51
|
Zouali M. Swaying the advantage: multifaceted functions of inflammasomes in adaptive immunity. FEBS J 2024. [PMID: 38922787 DOI: 10.1111/febs.17204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/17/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Eukaryotic cells are equipped with cytoplasmic sensors that recognize diverse pathogen- or danger-associated molecular patterns. In cells of the myeloid lineage, activation of these sensors leads to the assembly of a multimeric protein complex, called the inflammasome, that culminates in the production of inflammatory cytokines and pyroptosis. Recently, investigation of the inflammasomes in lymphocytes led to the discovery of functional pathways that were initially believed to be confined to the innate arm of the immune system. Thus, the adapter protein apoptosis-associated speck-like protein containing a CARD (ASC) was documented to play a critical role in antigen uptake by dendritic cells, and regulation of T- and B-cell motility at several stages, and absent in melanoma 2 (AIM2) was found to act as a modulator of regulatory T-cell differentiation. Remarkably, NLRP3 was demonstrated to act as a transcription factor that controls Th2 cell polarization, and as a negative regulator of regulatory T-cell differentiation by limiting Foxp3 expression. In B lymphocytes, NLRP3 plays a role in the transcriptional network that regulates B-cell development and homing, and its activation is essential for germinal center formation and maturation of high-affinity antibody responses. Such recently discovered inflammasome-mediated functions in T and B lymphocytes offer multiple cross-talk opportunities for the innate and adaptive arms of the immune system. A better understanding of the dialog between inflammasomes and intracellular components could be beneficial for therapeutic purposes in restoring immune homeostasis and mitigating inflammation in a wide range of disorders.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
52
|
Liu J, Li H, Dong Q, Liang Z. Multi omics analysis of mitophagy subtypes and integration of machine learning for predicting immunotherapy responses in head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:10579-10614. [PMID: 38913914 PMCID: PMC11236326 DOI: 10.18632/aging.205964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/29/2024] [Indexed: 06/26/2024]
Abstract
Mitophagy serves as a critical mechanism for tumor cell death, significantly impacting the progression of tumors and their treatment approaches. There are significant challenges in treating patients with head and neck squamous cell carcinoma, underscoring the importance of identifying new targets for therapy. The function of mitophagy in head and neck squamous carcinoma remains uncertain, thus investigating its impact on patient outcomes and immunotherapeutic responses is especially crucial. We initially analyzed the differential expression, prognostic value, intergene correlations, copy number variations, and mutation frequencies of mitophagy-related genes at the pan-cancer level. Through unsupervised clustering, we divided head and neck squamous carcinoma into three subtypes with distinct prognoses, identified the signaling pathway features of each subtype using ssGSEA, and characterized subtype B as having features of an immune desert using various immune infiltration calculation methods. Using multi-omics data, we identified the genomic variation characteristics, mutated gene pathway features, and drug sensitivity features of the mitophagy subtypes. Utilizing a combination of 10 machine learning algorithms, we have developed a prognostic scoring model called Mitophagy Subgroup Risk Score (MSRS), which is used to predict patient survival and the response to immune checkpoint blockade therapy. Simultaneously, we applied MSRS to single-cell analysis to explore intercellular communication. Through laboratory experiments, we validated the biological function of SLC26A9, one of the genes in the risk model. In summary, we have explored the significant role of mitophagy in head and neck tumors through multi-omics data, providing new directions for clinical treatment.
Collapse
Affiliation(s)
- Junzhi Liu
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huimin Li
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiuping Dong
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zheng Liang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
53
|
Dinakaran C, Prasad KP, Bedekar MK, Jeena K, Acharya A, Poojary N. In vitro analysis of the expression of inflammasome, antiviral, and immune genes in an Oreochromis niloticus liver cell line following stimulation with bacterial ligands and infection with tilapia lake virus. Arch Virol 2024; 169:148. [PMID: 38888759 DOI: 10.1007/s00705-024-06077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
The inflammasome is a multimeric protein complex that plays a vital role in the defence against pathogens and is therefore considered an essential component of the innate immune system. In this study, the expression patterns of inflammasome genes (NLRC3, ASC, and CAS-1), antiviral genes (IFNγ and MX), and immune genes (IL-1β and IL-18) were analysed in Oreochromis niloticus liver (ONIL) cells following stimulation with the bacterial ligands peptidoglycan (PGN) and lipopolysaccharide (LPS) and infection with TiLV. The cells were stimulated with PGN and LPS at concentrations of 10, 25, and 50 µg/ml. For viral infection, 106 TCID50 of TiLV per ml was used. After LPS stimulation, all seven genes were found to be expressed at specific time points at each of the three doses tested. However, at even higher doses of LPS, NLRC3 levels decreased. Following TiLV infection, all of the genes showed significant upregulation, especially at early time points. However, the gene expression pattern was found to be unique in PGN-treated cells. For instance, NLRC3 and ASC did not show any response to PGN stimulation, and the expression of IFNγ was downregulated at 25 and 50 µg of PGN per ml. CAS-1 and IL-18 expression was downregulated at 25 µg of PGN per ml. At a higher dose (50 µg/ml), IL-1β showed downregulation. Overall, our results indicate that these genes are involved in the immune response to viral and bacterial infection and that the degree of response is ligand- and dose-dependent.
Collapse
Affiliation(s)
- Chandana Dinakaran
- ICAR- Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Megha K Bedekar
- ICAR- Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Kezhedath Jeena
- ICAR- Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Arpit Acharya
- ICAR- Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Nalini Poojary
- ICAR- Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
54
|
Kim DH, Lee WW. IL-1 Receptor Dynamics in Immune Cells: Orchestrating Immune Precision and Balance. Immune Netw 2024; 24:e21. [PMID: 38974214 PMCID: PMC11224669 DOI: 10.4110/in.2024.24.e21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
IL-1, a pleiotropic cytokine with profound effects on various cell types, particularly immune cells, plays a pivotal role in immune responses. The proinflammatory nature of IL-1 necessitates stringent control mechanisms of IL-1-mediated signaling at multiple levels, encompassing transcriptional and translational regulation, precursor processing, as well as the involvement of a receptor accessory protein, a decoy receptor, and a receptor antagonist. In T-cell immunity, IL-1 signaling is crucial during both the priming and effector phases of immune reactions. The fine-tuning of IL-1 signaling hinges upon two distinct receptor types; the functional IL-1 receptor (IL-1R) 1 and the decoy IL-1R2, accompanied by ancillary molecules such as the IL-1R accessory protein (IL-1R3) and IL-1R antagonist. IL-1R1 signaling by IL-1β is critical for the differentiation, expansion, and survival of Th17 cells, essential for defense against extracellular bacteria or fungi, yet implicated in autoimmune disease pathogenesis. Recent investigations emphasize the physiological importance of IL-1R2 expression, particularly in its capacity to modulate IL-1-dependent responses within Tregs. The precise regulation of IL-1R signaling is indispensable for orchestrating appropriate immune responses, as unchecked IL-1 signaling has been implicated in inflammatory disorders, including Th17-mediated autoimmunity. This review provides a thorough exploration of the IL-1R signaling complex and its pivotal roles in immune regulation. Additionally, it highlights recent advancements elucidating the mechanisms governing the expression of IL-1R1 and IL-1R2, underscoring their contributions to fine-tuning IL-1 signaling. Finally, the review briefly touches upon therapeutic strategies targeting IL-1R signaling, with potential clinical applications.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Seoul National University Cancer Research Institute, Seoul 03080, Korea
- Institute of Endemic Diseases and Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
55
|
Long J, Zhao W, Xiang Y, Wang Y, Xiang W, Liu X, Jiang M, Song Y, Hu J. STAT3 promotes cytoplasmic-nuclear translocation of RNA-binding protein HuR to inhibit IL-1β-induced IL-8 production. Int Immunopharmacol 2024; 133:112065. [PMID: 38608448 DOI: 10.1016/j.intimp.2024.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1β-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1β-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1β induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1β-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1β-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1β-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1β. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1β-induced IL-8 production through this non-transcriptional mechanism.
Collapse
Affiliation(s)
- Jiangwen Long
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Wang Zhao
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yangen Xiang
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yufei Wang
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China; Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Wei Xiang
- Department of Clinical Laboratory, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China; Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Xueting Liu
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Manli Jiang
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yinghui Song
- Central Laboratory, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Jinyue Hu
- Medical Research Center, Affiliated Changsha Central Hospital of Hengyang Medical School, University of South China, Changsha 410004, China.
| |
Collapse
|
56
|
Gigante L, Gaudillière-Le Dain G, Bertaut A, Truntzer C, Ghiringhelli F. Interleukin-1α as a Potential Prognostic Biomarker in Pancreatic Cancer. Biomedicines 2024; 12:1216. [PMID: 38927423 PMCID: PMC11200603 DOI: 10.3390/biomedicines12061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE We assessed the prognostic role of pro-inflammatory cytokines of the IL-1 superfamily in patients with pancreatic cancer. METHODS This retrospective study was performed using two independent cohorts of patients with pancreatic cancer: the International Cancer Genome Consortium (ICGC, N = 267) cohort and The Cancer Genome Atlas (TCGA, N = 178) cohort. Univariate Cox regressions were used to identify prognosis-related pro-inflammatory cytokines of the IL-1 superfamily. Cytokines associated with outcome were included in a multivariate Cox model with relevant clinicopathological variables to identify prognostic biomarkers. RESULTS IL-1α was the only pro-inflammatory cytokine of the IL-1 superfamily that was significantly associated with prognosis in both cohorts. In the training cohort (ICGC), the decile of patients with the lowest IL1A expression had better overall survival (HR = 1.99 [1.01-3.93], p = 0.05) and better relapse-free survival (HR = 1.85 [1.02-3.34], p = 0.04) than the group with the highest IL1A expression. The validation cohort (TCGA) confirmed these results: the decile with the lowest IL1A expression had better overall survival (HR = 3.00 [1.14-7.90], p = 0.03) and a lower risk of progression (HR = 3.11 [1.24-7.80], p = 0.01). CONCLUSIONS IL1A is an independent prognostic marker and could be considered a potential therapeutic target in pancreatic cancer patients.
