.49, 95%CI = 0.31-0.79, P = .003). Moreover, rs9515692 CT+TT genotypes had a higher level of miR-17 as compared to CC genotype (P = .017). These findings suggest that the rs9515692 CT+TT genotypes were a protective factor for the susceptibility of SLE, probably by increasing the expression of miR-17.
Collapse
Affiliation(s)
- Rong Wang
- Youjiang Medical University for Nationalities, Baise, China.,Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chun-Fang Wang
- Youjiang Medical University for Nationalities, Baise, China.,Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hai-Mei Qin
- Youjiang Medical University for Nationalities, Baise, China.,Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yu-Lan Lu
- Youjiang Medical University for Nationalities, Baise, China.,Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Gui-Jiang Wei
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hua-Tuo Huang
- Youjiang Medical University for Nationalities, Baise, China.,Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yang Xiang
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jun-Li Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yan Lan
- Department of Dermatology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ye-Sheng Wei
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
80
|
Heintz-Buschart A, Yusuf D, Kaysen A, Etheridge A, Fritz JV, May P, de Beaufort C, Upadhyaya BB, Ghosal A, Galas DJ, Wilmes P. Small RNA profiling of low biomass samples: identification and removal of contaminants. BMC Biol 2018; 16:52. [PMID: 29759067 PMCID: PMC5952572 DOI: 10.1186/s12915-018-0522-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
Background Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and environments. DNA contamination has been previously reported, yet contamination with RNA is usually considered to be very unlikely due to its inherent instability. Small RNAs (sRNAs) identified in tissues and bodily fluids, such as blood plasma, have implications for physiology and pathology, and therefore the potential to act as disease biomarkers. Thus, the possibility for RNA contaminants demands careful evaluation. Results Herein, we report on the presence of small RNA (sRNA) contaminants in widely used microRNA extraction kits and propose an approach for their depletion. We sequenced sRNAs extracted from human plasma samples and detected important levels of non-human (exogenous) sequences whose source could be traced to the microRNA extraction columns through a careful qPCR-based analysis of several laboratory reagents. Furthermore, we also detected the presence of artefactual sequences related to these contaminants in a range of published datasets, thereby arguing in particular for a re-evaluation of reports suggesting the presence of exogenous RNAs of microbial and dietary origin in blood plasma. To avoid artefacts in future experiments, we also devise several protocols for the removal of contaminant RNAs, define minimal amounts of starting material for artefact-free analyses, and confirm the reduction of contaminant levels for identification of bona fide sequences using ‘ultra-clean’ extraction kits. Conclusion This is the first report on the presence of RNA molecules as contaminants in RNA extraction kits. The described protocols should be applied in the future to avoid confounding sRNA studies. Electronic supplementary material The online version of this article (10.1186/s12915-018-0522-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg. .,Present address: German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena, 04103, Leipzig, Germany. .,Department of Soil Ecology, Helmholtz-Centre for Environmental Research GmbH (UFZ), 06120, Halle (Saale), Germany.
| | - Dilmurat Yusuf
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.,Present address: Dilmurat Yusuf, Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
| | - Anne Kaysen
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.,Present address: Centre Hospitalier de Luxembourg, 1210, Luxembourg, Luxembourg
| | - Alton Etheridge
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA
| | - Joëlle V Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.,Present address: Centre Hospitalier de Luxembourg, 1210, Luxembourg, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Carine de Beaufort
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.,Present address: Centre Hospitalier de Luxembourg, 1210, Luxembourg, Luxembourg
| | - Bimal B Upadhyaya
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Anubrata Ghosal
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.,Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David J Galas
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
81
|
Wu R, Zeng J, Yuan J, Deng X, Huang Y, Chen L, Zhang P, Feng H, Liu Z, Wang Z, Gao X, Wu H, Wang H, Su Y, Zhao M, Lu Q. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J Clin Invest 2018; 128:2551-2568. [PMID: 29757188 DOI: 10.1172/jci97426] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
Immune imbalance of T lymphocyte subsets is a hallmark of psoriasis, but the molecular mechanisms underlying this aspect of psoriasis pathology are poorly understood. Here, we report that microRNA-210 (miR-210), a miR that is highly expressed in both psoriasis patients and mouse models, induces helper T (Th) 17 and Th1 cell differentiation but inhibits Th2 differentiation through repressing STAT6 and LYN expression, contributing to several aspects of the immune imbalance in psoriasis. Both miR-210 ablation in mice and inhibition of miR-210 by intradermal injection of antagomir-210 blocked the immune imbalance and the development of psoriasis-like inflammation in an imiquimod-induced or IL-23-induced psoriasis-like mouse model. We further showed that TGF-β and IL-23 enhance miR-210 expression by inducing HIF-1α, which recruits P300 and promotes histone H3 acetylation in the miR-210 promoter region. Our results reveal a crucial role for miR-210 in the immune imbalance of T lymphocyte subsets in psoriasis and suggest a potential therapeutic avenue.
