51
|
Zaayman M, Nguyen P, Silfvast-Kaiser A, Frieder J, West C, Tumminello K, Paek SY. BAPoma presenting as an incidental scalp papule: case report, literature review, and screening recommendations for BAP1 tumor predisposition syndrome. J DERMATOL TREAT 2021; 33:1855-1860. [PMID: 34106034 DOI: 10.1080/09546634.2021.1939847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE BRCA1-associated protein 1 (BAP1) tumor predisposition syndrome (BAP1-TPDS) is associated with an increased risk for aggressive cancers. BAP1-inactivated melanocytic tumors (BIMTs) are observed in 75% of BAP1-TPDS, often presenting as early as the second decade of life. These lesions may serve as a predictive marker to identify patients who carry germline BAP1 mutations and thus are at higher risk of developing associated cancers. Early diagnosis for these malignancies is crucial for curative treatment. METHODS We report a patient who presented with an incidental scalp papule for which biopsy was consistent with a BIMT. A review of literature was conducted by accessing the PubMed database to delineate present knowledge of BIMTs, assess recommendations for screening of germline BAP1 mutations, and evaluate cancer surveillance strategies for BAP1-TPDS associated cancers. RESULTS Consensus in literature indicates that genetic evaluation should be encouraged in patients presenting with multiple BIMTs or a new BIMT with significant family history of BAP1-TPDS related cancers. If positive for a germline BAP1 mutation, cancer surveillance should be recommended for early diagnosis and timely intervention. CONCLUSIONS Further workup should be encouraged in patients who meet the proposed screening criteria for germline BAP1 mutations. Patients could benefit from cancer surveillance for earlier diagnosis, management, and improved outcomes.
Collapse
Affiliation(s)
- Marcus Zaayman
- Division of Dermatology, Baylor Scott & White, Dallas, TX, USA
| | - Peter Nguyen
- College of Medicine, Texas A&M University, Dallas, TX, USA
| | | | - Jillian Frieder
- Division of Dermatology, Baylor Scott & White, Dallas, TX, USA
| | | | | | - So Yeon Paek
- Division of Dermatology, Baylor Scott & White, Dallas, TX, USA.,College of Medicine, Texas A&M University, Dallas, TX, USA
| |
Collapse
|
52
|
Screening for pancreatic cancer: a review for general clinicians. ACTA ACUST UNITED AC 2021; 58:119-128. [PMID: 32364522 DOI: 10.2478/rjim-2020-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is an exceptionally lethal malignancy with increasing incidence and mortality worldwide. One of the principal challenges in the treatment of PC is that the diagnosis is usually made at a late stage when potentially curative surgical resection is no longer an option. General clinicians including internists and family physicians are well positioned to identify high-risk individuals and refer them to centers with expertise in PC screening and treatment where screening modalities can be employed. Here, we provide an up-to-date review of PC precursor lesions, epidemiology, and risk factors to empower the general clinician to recognize high-risk patients and employ risk reduction strategies. We also review current screening guidelines and modalities and preview progress that is being made to improve screening tests and biomarkers. It is our hope that this review article will empower the general clinician to understand which patients need to be screened for PC, strategies that may be used to reduce PC risk, and which screening modalities are available in order to diminish the lethality of PC.
Collapse
|
53
|
Zhou AE, Hoegler KM, Solimine JF. Genetic counseling and testing for hereditary causes of melanoma can lead to earlier detection of skin cancer and other malignancies. Int J Dermatol 2021; 61:e233-e234. [PMID: 34138469 DOI: 10.1111/ijd.15716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/13/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Albert E Zhou
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karl M Hoegler
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
54
|
Strashilov S, Yordanov A. Aetiology and Pathogenesis of Cutaneous Melanoma: Current Concepts and Advances. Int J Mol Sci 2021; 22:6395. [PMID: 34203771 PMCID: PMC8232613 DOI: 10.3390/ijms22126395] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Melanoma develops from malignant transformations of the pigment-producing melanocytes. If located in the basal layer of the skin epidermis, melanoma is referred to as cutaneous, which is more frequent. However, as melanocytes are be found in the eyes, ears, gastrointestinal tract, genitalia, urinary system, and meninges, cases of mucosal melanoma or other types (e.g., ocular) may occur. The incidence and morbidity of cutaneous melanoma (cM) are constantly increasing worldwide. Australia and New Zealand are world leaders in this regard with a morbidity rate of 54/100,000 and a mortality rate of 5.6/100,000 for 2015. The aim of this review is to consolidate and present the data related to the aetiology and pathogenesis of cutaneous melanoma, thus rendering them easier to understand. In this article we will discuss these problems and the possible impacts on treatment for this disease.
Collapse
Affiliation(s)
- Strahil Strashilov
- Department of Plastic Restorative, Reconstructive and Aesthetic Surgery, University Hospital “Dr. Georgi Stranski”, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Angel Yordanov
- Clinic of Gynecologic Oncology, University Hospital “Dr. Georgi Stranski”, Medical University Pleven, 5800 Pleven, Bulgaria;
| |
Collapse
|
55
|
Cells to Surgery Quiz: June 2021. J Invest Dermatol 2021. [PMID: 34024342 DOI: 10.1016/j.jid.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
56
|
Abstract
Malignant melanoma is a neoplasm originating in the melanocytes in the skin. Although malignant melanoma is the third most common cutaneous cancer, it is recognized as the main cause of skin cancer-related mortality, and its incidence is rising. The natural history of malignant melanoma involves an inconsistent and insidious skin cancer with great metastatic potential. Increased ultra-violet (UV) skin exposure is undoubtedly the greatest risk factor for developing cutaneous melanoma; however, a plethora of risk factors are now recognized as causative. Moreover, modern oncology now considers melanoma proliferation a complex, multifactorial process with a combination of genetic, epigenetic, and environmental factors all known to be contributory to tumorgenesis. Herein, we wish to outline the epidemiological, molecular, and biological processes responsible for driving malignant melanoma proliferation.
Collapse
Affiliation(s)
| | - Nicola Miller
- Surgery, National University of Ireland Galway, Galway, IRL
| | - Niall M McInerney
- Plastic, Aesthetic, and Reconstructive Surgery, Galway University Hospitals, Galway, IRL
| |
Collapse
|
57
|
Brouwer NJ, Verdijk RM, Heegaard S, Marinkovic M, Esmaeli B, Jager MJ. Conjunctival melanoma: New insights in tumour genetics and immunology, leading to new therapeutic options. Prog Retin Eye Res 2021; 86:100971. [PMID: 34015548 DOI: 10.1016/j.preteyeres.2021.100971] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Recent developments in oncology have led to a better molecular and cellular understanding of cancer, and the introduction of novel therapies. Conjunctival melanoma (CoM) is a rare but potentially devastating disease. A better understanding of CoM, leading to the development of novel therapies, is urgently needed. CoM is characterized by mutations that have also been identified in cutaneous melanoma, e.g. in BRAF, NRAS and TERT. These mutations are distinct from the mutations found in uveal melanoma (UM), affecting genes such as GNAQ, GNA11, and BAP1. Targeted therapies that are successful in cutaneous melanoma may therefore be useful in CoM. A recent breakthrough in the treatment of patients with metastatic cutaneous melanoma was the development of immunotherapy. While immunotherapy is currently sparsely effective in intraocular tumours such as UM, the similarities between CoM and cutaneous melanoma (including in their immunological tumour micro environment) provide hope for the application of immunotherapy in CoM, and preliminary clinical data are indeed emerging to support this use. This review aims to provide a comprehensive overview of the current knowledge regarding CoM, with a focus on the genetic and immunologic understanding. We elaborate on the distinct position of CoM in contrast to other types of melanoma, and explain how new insights in the pathophysiology of this disease guide the development of new, personalized, treatments.
Collapse
Affiliation(s)
- Niels J Brouwer
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Robert M Verdijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology, Leiden University Medica Center, Leiden, the Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Eye Pathology Section, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Bita Esmaeli
- Department of Plastic Surgery, Orbital Oncology and Ophthalmic Plastic Surgery, M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
58
|
Dika E, Broseghini E, Porcellini E, Lambertini M, Riefolo M, Durante G, Loher P, Roncarati R, Bassi C, Misciali C, Negrini M, Rigoutsos I, Londin E, Patrizi A, Ferracin M. Unraveling the role of microRNA/isomiR network in multiple primary melanoma pathogenesis. Cell Death Dis 2021; 12:473. [PMID: 33980826 PMCID: PMC8115306 DOI: 10.1038/s41419-021-03764-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Malignant cutaneous melanoma (CM) is a potentially lethal form of skin cancer whose worldwide incidence has been constantly increasing over the past decades. During their lifetime, about 8% of CM patients will develop multiple primary melanomas (MPMs), usually at a young age and within 3 years from the first tumor/diagnosis. With the aim of improving our knowledge on MPM biology and pathogenesis, we explored the miRNome of 24 single and multiple primary melanomas, including multiple tumors from the same patient, using a small RNA-sequencing approach. From a supervised analysis, 22 miRNAs were differentially expressed in MPM compared to single CM, including key miRNAs involved in epithelial-mesenchymal transition. The first and second melanoma from the same patient presented a different miRNA profile. Ten miRNAs, including miR-25-3p, 149-5p, 92b-3p, 211-5p, 125a-5p, 125b-5p, 205-5p, 200b-3p, 21-5p, and 146a-5p, were further validated in 47 single and multiple melanoma samples. Pathway enrichment analysis of miRNA target genes revealed a more differentiated and less invasive status of MPMs compared to CMs. Bioinformatic analyses at the miRNA isoform (isomiR) level detected a panel of highly expressed isomiRs belonging to miRNA families implicated in human tumorigenesis, including miR-200, miR-30, and miR-10 family. Moreover, we identified hsa-miR-125a-5p|0|-2 isoform as tenfold over-represented in melanoma than the canonical form and differentially expressed in MPMs arising in the same patient. Target prediction analysis revealed that the miRNA shortening could change the pattern of target gene regulation, specifically in genes implicated in cell adhesion and neuronal differentiation. Overall, we provided a putative and comprehensive characterization of the miRNA/isomiR regulatory network of MPMs, highlighting mechanisms of tumor development and molecular features differentiating this subtype from single melanomas.