Collapse
Affiliation(s)
- Leonardo Gigante
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
| | - Gwladys Gaudillière-Le Dain
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
| | - Aurélie Bertaut
- Biostatistics and Methodology Unit, Georges-François Leclerc Cancer Center, 21000 Dijon, France;
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UMR INSERM 1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
- UMR INSERM 1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000 Dijon, France
- Department of Medical Oncology, Georges-François Leclerc Cancer Center, 1 Rue du Professeur Marion, 21000 Dijon, France
| |
Collapse
|
57
|
Fields JK, Gyllenbäck EJ, Bogacz M, Obi J, Birkedal GS, Sjöström K, Maravillas K, Grönberg C, Rattik S, Kihn K, Flowers M, Smith AK, Hansen N, Fioretos T, Huyhn C, Liberg D, Deredge D, Sundberg EJ. Antibodies targeting the shared cytokine receptor IL-1 receptor accessory protein invoke distinct mechanisms to block all cytokine signaling. Cell Rep 2024; 43:114099. [PMID: 38636519 DOI: 10.1016/j.celrep.2024.114099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/24/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Interleukin-1 (IL-1)-family cytokines are potent modulators of inflammation, coordinating a vast array of immunological responses across innate and adaptive immune systems. Dysregulated IL-1-family cytokine signaling, however, is involved in a multitude of adverse health effects, such as chronic inflammatory conditions, autoimmune diseases, and cancer. Within the IL-1 family of cytokines, six-IL-1α, IL-1β, IL-33, IL-36α, IL-36β, and IL-36γ-require the IL-1 receptor accessory protein (IL-1RAcP) as their shared co-receptor. Common features of cytokine signaling include redundancy of signaling pathways, sharing of cytokines and receptors, pleiotropy of the cytokines themselves, and multifaceted immune responses. Accordingly, targeting multiple cytokines simultaneously is an emerging therapeutic strategy and can provide advantages over targeting a single cytokine pathway. Here, we show that two monoclonal antibodies, CAN10 and 3G5, which target IL-1RAcP for broad blockade of all associated cytokines, do so through distinct mechanisms and provide therapeutic opportunities for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- James K Fields
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | - Marek Bogacz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juliet Obi
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | | - Kino Maravillas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | - Kyle Kihn
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Maria Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ally K Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Nils Hansen
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Chau Huyhn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
58
|
Eltahir HM, Elbadawy HM, Almikhlafi MA, Alalawi AM, Aldhafiri AJ, Alahmadi YM, Al thagfan SS, Albadrani M, M Eweda S, Abouzied MM. Sitagliptin ameliorates L-arginine-induced acute pancreatitis via modulating inflammatory cytokines expression and combating oxidative stress. Front Pharmacol 2024; 15:1389670. [PMID: 38910880 PMCID: PMC11190672 DOI: 10.3389/fphar.2024.1389670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 06/25/2024] Open
Abstract
Background Acute pancreatitis (AP) is an inflammatory condition that resolves spontaneously, but occasionally, develops into systemic inflammation, organ failure and mortality. Oxidative stress and activation of inflammatory pathways represent major players in AP pathogenesis. Current management of AP relies on attenuating injuries to the pancreas and putting the inflammatory process under control. In this study, we investigated the role of sitagliptin in modulating L-arginine-induced AP in rats. Methods Swiss rats were subdivided into a healthy control group, AP group (a single dose of L-arginine 250 mg/100 g, intraperitoneal), and sitagliptin + L-arginine-treated group (10 mg sitagliptin/kg body weight/day, orally). Sitagliptin treatment started 1 hour after L-arginine injection and continued for 3days. Biochemical and histopathological investigations were performed on serum and tissue samples collected from test animals. Results L-arginine increased pancreatic meyloperoxidase and serum amylase- and lipase activities and serum levels of TNF-α, LT-α, IFN-γ, IL-1α/β, IL-6, IL-10, IL-12, and IL-15. AP animals showed elevated MDA and NO and decreased GSH and serum calcium levels. Histopathological changes were observed by H&E staining. Sitagliptin treatment significantly ameliorated these biochemical and histological changes diminishing the signs of AP. Conclusion Sitagliptin treatment was effective in ameliorating L-arginine-induced AP which can be regarded to its anti-inflammatory and antioxidant effect.
Collapse
Affiliation(s)
- Heba M. Eltahir
- Department of Pharmacology and Toxicology (Biochemistry Subdivision), College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Hossein M. Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Ali M. Alalawi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Ahmed J. Aldhafiri
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Yaser M. Alahmadi
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Sultan S. Al thagfan
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Muayad Albadrani
- Department of Family and Community Medicine, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Saber M Eweda
- 5Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mekky M. Abouzied
- Department of Pharmacology and Toxicology (Biochemistry Subdivision), College of Pharmacy, Taibah University, Medina, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
59
|
Yue C, Hu Y, Yu J, Zhou H, Zhou P, Hu J, Wang X, Gu L, Li Y, Feng Y, Zeng F, Zhao F, Li G, Zhao Q, Zhang C, Zheng H, Wu W, Cui X, Huang N, Wang Z, Cui K, Li J. IL-38 Aggravates Atopic Dermatitis via Facilitating Migration of Langerhans cells. Int J Biol Sci 2024; 20:3094-3112. [PMID: 38904012 PMCID: PMC11186352 DOI: 10.7150/ijbs.93843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Atopic dermatitis (AD) is a common inflammation skin disease that involves dysregulated interplay between immune cells and keratinocytes. Interleukin-38 (IL-38), a poorly characterized IL-1 family cytokine, its role and mechanism in the pathogenesis of AD is elusive. Here, we show that IL-38 is mainly secreted by epidermal keratinocytes and highly expressed in the skin and downregulated in AD lesions. We generated IL-38 keratinocyte-specific knockout mice (K14Cre/+-IL-38f/f ) and induced AD models by 2,4-dinitrofluorobenzene (DNFB). Unexpectedly, after treatment with DNFB, K14Cre/+-IL-38f/f mice were less susceptible to cutaneous inflammation of AD. Moreover, keratinocyte-specific deletion of IL-38 suppressed the migration of Langerhans cells (LCs) into lymph nodes which results in disturbed differentiation of CD4+T cells and decreased the infiltration of immune cells into AD lesions. LCs are a type of dendritic cell that reside specifically in the epidermis and regulate immune responses. We developed LC-like cells in vitro from mouse bone marrow (BM) and treated with recombined IL-38. The results show that IL-38 depended on IL-36R, activated the phosphorylated expression of IRAK4 and NF-κB P65 and upregulated the expression of CCR7 to promoting the migration of LCs, nevertheless, the upregulation disappeared with the addition of IL-36 receptor antagonist (IL-36RA), IRAK4 or NF-κB P65 inhibitor. Furthermore, after treatment with IRAK4 inhibitors, the experimental AD phenotypes were alleviated and so IRAK4 is considered a promising target for the treatment of inflammatory diseases. Overall, our findings indicated a potential pathway that IL-38 depends on IL-36R, leading to LCs migration to promote AD by upregulating CCR7 via IRAK4/NF-κB and implied the prevention and treatment of AD, supporting potential clinical utilization of IRAK4 inhibitors in AD treatment.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Linna Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Chen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Huaping Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xinai Cui
- CDUTCM-KEELE Joint Health and Medical Sciences Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Zhen Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
- Department of Liver Surgery & Liver Transplantation, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, 37 Guo Xue Road, Chengdu, Sichuan 610041, China
| | - Kaijun Cui
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
60
|
Belbezier A, Engeroff P, Fourcade G, Vantomme H, Vaineau R, Gouritin B, Bellier B, Brocheriou I, Tchitchek N, Graff-Dubois S, Klatzmann D. Interleukin-1 regulates follicular T cells during the germinal center reaction. Front Immunol 2024; 15:1393096. [PMID: 38855101 PMCID: PMC11157057 DOI: 10.3389/fimmu.2024.1393096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Antibody production and the generation of memory B cells are regulated by T follicular helper (Tfh) and T follicular regulatory (Tfr) cells in germinal centers. However, the precise role of Tfr cells in controlling antibody production is still unclear. We have previously shown that both Tfh and Tfr cells express the IL-1R1 agonist receptor, whereas only Tfr cells express the IL-1R2 decoy and IL-1Ra antagonist receptors. We aimed to investigate the role of IL-1 receptors in the regulation of B cell responses by Tfh and Tfr. Methods We generated mice with IL-1 receptors inactivated in Tfh or Tfr and measured antibody production and cell activation after immunisation. Results While IL-1β levels are increased in the draining lymph node after immunisation, antigen-specific antibody levels and cell phenotypes indicated that IL-1β can activate both Tfh and Tfr cells through IL-1R1 stimulation. Surprisingly, expression of IL-1R2 and IL-1Ra on Tfr cells does not block IL-1 activation of Tfh cells, but rather prevents IL-1/IL-1R1-mediated early activation of Tfr cells. IL-1Rs also regulate the antibody response to autoantigens and its associated pathophysiology in an experimental lupus model. Discussion Collectively, our results show that IL-1 inhibitory receptors expressed by Tfr cells prevent their own activation and suppressive function, thus licensing IL-1-mediated activation of Tfh cells after immunisation. Further mechanistic studies should unravel these complex interactions between IL-1β and follicular helper and regulatory T cells and provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Aude Belbezier
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Paul Engeroff
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Gwladys Fourcade
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Hélène Vantomme
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Romain Vaineau
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Bruno Gouritin
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Bertrand Bellier
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Isabelle Brocheriou
- Assistance Publique - Hôpitaux de Pari (AP-HP), Hôpital Pitié-Salpêtrière, Department of Pathology, Paris, France
| | - Nicolas Tchitchek
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Stephanie Graff-Dubois
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| |
Collapse
|
61
|
Chen J, Gao Y, Liu N, Hai D, Wei W, Liu Y, Lan X, Jin X, Yu J, Ma L. Mechanism of NLRP3 Inflammasome in Epilepsy and Related Therapeutic Agents. Neuroscience 2024; 546:157-177. [PMID: 38574797 DOI: 10.1016/j.neuroscience.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Epilepsy is one of the most widespread and complex diseases in the central nervous system (CNS), affecting approximately 65 million people globally, an important factor resulting in neurological disability-adjusted life year (DALY) and progressive cognitive dysfunction. Medication is the most essential treatment. The currently used drugs have shown drug resistance in some patients and only control symptoms; the development of novel and more efficacious pharmacotherapy is imminent. Increasing evidence suggests neuroinflammation is involved in the occurrence and development of epilepsy, and high expression of NLRP3 inflammasome has been observed in the temporal lobe epilepsy (TLE) brain tissue of patients and animal models. The inflammasome is a crucial cause of neuroinflammation by activating IL-1β and IL-18. Many preclinical studies have confirmed that regulating NLRP3 inflammasome pathway can prevent the development of epilepsy, reduce the severity of epilepsy, and play a neuroprotective role. Therefore, regulating NLRP3 inflammasome could be a potential target for epilepsy treatment. In summary, this review describes the priming and activation of inflammasome and its biological function in the progression of epilepsy. In addition, we reviewes the current pharmacological researches for epilepsy based on the regulation of NLRP3 inflammasome, aiming to provide a basis and reference for developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yuan Gao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Dongmei Hai
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Wei Wei
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yue Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xueqin Jin
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
62
|
Doedens JR, Smolak P, Nguyen M, Wescott H, Diamond C, Schooley K, Billinton A, Harrison D, Koller BH, Watt AP, Gabel CA. Pharmacological Analysis of NLRP3 Inflammasome Inhibitor Sodium [(1,2,3,5,6,7-Hexahydro-s-indacen-4-yl)carbamoyl][(1-methyl-1 H-pyrazol-4-yl)({[(2 S)-oxolan-2-yl]methyl})sulfamoyl]azanide in Cellular and Mouse Models of Inflammation Provides a Translational Framework. ACS Pharmacol Transl Sci 2024; 7:1438-1456. [PMID: 38751618 PMCID: PMC11091978 DOI: 10.1021/acsptsci.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Interleukin (IL)-1β is an apex proinflammatory cytokine produced in response to tissue injury and infection. The output of IL-1β from monocytes and macrophages is regulated not only by transcription and translation but also post-translationally. Release of the active cytokine requires activation of inflammasomes, which couple IL-1β post-translational proteolysis with pyroptosis. Among inflammasome platforms, NOD-like receptor pyrin domain-containing protein 3 (NLRP3) is implicated in the pathogenesis of numerous human disorders in which disease-specific danger-associated molecular patterns (DAMPS) are positioned to drive its activation. As a promising therapeutic target, numerous candidate NLRP3-targeting therapeutics have been described and demonstrated to provide benefits in the context of animal disease models. While showing benefits, published preclinical studies have not explored dose-response relationships within the context of the models. Here, the preclinical pharmacology of a new chemical entity, [(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl][(1-methyl-1H-pyrazol-4-yl)({[(2S)-oxolan-2-yl]methyl})sulfamoyl]azanide (NT-0249), is detailed, establishing its potency and selectivity as an NLRP3 inhibitor. NT-0249 also is evaluated in two acute in vivo mouse challenge models where pharmacodynamic/pharmacokinetic relationships align well with in vitro blood potency assessments. The therapeutic utility of NT-0249 is established in a mouse model of cryopyrin-associated periodic syndrome (CAPS). In this model, mice express a human gain-of-function NLRP3 allele and develop chronic and progressive IL-1β-dependent autoinflammatory disease. NT-0249 dose-dependently reduced multiple inflammatory biomarkers in this model. Significantly, NT-0249 decreased mature IL-1β levels in tissue homogenates, confirming in vivo target engagement. Our findings highlight not only the pharmacological attributes of NT-0249 but also provide insight into the extent of target suppression that will be required to achieve clinical benefit.