Collapse
Affiliation(s)
- Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinrong Zeng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jin Yuan
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinjie Deng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lina Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Peng Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huan Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zixin Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zijun Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaofei Gao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Honglin Wang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yuwen Su
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
82
|
Koenecke C, Krueger A. MicroRNA in T-Cell Development and T-Cell Mediated Acute Graft-Versus-Host Disease. Front Immunol 2018; 9:992. [PMID: 29867969 PMCID: PMC5949326 DOI: 10.3389/fimmu.2018.00992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022] Open
Abstract
Acute graft-versus-host disease (GvHD) is still a major cause of treatment-related mortality after allogeneic stem cell transplantation. Allo-antigen recognition of donor T cells after transplantation account for the onset and persistence of this disease. MicroRNAs (miRNAs) are molecular regulators involved in numerous processes during T-cell development, homeostasis, and activation. Thus, miRNAs also contribute to pathological T-cell function during GvHD. Given their capacity of fine-tuning T-cell function, miRNAs have emerged as promising therapeutic targets to curtail acute GvHD, but simultaneously maintain T-cell-mediated graft-versus-tumor effects. Here, we review the role of key miRNAs contributing to the pathophysiology of GvHD. We focus on those miRNAs acting in T cells and for which a role in GvHD has been established in preclinical models. Finally, we provide an outlook for clinical application of this new therapeutic target for GvHD prevention and treatment.
Collapse
Affiliation(s)
- Christian Koenecke
- Clinic for Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
83
|
Metabolic Maturation during Muscle Stem Cell Differentiation Is Achieved by miR-1/133a-Mediated Inhibition of the Dlk1-Dio3 Mega Gene Cluster. Cell Metab 2018; 27:1026-1039.e6. [PMID: 29606596 DOI: 10.1016/j.cmet.2018.02.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 12/20/2022]
Abstract
Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance.
Collapse
|
84
|
Inácio DP, Amado T, Silva-Santos B, Gomes AQ. Control of T cell effector functions by miRNAs. Cancer Lett 2018; 427:63-73. [PMID: 29679611 DOI: 10.1016/j.canlet.2018.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/23/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
The differentiation of effector T cells is a tightly regulated process that relies on the selective expression of lineage-defining master regulators that orchestrate unique transcriptional programs, including the production of distinct sets of effector cytokines. miRNAs are post-transcriptional regulators that are now viewed as critical players in these gene expression networks and help defining cell identity and function. This review summarises the role of individual miRNAs in the regulation of the differentiation of effector T cell subsets, including CD4+ T helper cells, cytotoxic CD8+ T cells and innate-like NKT cells. Moreover, we refer to miRNAs that have been identified to affect simultaneously two or more effector T cell populations, impacting on the balance between effector T cells in vivo, thus constituting potential biomarkers or targets for therapies aiming at boosting immunity or controlling autoimmunity.
Collapse
Affiliation(s)
- Daniel P Inácio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Tiago Amado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Anita Q Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Escola Superior de Tecnologia da Saúde de Lisboa, 1990-096, Lisboa, Portugal.
| |
Collapse
|
85
|
Momen-Heravi F, Bala S. miRNA regulation of innate immunity. J Leukoc Biol 2018; 103:1205-1217. [PMID: 29656417 DOI: 10.1002/jlb.3mir1117-459r] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA and are pivotal posttranscriptional regulators of both innate and adaptive immunity. They act by regulating the expression of multiple immune genes, thus, are the important elements to the complex immune regulatory network. Deregulated expression of specific miRNAs can lead to potential autoimmunity, immune tolerance, hyper-inflammatory phenotype, and cancer initiation and progression. In this review, we discuss the contributory pathways and mechanisms by which several miRNAs influence the development of innate immunity and fine-tune immune response. Moreover, we discuss the consequence of deregulated miRNAs and their pathogenic implications.