Collapse
Affiliation(s)
- Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Martina Lambertini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giorgio Durante
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Roberta Roncarati
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
- CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milan, Italy
| | - Cristian Bassi
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Cosimo Misciali
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimo Negrini
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Annalisa Patrizi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
59
|
Litvinov IV, Xie P, Gunn S, Sasseville D, Lefrançois P. The transcriptional landscape analysis of basal cell carcinomas reveals novel signalling pathways and actionable targets. Life Sci Alliance 2021; 4:4/7/e202000651. [PMID: 33972406 PMCID: PMC8200290 DOI: 10.26508/lsa.202000651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer and human malignancy. By analyzing BCC RNA sequencing data according to clinically important features, we identified novel differentially regulated genes and new targetable pathways. Several biomarkers were validated in patient-derived BCC samples. Basal cell carcinoma (BCC) is the most common skin cancer and human malignancy. Although most BCCs are easily managed, some are aggressive locally, require Mohs micrographic surgery, or can even metastasize. In the latter, resistance to Sonic Hedgehog inhibitors may occur. Despite their frequent occurrence in clinical practice, their transcriptional landscape remains poorly understood. By analyzing BCC RNA sequencing data according to clinically important features (all BCCs versus normal skin, high-risk versus low-risk BCCs based solely on histopathological subtypes with aggressive features, advanced versus non-advanced BCCs, and vismodegib-resistant versus vismodegib-sensitive tumors), we have identified novel differentially regulated genes and new targetable pathways implicated in BCC tumorigenesis. Pathways as diverse as IL-17, TLR, Akt/PI3K, cadherins, integrins, PDGF, and Wnt/β-catenin are promising therapeutic avenues for local and systemic agents in managing this common malignancy, including through drug re-purposing of existing medications. We experimentally validated several of these targets as biomarkers in our patient-derived cohort of primary BCC tumors.
Collapse
Affiliation(s)
- Ivan V Litvinov
- Division of Dermatology, Department of Medicine, McGill University, Montreal, Canada
| | - Pingxing Xie
- Division of Dermatology, Department of Medicine, McGill University, Montreal, Canada
| | - Scott Gunn
- Division of Dermatology, Department of Medicine, McGill University, Montreal, Canada
| | - Denis Sasseville
- Division of Dermatology, Department of Medicine, McGill University, Montreal, Canada
| | - Philippe Lefrançois
- Division of Dermatology, Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
60
|
Germinal GLT8D1, GATAD2A and SLC25A39 mutations in a patient with a glomangiopericytal tumor and five different sarcomas over a 10-year period. Sci Rep 2021; 11:9765. [PMID: 33963205 PMCID: PMC8105326 DOI: 10.1038/s41598-021-88671-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/15/2021] [Indexed: 11/26/2022] Open
Abstract
Soft tissue sarcoma represents about 1% of all adult cancers. Occurrence of multiple sarcomas in a same individual cannot be fortuitous. A 72-year-old patient had between 2007 and 2016 a glomangiopericytal tumor of the right forearm and a succession of sarcomas of the extremities: a leiomyosarcoma of the left buttock, a myxofibrosarcoma (MFS) of the right forearm, a MFS of the left scapula, a left latero-thoracic MFS and two undifferentiated sarcomas on the left forearm. Pathological examination of the six locations was not in favor of disease with local/distant recurrences but could not confirm different diseases. An extensive molecular analysis including DNA-array, RNA-sequencing and DNA-Sanger-sequencing, was thus performed to determine the link between them. The genomic profile of the glomangiopericytal tumor and the six sarcomas revealed that five sarcomas were different diseases and one was the local recurrence of the glomangiopericytal tumor. While the chromosomal alterations in the six tumors were different, a common somatic CDKN2A/CDKN2B deletion was identified. RNA-sequencing of five tumors identified mutations in GLT8D1, GATAD2A and SLC25A39 in all samples. The germline origin of these mutations was confirmed by Sanger-sequencing. Innovative molecular analysis methods have made possible a better understanding of the complex tumorigenesis of multiple sarcomas.
Collapse
|
61
|
Argenziano G, Brancaccio G, Moscarella E, Dika E, Fargnoli MC, Ferrara G, Longo C, Pellacani G, Peris K, Pimpinelli N, Quaglino P, Rongioletti F, Simonacci M, Zalaudek I, Calzavara Pinton P. Management of cutaneous melanoma: comparison of the leading international guidelines updated to the 8th American Joint Committee on Cancer staging system and workup proposal by the Italian Society of Dermatology. GIORN ITAL DERMAT V 2021; 155:126-145. [PMID: 32394673 DOI: 10.23736/s0392-0488.19.06383-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Giuseppe Argenziano
- Unit of Dermatology, Luigi Vanvitelli University of Campania, Naples, Italy -
| | | | - Elvira Moscarella
- Unit of Dermatology, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Emi Dika
- Unit of Dermatology (DIMES), University of Bologna, Bologna, Italy
| | - Maria C Fargnoli
- Department of Dermatology, University of L'Aquila, L'Aquila, Italy
| | - Gerardo Ferrara
- Unit of Anatomic Pathology, Hospital of Macerata, Area Vasta 3 ASUR Marche, Macerata, Italy
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy.,Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica-Dermatologia, Reggio Emilia, Italy
| | - Giovanni Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Ketty Peris
- Institute of Dermatology, Sacred Heart Catholic University, Rome, Italy.,A. Gemelli University Polyclinic, IRCCS and Foundation, Rome, Italy
| | - Nicola Pimpinelli
- Unit of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Pietro Quaglino
- Dermatologic Clinic, Department of Medical Sciences, University of Turin Medical School, Turin, Italy
| | - Franco Rongioletti
- Unit of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Marco Simonacci
- Unit of Dermatology, Hospital of Macerata, Area Vasta 3 ASUR Marche, Macerata, Italy
| | - Iris Zalaudek
- Department of Dermatology, University Hospital of Trieste, Trieste, Italy
| | | |
Collapse
|
62
|
Horn IP, Marks DL, Koenig AN, Hogenson TL, Almada LL, Goldstein LE, Romecin Duran PA, Vera R, Vrabel AM, Cui G, Rabe KG, Bamlet WR, Mer G, Sicotte H, Zhang C, Li H, Petersen GM, Fernandez-Zapico ME. A rare germline CDKN2A variant (47T>G; p16-L16R) predisposes carriers to pancreatic cancer by reducing cell cycle inhibition. J Biol Chem 2021; 296:100634. [PMID: 33823155 PMCID: PMC8121974 DOI: 10.1016/j.jbc.2021.100634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
Germline mutations in CDKN2A, encoding the tumor suppressor p16, are responsible for a large proportion of familial melanoma cases and also increase risk of pancreatic cancer. We identified four families through pancreatic cancer probands that were affected by both cancers. These families bore a germline missense variant of CDKN2A (47T>G), encoding a p16-L16R mutant protein associated with high cancer occurrence. Here, we investigated the biological significance of this variant. When transfected into p16-null pancreatic cancer cells, p16-L16R was expressed at lower levels than wild-type (WT) p16. In addition, p16-L16R was unable to bind CDK4 or CDK6 compared with WT p16, as shown by coimmunoprecipitation assays and also was impaired in its ability to inhibit the cell cycle, as demonstrated by flow cytometry analyses. In silico molecular modeling predicted that the L16R mutation prevents normal protein folding, consistent with the observed reduction in expression/stability and diminished function of this mutant protein. We isolated normal dermal fibroblasts from members of the families expressing WT or L16R proteins to investigate the impact of endogenous p16-L16R mutant protein on cell growth. In culture, p16-L16R fibroblasts grew at a faster rate, and most survived until later passages than p16-WT fibroblasts. Further, western blotting demonstrated that p16 protein was detected at lower levels in p16-L16R than in p16-WT fibroblasts. Together, these results suggest that the presence of a CDKN2A (47T>G) mutant allele contributes to an increased risk of pancreatic cancer as a result of reduced p16 protein levels and diminished p16 tumor suppressor function.