Collapse
Affiliation(s)
| | - Pamela Smolak
- NodThera,
Inc., Seattle, Washington 98103, United States
| | - MyTrang Nguyen
- Department
of Genetics, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | | | | | - Ken Schooley
- NodThera,
Inc., Seattle, Washington 98103, United States
| | - Andy Billinton
- NodThera
Ltd, Little Chesterford,
Saffron Walden, Essex CB10
1XL, U.K.
| | - David Harrison
- NodThera
Ltd, Little Chesterford,
Saffron Walden, Essex CB10
1XL, U.K.
| | - Beverly H. Koller
- Department
of Genetics, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Alan P. Watt
- NodThera
Ltd, Little Chesterford,
Saffron Walden, Essex CB10
1XL, U.K.
| | | |
Collapse
|
63
|
Zou YT, Li JY, Chai JY, Hu YS, Zhang WJ, Zhang Q. The impact of the P2X7 receptor on the tumor immune microenvironment and its effects on tumor progression. Biochem Biophys Res Commun 2024; 707:149513. [PMID: 38508051 DOI: 10.1016/j.bbrc.2024.149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/22/2024]
Abstract
Cancer is a significant global health concern, and finding effective methods to treat it has been a focus of scientific research. It has been discovered that the growth, invasion, and metastasis of tumors are closely related to the environment in which they exist, known as the tumor microenvironment (TME). The immune response interacting with the tumor occurring within the TME constitutes the tumor immune microenvironment, and the immune response can lead to anti-tumor and pro-tumor outcomes and has shown tremendous potential in immunotherapy. A channel called the P2X7 receptor (P2X7R) has been identified within the TME. It is an ion channel present in various immune cells and tumor cells, and its activation can lead to inflammation, immune responses, angiogenesis, immunogenic cell death, and promotion of tumor development. This article provides an overview of the structure, function, and pharmacological characteristics of P2X7R. We described the concept and components of tumor immune microenvironment and the influence immune components has on tumors. We also outlined the impact of P2X7R regulation and how it affects the development of tumors and summarized the effects of drugs targeting P2X7R on tumor progression, both past and current, assisting researchers in treating tumors using P2X7R as a target.
Collapse
Affiliation(s)
- Yu-Ting Zou
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jin-Yuan Li
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jun-Yi Chai
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Yu-Shan Hu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China; The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| |
Collapse
|
64
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
65
|
Kanno T, Katano T, Shimura T, Tanaka M, Nishie H, Fukusada S, Ozeki K, Ogawa I, Iwao T, Matsunaga T, Kataoka H. Krüppel-like Factor-4-Mediated Macrophage Polarization and Phenotypic Transitions Drive Intestinal Fibrosis in THP-1 Monocyte Models In Vitro. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:713. [PMID: 38792896 PMCID: PMC11122781 DOI: 10.3390/medicina60050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Despite the fact that biologic drugs have transformed inflammatory bowel disease (IBD) treatment, addressing fibrosis-related strictures remains a research gap. This study explored the roles of cytokines, macrophages, and Krüppel-like factors (KLFs), specifically KLF4, in intestinal fibrosis, as well as the interplay of KLF4 with various gut components. Materials and Methods: This study examined macrophage subtypes, their KLF4 expression, and the effects of KLF4 knockdown on macrophage polarization and cytokine expression using THP-1 monocyte models. Co-culture experiments with stromal myofibroblasts and a conditioned medium from macrophage subtype cultures were conducted to study the role of these cells in intestinal fibrosis. Human-induced pluripotent stem cell-derived small intestinal organoids were used to confirm inflammatory and fibrotic responses in the human small intestinal epithelium. Results: Each macrophage subtype exhibited distinct phenotypes and KLF4 expression. Knockdown of KLF4 induced inflammatory cytokine expression in M0, M2a, and M2c cells. M2b exerted anti-fibrotic effects via interleukin (IL)-10. M0 and M2b cells showed a high migratory capacity toward activated stromal myofibroblasts. M0 cells interacting with activated stromal myofibroblasts transformed into inflammatory macrophages, thereby increasing pro-inflammatory cytokine expression. The expression of IL-36α, linked to fibrosis, was upregulated. Conclusions: This study elucidated the role of KLF4 in macrophage polarization and the intricate interactions between macrophages, stromal myofibroblasts, and cytokines in experimental in vitro models of intestinal fibrosis. The obtained results may suggest the mechanism of fibrosis formation in clinical IBD.
Collapse
Affiliation(s)
- Takuya Kanno
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takahito Katano
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
- Kajinoki Medical Clinic, 2340-1 Kawai, Kani, Gifu 509-0201, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hirotada Nishie
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Shigeki Fukusada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Keiji Ozeki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Isamu Ogawa
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
66
|
Caproni A, Nordi C, Fontana R, Facchini M, Melija S, Pappadà M, Buratto M, Marconi P. Herpes Simplex Virus ICP27 Protein Inhibits AIM 2-Dependent Inflammasome Influencing Pro-Inflammatory Cytokines Release in Human Pigment Epithelial Cells (hTert-RPE 1). Int J Mol Sci 2024; 25:4608. [PMID: 38731826 PMCID: PMC11083950 DOI: 10.3390/ijms25094608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Although Herpes simplex virus type 1 (HSV-1) has been deeply studied, significant gaps remain in the fundamental understanding of HSV-host interactions: our work focused on studying the Infected Cell Protein 27 (ICP27) as an inhibitor of the Absent-in-melanoma-2 (AIM 2) inflammasome pathway, leading to reduced pro-inflammatory cytokines that influence the activation of a protective innate immune response to infection. To assess the inhibition of the inflammasome by the ICP27, hTert-immortalized Retinal Pigment Epithelial cells (hTert-RPE 1) infected with HSV-1 wild type were compared to HSV-1 lacking functional ICP27 (HSV-1∆ICP27) infected cells. The activation of the inflammasome by HSV-1∆ICP27 was demonstrated by quantifying the gene and protein expression of the inflammasome constituents using real-time PCR and Western blot. The detection of the cleavage of the pro-caspase-1 into the active form was performed by using a bioluminescent assay, while the quantification of interleukins 1β (IL-1β) and 18 (IL-18)released in the supernatant was quantified using an ELISA assay. The data showed that the presence of the ICP27 expressed by HSV-1 induces, in contrast to HSV-1∆ICP27 vector, a significant downregulation of AIM 2 inflammasome constituent proteins and, consequently, the release of pro-inflammatory interleukins into the extracellular environment reducing an effective response in counteracting infection.
Collapse
Affiliation(s)
- Anna Caproni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Chiara Nordi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Riccardo Fontana
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Martina Facchini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Sara Melija
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Mariangela Pappadà
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Mattia Buratto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
67
|
Chen Y, Lu X, Whitney RL, Li Y, Robson MJ, Blakely RD, Chi JT, Crowley SD, Privratsky JR. Novel anti-inflammatory effects of the IL-1 receptor in kidney myeloid cells following ischemic AKI. Front Mol Biosci 2024; 11:1366259. [PMID: 38693918 PMCID: PMC11061482 DOI: 10.3389/fmolb.2024.1366259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024] Open
Abstract
Introduction: Acute kidney injury (AKI) is one of the most common causes of organ failure in critically ill patients. Following AKI, the canonical pro-inflammatory cytokine interleukin-1β (IL-1β) is released predominantly from activated myeloid cells and binds to the interleukin-1 receptor R1 (IL-1R1) on leukocytes and kidney parenchymal cells. IL-1R1 on kidney tubular cells is known to amplify the immune response and exacerbate AKI. However, the specific role of IL-1R1 on myeloid cells during AKI is poorly understood. The objective of the present study was to elucidate the function of myeloid cell IL-1R1 during AKI. As IL-1R1 is known to signal through the pro-inflammatory Toll-like receptor (TLR)/MyD88 pathway, we hypothesized that myeloid cells expressing IL-1R1 would exacerbate AKI. Methods: IL-1R1 was selectively depleted in CD11c+-expressing myeloid cells with CD11cCre + /IL-1R1 fl/fl (Myel KO) mice. Myel KO and littermate controls (CD11cCre - /IL-1R1 fl/fl-Myel WT) were subjected to kidney ischemia/reperfusion (I/R) injury. Kidney injury was assessed by blood urea nitrogen (BUN), serum creatinine and injury marker neutrophil gelatinase-associated lipocalin (NGAL) protein expression. Renal tubular cells (RTC) were co-cultured with CD11c+ bone marrow-derived dendritic cells (BMDC) from Myel KO and Myel WT mice. Results: Surprisingly, compared to Myel WT mice, Myel KO mice displayed exaggerated I/R-induced kidney injury, as measured by elevated levels of serum creatinine and BUN, and kidney NGAL protein expression. In support of these findings, in vitro co-culture studies showed that RTC co-cultured with Myel KO BMDC (in the presence of IL-1β) exhibited higher mRNA levels of the kidney injury marker NGAL than those co-cultured with Myel WT BMDC. In addition, we observed that IL-1R1 on Myel WT BMDC preferentially augmented the expression of anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1ra/Il1rn), effects that were largely abrogated in Myel KO BMDC. Furthermore, recombinant IL-1Ra could rescue IL-1β-induced tubular cell injury. Discussion: Our findings suggest a novel function of IL-1R1 is to serve as a critical negative feedback regulator of IL-1 signaling in CD11c+ myeloid cells to dampen inflammation to limit AKI. Our results lend further support for cell-specific, as opposed to global, targeting of immunomodulatory agents.
Collapse
Affiliation(s)
- Yanting Chen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Xiaohan Lu
- Department of Medicine, Duke University, Durham, NC, United States
| | - Raeann L. Whitney
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Yu Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Anesthesiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi, China
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Jen-Tsan Chi
- Department of Microbiology and Molecular Genetics, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Steven D. Crowley
- Department of Medicine, Duke University, Durham, NC, United States
- Durham VA Medical Center, Durham, NC, United States
| | - Jamie R. Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
68
|
Lee HR, Jeong YJ, Park SA, Kim HJ, Heo TH. Geraniin Alleviates Inflammation in Caco-2 Cells and Dextran Sulfate Sodium-Induced Colitis Mice by Targeting IL-1β. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7882-7893. [PMID: 38530797 DOI: 10.1021/acs.jafc.3c09396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
IL-1β is an important cytokine implicated in the progression of inflammatory bowel disease (IBD) and intestinal barrier dysfunction. The polyphenolic compound, geraniin, possesses bioactive properties, such as antitumor, antioxidant, anti-inflammatory, antihypertensive, and antiviral activities; however, its IL-1β-targeted anticolitis activity remains unclear. Here, we evaluated the inhibitory effect of geraniin in IL-1β-stimulated Caco-2 cells and a dextran sulfate sodium (DSS)-induced colitis mouse model. Geraniin blocked the interaction between IL-1β and IL-1R by directly binding to IL-1β and inhibited the IL-1β activity. It suppressed IL-1β-induced intestinal tight junction damage in human Caco-2 cells by inhibiting IL-1β-mediated MAPK, NF-kB, and MLC activation. Moreover, geraniin administration effectively reduced colitis symptoms and attenuated intestinal barrier injury in mice by suppressing elevated intestinal permeability and restoring tight junction protein expression through the inhibition of MAPK, NF-kB, and MLC activation. Thus, geraniin exhibits anti-IL-1β activity and anticolitis effect by hindering the IL-1β and IL-1R interaction and may be a promising therapeutic anti-IL-1β agent for IBD treatment.