Collapse
Affiliation(s)
- Fatemeh Momen-Heravi
- Division of Periodontics, Section of Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, New York, New York, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
86
|
Malpeli G, Barbi S, Greco C, Zupo S, Bertolaso A, Scupoli MT, Krampera M, Kamga PT, Croce CM, Scarpa A, Zamò A. MicroRNA signatures and Foxp3 + cell count correlate with relapse occurrence in follicular lymphoma. Oncotarget 2018; 9:19961-19979. [PMID: 29731996 PMCID: PMC5929439 DOI: 10.18632/oncotarget.24987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/30/2018] [Indexed: 12/29/2022] Open
Abstract
First line drug treatment of follicular lymphoma (FL) patients is followed by a highly variable disease-free time before relapse in about one third of patients. No molecular marker is able to predict efficiently the risk of relapse. We investigated the expression profile of microRNAs (miRNAs) by microarrays and of the tumor microenvironment by immunohistochemistry in 26 FLs and 12 reactive lymph nodes (rLN) as reference. Twenty-nine miRNAs were differentially expressed in FLs compared to rLNs and some of them discriminated grade 1 from 3a FLs. Both FLs and rLNs displayed molecular heterogeneity. FLs grouped into two clusters mostly driven by the tumor T-cell content. Among 21 drug-treated FL patients with an average follow-up of 13.5 years, eight cases relapsed. Twenty-six miRNAs discriminated between relapsed and non-relapsed FLs. Ten miRNAs also correlated with Foxp3+ cells number. Notably, Foxp3+ cells were significantly less in relapsed patients and lower Foxp3+ cell number associated with shorter time-to-relapse. Foxp3+ cells did not co-expressed follicular helper T-cell markers and were therefore classified as regulatory T cells rather than follicular regulatory T-cells. These findings introduce new knowledge about the relationship between miRNA alterations and infiltrating immune cells and show that Foxp3+ cells might be predictive of disease relapse.
Collapse
Affiliation(s)
- Giorgio Malpeli
- 1 Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, Verona, Italy
- 2 Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Stefano Barbi
- 2 Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Corinna Greco
- 3 Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Italy
| | - Simonetta Zupo
- 4 Laboratory of Molecular Diagnostics, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Anna Bertolaso
- 2 Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Teresa Scupoli
- 5 Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Mauro Krampera
- 3 Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Italy
| | - Paul Takam Kamga
- 3 Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Italy
| | - Carlo Maria Croce
- 6 Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aldo Scarpa
- 2 Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- 7 Applied Research on Cancer-Network, ARC-NET, University of Verona, Verona, Italy
| | - Alberto Zamò
- 2 Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- 8 Department of Oncology, University of Torino, Torino, Italy
| |
Collapse
|
87
|
Wang G, Gu Y, Xu N, Zhang M, Yang T. Decreased expression of miR-150, miR146a and miR424 in type 1 diabetic patients: Association with ongoing islet autoimmunity. Biochem Biophys Res Commun 2018; 498:382-387. [DOI: 10.1016/j.bbrc.2017.06.196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022]
|
88
|
Epigenetic silencing of miR-125b is required for normal B-cell development. Blood 2018; 131:1920-1930. [PMID: 29555645 DOI: 10.1182/blood-2018-01-824540] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/05/2018] [Indexed: 11/20/2022] Open
Abstract
Deregulation of several microRNAs (miRs) can influence critical developmental checkpoints during hematopoiesis as well as cell functions, eventually leading to the development of autoimmune disease or cancer. We found that miR-125b is expressed in bone marrow multipotent progenitors and myeloid cells but shut down in the B-cell lineage, and the gene encoding miR-125b lacked transcriptional activation markers in B cells. To understand the biological importance of the physiological silencing of miR-125b expression in B cells, we drove its expression in the B-cell lineage and found that dysregulated miR-125b expression impaired egress of immature B cells from the bone marrow to peripheral blood. Such impairment appeared to be mediated primarily by inhibited expression of the sphingosine-1-phosphate receptor 1 (S1PR1). Enforced expression of S1PR1 or clustered regularly interspaced short palindromic repeats/Cas9-mediated genome editing of the miR-125b targeting site in the S1PR1 3' untranslated region rescued the miR-125b-mediated defect in B-cell egress. In addition to impaired B-cell egress, miR-125b dysregulation initially reduced pre-B-cell output but later induced pre-B-cell lymphoma/leukemia in mice. Genetic deletion of IRF4 was found in miR-125b-induced B-cell cancer, but its role in oncogenic miR-125b-induced B-cell transformation is still unknown. Here, we further demonstrated an interaction of the effects of miR-125b and IRF4 in cancer induction by showing that miR125b-induced B-cell leukemia was greatly accelerated in IRF4 homozygous mutant mice. Thus, we conclude that physiological silencing of miR-125b is required for normal B-cell development and also acts as a mechanism of cancer suppression.