Collapse
Affiliation(s)
- Isaac P Horn
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - David L Marks
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Amanda N Koenig
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Tara L Hogenson
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Luciana L Almada
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lauren E Goldstein
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Paola A Romecin Duran
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Renzo Vera
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Anne M Vrabel
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Gaofeng Cui
- Division of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kari G Rabe
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - William R Bamlet
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Georges Mer
- Division of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hugues Sicotte
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Cheng Zhang
- Division of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Hu Li
- Division of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Martin E Fernandez-Zapico
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
63
|
Sargen MR, Pfeiffer RM, Elder DE, Yang XR, Goldstein AM, Tucker MA. The Impact of Longitudinal Surveillance on Tumor Thickness for Melanoma-Prone Families with and without Pathogenic Germline Variants of CDKN2A and CDK4. Cancer Epidemiol Biomarkers Prev 2021; 30:676-681. [PMID: 33811164 DOI: 10.1158/1055-9965.epi-20-1521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Skin cancer screening is routinely performed for members of melanoma-prone families, but longitudinal studies evaluating the efficacy of surveillance in this high-risk population are lacking. METHODS We evaluated thickness for first primary melanomas diagnosed in melanoma-prone families (≥2 individuals with melanoma) enrolled in NCT00040352 (NCI familial melanoma study) from 1976 through 2014; enrolled patients received routine skin cancer screening and education about skin self-exams. We used linear and ordinal logistic regression models adjusted for gender and age with a generalized estimating equations approach to report changes in thickness and tumor (T) stage over time, comparing outcomes for NCI cases diagnosed before (pre-study) versus after study participation (prospective) and for NCI cases versus nonfamilial cases [Surveillance, Epidemiology, and End Results (SEER) 9 registries]. RESULTS Tumor thickness was evaluated for 293 NCI (pre-study = 246; prospective = 47) patients. Compared with NCI pre-study cases, NCI prospective melanomas were thinner (0.6 vs. 1.1 mm; P < 0.001) and more likely to be T1 stage [39/47 (83%) vs. 98/246 (40%); P < 0.001]. Similar findings (P < 0.05) were observed for familial cases with and without germline CDKN2A and CDK4 mutations. Peters-Belson modeling suggested that calendar period effects of decreasing thickness in the general population (SEER 9) did not fully explain thickness trends in NCI families. CONCLUSIONS Participation in a longitudinal surveillance program providing skin cancer screening and education about skin self-exams was associated with thinner melanomas for members of melanoma-prone families. IMPACT The study findings support the clinical benefit of screening (physician and self) for this high-risk population.
Collapse
Affiliation(s)
- Michael R Sargen
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland.
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| |
Collapse
|
64
|
Ji‐Xu A, Dinnes J, Matin R. Total body photography for the diagnosis of cutaneous melanoma in adults: a systematic review and meta‐analysis*. Br J Dermatol 2021; 185:302-312. [DOI: 10.1111/bjd.19759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2020] [Indexed: 01/10/2023]
Affiliation(s)
- A. Ji‐Xu
- Department of Dermatology Oxford University Hospitals NHS Foundation Trust Oxford UK
| | - J. Dinnes
- Test Evaluation Research Group Institute of Applied Health Research University of Birmingham Birmingham UK
- NIHR Birmingham Biomedical Research Centre University Hospitals Birmingham NHS Foundation Trust and University of Birmingham Birmingham UK
| | - R.N. Matin
- Department of Dermatology Oxford University Hospitals NHS Foundation Trust Oxford UK
| |
Collapse
|
65
|
O'Reilly M, Keane F, Mc Dermott R. Synchronous Melanoma and Pancreas Malignancies Leading to a Discovery of a CDKN2A Mutation in a Patient with No Known Family History. Case Rep Oncol 2021; 14:333-337. [PMID: 33776725 PMCID: PMC7983569 DOI: 10.1159/000512999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
We report a case of a 60-year-old male with metachronous primary malignancies, pancreatic cancer and malignant melanoma which recurred simultaneously. Both cancers were challenging to diagnose and throughout the case at different times, the presence of two active malignancies obscured the clinical picture. A bleeding gastric lesion found in the stomach 6 months after a distal pancreatectomy for pancreatic adenocarcinoma revealed metastatic melanoma, presumed secondary from a melanoma excised from the patient's back 2 years previously. During surgery intended to resect the gastric lesion, peritoneal nodularity was identified, with histology confirming metastatic pancreas cancer. This case highlights two main points of interest. Firstly it emphasises the role for consideration of a genetic predisposition in young patients with more than one primary malignancy. The man in this case was not informed of his family history as he was adopted. If he had knowledge of previous family history, he may have been able to provide information to expedite arrival at the diagnosis of a CDKN2A mutation (melanoma-pancreatic carcinoma syndrome). In addition, this case also raises the issue of the challenges we face when treating synchronous primary malignancies. The two malignancies here behaved equally aggressively and posed obstacles for treatment as there is no mutual method of carcinogenesis that could be targeted with treatment; therefore, treatment modalities had to be chosen to treat each malignancy separately. To date, studies evaluating the role for targeted therapy in the setting of CDKN2A mutations have not conclusively provided meaningful benefits to patients.
Collapse
Affiliation(s)
| | - Fergus Keane
- St Vincent's University Hospital, Dublin, Ireland
| | | |
Collapse
|
66
|
Zhang J, Liu H, Zhang W, Li Y, Fan Z, Jiang H, Luo J. Identification of lncRNA-mRNA Regulatory Module to Explore the Pathogenesis and Prognosis of Melanoma. Front Cell Dev Biol 2020; 8:615671. [PMID: 33392203 PMCID: PMC7773644 DOI: 10.3389/fcell.2020.615671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is an aggressive form of skin cancer that results in high mortality rate worldwide. It is vital to discover effective prognostic biomarkers and therapeutic targets for the treatment of melanoma. Long non-coding RNA (lncRNA) has been verified to play an essential role in the regulation of gene expression in diseases and tumors. Therefore, it is significant to explore the function of lncRNAs in the development and progression of SKCM. In this paper, a set of differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were first screened out using 471 cutaneous melanoma samples and 813 normal skin samples. Gene Ontology and KEGG pathway enrichment analysis were performed to obtain the significant function annotations and pathways of DEmRNAs. We also ran survival analysis on both DElncRNAs and DEmRNAs to identify prognostic-related lncRNAs and mRNAs. Next, a set of hub genes derived from protein-protein interaction (PPI) network analysis and lncRNA target genes screened from starbase-ENCORI database were integrated to construct a lncRNA-mRNA regulatory module, which includes 6 lncRNAs 4 target mRNAs. We further checked the capacity of these lncRNA and mRNA in the diagnosis of melanoma, and found that single lncRNA can effectively distinguish tumor and normal tissue. Moreover, we ran CMap analysis to select a list of small molecule drugs for SKCM, such as EGFR inhibitor AG-490, growth factor receptor inhibitor GW-441756 and apoptosis stimulant betulinic-acid, which have shown therapeutic effect in the treatment of melanoma.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Dermatology, Graduate School of Dalian Medical University, Dalian, China
| | - Hui Liu
- Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Wenhao Zhang
- Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Yinfang Li
- Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Zhigang Fan
- Department of Oncology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong, China
| | - Hua Jiang
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
67
|
Terrell JR, Rybak I, Lyu Y, Konia T, Fung MA, Qi L, Kiuru M. The influence of p16 immunohistochemistry on diagnosis and management recommendation of melanocytic neoplasms by dermatopathologists: A prospective study. J Cutan Pathol 2020; 48:1094-1097. [PMID: 33103266 DOI: 10.1111/cup.13907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jessica R Terrell
- Department of Dermatology, University of California, Sacramento, California, USA
| | - Iryna Rybak
- Department of Dermatology, University of California, Sacramento, California, USA
| | - Yue Lyu
- Department of Statistics, University of California, Sacramento, California, USA
| | - Thomas Konia
- Department of Dermatology, University of California, Sacramento, California, USA.,Department of Pathology and Laboratory Medicine, University of California, Sacramento, California, USA
| | - Maxwell A Fung
- Department of Dermatology, University of California, Sacramento, California, USA.,Department of Pathology and Laboratory Medicine, University of California, Sacramento, California, USA
| | - Lihong Qi
- Department of Public Health Sciences, University of California, Sacramento, California, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Sacramento, California, USA.,Department of Pathology and Laboratory Medicine, University of California, Sacramento, California, USA
| |
Collapse
|
68
|
Tonorezos ES, Friedman DN, Barnea D, Bosscha MI, Chantada G, Dommering CJ, de Graaf P, Dunkel IJ, Fabius AWM, Francis JH, Greer MLC, Kleinerman RA, Kors WA, Laughlin S, Moll AC, Morton LM, Temming P, Tucker MA, van Leeuwen FE, Walsh MF, Oeffinger KC, Abramson DH. Recommendations for Long-Term Follow-up of Adults with Heritable Retinoblastoma. Ophthalmology 2020; 127:1549-1557. [PMID: 32422154 PMCID: PMC7606265 DOI: 10.1016/j.ophtha.2020.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To generate recommendations for long-term follow-up of adult survivors of heritable retinoblastoma. DESIGN We convened a meeting of providers from retinoblastoma centers around the world to review the state of the science and to evaluate the published evidence. PARTICIPANTS Retinoblastoma is a rare childhood cancer of the retina. Approximately 40% of retinoblastoma cases are heritable, resulting from a germline mutation in RB1. Dramatic improvements in treatment and supportive care have resulted in a growing adult survivor population. However, survivors of heritable retinoblastoma have a significantly increased risk of subsequent malignant neoplasms, particularly bone and soft tissue sarcomas, uterine leiomyosarcoma, melanomas, and radiotherapy-related central nervous system tumors, which are associated with excess morbidity and mortality. Despite these risks, no surveillance recommendations for this population currently are in place, and surveillance practices vary widely by center. METHODS Following the Institute of Medicine procedure for clinical practice guideline development, a PubMed, EMBASE, and Web of Science search was performed, resulting in 139 articles; after abstract and full-text review, 37 articles underwent detailed data abstraction to quantify risk and evidence regarding surveillance, if available. During an in-person meeting, evidence was presented and discussed, resulting in consensus recommendations. MAIN OUTCOME MEASURES Diagnosis and mortality from subsequent neoplasm. RESULTS Although evidence for risk of subsequent neoplasm, especially sarcoma and melanoma, was significant, evidence supporting routine testing of asymptomatic survivors was not identified. Skin examination for melanoma and prompt evaluation of signs and symptoms of head and neck disease were determined to be prudent. CONCLUSIONS This review of the literature confirmed some of the common second cancers in retinoblastoma survivors but found little evidence for a benefit from currently available surveillance for these malignancies. Future research should incorporate international partners, patients, and family members.