Collapse
Affiliation(s)
- Hae-Ri Lee
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young-Jin Jeong
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Sun-Ae Park
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hee Jung Kim
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
69
|
Tang M, Yin Y, Wang W, Gong K, Dong J, Gao X, Li J, Fang L, Ma J, Hong Y, Li Z, Bi T, Zhang W, Liu W. Exploring the multifaceted effects of Interleukin-1 in lung cancer: From tumor development to immune modulation. Life Sci 2024; 342:122539. [PMID: 38423172 DOI: 10.1016/j.lfs.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Lung cancer, acknowledged as one of the most fatal cancers globally, faces limited treatment options on an international scale. The success of clinical treatment is impeded by challenges such as late diagnosis, restricted treatment alternatives, relapse, and the emergence of drug resistance. This predicament has led to a saturation point in lung cancer treatment, prompting a rapid shift in focus towards the tumor microenvironment (TME) as a pivotal area in cancer research. Within the TME, Interleukin-1 (IL-1) is abundantly present, originating from immune cells, tissue stromal cells, and tumor cells. IL-1's induction of pro-inflammatory mediators and chemokines establishes an inflammatory milieu influencing tumor occurrence, development, and the interaction between tumors and the host immune system. Notably, IL-1 expression in the TME exhibits characteristics such as staging, tissue specificity, and functional pluripotency. This comprehensive review aims to delve into the impact of IL-1 on lung cancer, encompassing aspects of occurrence, invasion, metastasis, immunosuppression, and immune surveillance. The ultimate goal is to propose a novel treatment approach, considering the intricate dynamics of IL-1 within the TME.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein (UKSH), Christian Albrechts University of Kiel, Kiel, Germany
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yang Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhiqin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Taiyu Bi
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wenyu Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
70
|
Li X, Men X, Ji L, Chen X, He S, Zhang P, Chen S. NLRP3-mediated periodontal ligament cell pyroptosis promotes root resorption. J Clin Periodontol 2024; 51:474-486. [PMID: 38164052 DOI: 10.1111/jcpe.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
AIM To investigate the mechanisms by which periodontal ligament cells (PDLCs) convert biomechanical stimulation into inflammatory microenvironment inducing root resorption (RR). MATERIALS AND METHODS RNA sequencing was employed to explore mechanisms in force-inflammatory signal transduction. Then resorption volume, odontoclastic activity, PDLC pyroptotic ratio and NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis pathway activation were analysed under force and pyroptosis inhibition. Further osteoclast formation, macrophage number and transwell polarization demonstrated the effects of PDLC pyroptosis on osteoclastogenesis and M1 polarization. RESULTS RNA sequencing revealed that NLRP3-mediated PDLC pyroptosis induced by Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NFκB)/NLRP3 pathway may be involved in mechano-inflammatory signal transduction. PDLC pyroptosis under force and the expression of NLRP3-mediated pyroptosis pathway in force-enhanced PDLCs were significantly increased, both in vivo and in vitro. MCC950 administration was sufficient to reduce PDLC pyroptosis and alleviate RR, odontoclast formation and M1 polarization in vivo. Further in vitro exploration showed that MCC950 treatment reduced PDLC force-promoted pyroptosis and blocked NLRP3-mediated pyroptosis pathway. Moreover, by treating THP-1 with force-pretreated PDLCs or supernatants, NLRP3-mediated PDLC pyroptotic released products induced osteoclast formation and M1 polarization. CONCLUSIONS NLRP3-mediated PDLC pyroptosis promotes RR. PDLCs transmit excessive force into inflammation signals through TLR4/NFκB/NLRP3 pathway, inducing PDLC pyroptosis, which directly promotes odontoclast formation and subsequent RR or promotes M1 polarization to indirectly trigger odontoclastogenesis and RR.
Collapse
Affiliation(s)
- Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinrui Men
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ling Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
71
|
Yang XT, Niu PQ, Li XF, Sun MM, Wei W, Chen YQ, Zheng JY. Differential cytokine expression in gastric tissues highlights helicobacter pylori's role in gastritis. Sci Rep 2024; 14:7683. [PMID: 38561502 PMCID: PMC10984929 DOI: 10.1038/s41598-024-58407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Helicobacter pylori (H. pylori), known for causing gastric inflammation, gastritis and gastric cancer, prompted our study to investigate the differential expression of cytokines in gastric tissues, which is crucial for understanding H. pylori infection and its potential progression to gastric cancer. Focusing on Il-1β, IL-6, IL-8, IL-12, IL-18, and TNF-α, we analysed gene and protein levels to differentiate between H. pylori-infected and non-infected gastritis. We utilised real-time quantitative polymerase chain reaction (RT-qPCR) for gene quantification, immunohistochemical staining, and ELISA for protein measurement. Gastric samples from patients with gastritis were divided into three groups: (1) non-gastritis (N-group) group, (2) gastritis without H. pylori infection (G-group), and (3) gastritis with H. pylori infection (GH-group), each consisting of 8 samples. Our findings revealed a statistically significant variation in cytokine expression. Generally, cytokine levels were higher in gastritis, but in H. pylori-infected gastritis, IL-1β, IL-6, and IL-8 levels were lower compared to H. pylori-independent gastritis, while IL-12, IL-18, and TNF-α levels were higher. This distinct cytokine expression pattern in H. pylori-infected gastritis underscores a unique inflammatory response, providing deeper insights into its pathogenesis.
Collapse
Affiliation(s)
- Xing-Tang Yang
- Department of Gastroenterology, Chongming Branch, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 66 Xiangyangdong Road, Bao Town, Chongming District, Shanghai, 202157, People's Republic of China.
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| | - Pei-Qin Niu
- Department of Gastroenterology, Chongming Branch, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 66 Xiangyangdong Road, Bao Town, Chongming District, Shanghai, 202157, People's Republic of China.
| | - Xiao-Feng Li
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Ming-Ming Sun
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Wei Wei
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Yan-Qing Chen
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Jia-Yi Zheng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| |
Collapse
|
72
|
Allouche R, Hafeez Z, Dary-Mourot A, Genay M, Miclo L. Streptococcus thermophilus: A Source of Postbiotics Displaying Anti-Inflammatory Effects in THP 1 Macrophages. Molecules 2024; 29:1552. [PMID: 38611831 PMCID: PMC11013757 DOI: 10.3390/molecules29071552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
In addition to traditional use in fermented dairy products, S. thermophilus also exhibits anti-inflammatory properties both in live and heat-inactivated form. Recent studies have highlighted that some hydrolysates from surface proteins of S. thermophilus could be responsible partially for overall anti-inflammatory activity of this bacterium. It was hypothesized that anti-inflammatory activity could also be attributed to peptides resulting from the digestion of intracellular proteins of S. thermophilus. Therefore, total intracellular proteins (TIP) from two phenotypically different strains, LMD-9 and CNRZ-21N, were recovered by sonication followed by ammonium sulphate precipitation. The molecular masses of the TIP of both strains were very close to each other as observed by SDS-PAGE. The TIP were fractionated by size exclusion fast protein liquid chromatography to obtain a 3-10 kDa intracellular protein (IP) fraction, which was then hydrolysed with pancreatic enzyme preparation, Corolase PP. The hydrolysed IP fraction from each strain exhibited anti-inflammatory activity by modulating pro-inflammatory mediators, particularly IL-1β in LPS-stimulated THP-1 macrophages. However, a decrease in IL-8 secretion was only observed with hydrolysed IP fraction from CNRZ-21N, indicating that strain could be an important parameter in obtaining active hydrolysates. Results showed that peptides from the 3-10 kDa IP fraction of S. thermophilus could therefore be considered as postbiotics with potential beneficial effects on human health. Thus, it can be used as a promising bioactive ingredient for the development of functional foods to prevent low-grade inflammation.
Collapse
Affiliation(s)
| | - Zeeshan Hafeez
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (R.A.); (A.D.-M.); (M.G.); (L.M.)
| | | | | | | |
Collapse
|
73
|
Chen H, Jian Z, Xu T, Xu L, Deng L, Shao L, Zhang L, He L, Li Y, Zhu L. Advances in the mechanism of inflammasomes activation in herpes virus infection. Front Immunol 2024; 15:1346878. [PMID: 38590522 PMCID: PMC10999540 DOI: 10.3389/fimmu.2024.1346878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Herpesviruses, prevalent DNA viruses with a double-stranded structure, establish enduring infections and play a part in various diseases. Despite their deployment of multiple tactics to evade the immune system, both localized and systemic inflammatory responses are triggered by the innate immune system's recognition of them. Recent progress has offered more profound understandings of the mechanisms behind the activation of the innate immune system by herpesviruses, specifically through inflammatory signaling. This process encompasses the initiation of an intracellular nucleoprotein complex, the inflammasome associated with inflammation.Following activation, proinflammatory cytokines such as IL-1β and IL-18 are released by the inflammasome, concurrently instigating a programmed pathway for cell death. Despite the structural resemblances between herpesviruses, the distinctive methods of inflammatory activation and the ensuing outcomes in diseases linked to the virus exhibit variations.The objective of this review is to emphasize both the similarities and differences in the mechanisms of inflammatory activation among herpesviruses, elucidating their significance in diseases resulting from these viral infections.Additionally, it identifies areas requiring further research to comprehensively grasp the impact of this crucial innate immune signaling pathway on the pathogenesis of these prevalent viruses.
Collapse
Affiliation(s)
- Hourui Chen
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lina Shao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leyi Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youyou Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
74
|
Rai S, Zhang Y, Grockowiak E, Kimmerlin Q, Hansen N, Stoll CB, Usart M, Luque Paz D, Hao-Shen H, Zhu Y, Roux J, Bader MS, Dirnhofer S, Farady CJ, Schroeder T, Méndez-Ferrer S, Skoda RC. IL-1β promotes MPN disease initiation by favoring early clonal expansion of JAK2-mutant hematopoietic stem cells. Blood Adv 2024; 8:1234-1249. [PMID: 38207211 PMCID: PMC10912850 DOI: 10.1182/bloodadvances.2023011338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT JAK 2-V617F is the most frequent somatic mutation causing myeloproliferative neoplasm (MPN). JAK2-V617F can be found in healthy individuals with clonal hematopoiesis of indeterminate potential (CHIP) with a frequency much higher than the prevalence of MPNs. The factors controlling the conversion of JAK2-V617F CHIP to MPN are largely unknown. We hypothesized that interleukin-1β (IL-1β)-mediated inflammation can favor this progression. We established an experimental system using bone marrow (BM) transplantations from JAK2-V617F and GFP transgenic (VF;GFP) mice that were further crossed with IL-1β-/- or IL-1R1-/- mice. To study the role of IL-1β and its receptor on monoclonal evolution of MPN, we performed competitive BM transplantations at high dilutions with only 1 to 3 hematopoietic stem cells (HSCs) per recipient. Loss of IL-1β in JAK2-mutant HSCs reduced engraftment, restricted clonal expansion, lowered the total numbers of functional HSCs, and decreased the rate of conversion to MPN. Loss of IL-1R1 in the recipients also lowered the conversion to MPN but did not reduce the frequency of engraftment of JAK2-mutant HSCs. Wild-type (WT) recipients transplanted with VF;GFP BM that developed MPNs had elevated IL-1β levels and reduced frequencies of mesenchymal stromal cells (MSCs). Interestingly, frequencies of MSCs were also reduced in recipients that did not develop MPNs, had only marginally elevated IL-1β levels, and displayed low GFP-chimerism resembling CHIP. Anti-IL-1β antibody preserved high frequencies of MSCs in VF;GFP recipients and reduced the rate of engraftment and the conversion to MPN. Our results identify IL-1β as a potential therapeutic target for preventing the transition from JAK2-V617F CHIP to MPNs.
Collapse
Affiliation(s)
- Shivam Rai
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Elodie Grockowiak
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Quentin Kimmerlin
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nils Hansen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cedric B. Stoll
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Marc Usart
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Damien Luque Paz
- University of Angers, Nantes Université, CHU Angers, INSERM, CNRS, CRCI2NA, Angers, France
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yexuan Zhu
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Julien Roux
- Department of Biomedicine, Bioinformatics core facility, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michael S. Bader
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Department of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
75
|
Zhao Z, Zhang Y, Luo B. The role of pyroptosis in viral infection. Arch Virol 2024; 169:69. [PMID: 38456965 DOI: 10.1007/s00705-024-05978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/17/2023] [Indexed: 03/09/2024]
Abstract
Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death, which is an important natural immune response. Pyroptosis plays a major role in combating pathogenic infections. The mechanism of pyroptosis is distinct from other forms of cell death and is characterized by its dependence on inflammatory caspases (mainly caspases 1, 4, 5, and 11). Activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory vesicles is involved in caspase-1 activation and cleavage, which in turn triggers cleavage and multimerization of multiple gasdermin family members, including gasdermin-D (GSDMD). This further leads to cell perforation and cellular distension, causing cell membrane rupture, resulting in a massive efflux of cell contents, which triggers inflammatory reactions. In recent years, detailed study of viral diseases, has demonstrated that pyroptosis is closely associated with the development of viral diseases. This article focuses on the mechanism of pyroptosis and the connection between pyroptosis and viral infection.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
76
|
Dawood MAO, Abdo SE, El-Kassas S, El-Naggar K, Al Wakeel RA, Moustafa EM, Abou Asa S. Chicken egg lysozyme enhanced the growth performance, feed utilization, upregulated immune-related genes, and mitigated the impacts of Aeromonas hydrophila infection in Nile tilapia (Oreochromisniloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 146:109377. [PMID: 38228249 DOI: 10.1016/j.fsi.2024.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Functional supplements, including lysozyme, are highly approved as immunostimulant and antibacterial agents with a high potential for use in aquaculture. In this regard, Nile tilapia was treated with lysozyme at 0, 0.5, 1, 1.5, and 3 g/kg for 60 days, then challenged with Aeromonas hydrophila. Fish were stocked in 15 glass aquaria (70 L each) with an equal initial weight of 10.72 ± 0.71 g per fish and 15 fish per aquarium. The regression analysis revealed that dietary lysozyme supplementation at 1.83-2 g/kg enhanced the growth performance, protein efficiency ratio, and protein productive value while reducing the feed conversion ratio of tilapia. Markedly, tilapia treated with lysozyme had a low mortality rate (30-50 %) compared to the control, which recorded a 70 % mortality rate after 15 days of challenge with A. hydrophila. The regression analysis also revealed that the highest lysozyme activity of tilapia-fed lysozyme for 60 days is achieved by 2.05 g/kg lysozyme. The expression of Nf-κb, IL-1β, and IL-8 genes is upregulated in tilapia-fed lysozyme at 0.5, 1, 1.5, and 3 g/kg for 60 days before and after A. hydrophila infection. The expression of GPX and CAT genes was higher in tilapia-fed lysozyme at 0.5, 1, 1.5, and 3 g/kg for 60 days before and after A. hydrophila infection. Before infection, the relative transcription of the lysozyme and C3 was upregulated in tilapia-fed lysozyme at 0.5, 1, 1.5, and 3 g/kg. However, lysozyme gene expression in tilapia treated with 0.5 g/kg lysozyme had no significant differences from those fed 0 g/kg lysozyme. After infection, the relative transcription of the lysozyme gene was upregulated in tilapia fed 1 and 1.5 g/kg, while tilapia fed 1 g/kg lysozyme had the highest C3 gene transcription. After infection, the hepatocytes in the livers of fish fed 0 g/kg lysozyme exhibited a noticeable fatty alteration, along with congestion, a light infiltration of inflammatory cells, and the start of necrosed cell regeneration. However, the livers of fish that received lysozyme were normal except for infiltrations of perivascular and interstitial mononuclear cells, depending on the supplementation dose. In conclusion, dietary lysozyme is recommended at 1.83-2.05 g/kg to gain high growth performance, immune response, and high resistance to A. hydrophila in Nile tilapia.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt; The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835, Cairo, Egypt.
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, 22758, Egypt
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Eman M Moustafa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt
| | - Samah Abou Asa
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt
| |
Collapse
|
77
|
Yip K, Braverman G, Yue L, Fields T. Pipeline Therapies for Gout. Curr Rheumatol Rep 2024; 26:69-80. [PMID: 38133712 DOI: 10.1007/s11926-023-01128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE OF REVIEW Despite effective available treatments, gout management is often unsuccessful in getting patients to target serum urate goal and in managing flares in the setting of comorbidities. Studies addressing future treatment options for short- and long-term management are reviewed. RECENT FINDINGS URAT-1 blocking agents have been helpful but have had limitations related to effects on renal function, lack of efficacy with renal impairment, and potential to increase renal stones. Dotinurad may function in the setting of decreased renal function. Arhalofenate has anti-URAT-1 activity and may also blunt gout flares. A new xanthine oxidase inhibitor (XOI), tigulixostat, is under study. New uricase treatments manufactured in combination with agents that can reduce immunogenicity may make uricase treatment simpler. A unique strategy of inhibiting gut uricase may offer the benefits of avoiding systemic absorption. For gout flares, IL-1β inhibitor studies in progress include different dosing schedules. Dapansutrile, an oral agent under investigation, inhibits activation of the NLRP3 inflammasome and may be an effective anti-inflammatory. New treatments for gout that are under study may work in the setting of comorbidities, simplify management, utilize new mechanisms, or have reduced side effects.
Collapse
Affiliation(s)
- Kevin Yip
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA.
| | - Genna Braverman
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | - Linda Yue
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | - Theodore Fields
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
78
|
Qin Y, Shao B, Ren SH, Ye K, Qin H, Wang HD, Sun C, Zhu Y, Wang Z, Zhang J, Li X, Wang H. Interleukin-37 contributes to endometrial regenerative cell-mediated immunotherapeutic effect on chronic allograft vasculopathy. Cytotherapy 2024; 26:299-310. [PMID: 38159090 DOI: 10.1016/j.jcyt.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AIMS Chronic allograft vasculopathy (CAV) remains a predominant contributor to late allograft failure after organ transplantation. Several factors have already been shown to facilitate the progression of CAV, and there is still an urgent need for effective and specific therapeutic approaches to inhibit CAV. Human mesenchymal-like endometrial regenerative cells (ERCs) are free from the deficiencies of traditional invasive acquisition methods and possess many advantages. Nevertheless, the exact immunomodulation mechanism of ERCs remains to be elucidated. METHODS C57BL/6 (B6) mouse recipients receiving BALB/c mouse donor abdominal aorta transplantation were treated with ERCs, negative control (NC)-ERCs and interleukin (IL)-37-/-ERCs (ERCs with IL-37 ablation), respectively. Pathologic lesions and inflammatory cell infiltration in the grafts, splenic immune cell populations, circulating donor-specific antibody levels and cytokine profiles were analyzed on postoperative day (POD) 40. The proliferative capacities of Th1, Th17 and Treg subpopulations were assessed in vitro. RESULTS Allografts from untreated recipients developed typical pathology features of CAV, namely endothelial thickening, on POD 40. Compared with untreated and IL-37-/-ERC-treated groups, IL-37-secreting ERCs (ERCs and NC-ERCs) significantly reduced vascular stenosis, the intimal hyperplasia and collagen deposition. IL-37-secreting ERCs significantly inhibited the proliferation of CD4+T cells, reduced the proportions of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. Furthermore, in vitro results also showed that IL-37-secreting ERCs significantly inhibited Th1 and Th17 cell responses, abolished B-cell activation, diminished donor-specific antibody production and increased Treg proportions. Notably, IL-37-secreting ERCs remarkably downregulated the levels of pro-inflammatory cytokines (interferon-γ, tumor necrosis factor-α, IL-1β, IL-6 and IL-17A) and increased IL-10 levels in transplant recipients. CONCLUSIONS The knockdown of IL-37 dramatically abrogates the therapeutic ability of ERCs for CAV. Thus, this study highlights that IL-37 is indispensable for ERC-mediated immunomodulation for CAV and improves the long-term allograft acceptance.
Collapse
Affiliation(s)
- Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Department of Vascular Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, PR China.
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Kui Ye
- Department of Vascular Surgery, Tianjin Fourth Central Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, PR China.
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Zhaobo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, PR China.
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
79
|
Chen X, Lei H, Cheng Y, Fang S, Sun W, Zhang X, Jin Z. CXCL8, MMP12, and MMP13 are common biomarkers of periodontitis and oral squamous cell carcinoma. Oral Dis 2024; 30:390-407. [PMID: 36321868 DOI: 10.1111/odi.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/24/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To analysis the relationship between periodontitis (PD) and oral squamous cell carcinoma (OSCC) by bioinformatic analysis. MATERIALS AND METHODS We analyzed the gene expression profiles of PD (GSE16134) from the Gene Expression Omnibus (GEO) database and OSCC samples from TCGA-HNSC (head and neck squamous cell carcinoma) and identified common differentially expressed genes (DEGs) in PD and OSCC. Then, functional annotation and signaling pathway enrichment, protein interaction network construction, and hub gene identification were performed. Subsequently, the function and signaling pathway enrichment of hub genes, miRNA interaction, and transcription factor interaction analyses were carried out. We analyzed GSE10334 and GSE30784 as validation datasets, and performed qRT-PCR experiments simultaneously for validation, and obtained 4 hub genes. Finally, immune infiltration analysis and clinical correlation analysis of 4 hub genes and related miRNAs were performed. RESULTS We identified 31 DEGs (16 up-regulated and 15 down-regulated). Four hub genes were obtained by qRT-PCR and validation dataset analysis, including IL-1β, CXCL8, MMP12, and MMP13. The expression levels of them were all significantly upregulated in both diseases. The functions of these genes focus on three areas: neutrophil chemotaxis, migration, and CXCR chemokine receptor binding. Key pathways include IL-17 signaling pathway, chemokine signaling pathway, and cytokine-cytokine receptor interactions pathway. Immune infiltration analysis showed that the expressions of 4 hub genes were closely related to a variety of immune cells. ROC curve analysis indicated that AUCs of 4 hub genes are all greater than 0.7, among which MMP12 and MMP13 were greater than 0.9. Kaplan-Meier survival analysis indicated that worse OS was strongly correlated with CXCL8 and MMP13 high-expression groups. MMP12 low-expression group was strongly associated with worse OS. The results of multivariate Cox regression analysis showed that age, N stage, CXCL8, MMP12, and MMP13 were independent prognostic factors for OS. We also identified 3 miRNAs, including hsa-miR-19b-3p, hsa-miR-181b-2-3p, and hsa-miR-495-3p, that were closely related to 4 hub genes. Hsa-miR-495-3p is closely related to the diagnosis and prognosis of OSCC. CONCLUSIONS We identified 4 hub genes between PD and OSCC, including IL-1β, CXCL8, MMP12, and MMP13. These genes may mediate the co-morbid process of PD and OSCC through inflammation-related pathways such as the IL-17 signaling pathway. It is worth noting that CXCL8, MMP12, and MMP13 have great significance in the diagnosis and prognosis of OSCC.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Hao Lei
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Yuxun Cheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Shishu Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Weifu Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Xiaochen Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| |
Collapse
|
80
|
Gander-Bui HTT. Turning nature's experiment into a cure. Allergy 2024; 79:767-769. [PMID: 38084776 DOI: 10.1111/all.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 03/01/2024]
Affiliation(s)
- Hang Thi Thuy Gander-Bui
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
81
|
Zhang FY, Lian N, Li M. Macrophage pyroptosis induced by Candida albicans. Pathog Dis 2024; 82:ftae003. [PMID: 38499444 PMCID: PMC11162155 DOI: 10.1093/femspd/ftae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Candida albicans (C. albicans) is a prevalent opportunistic pathogen that causes mucocutaneous and systemic infections, particularly in immunocompromised individuals. Macrophages play a crucial role in eliminating C. albicans in local and bloodstream contexts, while also regulating antifungal immune responses. However, C. albicans can induce macrophage lysis through pyroptosis, a type of regulated cell death. This process can enable C. albicans to escape from immune cells and trigger the release of IL-1β and IL-18, which can impact both the host and the pathogen. Nevertheless, the mechanisms by which C. albicans triggers pyroptosis in macrophages and the key factors involved in this process remain unclear. In this review, we will explore various factors that may influence or trigger pyroptosis in macrophages induced by C. albicans, such as hypha, ergosterol, cell wall remodeling, and other virulence factors. We will also examine the possible immune response following macrophage pyroptosis.
Collapse
Affiliation(s)
- Feng-yuan Zhang
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
| | - Ni Lian
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
| | - Min Li
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
- Center for Global Health, School of Public Health, Nanjing Medical University, 101st. LongMian Avenue, Nanjing, 211166, China
| |
Collapse
|
82
|
Brindle A, Bainbridge C, Kumar MR, Todryk S, Padget K. The Bisdioxopiperazine ICRF-193 Attenuates LPS-induced IL-1β Secretion by Macrophages. Inflammation 2024; 47:84-98. [PMID: 37656316 PMCID: PMC10798930 DOI: 10.1007/s10753-023-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Inhibiting pathological secretion of Interleukin-1β has shown beneficial effects in disease models and in the clinic and thus there is interest in finding inhibitors that can reduce its release from macrophages in response to their activation by foreign pathogens. We used an in vitro human macrophage model to investigate whether ICRF-193, a Topoisomerase II inhibitor could modulate IL1B mRNA expression and IL-1β secretion. These macrophage-like cells readily secrete IL-1β in response to Lipopolysaccharide (LPS). Upon exposure to a non-toxic dose of ICRF-193, IL-1β secretion was diminished by ~ 40%; however, level of transcription of IL1B was unaffected. We show that there was no Topoisomerase 2B (TOP2B) binding to several IL1B gene sites, which may explain why ICRF-193 does not alter IL1B mRNA levels. Hence, we show for the first time that ICRF-193 can reduce IL-1β secretion. Its low cost and the development of water-soluble prodrugs of ICRF-193 warrants its further investigation in the modulation of pathological secretion of this cytokine for the treatment of inflammatory disorders. (165 words).
Collapse
Affiliation(s)
- Ashleigh Brindle
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| | - Callum Bainbridge
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| | - Muganti R Kumar
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| | - Stephen Todryk
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK.
| | - Kay Padget
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| |
Collapse
|
83
|
Korhonen E. Inflammasome activation in response to aberrations of cellular homeostasis in epithelial cells from human cornea and retina. Acta Ophthalmol 2024; 102 Suppl 281:3-68. [PMID: 38386419 DOI: 10.1111/aos.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
|
84
|
Gao Y, Cai L, Wu Y, Jiang M, Zhang Y, Ren W, Song Y, Li L, Lei Z, Wu Y, Zhu L, Li J, Li D, Li G, Luo C, Tao L. Emerging functions and therapeutic targets of IL-38 in central nervous system diseases. CNS Neurosci Ther 2024; 30:e14550. [PMID: 38334236 PMCID: PMC10853902 DOI: 10.1111/cns.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 02/10/2024] Open
Abstract
Interleukin (IL)-38 is a newly discovered cytokine of the IL-1 family, which binds various receptors (i.e., IL-36R, IL-1 receptor accessory protein-like 1, and IL-1R1) in the central nervous system (CNS). The hallmark physiological function of IL-38 is competitive binding to IL-36R, as does the IL-36R antagonist. Emerging research has shown that IL-38 is abnormally expressed in the serum and brain tissue of patients with ischemic stroke (IS) and autism spectrum disorder (ASD), suggesting that IL-38 may play an important role in neurological diseases. Important advances include that IL-38 alleviates neuromyelitis optica disorder (NMOD) by inhibiting Th17 expression, improves IS by protecting against atherosclerosis via regulating immune cells and inflammation, and reduces IL-1β and CXCL8 release through inhibiting human microglial activity post-ASD. In contrast, IL-38 mRNA is markedly increased and is mainly expressed in phagocytes in spinal cord injury (SCI). IL-38 ablation attenuated SCI by reducing immune cell infiltration. However, the effect and underlying mechanism of IL-38 in CNS diseases remain inadequately characterized. In this review, we summarize the biological characteristics, pathophysiological role, and potential mechanisms of IL-38 in CNS diseases (e.g., NMOD, Alzheimer's disease, ASD, IS, TBI, and SCI), aiming to explore the therapeutic potential of IL-38 in the prevention and treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
- Department of NeurosurgeryPennsylvania State University College of MedicineState CollegePennsylvaniaUSA
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Yulu Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Min Jiang
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yidan Zhang
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Wenjing Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Yirui Song
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Lili Li
- Department of Child and Adolescent HealthcareChildren's Hospital of Soochow UniversitySuzhouChina
| | - Ziguang Lei
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Youzhuang Wu
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luwen Zhu
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Dongya Li
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Guohong Li
- Department of NeurosurgeryPennsylvania State University College of MedicineState CollegePennsylvaniaUSA
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
85
|
Cui JZ, Chew ZH, Lim LHK. New insights into nucleic acid sensor AIM2: The potential benefit in targeted therapy for cancer. Pharmacol Res 2024; 200:107079. [PMID: 38272334 DOI: 10.1016/j.phrs.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The AIM2 inflammasome represents a multifaceted oligomeric protein complex within the innate immune system, with the capacity to perceive double-stranded DNA (dsDNA) and engage in diverse physiological reactions and disease contexts, including cancer. While originally conceived as a discerning DNA sensor, AIM2 has demonstrated its capability to discern various nucleic acid variations, encompassing RNA and DNA-RNA hybrids. Through its interaction with nucleic acids, AIM2 orchestrates the assembly of a complex involving multiple proteins, aptly named the AIM2 inflammasome, which facilitates the enzymatic cleavage of proinflammatory cytokines, namely pro-IL-1β and pro-IL-18. This process, in turn, underpins its pivotal biological role. In this review, we provide a systematic summary and discussion of the latest advancements in AIM2 sensing various types of nucleic acids. Additionally, we discuss the modulation of AIM2 activation, which can cause cell death, including pyroptosis, apoptosis, and autophagic cell death. Finally, we fully illustrate the evidence for the dual role of AIM2 in different cancer types, including both anti-tumorigenic and pro-tumorigenic functions. Considering the above information, we uncover the therapeutic promise of modulating the AIM2 inflammasome in cancer treatment.
Collapse
Affiliation(s)
- Jian-Zhou Cui
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS-Cambridge Immunophenotyping Centre, Life Science Institute, National University of Singapore, Singapore.
| | - Zhi Huan Chew
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lina H K Lim
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
86
|
Chen D, Zhang Y, Zhou Y, Liu Y. Association between circulating biomarkers and non-alcoholic fatty liver disease: An integrative Mendelian randomization study of European ancestry. Nutr Metab Cardiovasc Dis 2024; 34:404-417. [PMID: 37973425 DOI: 10.1016/j.numecd.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIM Circulating biomarkers provide potential diagnostic or prognostic information on disease presentation, progression or both. Early detection of circulating risk biomarkers is critical for non-alcoholic fatty liver disease (NAFLD) prevention. We aimed to systematically assess the potential causal relationship of genetically predicted 60 circulatory biomarkers with NAFLD using a two-sample Mendelian randomization (MR) design. METHODS AND RESULTS We extracted instrumental variables for 60 circulating biomarkers, and obtained genome-wide association data for NAFLD from 3 sources [(including Anstee, FinnGen and UK Biobank (N ranges: 19264-377988)] among individuals of European ancestry. Our primary method was inverse-variance weighted (IVW) MR, with a series of additional and sensitivity analyses to test the hypothesis of MR. MR results showed that genetically predicted higher density lipoprotein-cholesterol (odds ratio (OR) = 0.86, 95% confidence interval (CI): 0.77-0.96) and vitamin D (OR = 0.39, 95% CI: 0.19-0.78) levels decreased the risk of NAFLD, whereas genetically predicted higher alanine (OR = 1.68, 95% CI: 1.21-2.33), histidine (OR = 1.21, 95% CI: 1.00-1.46), lactate (OR = 2.64, 95% CI: 1.09-6.39), triglycerides (OR = 1.16, 95% CI: 1.05-1.13), ferritin (OR = 1.17, 95% CI: 1.01-1.37), serum iron (OR = 1.23, 95% CI: 1.07-1.41) and transferrin saturation (OR = 1.16, 95% CI: 1.05-1.29), component 4 (OR = 1.10, 95% CI: 1.01-1.20), interleukin-1 receptor antagonist (OR = 1.12, 95% CI: 1.04-1.21) and interleukin-6 (OR = 1.62, 95% CI: 1.14-2.30) levels increased the risk of NAFLD. CONCLUSIONS The findings might aid in elucidating the underlying processes of these causal relationships and provide strong evidence for focusing on high-risk populations and the therapeutic management of specific biomarkers.
Collapse
Affiliation(s)
- Dongze Chen
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China.
| | - Yi Zhou
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China.
| | - Yuyang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China.
| |
Collapse
|
87
|
Haines NA, Fowler MG, Zeh BG, Kriete CB, Bai Q, Wakefield MR, Fang Y. Unlocking the 'ova'-coming power: immunotherapy's role in shaping the future of ovarian cancer treatment. Med Oncol 2024; 41:67. [PMID: 38286890 DOI: 10.1007/s12032-023-02281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/06/2023] [Indexed: 01/31/2024]
Abstract
Ovarian cancer is a prominent cancer worldwide with a relatively low survival rate for women diagnosed. Many individuals are diagnosed in the late stage of the disease and are prescribed a wide variety of treatment options. Current treatment options are primarily a combination of surgery and chemotherapy as well as a new but promising treatment involving immunotherapy. Nevertheless, contemporary therapeutic modalities exhibit a discernible lag in advancement when compared with the strides achieved in recent years in the context of other malignancies. Moreover, many surgery and chemotherapy options have a high risk for recurrence due to the late-stage diagnosis. Therefore, there is a necessity to further treatment options. There have been many new advancements in the field of immunotherapy. Immunotherapy has been approved for 16 various types of cancers and has shown significant treatment potential in many other cancers as well. Researchers have also found many promising outlooks for immunotherapy as a treatment for ovarian cancer. This review summarizes many of the new advancements in immunotherapy treatment options and could potentially offer valuable insights to gynecologists aimed at enhancing the efficacy of their treatment approaches for patients diagnosed with ovarian cancer.