Collapse
|
89
|
Lee J, Park H, Eom J, Kang SG. MicroRNA-mediated Regulation of the Development and Functions of Follicular Helper T cells. Immune Netw 2018; 18:e7. [PMID: 29732234 PMCID: PMC5928420 DOI: 10.4110/in.2018.18.e7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 01/05/2023] Open
Abstract
The germinal center reaction is a key event of humoral immunity, providing long-lived immunological memory. Follicular helper T (TFH) cells are a specialized subset of CD4+ T cells located in the follicles, which help B cells and thus control the germinal center reaction. TFH cell development is achieved by multi-step processes of interactions with dendritic cells and B cells along with the coordination of various transcription factors. Since the T helper cell fate decision program is determined by subtle changes in regulatory molecules, fine tuning of these dynamic interactions is crucial for the generation functional TFH cells. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulatory molecules for gene expression, which consequently modulate diverse biological functions. In the last decade, the miRNA-mediated regulation network for the germinal center reaction has been extensively explored in T cells and B cells, resulting in the identification of several key miRNA species and their target genes. Here, we review the current knowledge of the miRNA-mediated control of the germinal center reaction, focusing on the aspect of T cell regulation in particular. In addition, we highlight the most important issues related to defining the functional target genes of the relevant miRNAs. We believe that the studies that uncover the miRNA-mediated regulatory axis of TFH cell generation and functions by defining their functional target genes might provide additional opportunities to understand germinal center reactions.
Collapse
Affiliation(s)
- Jeonghyun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hyosung Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jiyoung Eom
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea.,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
90
|
The Secrets of T Cell Polarization. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
91
|
Oduor CI, Kaymaz Y, Chelimo K, Otieno JA, Ong’echa JM, Moormann AM, Bailey JA. Integrative microRNA and mRNA deep-sequencing expression profiling in endemic Burkitt lymphoma. BMC Cancer 2017; 17:761. [PMID: 29132323 PMCID: PMC5683570 DOI: 10.1186/s12885-017-3711-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Burkitt lymphoma (BL) is characterized by overexpression of the c-myc oncogene, which in the vast majority of cases is a consequence of an IGH/MYC translocation. While myc is the seminal event, BL is a complex amalgam of genetic and epigenetic changes causing dysregulation of both coding and non-coding transcripts. Emerging evidence suggest that abnormal modulation of mRNA transcription via miRNAs might be a significant factor in lymphomagenesis. However, the alterations in these miRNAs and their correlations to their putative mRNA targets have not been extensively studied relative to normal germinal center (GC) B cells. METHODS Using more sensitive and specific transcriptome deep sequencing, we compared previously published small miRNA and long mRNA of a set of GC B cells and eBL tumors. MiRWalk2.0 was used to identify the validated target genes for the deregulated miRNAs, which would be important for understanding the regulatory networks associated with eBL development. RESULTS We found 211 differentially expressed (DE) genes (79 upregulated and 132 downregulated) and 49 DE miRNAs (22 up-regulated and 27 down-regulated). Gene Set enrichment analysis identified the enrichment of a set of MYC regulated genes. Network propagation-based method and correlated miRNA-mRNA expression analysis identified dysregulated miRNAs, including miR-17~95 cluster members and their target genes, which have diverse oncogenic properties to be critical to eBL lymphomagenesis. Central to all these findings, we observed the downregulation of ATM and NLK genes, which represent important regulators in response to DNA damage in eBL tumor cells. These tumor suppressors were targeted by multiple upregulated miRNAs (miR-19b-3p, miR-26a-5p, miR-30b-5p, miR-92a-5p and miR-27b-3p) which could account for their aberrant expression in eBL. CONCLUSION Combined loss of p53 induction and function due to miRNA-mediated regulation of ATM and NLK, together with the upregulation of TFAP4, may be a central role for human miRNAs in eBL oncogenesis. This facilitates survival of eBL tumor cells with the IGH/MYC chromosomal translocation and promotes MYC-induced cell cycle progression, initiating eBL lymphomagenesis. This characterization of miRNA-mRNA interactions in eBL relative to GC B cells provides new insights on miRNA-mediated transcript regulation in eBL, which are potentially useful for new improved therapeutic strategies.