Collapse
Affiliation(s)
- Emily S Tonorezos
- Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York.
| | | | - Dana Barnea
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | - Pim de Graaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ira J Dunkel
- Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Armida W M Fabius
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | - Ruth A Kleinerman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Wijnanda A Kors
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Suzanne Laughlin
- Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Annette C Moll
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | - David H Abramson
- Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| |
Collapse
|
69
|
Identification of Germline Mutations in Melanoma Patients with Early Onset, Double Primary Tumors, or Family Cancer History by NGS Analysis of 217 Genes. Biomedicines 2020; 8:biomedicines8100404. [PMID: 33050356 PMCID: PMC7601281 DOI: 10.3390/biomedicines8100404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
Cutaneous melanoma is the deadliest skin malignity with a rising prevalence worldwide. Patients carrying germline mutations in melanoma-susceptibility genes face an increased risk of melanoma and other cancers. To assess the spectrum of germline variants, we analyzed 264 Czech melanoma patients indicated for testing due to early melanoma (at <25 years) or the presence of multiple primary melanoma/melanoma and other cancer in their personal and/or family history. All patients were analyzed by panel next-generation sequencing targeting 217 genes in four groups: high-to-moderate melanoma risk genes, low melanoma risk genes, cancer syndrome genes, and other genes with an uncertain melanoma risk. Population frequencies were assessed in 1479 population-matched controls. Selected POT1 and CHEK2 variants were characterized by functional assays. Mutations in clinically relevant genes were significantly more frequent in melanoma patients than in controls (31/264; 11.7% vs. 58/1479; 3.9%; p = 2.0 × 10−6). A total of 9 patients (3.4%) carried mutations in high-to-moderate melanoma risk genes (CDKN2A, POT1, ACD) and 22 (8.3%) patients in other cancer syndrome genes (NBN, BRCA1/2, CHEK2, ATM, WRN, RB1). Mutations in high-to-moderate melanoma risk genes (OR = 52.2; 95%CI 6.6–413.1; p = 3.2 × 10−7) and in other cancer syndrome genes (OR = 2.3; 95%CI 1.4–3.8; p = 0.003) were significantly associated with melanoma risk. We found an increased potential to carry these mutations (OR = 2.9; 95%CI 1.2–6.8) in patients with double primary melanoma, melanoma and other primary cancer, but not in patients with early age at onset. The analysis revealed affected genes in Czech melanoma patients and identified individuals who may benefit from genetic testing and future surveillance management of mutation carriers.
Collapse
|
70
|
Holland EA, Lo S, Kelly B, Schmid H, Cust AE, Palmer JM, Drummond M, Hayward NK, Pritchard AL, Mann GJ. FRAMe: Familial Risk Assessment of Melanoma-a risk prediction tool to guide CDKN2A germline mutation testing in Australian familial melanoma. Fam Cancer 2020; 20:231-239. [PMID: 32989607 DOI: 10.1007/s10689-020-00209-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/19/2020] [Indexed: 11/30/2022]
Abstract
Germline mutations in CDKN2A greatly increase risk of developing cutaneous melanoma. We have constructed a risk prediction model, Familial Risk Assessment of Melanoma (FRAMe), for estimating the likelihood of carrying a heritable CDKN2A mutation among Australian families, where the prevalence of these mutations is low. Using logistic regression, we analysed characteristics of 299 Australian families recruited through the Sydney site of GenoMEL (international melanoma genetics consortium) with at least three cases of cutaneous melanoma (in situ and invasive) among first-degree blood relatives, for predictors of the presence of a pathogenic CDKN2A mutation. The final multivariable prediction model was externally validated in an independent cohort of 61 melanoma kindreds recruited through GenoMEL Queensland. Family variables independently associated with the presence of a CDKN2A mutation in a multivariable model were number of individuals diagnosed with melanoma under 40 years of age, number of individuals diagnosed with more than one primary melanoma, and number of individuals blood related to a melanoma case in the first degree diagnosed with any cancer excluding melanoma and non-melanoma skin cancer. The number of individuals diagnosed with pancreatic cancer was not independently associated with mutation status. The risk prediction model had an area under the receiver operating characteristic curve (AUC) of 0.851 (95% CI 0.793, 0.909) in the training dataset, and 0.745 (95%CI 0.612, 0.877) in the validation dataset. This model is the first to be developed and validated using only Australian data, which is important given the higher rate of melanoma in the population. This model will help to effectively identify families suitable for genetic counselling and testing in areas of high ambient ultraviolet radiation. A user-friendly electronic nomogram is available at www.melanomarisk.org.au .
Collapse
Affiliation(s)
- Elizabeth A Holland
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, 2145, Australia.
| | - Serigne Lo
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, 2065, Australia
| | - Blake Kelly
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, 2145, Australia
| | - Helen Schmid
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, 2145, Australia
| | - Anne E Cust
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, 2065, Australia.,Cancer Epidemiology and Prevention Research, Sydney School of Public Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jane M Palmer
- Oncogenomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4005, Australia
| | - Martin Drummond
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, 2065, Australia.,Cancer Epidemiology and Prevention Research, Sydney School of Public Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicholas K Hayward
- Oncogenomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4005, Australia
| | - Antonia L Pritchard
- Oncogenomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4005, Australia.,Genetics and Immunology, An L`ochran, University of the Highlands and Islands, Inverness, UK
| | - Graham J Mann
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, 2145, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, 2065, Australia.,The John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
71
|
Sarikaya Solak S, Yondem H, Cicin I. Evaluating sun protection behaviors and skin self-examination practices among the family members of melanoma patients in Turkey: A cross-sectional survey study. Dermatol Ther 2020; 33:e14268. [PMID: 32882080 DOI: 10.1111/dth.14268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 11/28/2022]
Abstract
To evaluate the preventive practices in family members of melanoma patients regarding melanoma in Turkey and compare our results with similar studies by a literature review. A questionnaire-based, cross-sectional study was conducted in 52 participants over the age of 18 years. The questionnaire consisted of the items regarding melanoma risk factors, sun protection behaviors, skin self-examination (SSE), and family communication. Sun exposure (76.9%) and sunburns (69.2%) were relatively well-known melanoma risk factors. The knowledge of risk factors regarding phenotypical features were low (<50%). The participants who were at least high-school graduates had a significantly higher level of knowledge of risk factors. Compliance with sun protection measures (sunscreen, hat, sunglasses, long-sleeve shirt use) was low (19.2%-42.3%) on almost all items with the exception of shade seeking (73.1%). The most common reported reason for not applying sunscreen was not having a habit of sunscreen use. Only one third of the participants (32.7%) performed SSE. The most commonly reported reason for not performing SSE was not knowing the necessity of SSE. The number of participants who stated that they had received information from the melanoma patient about the disease was 19 (36.5%). We documented the knowledge, preventive measures, and family communication deficiency regarding melanoma among family members of melanoma patients. Results of our study may contribute to the development and implementation of educational programs and interventions targeting family members of the melanoma patients.
Collapse
Affiliation(s)
- Sezgi Sarikaya Solak
- Department of Dermatology and Venereology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Haydar Yondem
- Department of Dermatology and Venereology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Irfan Cicin
- Professor of Medical Oncology, Department of Medical Oncology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
72
|
Maurer B, Brandstoetter T, Kollmann S, Sexl V, Prchal-Murphy M. Inducible deletion of CDK4 and CDK6 - deciphering CDK4/6 inhibitor effects in the hematopoietic system. Haematologica 2020; 106:2624-2632. [PMID: 32855282 PMCID: PMC8485667 DOI: 10.3324/haematol.2020.256313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 11/09/2022] Open
Abstract
CDK4/6 inhibitors are considered a breakthrough in cancer therapy. Currently approved for breast cancer treatment, CDK4/6 inhibitors are extensively tested in other cancer subtypes. Frequently observed side effects include hematological abnormalities such as reduced numbers of neutrophils, erythroid cells and platelets that are associated with anemia, bleedings and a higher risk of infections. To understand whether the adverse effects within the hematopoietic system are related to CDK4 or CDK6 we generated transgenic mice that lack either CDK4 or CDK6 in adult hematopoiesis. Anemia and perturbed erythroid differentiation are associated with the absence of CDK6 but did not manifest in CDK4-deficient mice. Total CDK6 knockout mice accumulate the most dormant fraction of hematopoietic stem cells due to an impaired exit of the quiescent state. We recapitulated this finding by deleting CDK6 in adult hematopoiesis. In addition, unlike total CDK6 knockout, all stem cell fractions were affected and increased in numbers. The deletion of CDK6 was also accompanied by neutropenia which is frequently seen in patients receiving CDK4/6 inhibitors. This was not the case in the absence of CDK4; CDK4 deficiency resulted in elevated numbers of myeloid progenitors without translating into numeric changes of differentiated myeloid cells. By using Cdk4 fl/fl and Cdk6 fl/fl mice we assign side effects of CDK4/6 inhibitors predominantly to the absence of CDK6. These mice represent a novel and powerful tool that will enable to study the distinct functions of CDK4 and CDK6 in a tissue-dependent manner.