Collapse
Affiliation(s)
- Nathan A Haines
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, 8025, Grand Ave, West Des Moines, IA, 50266, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mia G Fowler
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Benjamin G Zeh
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, 8025, Grand Ave, West Des Moines, IA, 50266, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Carter B Kriete
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, 8025, Grand Ave, West Des Moines, IA, 50266, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
88
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front Med (Lausanne) 2024; 11:1307394. [PMID: 38323035 PMCID: PMC10845338 DOI: 10.3389/fmed.2024.1307394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Interleukin 1β (IL-1β) is a significant mediator of inflammation and tissue damage in IBD. The balance between IL-1β and its endogenous inhibitor-IL-1Ra-, plays a critical role in both initiation and regulation of inflammation. However, the precise role of IL-1β as a causative factor in IBD or simply a consequence of inflammation remains unclear. This review summarizes current knowledge on the molecular and cellular characteristics of IL-1β, describes the existing evidence on the role of this cytokine as a modulator of intestinal homeostasis and an activator of inflammatory responses, and also discusses the role of microRNAs in the regulation of IL-1β-related inflammatory responses in IBD. Current evidence indicates that IL-1β is involved in several aspects during IBD as it greatly contributes to the induction of pro-inflammatory responses through the recruitment and activation of immune cells to the gut mucosa. In parallel, IL-1β is involved in the intestinal barrier disruption and modulates the differentiation and function of T helper (Th) cells by activating the Th17 cell differentiation, known to be involved in the pathogenesis of IBD. Dysbiosis in the gut can also stimulate immune cells to release IL-1β, which, in turn, promotes inflammation. Lastly, increasing evidence pinpoints the central role of miRNAs involvement in IL-1β-related signaling during IBD, particularly in the maintenance of homeostasis within the intestinal epithelium. In conclusion, given the crucial role of IL-1β in the promotion of inflammation and immune responses in IBD, the targeting of this cytokine or its receptors represents a promising therapeutic approach. Further research into the IL-1β-associated post-transcriptional modifications may elucidate the intricate role of this cytokine in immunomodulation.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
89
|
Velez C, Williamson D, Cánovas ML, Giai LR, Rutland C, Pérez W, Barbeito CG. Changes in Immune Response during Pig Gestation with a Focus on Cytokines. Vet Sci 2024; 11:50. [PMID: 38275932 PMCID: PMC10819333 DOI: 10.3390/vetsci11010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Pigs have the highest percentage of embryonic death not associated with specific diseases of all livestock species, at 20-45%. During gestation processes, a series of complex alterations can arise, including embryonic migration and elongation, maternal immunological recognition of pregnancy, and embryonic competition for implantation sites and subsequent nutrition requirements and development. Immune cells and cytokines act as mediators between other molecules in highly complex interactions between various cell types. However, other non-immune cells, such as trophoblast cells, are important in immune pregnancy regulation. Numerous studies have shed light on the crucial roles of several cytokines that regulate the inflammatory processes that characterize the interface between the fetus and the mother throughout normal porcine gestation, but most of these reports are limited to the implantational and peri-implantational periods. Increase in some proinflammatory cytokines have been found in other gestational periods, such as placental remodeling. Porcine immune changes during delivery have not been studied as deeply as in other species. This review details some of the immune system cells actively involved in the fetomaternal interface during porcine gestation, as well as the principal cells, cytokines, and molecules, such as antibodies, that play crucial roles in sow pregnancy, both in early and mid-to-late gestation.
Collapse
Affiliation(s)
- Carolina Velez
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
- National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires 2690, Argentina;
| | - Delia Williamson
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Mariela Lorena Cánovas
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Laura Romina Giai
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Catrin Rutland
- Sutton Bonington Campus, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - William Pérez
- Department of Veterinary Anatomy, University of Montevideo, Montevideo 11600, Uruguay
| | - Claudio Gustavo Barbeito
- National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires 2690, Argentina;
- Laboratory of Descriptive, Comparative and Experimental Histology and Embriology (LHYEDEC), Department of Basic Sciences, Faculty of Veterinary Science, National University of La Plata (UNLP), La Plata 1900, Argentina
| |
Collapse
|
90
|
Milanović M, Bekić M, Đokić J, Vučević D, Čolić M, Tomić S. Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response. Int J Biol Sci 2024; 20:1064-1087. [PMID: 38322117 PMCID: PMC10845299 DOI: 10.7150/ijbs.91109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Alpha-ketoglutarate (αKG) emerged as a key regulator of energetic and redox metabolism in cells, affecting the immune response in various conditions. However, it remained unclear how the exogenous αKG modulates the functions of dendritic cells (DCs), key cells regulating T-cell response. Here we found that non-toxic doses of αKG display anti-inflammatory properties in human APC-T cell interaction models. In a model of monocyte-derived (mo)DCs, αKG impaired the differentiation, and the maturation of moDCs induced with lipopolysaccharide (LPS)/interferon (IFN)-γ, and decreased their capacity to induce Th1 cells. However, αKG also promoted IL-1β secretion by mature moDCs, despite inflammasome downregulation, potentiating their Th17 polarizing capacity. αKG induced the expression of anti-oxidative enzymes and hypoxia-induced factor (HIF)-1α in moDCs, activated Akt/FoxO1 pathway and increased autophagy flux, oxidative phosphorylation (OXPHOS) and glycolysis. This correlated with a higher capacity of immature αKG-moDCs to induce Th2 cells, and conventional regulatory T cells in an indolamine-dioxygenase (IDO)-1-dependent manner. Additionally, αKG increased moDCs' capacity to induce non-conventional T regulatory (Tr)-1 and IL-10-producing CD8+T cells via up-regulated immunoglobulin-like transcript (ILT3) expression in OXPHOS-dependent manner. These results suggested that exogenous αKG-altered redox metabolism in moDCs contributed to their tolerogenic properties, which could be relevant for designing more efficient therapeutic approaches in DCs-mediated immunotherapies.
Collapse
Affiliation(s)
- Marijana Milanović
- Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Jelena Đokić
- Institute for Molecular Genetics and Genetical Engineering, University in Belgrade, Belgrade, Serbia
| | - Dragana Vučević
- Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
91
|
Liang G, Kow ASF, Yusof R, Tham CL, Ho YC, Lee MT. Menopause-Associated Depression: Impact of Oxidative Stress and Neuroinflammation on the Central Nervous System-A Review. Biomedicines 2024; 12:184. [PMID: 38255289 PMCID: PMC10813042 DOI: 10.3390/biomedicines12010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Perimenopausal depression, occurring shortly before or after menopause, is characterized by symptoms such as emotional depression, anxiety, and stress, often accompanied by endocrine dysfunction, particularly hypogonadism and senescence. Current treatments for perimenopausal depression primarily provide symptomatic relief but often come with undesirable side effects. The development of agents targeting the specific pathologies of perimenopausal depression has been relatively slow. The erratic fluctuations in estrogen and progesterone levels during the perimenopausal stage expose women to the risk of developing perimenopausal-associated depression. These hormonal changes trigger the production of proinflammatory mediators and induce oxidative stress, leading to progressive neuronal damage. This review serves as a comprehensive overview of the underlying mechanisms contributing to perimenopausal depression. It aims to shed light on the complex relationship between perimenopausal hormones, neurotransmitters, brain-derived neurotrophic factors, chronic inflammation, oxidative stress, and perimenopausal depression. By summarizing the intricate interplay between hormonal fluctuations, neurotransmitter activity, brain-derived neurotrophic factors, chronic inflammation, oxidative stress, and perimenopausal depression, this review aims to stimulate further research in this field. The hope is that an increased understanding of these mechanisms will pave the way for the development of more effective therapeutic targets, ultimately reducing the risk of depression during the menopausal stage for the betterment of psychological wellbeing.
Collapse
Affiliation(s)
- Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Centre of Research for Mental Health and Well-Being, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
92
|
Chen Z, Ding W, Yang X, Lu T, Liu Y. Isoliquiritigenin, a potential therapeutic agent for treatment of inflammation-associated diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117059. [PMID: 37604329 DOI: 10.1016/j.jep.2023.117059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is a medicinal herb with a 2000-year history of applications in traditional Chinese medicine. Isoliquiritigenin (ISL) is a bioactive chalcone compound isolated from licorice. It has attracted increasing attention in recent years due to its excellent anti-inflammatory activity. AIM OF THE STUDY This study is to provide a comprehensive summary of the anti-inflammatory activity of ISL and the underlying molecular mechanisms, and discuss new insights for its potential clinical applications as an anti-inflammation agent. MATERIALS AND METHODS We examined literatures published in the past twenty years from PubMed, Research Gate, Web of Science, Google Scholar, and SciFinder, with single or combined key words of "isoliquiritigenin", "inflammation", and "anti-inflammatory". RESULTS ISL elicits its anti-inflammatory activity by mediating various cellular processes. It inhibits the upstream of the nuclear factor kappa B (NF-κB) pathway and activates the nuclear factor erythroid related factor 2 (Nrf2) pathway. In addition, it suppresses the NOD-like receptor protein 3 (NLRP3) pathway and restrains the mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS Current studies indicate a great therapeutical potential of ISL as a drug candidate for treatment of inflammation-associated diseases. However, the pharmacokinetics, biosafety, and bioavailability of ISL remain to be further investigated.
Collapse
Affiliation(s)
- Ziyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tiangong Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
93
|
Bryan EE, Bode NM, Chen X, Burris ES, Johnson DC, Dilger RN, Dilger AC. The effect of chronic, non-pathogenic maternal immune activation on offspring postnatal muscle and immune outcomes. J Anim Sci 2024; 102:skad424. [PMID: 38189595 PMCID: PMC10794819 DOI: 10.1093/jas/skad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
The objective was to determine the effects of maternal inflammation on offspring muscle development and postnatal innate immune response. Sixteen first-parity gilts were randomly allotted to repeated intravenous injections with lipopolysaccharide (LPS; n = 8, treatment code INFLAM) or comparable volume of phosphate buffered saline (CON, n = 8). Injections took place every other day from gestational day (GD) 70 to GD 84 with an initial dose of 10 μg LPS/kg body weight (BW) increasing by 12% each time to prevent endotoxin tolerance. On GD 70, 76, and 84, blood was collected at 0 and 4 h postinjection via jugular or ear venipuncture to determine tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β concentrations. After farrowing, litter mortality was recorded, and the pig closest to litter BW average was used for dissection and muscle fiber characterization. On weaning (postnatal day [PND] 21), pigs were weighed individually and 2 barrows closest to litter BW average were selected for another study. The third barrow closest to litter BW average was selected for the postnatal LPS challenge. On PND 52, pigs were given 5 μg LPS/kg BW via intraperitoneal injection, and blood was collected at 0, 4, and 8 h postinjection to determine TNF-α concentration. INFLAM gilt TNF-α concentration increased (P < 0.01) 4 h postinjection compared to 0 h postinjection, while CON gilt TNF-α concentration did not differ between time points. INFLAM gilt IL-6 and IL-1β concentrations increased (P = 0.03) 4 h postinjection compared to 0 h postinjection on GD 70, but did not differ between time points on GD 76 and 84. There were no differences between INFLAM and CON gilts litter mortality outcomes (P ≥ 0.13), but INFLAM pigs were smaller (P = 0.04) at birth and tended (P = 0.09) to be smaller at weaning. Muscle and organ weights did not differ (P ≥ 0.17) between treatments, with the exception of semitendinosus, which was smaller (P < 0.01) in INFLAM pigs. INFLAM pigs tended (P = 0.06) to have larger type I fibers. INFLAM pig TNF-α concentration did not differ across time, while CON pig TNF-α concentration peaked (P = 0.01) 4 h postinjection. TNF-α concentration did not differ between treatments at 0 and 8 h postinjection, but CON pigs had increased (P = 0.01) TNF-α compared to INFLAM pigs 4 h postinjection. Overall, maternal immune activation did not alter pig muscle development, but resulted in suppressed innate immune activation.
Collapse
Affiliation(s)
- Erin E Bryan
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Nick M Bode
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Xuenan Chen
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Elli S Burris
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Danielle C Johnson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
94
|
Fok ET, Moorlag SJCFM, Negishi Y, Groh LA, Dos Santos JC, Gräwe C, Monge VV, Craenmehr DDD, van Roosmalen M, da Cunha Jolvino DP, Migliorini LB, Neto AS, Severino P, Vermeulen M, Joosten LAB, Netea MG, Fanucchi S, Mhlanga MM. A chromatin-regulated biphasic circuit coordinates IL-1β-mediated inflammation. Nat Genet 2024; 56:85-99. [PMID: 38092881 DOI: 10.1038/s41588-023-01598-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
Inflammation is characterized by a biphasic cycle consisting initially of a proinflammatory phase that is subsequently resolved by anti-inflammatory processes. Interleukin-1β (IL-1β) is a master regulator of proinflammation and is encoded within the same topologically associating domain (TAD) as IL-37, which is an anti-inflammatory cytokine that opposes the function of IL-1β. Within this TAD, we identified a long noncoding RNA called AMANZI, which negatively regulates IL-1β expression and trained immunity through the induction of IL37 transcription. We found that the activation of IL37 occurs through the formation of a dynamic long-range chromatin contact that leads to the temporal delay of anti-inflammatory responses. The common variant rs16944 present in AMANZI augments this regulatory circuit, predisposing individuals to enhanced proinflammation or immunosuppression. Our work illuminates a chromatin-mediated biphasic circuit coordinating expression of IL-1β and IL-37, thereby regulating two functionally opposed states of inflammation from within a single TAD.
Collapse
Affiliation(s)
- Ezio T Fok
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Lemba Therapeutics, Nijmegen, the Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yutaka Negishi
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laszlo A Groh
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cathrin Gräwe
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | | | | | | | - David Pablo da Cunha Jolvino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
| | - Letícia Busato Migliorini
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ary Serpa Neto
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Musa M Mhlanga
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
95
|
Li X, Peng J, Su X. Expression of immune regulatory factors, chemokines and growth factors in differentiated gastric cancer cells treated with an anticancer bioactive peptide combined with oxaliplatin. Mol Clin Oncol 2024; 20:9. [PMID: 38125743 PMCID: PMC10729299 DOI: 10.3892/mco.2023.2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Gastric cancer is one of the most common malignant tumors of the digestive system. An anticancer bioactive peptide (ACBP) was previously shown to have an important role in inhibiting the differentiation of the MKN-45, N87 and GES-1 cell lines. However, to date, research on the effects of inflammatory factors in MKN-45, N87 and GES-1 cell lines after treatment with ACBP combined with oxaliplatin (OXA) has not been performed. To investigate the expression of immune regulatory factors, tumor growth factors and chemotactic factors in differentiated gastric cancer cells treated with ACBP combined with OXA, the expression of cytokines, including interleukin (IL)-1β, IL-1 receptor antagonist, IL-2, IL-4, IL-6-10, IL-12, IL-13, IL-15, IL-17, Eotaxin, basic fibroblast growth factor (bFGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-γ, monocyte chemoattractant protein (MCP)-1, IFN-γ-induced protein-10, macrophage inflammatory protein (MIP)-1α, platelet-derived growth factor (PDGF)-BB, MIP-1β, regulated upon activation, normal T cell expressed and presumably secreted, TNF-α and VEGF, was assessed with cell experiments using the Bio-Plex ProT Human Cytokine 27-plex Assay. The results indicated that immune regulatory factor, tumor growth factor and chemotactic factor expression levels were different after treatment with ACBP alone or ACBP combined with OXA. IFN-γ, IL-1β, IL-17, IL-9, IL-10, IL-15, bFGF, GM-CSF and PDGF-BB expression was decreased in MKN-45 and N87 cells after ACBP treatment (P<0.01) and ACBP+OXA treatment (P<0.01) compared with the control cells, which indicated that ACBP inhibited tumor growth by regulating these cytokines, and the combination treatment inhibited tumor growth by regulating these cytokines. MIP-1β, MCP-1 and IL-13 expression was decreased in MKN-45 and N87 cells after the combination treatment compared with ACBP treatment alone, which indicated that ACBP combined with OXA was able to inhibit tumor growth by regulating these cytokines, while the mechanism of action of the ACBP and OXA is actually different, e.g. for OXA, this would be to cause DNA damage response. Therefore, the ACBP and OXA combination treatment may be closely associated with tumor progression and metastasis with immunological competence by MCP-1, MIP-1β and IL-13 expression.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Jiaqi Peng
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiulan Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
96
|
Fujita D, Matsuoka Y, Yamakita S, Horii Y, Ishikawa D, Kushimoto K, Amino H, Amaya F. Rapid cleavage of IL-1β in DRG neurons produces tissue injury-induced pain hypersensitivity. Mol Pain 2024; 20:17448069241285357. [PMID: 39237258 PMCID: PMC11394351 DOI: 10.1177/17448069241285357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Background: IL-1β plays a critical role in the pathophysiology of neuroinflammation. The presence of cleaved IL-1β (cIL-1β) in the neurons of the dorsal root ganglion (DRG) implicates its function in biological signaling arising from the sensory neuron. This study was conducted to analyze the role of IL-1β in nociceptive transduction after tissue injury. Methods: A plantar incision was made in C57BL/6 mice, following which immunohistochemistry and RNA scope in situ hybridization were performed at various time points to analyze cIL-1β, caspase-1, and IL-1 receptor 1 (IL-1R1) expression in the DRG. The effect of intrathecal administration of a caspase-1 inhibitor or regional anesthesia using local anesthetics on cIL-1β expression and pain hypersensitivity was analyzed by immunohistochemistry and behavioral analysis. ERK phosphorylation was also analyzed to investigate the effect of IL-1β on the activity of spinal dorsal horn neurons. Results: cIL-1β expression was significantly increased in caspase-1-positive DRG neurons 5 min after the plantar incision. Intrathecal caspase-1 inhibitor treatment inhibited IL-1β cleavage and pain hypersensitivity after the plantar incision. IL-1R1 was also detected in the DRG neurons, although the majority of IL-1R1-expressing neurons lacked cIL-1β expression. Regional anesthesia using local anesthetics prevented cIL-1β processing. Plantar incision-induced phosphorylation of ERK was inhibited by the caspase-1 inhibitor. Conclusion: IL-1β in the DRG neuron undergoes rapid cleavage in response to tissue injury in an activity-dependent manner. Cleaved IL-1β causes injury-induced functional activation of sensory neurons and pain hypersensitivity. IL-1β in the primary afferent neurons is involved in physiological nociceptive signal transduction.
Collapse
Affiliation(s)
- Daisuke Fujita
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yutaka Matsuoka
- Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shunsuke Yamakita
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiko Horii
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daiki Ishikawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kohsuke Kushimoto
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroaki Amino
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumimasa Amaya
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Pain Management and Palliative Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
97
|
Janssens S, Rennen S, Agostinis P. Decoding immunogenic cell death from a dendritic cell perspective. Immunol Rev 2024; 321:350-370. [PMID: 38093416 DOI: 10.1111/imr.13301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Dendritic cells (DCs) are myeloid cells bridging the innate and adaptive immune system. By cross-presenting tumor-associated antigens (TAAs) liberated upon spontaneous or therapy-induced tumor cell death to T cells, DCs occupy a pivotal position in the cancer immunity cycle. Over the last decades, the mechanisms linking cancer cell death to DC maturation, have been the focus of intense research. Growing evidence supports the concept that the mere transfer of TAAs during the process of cell death is insufficient to drive immunogenic DC maturation unless this process is coupled with the release of immunomodulatory signals by dying cancer cells. Malignant cells succumbing to a regulated cell death variant called immunogenic cell death (ICD), foster a proficient interface with DCs, enabling their immunogenic maturation and engagement of adaptive immunity against cancer. This property relies on the ability of ICD to exhibit pathogen-mimicry hallmarks and orchestrate the emission of a spectrum of constitutively present or de novo-induced danger signals, collectively known as damage-associated molecular patterns (DAMPs). In this review, we discuss how DCs perceive and decode danger signals emanating from malignant cells undergoing ICD and provide an outlook of the major signaling and functional consequences of this interaction for DCs and antitumor immunity.
Collapse
Affiliation(s)
- Sophie Janssens
- Laboratory for ER Stress and Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie Rennen
- Laboratory for ER Stress and Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
98
|
Huang Y, Luo P, Jiang FH, Gao HZ, Cui LF, Zhao Z. Molecular cloning, characterization and gene expression analysis of twelve interleukins in obscure puffer Takifugu obscurus. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100103. [PMID: 37388236 PMCID: PMC10302539 DOI: 10.1016/j.fsirep.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Interleukins (ILs) are a subgroup of secreted cytokines, which are molecules involved in the intercellular regulation of the immune system. In this study, 12 IL homologs were cloned and functionally identified from obscure puffer Takifugu obscurus, and they were termed as ToIL-1β, ToIL-1, ToIL-6, ToIL-10, ToIL-11, ToIL-12, ToIL-17, ToIL-18, ToIL-20, ToIL-24, ToIL-27, and ToIL-34. Multiple alignment results showed that except for ToIL-24 and ToIL-27, other deduced ToIL proteins shared typical characteristics and structure with other known fish ILs. Phylogenetic analysis revealed that 12 ToILs were evolutionarily closely related to their counterparts in other selected vertebrates. Tissue distribution assay demonstrated that the mRNA transcripts of most ToIL genes were constitutively expressed in all tissues examined, with relatively high expression in immune tissues. Following Vibrio harveyi and Staphylococcus aureus infection, the expression levels of 12 ToILs in the spleen and liver were significantly upregulated, and their response over time varied. Taken together, these data were discussed accordingly with the ToIL expression and the immune response under the different situations tested. The results suggest that the 12 ToIL genes are involved in the antibacterial immune response in T. obscurus.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Fu-Hui Jiang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Hui-Ze Gao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Li-Fan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| |
Collapse
|
99
|
Chen Y, Yang L, Wang C, Wang C. Exploring the mechanism of resistance to vincristine in breast cancer cells using transcriptome sequencing technology. Oncol Lett 2023; 26:502. [PMID: 37920438 PMCID: PMC10618930 DOI: 10.3892/ol.2023.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Breast cancer has replaced lung cancer as the leading cancer globally, but various chemotherapy drugs for breast cancer are prone to resistance, especially in patients with distant metastases who are susceptible to multiple chemotherapy drug resistance often leading to treatment failure. Vincristine (VCR) is an alkaloid extracted from Catharanthus roseus, and is often used in combination with other chemotherapy drugs to treat various types of cancer, including breast cancer. Research on the development of resistance to VCR has been carried out using transcriptome sequencing technology. Firstly, gradient increase of VCR concentration was used to produce a VCR-resistant breast cancer cell line. Mechanistically, RNA was extracted from the VCR-resistant breast cancer cell line, and the transcriptome was sequenced. Further analysis showed changes in the expression levels of various genes in the aforementioned VCR-resistant breast cancer cell line. Meanwhile, the analysis of splicing events also indicated a change in variable splicing events. Further validation showed that the expression levels of multiple genes, including interleukin-1β, were altered in the VCR-resistant breast cancer cell line, and these gene expression changes were related to VCR resistance. The results of the present study provide a theoretical basis for exploring the mechanism of VCR resistance clinically.
Collapse
Affiliation(s)
- Yao Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lili Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chao Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Changmiao Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
100
|
Chang Y, Xu M, Zhang Y, Chen X, Sheng Y, Tao M, Zhang H, Xu Z, Hu S, Song J. Ruxolitinib attenuates acute rejection and can serve as an immune induction therapy in heart transplantation. Clin Immunol 2023; 257:109851. [PMID: 38008145 DOI: 10.1016/j.clim.2023.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
The benefits of IL2RA antagonists in heart transplant patients are controversial. We aimed to elucidate the effects of IL2RA antagonists and identify targets that could be better than IL2RA antagonists. By using single-cell RNA sequencing of immune cells at different time points in patients receiving IL2RA antagonists, we identified nineteen types of cells. We revealed higher IL2RA expression in regulatory T cells (Tregs), suggesting that IL2RA antagonists attenuated IL-2-induced Treg activation. CD4_C04_IFNGR1 and CD8_C05_IFITM2 which had more cytotoxic effects, remained elevated at later time points. IFNGR1 was upregulated in these two subtypes, but was not expressed in Treg. Ruxolitinib targeted the pathways of IFNGR1 (JAK1/2) while not affecting the pathway of IL-2-induced Tregs activation (JAK3). Ruxolitinib showed prolonged survival compared to IL2RA mAb-treated mice. Our study provided dynamic changes of immune cells after IL2RA antagonists treatment at single-cell resolution. Ruxolitinib has potential as a new immunoinduction therapy without affecting Treg.
Collapse
Affiliation(s)
- Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Mengda Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Yu Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Yixuan Sheng
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Menghao Tao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Hang Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Zhenyu Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Shengshou Hu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.
| |
Collapse
|