Collapse
Affiliation(s)
- Cliff I. Oduor
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Yasin Kaymaz
- Department of Bioinformatics & Integrative Biology, University of Massachusetts Medical School, Worcester, MA USA
| | - Kiprotich Chelimo
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Juliana A. Otieno
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Health, Kisumu, Kenya
| | | | - Ann M. Moormann
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| | - Jeffrey A. Bailey
- Department of Bioinformatics & Integrative Biology, University of Massachusetts Medical School, Worcester, MA USA
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, 368 Plantation St. Albert Sherman Building 41077, Worcester, MA 01605 USA
| |
Collapse
|
92
|
Victoria B, Nunez Lopez YO, Masternak MM. MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol 2017; 455:131-147. [PMID: 28062199 PMCID: PMC5724961 DOI: 10.1016/j.mce.2016.12.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/10/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
Abstract
Aging, the natural process of growing older, is characterized by a progressive deterioration of physiological homeostasis at the cellular, tissue, and organismal level. Metabolically, the aging process is characterized by extensive changes in body composition, multi-tissue/multi-organ insulin resistance, and physiological declines in multiple signaling pathways including growth hormone, insulin/insulin-like growth factor 1, and sex steroids regulation. With this review, we intend to consolidate published information about microRNAs that regulate critical metabolic processes relevant to aging. In certain occasions we uncover relationships likely relevant to aging, which has not been directly described before, such as the miR-451/AMPK axis. We have also included a provocative section highlighting the potential role in aging of a new designation of miRNAs, namely fecal miRNAs, recently discovered to regulate intestinal microbiota in mammals.
Collapse
Affiliation(s)
- Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA.
| | - Yury O Nunez Lopez
- Translational Research Institute for Metabolism & Diabetes. Florida Hospital, 301 East Princeton St, Orlando, FL 32804, USA.
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866, Poznan, Poland.
| |
Collapse
|
93
|
Wilkes MC, Repellin CE, Sakamoto KM. Beyond mRNA: The role of non-coding RNAs in normal and aberrant hematopoiesis. Mol Genet Metab 2017; 122:28-38. [PMID: 28757239 PMCID: PMC5722683 DOI: 10.1016/j.ymgme.2017.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023]
Abstract
The role of non-coding Ribonucleic Acids (ncRNAs) in biology is currently an area of intense focus. Hematopoiesis requires rapidly changing regulatory molecules to guide appropriate differentiation and ncRNA are well suited for this. It is not surprising that virtually all aspects of hematopoiesis have roles for ncRNAs assigned to them and doubtlessly much more await characterization. Stem cell maintenance, lymphoid, myeloid and erythroid differentiation are all regulated by various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and various transposable elements within the genome. As our understanding of the many and complex ncRNA roles continues to grow, new discoveries are challenging the existing classification schemes. In this review we briefly overview the broad categories of ncRNAs and discuss a few examples regulating normal and aberrant hematopoiesis.
Collapse
Affiliation(s)
- Mark C Wilkes
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
94
|
Anderson BA, McAlinden A. miR-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells. J Orthop Res 2017; 35:2369-2377. [PMID: 28244607 PMCID: PMC5573664 DOI: 10.1002/jor.23552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/18/2017] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) can regulate cellular differentiation processes by modulating multiple pathways simultaneously. Previous studies to analyze in vivo miRNA expression patterns in developing human limb cartilage tissue identified significant downregulation of miR-483 in hypertrophic chondrocytes relative to proliferating and differentiated chondrocytes. To test the function of miR-483 during chondrogenesis, lentiviral strategies were used to overexpress miR-483 during in vitro chondrogenesis of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). While the in vivo expression patterns led us to hypothesize that miR-483 may enhance chondrogenesis or suppress hypertrophic marker expression, surprisingly, miR-483 overexpression reduced chondrocyte gene expression and cartilage matrix production. In addition, cell death was induced at later stages of the chondrogenesis assay. Mechanistic studies revealed that miR-483 overexpression resulted in downregulation of the TGF-β pathway member SMAD4, a known direct target of miR-483-3p. From these studies, we conclude that constitutive overexpression of miR-483 in hBM-MSCs inhibits chondrogenesis of these cells and does not represent an effective strategy to attempt to enhance chondrocyte differentiation and anabolism in this system in vitro. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2369-2377, 2017.
Collapse
Affiliation(s)
- Britta A. Anderson
- Department of Orthopaedic Surgery, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, MO 63110
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, MO 63110,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO,Corresponding author:: , Phone: (314) 454-8860
| |
Collapse
|
95
|
Friedrich M, Pracht K, Mashreghi MF, Jäck HM, Radbruch A, Seliger B. The role of the miR-148/-152 family in physiology and disease. Eur J Immunol 2017; 47:2026-2038. [DOI: 10.1002/eji.201747132] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/30/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Friedrich
- Institute of Medical Immunology; Martin-Luther-University Halle-Wittenberg; Halle/Saale Germany
| | - Katharina Pracht
- Division of Molecular Immunology; Nikolaus-Fiebiger Center; Department of Internal Medicine III; University of Erlangen-Nürnberg; Erlangen Germany
| | | | - Hans-Martin Jäck
- Division of Molecular Immunology; Nikolaus-Fiebiger Center; Department of Internal Medicine III; University of Erlangen-Nürnberg; Erlangen Germany
| | | | - Barbara Seliger
- Institute of Medical Immunology; Martin-Luther-University Halle-Wittenberg; Halle/Saale Germany
| |
Collapse
|
96
|
Monteleone NJ, Lutz CS. miR-708-5p: a microRNA with emerging roles in cancer. Oncotarget 2017; 8:71292-71316. [PMID: 29050362 PMCID: PMC5642637 DOI: 10.18632/oncotarget.19772] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/16/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression post-transcriptionally. They are crucial for normal development and maintaining homeostasis. Researchers have discovered that dysregulated miRNA expression contributes to many pathological conditions, including cancer. miRNAs can augment or suppress tumorigenesis based on their expression and transcribed targetome in various cell types. In recent years, researchers have begun to identify miRNAs commonly dysregulated in cancer. One recently identified miRNA, miR-708-5p, has been shown to have profound roles in promoting or suppressing oncogenesis in a myriad of solid and hematological tumors. This review highlights the diverse, sometimes controversial findings reported for miR-708-5p in cancer, and the importance of further exploring this exciting miRNA.
Collapse
Affiliation(s)
- Nicholas J. Monteleone
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, NJ 07103, USA
| | - Carol S. Lutz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, NJ 07103, USA
| |
Collapse
|
97
|
A Concise Review of MicroRNA Exploring the Insights of MicroRNA Regulations in Bacterial, Viral and Metabolic Diseases. Mol Biotechnol 2017; 59:518-529. [DOI: 10.1007/s12033-017-0034-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
98
|
Lindner SE, Lohmüller M, Kotkamp B, Schuler F, Knust Z, Villunger A, Herzog S. The miR-15 family reinforces the transition from proliferation to differentiation in pre-B cells. EMBO Rep 2017; 18:1604-1617. [PMID: 28705801 PMCID: PMC5579393 DOI: 10.15252/embr.201643735] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/30/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023] Open
Abstract
Precursor B lymphocytes expand upon expression of a pre-B cell receptor (pre-BCR), but then transit into a resting state in which immunoglobulin light chain gene recombination is initiated. This bi-phasic sequence is orchestrated by the IL-7 receptor (IL-7R) and pre-BCR signaling, respectively, but little is known about microRNAs fine-tuning these events. Here, we show that pre-B cells lacking miR-15 family functions exhibit prolonged proliferation due to aberrant expression of the target genes cyclin E1 and D3. As a consequence, they fail to trigger the transcriptional reprogramming normally accompanying their differentiation, resulting in a developmental block at the pre-B cell stage. Intriguingly, our data indicate that the miR-15 family is suppressed by both IL-7R and pre-BCR signaling, suggesting it is actively integrated into the regulatory circuits of developing B cells. These findings identify the miR-15 family as a novel element required to promote the switch from pre-B cell proliferation to differentiation.
Collapse
Affiliation(s)
- Silke E Lindner
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Lohmüller
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Bianka Kotkamp
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Fabian Schuler
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Zeynep Knust
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Sebastian Herzog
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
99
|
Chen J, Cai T, Zheng C, Lin X, Wang G, Liao S, Wang X, Gan H, Zhang D, Hu X, Wang S, Li Z, Feng Y, Yang F, Han C. MicroRNA-202 maintains spermatogonial stem cells by inhibiting cell cycle regulators and RNA binding proteins. Nucleic Acids Res 2017; 45:4142-4157. [PMID: 27998933 PMCID: PMC5397178 DOI: 10.1093/nar/gkw1287] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
miRNAs play important roles during mammalian spermatogenesis. However, the function of most miRNAs in spermatogenesis and the underlying mechanisms remain unknown. Here, we report that miR-202 is highly expressed in mouse spermatogonial stem cells (SSCs), and is oppositely regulated by Glial cell-Derived Neurotrophic Factor (GDNF) and retinoic acid (RA), two key factors for SSC self-renewal and differentiation. We used inducible CRISPR-Cas9 to knockout miR-202 in cultured SSCs, and found that the knockout SSCs initiated premature differentiation accompanied by reduced stem cell activity and increased mitosis and apoptosis. Target genes were identified with iTRAQ-based proteomic analysis and RNA sequencing, and are enriched with cell cycle regulators and RNA-binding proteins. Rbfox2 and Cpeb1 were found to be direct targets of miR-202 and Rbfox2 but not Cpeb1, is essential for the differentiation of SSCs into meiotic cells. Accordingly, an SSC fate-regulatory network composed of signaling molecules of GDNF and RA, miR-202 and diverse downstream effectors has been identified.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tanxi Cai
- University of Chinese Academy of Sciences, Beijing 100049, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guojun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shangying Liao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuxia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyun Gan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daoqin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangjing Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanmin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- University of Chinese Academy of Sciences, Beijing 100049, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
100
|
Ghorbani S, Talebi F, Chan WF, Masoumi F, Vojgani M, Power C, Noorbakhsh F. MicroRNA-181 Variants Regulate T Cell Phenotype in the Context of Autoimmune Neuroinflammation. Front Immunol 2017; 8:758. [PMID: 28769921 PMCID: PMC5515858 DOI: 10.3389/fimmu.2017.00758] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies have revealed that multiple sclerosis (MS) lesions have distinct microRNA (miRNA) expression profiles. miR-181 family members show altered expression in MS tissues although their participation in MS pathogenesis remains uncertain. Herein, we investigated the involvement of miR-181a and miR-181b in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). Methods miR-181a and -b levels were measured in the central nervous system (CNS) of patients with MS and mice with EAE as well as relevant leukocyte cultures by real-time RT-PCR. To examine the role of the miRNAs in leukocyte differentiation and function, miR-181a and -b mimic sequences were transfected into cultured primary macrophages and purified CD4+ T cells which were then analyzed by RT-PCR and flow cytometry. Luciferase reporter assays were performed to investigate the interaction of miR-181a and -b with the 3′-UTR of potential target transcripts, and the expression of target genes was measured in the CNS of EAE mice, activated lymphocytes, and macrophages. Results Expression analyses revealed a significant decrease in miR-181a and -b levels in brain white matter from MS patients as well as in spinal cords of EAE mice during the acute and chronic phases of disease. Suppression of miR-181a was observed following antigen-specific or polyclonal activation of lymphocytes as well as in macrophages following LPS treatment. Overexpression of miR-181a and -b mimic sequences reduced proinflammatory gene expression in macrophages and polarization toward M1 phenotype. miR-181a and -b mimic sequences inhibited Th1 generation in CD4+ T cells and miR-181a mimic sequences also promoted Treg differentiation. Luciferase assays revealed Suppressor of mothers against decapentaplegic 7 (Smad7), as a direct target of miR-181a and -b. Conclusion Our data highlight the anti-inflammatory actions of miR-181a and -b in the context of autoimmune neuroinflammation. miR-181a and -b influence differentiation of T helper cell and activation of macrophages, providing potential therapeutic options for controlling inflammation in MS.
Collapse
Affiliation(s)
- Samira Ghorbani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Shefa Neuroscience Research Center, Khatam Al-Anbia Hospital, Tehran, Iran
| | - Farideh Talebi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Wing Fuk Chan
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Farimah Masoumi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammed Vojgani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada.,Multiple Sclerosis Centre, University of Alberta, Edmonton, AB, Canada
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|