Collapse
Affiliation(s)
- Barbara Maurer
- Insititute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Tania Brandstoetter
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Sebastian Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Michaela Prchal-Murphy
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
73
|
Lu J, Li Y. Circ_0079593 facilitates proliferation, metastasis, glucose metabolism and inhibits apoptosis in melanoma by regulating the miR-516b/GRM3 axis. Mol Cell Biochem 2020; 475:227-237. [PMID: 32839935 DOI: 10.1007/s11010-020-03875-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
Many studies confirm that circular RNA (circRNA) plays an important regulatory role in the malignant progression of cancer, including melanoma. However, the role of a novel circRNA, circ_0079593, in melanoma is unclear. The expression levels of circ_0079593 and miR-516b were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was measured by cell counting kit-8 (CCK-8) assay, and cell migration and invasion were evaluated using transwell assay. Meanwhile, western blot (WB) analysis was employed to determine the levels of proliferation and metastasis-related proteins, as well as metabotropic glutamate receptor 3 (GRM3) protein. Furthermore, cell apoptosis was tested by detecting the cell apoptosis rate and Caspase-3 activity. The glucose consumption and lactate production of cells were measured to evaluate cell glucose metabolism. Moreover, dual-luciferase reporter assay and biotin-labeled RNA pull-down assay were used to confirm the interaction between miR-516b and circ_0079593 or GRM3. In addition, mice xenograft models were constructed to explore the effect of circ_0079593 on melanoma tumor growth in vivo. Our results discovered that circ_0079593 was highly expressed in melanoma, and its silencing suppressed melanoma cell proliferation, migration, invasion, glucose metabolism and promoted apoptosis. Moreover, we found that circ_0079593 could serve as a sponge of miR-516b, and miR-516b could target GRM3 in melanoma. The rescue experiments revealed that both miR-516b inhibitor and GRM3 overexpression could reverse the inhibition effect of circ_0079593 knockdown on melanoma progression. Additionally, in vivo experiments also revealed that circ_0079593 interference suppressed melanoma tumor growth. Our study concluded that circ_0079593 accelerated melanoma progression via upregulating GRM3 by sponging miR-516b, which suggested that circ_0079593 had the potential to be a new therapeutic biomarker for melanoma.
Collapse
Affiliation(s)
- Jiajing Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, No. 1278 Baode Road, Jing'an District, Shanghai, 200443, China.
| | - Ying Li
- Department of Dermatology, Shanghai Skin Disease Hospital, No. 1278 Baode Road, Jing'an District, Shanghai, 200443, China
| |
Collapse
|
74
|
Garbe C, Peris K, Soura E, Forsea AM, Hauschild A, Arenbergerova M, Bylaite M, Del Marmol V, Bataille V, Samimi M, Gandini S, Saiag P, Eigentler TK, Lallas A, Zalaudek I, Lebbe C, Grob JJ, Hoeller C, Robert C, Dréno B, Arenberger P, Kandolf-Sekulovic L, Kaufmann R, Malvehy J, Puig S, Leiter U, Ribero S, Papadavid E, Quaglino P, Bagot M, John SM, Richard MA, Trakatelli M, Salavastru C, Borradori L, Marinovic B, Enk A, Pincelli C, Ioannides D, Paul C, Stratigos AJ. The evolving field of Dermato-oncology and the role of dermatologists: Position Paper of the EADO, EADV and Task Forces, EDF, IDS, EBDV-UEMS and EORTC Cutaneous Lymphoma Task Force. J Eur Acad Dermatol Venereol 2020; 34:2183-2197. [PMID: 32840022 DOI: 10.1111/jdv.16849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The incidence of skin cancers has been increasing steadily over the last decades. Although there have been significant breakthroughs in the management of skin cancers with the introduction of novel diagnostic tools and innovative therapies, skin cancer mortality, morbidity and costs heavily burden the society. OBJECTIVE Members of the European Association of Dermato-Oncology, European Academy of Dermatology and Venereology, International Dermoscopy Society, European Dermatology Forum, European Board of Dermatovenereology of the European Union of Medical Specialists and EORTC Cutaneous Lymphoma Task Force have joined this effort to emphasize the fundamental role that the specialist in Dermatology-Venereology has in the diagnosis and management of different types of skin cancer. We review the role of dermatologists in the prevention, diagnosis, treatment and follow-up of patients with melanoma, non-melanoma skin cancers and cutaneous lymphomas, and discuss approaches to optimize their involvement in effectively addressing the current needs and priorities of dermato-oncology. DISCUSSION Dermatologists play a crucial role in virtually all aspects of skin cancer management including the implementation of primary and secondary prevention, the formation of standardized pathways of care for patients, the establishment of specialized skin cancer treatment centres, the coordination of an efficient multidisciplinary team and the setting up of specific follow-up plans for patients. CONCLUSION Skin cancers represent an important health issue for modern societies. The role of dermatologists is central to improving patient care and outcomes. In view of the emerging diagnostic methods and treatments for early and advanced skin cancer, and considering the increasingly diverse skills, knowledge and expertise needed for managing this heterogeneous group of diseases, dermato-oncology should be considered as a specific subspecialty of Dermatology-Venereology.
Collapse
Affiliation(s)
- C Garbe
- Center for Dermato-oncology, Department of Dermatology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - K Peris
- Dermatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - E Soura
- 1st Department of Dermatology-Venereology, Andreas Sygros Hospital, National and Kapodestrian University of Athens, Athens, Greece
| | - A M Forsea
- Department of Oncologic Dermatology, University Hospital Elias, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - A Hauschild
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - M Arenbergerova
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University, University Hospital of Kralovske Vinohrady, Prague, Czech Republic
| | - M Bylaite
- Faculty of Medicine, Centre of Dermatovenereology, Clinic of Infectious Diseases and Dermatovenereology, Vilnius University, Vilnius, Lithuania
| | - V Del Marmol
- Dermatology Department, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - V Bataille
- Dermatology Department, West Herts NHS Trust, London, UK.,Twin Research and Genetic Epidemiology Department, Kings College London, London, UK
| | - M Samimi
- Departments of Dermatology, University Hospital of Tours, Tours, France
| | - S Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - P Saiag
- Department of General and Oncologic Dermatology, Ambroise-Paré Hospital, APHP, & EA 4340, 'Biomarkers in Cancerology and Hemato-Oncology', UVSQ, Université Paris-Saclay, Boulogne-Billancourt, France
| | - T K Eigentler
- Departments of Dermatology, University Hospital Tübingen, Tubingen, Germany
| | - A Lallas
- First Dermatology Department, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - I Zalaudek
- Department of Dermatology, University of Trieste, Trieste, Italy
| | - C Lebbe
- Department of Dermatology, AP-HP Saint Louis Hospital, Paris, France
| | - J-J Grob
- Timone Hospital, Aix-Marseille University, Marseille, France
| | - C Hoeller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - C Robert
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France.,Paris-Saclay University, Le Kremlin Bicêtre, France
| | - B Dréno
- Department of Dermatolo-Cancerology, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
| | - P Arenberger
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University, University Hospital of Kralovske Vinohrady, Prague, Czech Republic
| | - L Kandolf-Sekulovic
- Department of Dermatology, Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
| | - R Kaufmann
- Department of Dermatology, Venerology and Allergology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - J Malvehy
- Dermatology Department, Hospital Clinic of Barcelona, University of Barcelona, Spain.,Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Biomedical Research Networking Centre on rarae disease (CIBERER), ISCIII, Barcelona, Spain
| | - S Puig
- Dermatology Department, Hospital Clinic of Barcelona, University of Barcelona, Spain.,Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Biomedical Research Networking Centre on rarae disease (CIBERER), ISCIII, Barcelona, Spain
| | - U Leiter
- Center for Dermato-oncology, Department of Dermatology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - S Ribero
- Dermatology Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - E Papadavid
- 2nd Department of Dermatology-Venereology, ATTIKON Hospital, National and Kapodistrian Univeristy of Athens, Athens, Greece
| | - P Quaglino
- Dermatology Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - M Bagot
- Department of Dermatology, AP-HP Saint Louis Hospital, Paris, France
| | - S M John
- Department Dermatology, Environmental Medicine, Health Theory, University of Osnabrueck, Osnabrueck, Germany
| | - M-A Richard
- Timone Hospital, Aix-Marseille University, Marseille, France
| | - M Trakatelli
- 2nd Department of Dermatology-Venerology, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - C Salavastru
- Pediatric Dermatology Discipline, Dermato-oncology Research Facility, Colentina Clinical Hospital, Bucharest, Romania
| | - L Borradori
- Department of Dermatology, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - B Marinovic
- Department of Dermatology and Venereology, University Hospital Center Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - A Enk
- Department of Dermatology, University Hospital of Heidelberg, Heidelberg, Germany
| | - C Pincelli
- DermoLab, Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - D Ioannides
- First Dermatology Department, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - C Paul
- Department of Dermatology, Toulouse University, Toulouse, France
| | - A J Stratigos
- 1st Department of Dermatology-Venereology, Andreas Sygros Hospital, National and Kapodestrian University of Athens, Athens, Greece
| |
Collapse
|
75
|
Zhu X, Sun J. CircHIPK3 regulates melanoma cell behaviors by binding with miR-215-5p to upregulate YY1. Mol Cell Probes 2020; 53:101644. [PMID: 32800940 DOI: 10.1016/j.mcp.2020.101644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
OBJECT To investigate the role of circHIPK3 in melanoma. METHODS Bioinformatics analysis and experiments including RT-qPCR, Pearson's correlation analysis, luciferase reporter, Western blot, and RIP assays were applied to explore the function and mechanism of circHIPK3 in melanoma. RESULTS CircHIPK3 expression was strikingly upregulated while miR-215-5p was downregulated in melanoma tissues and cell lines. Pearson's correlation analysis unveiled circHIPK3 expression was positively correlated with Ki-67 (a marker of proliferation), which implied that circHIPK3 may play a vital role in the progression of melanoma. In mechanism, luciferase reporter and RIP assays validated that circHIPK3 was able to bind with miR-215-5p. Moreover, we confirmed that overexpression of circHIPK3 could facilitate cell proliferation and depress cell apoptosis in melanoma while overexpression of miR-215-5p exerted opposite effects. Besides, our findings indicated that miR-215-5p overexpression significantly reversed the circHIPK3 overexpressing-mediated promotive effect on cell proliferation and inhibitory effect on cell apoptosis. Furthermore, we found that miR-215-5p could directly target YY1. Upregulation of YY1 could notably offset the inhibitory effect of circHIPK3 downregulation on cell proliferation and the promotive effect on cell apoptosis. CONCLUSION Our study corroborated that circHIPK3 regulated melanoma cell behaviors via the miR-215-5p/YY1 axis, which might provide a novel insight for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Xiaomei Zhu
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Jianfang Sun
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
76
|
Abstract
PURPOSE OF REVIEW To inform pediatric providers of the clinical characteristics, underlying genetic drivers, and therapeutic options for skin cancer arising in childhood and adolescence. RECENT FINDINGS The incidence of melanoma in pediatric patients has been declining in the past decades. Pediatric-specific diagnostic criteria should be utilized when assessing lesions concerning for melanoma to better account for the different presentations seen in pediatric disease compared with adults, such as an increased prevalence of amelanotic melanoma or frequent mimic of benign pediatric lesions. Pediatric melanoma often presents with a higher histopathologic stage and a higher Breslow depth as compared with adult melanoma. Pediatric nonmelanoma skin cancer including basal cell carcinoma and squamous cell carcinoma are associated with genetic conditions and immunosuppression, both iatrogenic and inherited. SUMMARY Melanoma in pediatric patients often presents differently from conventional adult melanoma, including Spitz melanoma and melanoma associated with congenital melanocytic nevi. Pediatric patients with nonmelanoma skin cancers should be evaluated for predisposing risk factors. More research on therapeutic options for pediatric skin cancer is vital to understanding the tolerance and response of our pediatric patients to therapies that are more frequently utilized in adult disease.
Collapse
Affiliation(s)
- Danna Moustafa
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Holly Neale
- University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Elena B Hawryluk
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
77
|
Loss-of-function variants in FSIP1 identified by targeted sequencing are associated with one particular subtype of mucosal melanoma. Gene 2020; 759:144964. [PMID: 32717308 DOI: 10.1016/j.gene.2020.144964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/04/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mucosal melanoma is a tumor caused by the malignant transformation of pigment-producing cells and can arise from any mucosal tissue where melanocytes are present. Due to its rarity, the mucosal melanoma subtype is poorly described, and its genetic characteristics are infrequently studied. The discovery or confirmation of new mucosal melanoma susceptibility genes will provide important insights for the study of its pathogenesis. MATERIALS AND METHODS We performed deep targeted sequencing of 100 previously reported melanoma-related genes in 39 mucosal melanoma samples and a gene-level loss-of-function (LOF) variant enrichment analysis for mucosal melanoma from different incidence sites. RESULTS We detected 7,589 variants in these samples, and 484 were LOF variants (gain or loss of a stop codon, missense, and splice site). Four different gene-level enrichment analyses revealed that FSIP1 (fibrous sheath interacting protein 1) is a susceptibility gene for oral mucosal melanoma (OR = 0.33, PChi = 4.05 × 10-2, Pburden = 3.06 × 10-2, Pskat = 3.01 × 10-2, Pskato = 3.01 × 10-2), whereas the different methods did not detect a significant susceptibility gene for the other subtypes. CONCLUSIONS In our study, a susceptibility gene for oral mucosal melanoma was confirmed in a Chinese Han population, and these findings contribute to a better genetic understanding of mucosal melanoma of different subtypes.
Collapse
|
78
|
Perz A, Aizman L, Lukowiak T, Etzkorn JR. Cells to Surgery Quiz: July 2020. J Invest Dermatol 2020. [DOI: 10.1016/j.jid.2020.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
79
|
Lavelle TJ, Alver TN, Heintz KM, Wernhoff P, Nygaard V, Nakken S, Øy GF, Bøe SL, Urbanucci A, Hovig E. Dysregulation of MITF Leads to Transformation in MC1R-Defective Melanocytes. Cancers (Basel) 2020; 12:cancers12071719. [PMID: 32605315 PMCID: PMC7408466 DOI: 10.3390/cancers12071719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The MC1R/cAMP/MITF pathway is a key determinant for growth, differentiation, and survival of melanocytes and melanoma. MITF-M is the melanocyte-specific isoform of Microphthalmia-associated Transcription Factor (MITF) in human melanoma. Here we use two melanocyte cell lines to show that forced expression of hemagglutinin (HA) -tagged MITF-M through lentiviral transduction represents an oncogenic insult leading to consistent cell transformation of the immortalized melanocyte cell line Hermes 4C, being a melanocortin-1 receptor (MC1R) compound heterozygote, while not causing transformation of the MC1R wild type cell line Hermes 3C. The transformed HA-tagged MITF-M transduced Hermes 4C cells form colonies in soft agar and tumors in mice. Further, Hermes 4C cells display increased MITF chromatin binding, and transcriptional reprogramming consistent with an invasive melanoma phenotype. Mechanistically, forced expression of MITF-M drives the upregulation of the AXL tyrosine receptor kinase (AXL), with concomitant downregulation of phosphatase and tensin homolog (PTEN), leading to increased activation of the PI3K/AKT pathway. Treatment with AXL inhibitors reduces growth of the transformed cells by reverting AKT activation. In conclusion, we present a model system of melanoma development, driven by MITF-M in the context of MC1R loss of function, and independent of UV exposure. This model provides a basis for further studies of critical changes in the melanocyte transformation process.
Collapse
Affiliation(s)
- Timothy J. Lavelle
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Tine Norman Alver
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Karen-Marie Heintz
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Patrik Wernhoff
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Vegard Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigurd Leinæs Bøe
- Department of Medical Biochemistry, Oslo University Hospital, Radiumhospitalet, 0424 Oslo, Norway;
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Correspondence: (A.U.); (E.H.)
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Department of Informatics, University of Oslo, 0316 Oslo, Norway
- Correspondence: (A.U.); (E.H.)
| |
Collapse
|
80
|
Comprehensive Investigation into the Role of Ubiquitin-Conjugating Enzyme E2S in Melanoma Development. J Invest Dermatol 2020; 141:374-384. [PMID: 32603752 DOI: 10.1016/j.jid.2020.05.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
Abstract
Ubiquitin-conjugating enzyme E2S (UBE2S) is involved in protein degradation and signal transduction, but its function in the development of melanoma is unclear. We focused on the role of UBE2S in melanoma development both in vitro and in vivo. UBE2S was overexpressed in malignant melanoma cells and tissues, and UBE2S expression was significantly different between tumor node metastasis staging T4 and T1/T2/T3. We designed UBE2S short hairpin RNA (shUBE2S) and transfected it into A375, SK-MEL-28, and MUM-2B cells using lentivirus. By whole-genome filtering, 247 genes and 265 genes were upregulated and downregulated, respectively, in shUBE2S-treated melanoma; these genes were mainly involved in immune reactions, apoptosis, DNA damage repair, and cell movement. The proliferation of melanoma cells was inhibited, apoptosis was increased, and cell cycle was arrested in G1/S in shUBE2S-treated melanoma. Expression of epithelial to mesenchymal transition-related proteins was significantly suppressed, and tumor growth was also suppressed in shUBE2S BALB/C nude mice. shUBE2S treatment may cause cell cycle arrest in G1/S phase, inhibit proliferation, induce apoptosis, and suppress tumor growth through DNA damage repair, epithelial to mesenchymal transition inhibition, protein kinase B-mTOR pathway, NF-κB signaling, and immune reactions, which provides a comprehensive understanding of the role of UBE2S in melanoma development and the need for advanced clinical research into UBE2S.
Collapse
|
81
|
Yang K, Oak AS, Slominski RM, Brożyna AA, Slominski AT. Current Molecular Markers of Melanoma and Treatment Targets. Int J Mol Sci 2020; 21:ijms21103535. [PMID: 32429485 PMCID: PMC7278971 DOI: 10.3390/ijms21103535] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Melanoma is a deadly skin cancer that becomes especially difficult to treat after it metastasizes. Timely identification of melanoma is critical for effective therapy, but histopathologic diagnosis can frequently pose a significant challenge to this goal. Therefore, auxiliary diagnostic tools are imperative to facilitating prompt recognition of malignant lesions. Melanoma develops as result of a number of genetic mutations, with UV radiation often acting as a mutagenic risk factor. Novel methods of genetic testing have improved detection of these molecular alterations, which subsequently revealed important information for diagnosis and prognosis. Rapid detection of genetic alterations is also significant for choosing appropriate treatment and developing targeted therapies for melanoma. This review will delve into the understanding of various mutations and the implications they may pose for clinical decision making.
Collapse
Affiliation(s)
- Kevin Yang
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.Y.); (A.S.O.)
| | - Allen S.W. Oak
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.Y.); (A.S.O.)
| | - Radomir M. Slominski
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.Y.); (A.S.O.)
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
82
|
Toussi A, Mans N, Welborn J, Kiuru M. Germline mutations predisposing to melanoma. J Cutan Pathol 2020; 47:606-616. [PMID: 32249949 DOI: 10.1111/cup.13689] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Nearly 15% of melanomas occur in patients with a family history and a subset of these patients have a germline mutation in a melanoma predisposing gene. CDKN2A mutations are responsible for the majority of hereditary melanoma, but many other susceptibility genes have been discovered in recent years, including CDK4, TERT, ACD, TERF2IP, POT1, MITF, MC1R, and BAP1. Additionally, melanoma risk is increased in mixed cancer syndromes caused by mutations in PTEN, BRCA2, BRCA1, RB1, and TP53. While early onset, multiple tumors, and family cancer history remain the most valuable clinical clues for hereditary melanoma, characteristic epithelioid cytology of melanocytic tumors may suggest an underlying BAP1 mutation. Herein, we review the clinical and histopathologic characteristics of melanocytic tumors associated with these germline mutations and discuss the role of genetic counseling.
Collapse
Affiliation(s)
- Atrin Toussi
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Nicole Mans
- Hereditary Cancer Program, Comprehensive Cancer Center, University of California, Davis, Sacramento, California, USA
| | - Jeanna Welborn
- Hereditary Cancer Program, Comprehensive Cancer Center, University of California, Davis, Sacramento, California, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis, Sacramento, California, USA.,Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
83
|
Napoli S, Scuderi C, Gattuso G, Di Bella V, Candido S, Basile MS, Libra M, Falzone L. Functional Roles of Matrix Metalloproteinases and Their Inhibitors in Melanoma. Cells 2020; 9:cells9051151. [PMID: 32392801 PMCID: PMC7291303 DOI: 10.3390/cells9051151] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) plays an important role in the regulation of the tissue microenvironment and in the maintenance of cellular homeostasis. Several proteins with a proteolytic activity toward several ECM components are involved in the regulation and remodeling of the ECM. Among these, Matrix Metalloproteinases (MMPs) are a class of peptidase able to remodel the ECM by favoring the tumor invasive processes. Of these peptidases, MMP-9 is the most involved in the development of cancer, including that of melanoma. Dysregulations of the MAPKs and PI3K/Akt signaling pathways can lead to an aberrant overexpression of MMP-9. Even ncRNAs are implicated in the aberrant production of MMP-9 protein, as well as other proteins responsible for the activation or inhibition of MMP-9, such as Osteopontin and Tissue Inhibitors of Metalloproteinases. Currently, there are different therapeutic approaches for melanoma, including targeted therapies and immunotherapies. However, no biomarkers are available for the prediction of the therapeutic response. In this context, several studies have tried to understand the diagnostic, prognostic and therapeutic potential of MMP-9 in melanoma patients by performing clinical trials with synthetic MMPs inhibitors. Therefore, MMP-9 may be considered a promising molecule for the management of melanoma patients due to its role as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Salvatore Napoli
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
| | - Chiara Scuderi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
| | - Virginia Di Bella
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.N.); (C.S.); (G.G.); (V.D.B.); (S.C.); (M.S.B.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
- Correspondence: (M.L.); or (L.F.); Tel.: +39-095-478-1271 (M.L.); +39-094-478-1278 (L.F.)
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, 80131 Naples, Italy
- Correspondence: (M.L.); or (L.F.); Tel.: +39-095-478-1271 (M.L.); +39-094-478-1278 (L.F.)
| |
Collapse
|
84
|
Sargen MR, Calista D, Elder DE, Massi D, Chu EY, Potrony M, Pfeiffer RM, Carrera C, Aguilera P, Alos L, Puig S, Elenitsas R, Yang XR, Tucker MA, Landi MT, Goldstein AM. Histologic features of melanoma associated with germline mutations of CDKN2A, CDK4, and POT1 in melanoma-prone families from the United States, Italy, and Spain. J Am Acad Dermatol 2020; 83:860-869. [PMID: 32283231 DOI: 10.1016/j.jaad.2020.03.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND CDKN2A, CDK4, and POT1 are well-established melanoma-susceptibility genes. OBJECTIVE We evaluated melanoma histopathology for individuals with germline mutations of CDKN2A, CDK4, and POT1. METHODS We assessed histopathology for melanomas diagnosed in melanoma-prone families (≥2 individuals with melanoma) from the United States, Italy, and Spain. Comparisons between mutation carriers and noncarriers (no mutation) were adjusted for age, sex, Breslow depth, and correlations among individuals within the same family. RESULTS Histologic slides were evaluated for 290 melanomas (139 from 132 noncarriers, 122 from 68 CDKN2A carriers, 10 from 6 CDK4 carriers, and 19 from 16 POT1 carriers). Superficial spreading was the predominant subtype for all groups. Spitzoid morphology (>25% of tumor) was observed in 10 of 15 invasive melanomas (67%) from POT1 carriers (P < .0001 vs noncarriers). This finding was independently confirmed by 3 expert melanoma dermatopathologists in 9 of 15 invasive melanomas (60%). In situ and invasive melanomas from CDKN2A and CDK4 carriers were histologically similar to melanomas from noncarriers. LIMITATIONS Limited sample sizes for rare melanoma-susceptibility syndromes (CDK4, POT1). CONCLUSION Spitzoid morphology was associated with POT1 mutations suggesting that telomere dysfunction (POT1 mutations) may contribute to spitzoid differentiation in melanocytic tumors.
Collapse
Affiliation(s)
- Michael R Sargen
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland.
| | - Donato Calista
- Department of Dermatology, Maurizio Bufalini Hospital, Cesena, Italy
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniela Massi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Emily Y Chu
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Míriam Potrony
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Cristina Carrera
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Paula Aguilera
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Llucia Alos
- Pathology Department, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Rosalie Elenitsas
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaohong R Yang
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Margaret A Tucker
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Maria Teresa Landi
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Alisa M Goldstein
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
85
|
Campos C, Fragoso S, Luís R, Pinto F, Brito C, Esteves S, Pataco M, Santos S, Machado P, Vicente JB, Costa Rosa J, Cavaco BM, Moura C, Pojo M. High-Throughput Sequencing Identifies 3 Novel Susceptibility Genes for Hereditary Melanoma. Genes (Basel) 2020; 11:genes11040403. [PMID: 32276436 PMCID: PMC7230562 DOI: 10.3390/genes11040403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cutaneous melanoma is one of the most aggressive human cancers due to its high invasiveness. Germline mutations in high-risk melanoma susceptibility genes have been associated with development hereditary melanoma; however, most genetic culprits remain elusive. To unravel novel susceptibility genes for hereditary melanoma, we performed whole exome sequencing (WES) on eight patients with multiple primary melanomas, high number of nevi, and negative for high and intermediate-risk germline mutations. Thirteen new potentially pathogenic variants were identified after bioinformatics analysis and validation. CDH23, ARHGEF40, and BRD9 were identified as the most promising susceptibility genes in hereditary melanoma. In silico analysis of CDH23 and ARHGEF40 variants provided clues for altered protein structure and function associated with the identified mutations. Then, we also evaluated the clinical value of CDH23, ARHGEF40, and BRD9 expression in sporadic melanoma by using the TCGA dataset (n = 461). No differences were observed in BRD9 expression between melanoma and normal skin samples, nor with melanoma stage, whereas ARHGEF40 was found overexpressed, and CDH23 was downregulated and its loss was associated with worse survival. Altogether, these results reveal three novel genes with clinical relevance in hereditary and sporadic melanoma.
Collapse
Affiliation(s)
- Catarina Campos
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Sofia Fragoso
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Rafael Luís
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Filipe Pinto
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Susana Esteves
- Unidade de Investigação Clínica (UIC) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Margarida Pataco
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Sidónia Santos
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Patrícia Machado
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | - Joaninha Costa Rosa
- Serviço de Anatomia Patológica do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Branca M. Cavaco
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Cecília Moura
- Clínica de Risco Familiar do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
- Serviço de Dermatologia do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
- Correspondence: ; Tel.: +351-21-722-9800 (ext. 1794)
| |
Collapse
|
86
|
Abstract
The hereditary nature of some forms of cancer was recognized long ago. Over time, recognition of associated findings led to the delineation of numerous hereditary cancer syndromes. Many of these syndromes also have cutaneous manifestations, the recognition of which can lead to their early identification. Recognition of these syndromes allows vigilant surveillance and preemptive treatment, which can dramatically impact the risks of morbidity and mortality for affected patients. The rise of rapid and accurate genetic testing now allows the early identification of asymptomatic at risk family members so that monitoring can be initiated as early as possible. The dermatologist plays a critical role in early identification of these syndromes and, in many cases, their treatment. This review summarizes many known hereditary cancer syndromes with cutaneous findings, their etiology, identification, evaluation, and management. Importantly, this is an ever evolving topic and new findings and syndromes will continue to be recognized. The dermatologist must be always alert to ensure they are detected.
Collapse
Affiliation(s)
- Ryan Ladd
- Department of Dermatology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Matthew Davis
- Department of Dermatology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Jonathan A Dyer
- Department of Dermatology, University of Missouri School of Medicine, Columbia, Missouri, USA.
| |
Collapse
|
87
|
Llach J, Carballal S, Moreira L. Familial Pancreatic Cancer: Current Perspectives. Cancer Manag Res 2020; 12:743-758. [PMID: 32099470 PMCID: PMC6999545 DOI: 10.2147/cmar.s172421] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer (PC) is a highly lethal disease, mostly incurable when detected. Thus, despite advances in PC treatments, only around 7% of patients survive 5-years after diagnosis. This morbid outcome is secondary to multifactorial reasons, such as late-stage diagnosis, rapid progression and minimal response to chemotherapy. Based on these factors, it is of special relevance to identify PC high-risk individuals in order to establish preventive and early detection measures. Although most PC are sporadic, approximately 10% cases have a familial basis. No main causative gene of PC has been identified but several known germline pathogenic mutations are related with an increased risk of this tumor. These inherited cancer syndromes represent 3% of all PC. On the other hand, in 7% of cases of PC, there is a strong family history without a causative germline mutation, a situation known as familial pancreatic cancer (FPC). In recent years, there is increasing evidence supporting the benefit of genetic germline analysis in PC patients, and periodic pancreatic screening in PC high-risk patients (mainly those with a lifetime risk greater than 5%), although there is no general agreement in the group of patients and individuals to study and screen. In the present review, we expose an update in the field of hereditary and FPC, with the aim of describing the current strategies and implications in genetic counseling, surveillance and therapeutic interventions.
Collapse
Affiliation(s)
- Joan Llach
- Departmento de Gastroenterología, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Sabela Carballal
- Departmento de Gastroenterología, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Leticia Moreira
- Departmento de Gastroenterología, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
88
|
Abstract
Melanoma is a deadly skin cancer linked to ultraviolet radiation exposure. Heritable traits and sporadic mutations modify an individual's risk for melanoma that may be associated with phenotype. Familial/heritable melanomas are broadly used to describe families with an increased incidence of melanomas, although the underlying mutation may be unknown. Mutations associated with melanoma occur in cell cycle regulation, tumor suppression, chromosomal stability, DNA repair, pigmentation, and melanocyte differentiation genes. Genetic testing of individuals with a family history of melanoma may provide additional etiologic information and ensure patients with known markers for cancer development are closely monitored by physicians.
Collapse
|
89
|
Bhalla S, Kaur H, Dhall A, Raghava GPS. Prediction and Analysis of Skin Cancer Progression using Genomics Profiles of Patients. Sci Rep 2019; 9:15790. [PMID: 31673075 PMCID: PMC6823463 DOI: 10.1038/s41598-019-52134-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
The metastatic Skin Cutaneous Melanoma (SKCM) has been associated with diminished survival rates and high mortality rates worldwide. Thus, segregating metastatic melanoma from the primary tumors is crucial to employ an optimal therapeutic strategy for the prolonged survival of patients. The SKCM mRNA, miRNA and methylation data of TCGA is comprehensively analysed to recognize key genomic features that can segregate metastatic and primary tumors. Further, machine learning models have been developed using selected features to distinguish the same. The Support Vector Classification with Weight (SVC-W) model developed using the expression of 17 mRNAs achieved Area under the Receiver Operating Characteristic (AUROC) curve of 0.95 and an accuracy of 89.47% on an independent validation dataset. This study reveals the genes C7, MMP3, KRT14, LOC642587, CASP7, S100A7 and miRNAs hsa-mir-205 and hsa-mir-203b as the key genomic features that may substantially contribute to the oncogenesis of melanoma. Our study also proposes genes ESM1, NFATC3, C7orf4, CDK14, ZNF827, and ZSWIM7 as novel putative markers for cutaneous melanoma metastasis. The major prediction models and analysis modules to predict metastatic and primary tumor samples of SKCM are available from a webserver, CancerSPP ( http://webs.iiitd.edu.in/raghava/cancerspp/ ).
Collapse
Affiliation(s)
- Sherry Bhalla
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Harpreet Kaur
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Anjali Dhall
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| |
Collapse
|
90
|
Merkel EA, Mohan LS, Shi K, Panah E, Zhang B, Gerami P. Paediatric melanoma: clinical update, genetic basis, and advances in diagnosis. THE LANCET. CHILD & ADOLESCENT HEALTH 2019; 3:646-654. [PMID: 31204309 DOI: 10.1016/s2352-4642(19)30116-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 02/04/2023]
Abstract
Paediatric melanoma is rare and challenging to diagnose. The three subtypes are Spitzoid melanoma, melanoma arising in a congenital melanocytic nevus, and conventional (also known as adult-type) melanoma. Spitzoid melanomas have characteristic histopathological and genomic aberrations. Despite frequent involvement of the sentinel lymph nodes, most cases have an uneventful clinical course. Among congenital nevi, the risk of melanoma varies by projected size in adulthood, with the greatest risk in large or giant nevi. The clinical course is generally aggressive and accounts for most melanoma-related deaths in childhood. In conventional melanoma, superficial spreading and nodular melanoma account for most cases, with risk factors and presentation largely similar to adult disease. In this Review, we discuss advances in histological diagnosis using adjunctive molecular assays, and summarise the genetic basis of paediatric melanoma.
Collapse
Affiliation(s)
- Emily A Merkel
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lauren S Mohan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Katherine Shi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elnaz Panah
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Zhang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
91
|
Taylor NJ, Mitra N, Qian L, Avril MF, Bishop DT, Bressac-de Paillerets B, Bruno W, Calista D, Cuellar F, Cust AE, Demenais F, Elder DE, Gerdes AM, Ghiorzo P, Goldstein AM, Grazziotin TC, Gruis NA, Hansson J, Harland M, Hayward NK, Hocevar M, Höiom V, Holland EA, Ingvar C, Landi MT, Landman G, Larre-Borges A, Mann GJ, Nagore E, Olsson H, Palmer JM, Perić B, Pjanova D, Pritchard AL, Puig S, Schmid H, van der Stoep N, Tucker MA, Wadt KAW, Yang XR, Newton-Bishop JA, Kanetsky PA. Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT. J Am Acad Dermatol 2019; 81:386-394. [PMID: 30731170 PMCID: PMC6634996 DOI: 10.1016/j.jaad.2019.01.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/02/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although rare in the general population, highly penetrant germline mutations in CDKN2A are responsible for 5%-40% of melanoma cases reported in melanoma-prone families. We sought to determine whether MELPREDICT was generalizable to a global series of families with melanoma and whether performance improvements can be achieved. METHODS In total, 2116 familial melanoma cases were ascertained by the international GenoMEL Consortium. We recapitulated the MELPREDICT model within our data (GenoMELPREDICT) to assess performance improvements by adding phenotypic risk factors and history of pancreatic cancer. We report areas under the curve (AUC) with 95% confidence intervals (CIs) along with net reclassification indices (NRIs) as performance metrics. RESULTS MELPREDICT performed well (AUC 0.752, 95% CI 0.730-0.775), and GenoMELPREDICT performance was similar (AUC 0.748, 95% CI 0.726-0.771). Adding a reported history of pancreatic cancer yielded discriminatory improvement (P < .0001) in GenoMELPREDICT (AUC 0.772, 95% CI 0.750-0.793, NRI 0.40). Including phenotypic risk factors did not improve performance. CONCLUSION The MELPREDICT model functioned well in a global data set of familial melanoma cases. Adding pancreatic cancer history improved model prediction. GenoMELPREDICT is a simple tool for predicting CDKN2A mutational status among melanoma patients from melanoma-prone families and can aid in directing these patients to receive genetic testing or cancer risk counseling.
Collapse
Affiliation(s)
- Nicholas J Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, Texas
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lu Qian
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Marie-Françoise Avril
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin et Université Paris Descartes, Paris, France
| | - D Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Brigitte Bressac-de Paillerets
- Gustave Roussy, Université Paris-Saclay, Département de Biopathologie and Institut National de la Santé et de la Recherche Médicale U1186, Villejuif, France
| | - William Bruno
- Department of Internal Medicine and Medical Specialties, University of Genoa and Istituto de Ricovero e Cura a Carattere Scientifico AOU San Martino-IST, Genoa, Italy
| | - Donato Calista
- Dermatology Unit, Maurizio Bufalini Hospital, Cesena, Italy
| | - Francisco Cuellar
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, Institut de Investigacions Biomediques August Pi Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Anne E Cust
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Florence Demenais
- Institut National de la Santé et de la Recherche Médicale UMR-946, Genetic Variation and Human Disease Unit, Université Paris Diderot, Paris, France
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa and Istituto de Ricovero e Cura a Carattere Scientifico AOU San Martino-IST, Genoa, Italy
| | - Alisa M Goldstein
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Thais C Grazziotin
- Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mark Harland
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | | | - Marko Hocevar
- Institute of Oncology Ljubljana, Zaloska, Ljubljana, Slovenia
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth A Holland
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Christian Ingvar
- Department of Clinical Sciences, Lund University Hospital Lund, Sweden; Department of Surgery, Lund University Hospital, Lund, Sweden
| | - Maria Teresa Landi
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Gilles Landman
- Department of Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alejandra Larre-Borges
- Unidad de Lesiones Pigmentadas, Cátedra de Dermatología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Håkan Olsson
- Department of Clinical Sciences, Lund University Hospital Lund, Sweden; Department of Surgery, Lund University Hospital, Lund, Sweden
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Barbara Perić
- Institute of Oncology Ljubljana, Zaloska, Ljubljana, Slovenia
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, Institut de Investigacions Biomediques August Pi Sunyer, Universitat de Barcelona, Barcelona, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Helen Schmid
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center Leiden, the Netherlands
| | - Margaret A Tucker
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Karin A W Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Xiaohong R Yang
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Julia A Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
92
|
Abstract
Current recommendations by the United States Preventive Services Task Force do not support screening for skin cancer. Melanoma is unique among cancers because detection is through visual inspection. Development of technologies that aid visual inspection have supported screening strategies in high-risk populations such as older fair skinned males with personal or family history of melanoma. Clearly delineating these populations and appropriate utilization of these newer technologies will be imperative in future screening paradigms.
Collapse
Affiliation(s)
- Conor H O'Neill
- Hiram C. Polk, JR, MD Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, Kentucky
| | - Charles R Scoggins
- Hiram C. Polk, JR, MD Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
93
|
Motaparthi K, George EV, