51
|
Bhattacharya B, Xiao S, Chatterjee S, Urbanowski M, Ordonez A, Ihms EA, Agrahari G, Lun S, Berland R, Pichugin A, Gao Y, Connor J, Ivanov AR, Yan BS, Kobzik L, Koo BB, Jain S, Bishai W, Kramnik I. The integrated stress response mediates necrosis in murine Mycobacterium tuberculosis granulomas. J Clin Invest 2021; 131:130319. [PMID: 33301427 PMCID: PMC7843230 DOI: 10.1172/jci130319] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/04/2020] [Indexed: 12/27/2022] Open
Abstract
The mechanism by which only some individuals infected with Mycobacterium tuberculosis develop necrotic granulomas with progressive disease while others form controlled granulomas that contain the infection remains poorly defined. Mice carrying the sst1-suscepible (sst1S) genotype develop necrotic inflammatory lung lesions, similar to human tuberculosis (TB) granulomas, which are linked to macrophage dysfunction, while their congenic counterpart (B6) mice do not. In this study we report that (a) sst1S macrophages developed aberrant, biphasic responses to TNF characterized by superinduction of stress and type I interferon pathways after prolonged TNF stimulation; (b) the late-stage TNF response was driven via a JNK/IFN-β/protein kinase R (PKR) circuit; and (c) induced the integrated stress response (ISR) via PKR-mediated eIF2α phosphorylation and the subsequent hyperinduction of ATF3 and ISR-target genes Chac1, Trib3, and Ddit4. The administration of ISRIB, a small-molecule inhibitor of the ISR, blocked the development of necrosis in lung granulomas of M. tuberculosis-infected sst1S mice and concomitantly reduced the bacterial burden. Hence, induction of the ISR and the locked-in state of escalating stress driven by the type I IFN pathway in sst1S macrophages play a causal role in the development of necrosis in TB granulomas. Interruption of the aberrant stress response with inhibitors such as ISRIB may offer novel host-directed therapy strategies.
Collapse
Affiliation(s)
- Bidisha Bhattacharya
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Shiqi Xiao
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sujoy Chatterjee
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael Urbanowski
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alvaro Ordonez
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth A. Ihms
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Garima Agrahari
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Shichun Lun
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Berland
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alexander Pichugin
- Department of Cellular Immunology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Yuanwei Gao
- Department of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM), Merck, West Point, Pennsylvania, USA
| | - John Connor
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alexander R. Ivanov
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Bo-Shiun Yan
- Institute of Biochemistry and Molecular Biology, National Taiwan University Medical College, Zhongzheng District, Taipei City, Taiwan
| | - Lester Kobzik
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bang-Bon Koo
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sanjay Jain
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William Bishai
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
52
|
Collados Rodríguez M. The Fate of Speckled Protein 100 (Sp100) During Herpesviruses Infection. Front Cell Infect Microbiol 2021; 10:607526. [PMID: 33598438 PMCID: PMC7882683 DOI: 10.3389/fcimb.2020.607526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022] Open
Abstract
The constitutive expression of Speckled-100 (Sp100) is known to restrict the replication of many clinically important DNA viruses. This pre-existing (intrinsic) immune defense to virus infection can be further upregulated upon interferon (IFN) stimulation as a component of the innate immune response. In humans, Sp100 is encoded by a single gene locus, which can produce alternatively spliced isoforms. The widely studied Sp100A, Sp100B, Sp100C and Sp100HMG have functions associated with the transcriptional regulation of viral and cellular chromatin, either directly through their characteristic DNA-binding domains, or indirectly through post-translational modification (PTM) and associated protein interaction networks. Sp100 isoforms are resident component proteins of promyelocytic leukemia-nuclear bodies (PML-NBs), dynamic nuclear sub-structures which regulate host immune defenses against many pathogens. In the case of human herpesviruses, multiple protein antagonists are expressed to relieve viral DNA genome transcriptional silencing imposed by PML-NB and Sp100-derived proteinaceous structures, thereby stimulating viral propagation, pathogenesis, and transmission to new hosts. This review details how different Sp100 isoforms are manipulated during herpesviruses HSV1, VZV, HCMV, EBV, and KSHV infection, identifying gaps in our current knowledge, and highlighting future areas of research.
Collapse
|
53
|
Epigenome-metabolome-microbiome axis in health and IBD. Curr Opin Microbiol 2020; 56:97-108. [PMID: 32920333 DOI: 10.1016/j.mib.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Environmental triggers in the context of genetic susceptibility drive phenotypes of complex immune disorders such as Inflammatory bowel disease (IBD). One such trigger of IBD is perturbations in enteric commensal bacteria, fungi or viruses that shape both immune and neuronal state. The epigenome acts as an interface between microbiota and context-specific gene expression and is thus emerging as a third key contributor to IBD. Here we review evidence that the host epigenome plays a significant role in orchestrating the bidirectional crosstalk between mammals and their commensal microorganisms. We discuss disruption of chromatin regulatory regions and epigenetic enzyme mutants as a causative factor in IBD patients and mouse models of intestinal inflammation and consider the possible translation of this knowledge. Furthermore, we present emerging insights into the intricate connection between the microbiome and epigenetic enzyme activity via host or bacterial metabolites and how these interactions fine-tune the microorganism-host relationship.
Collapse
|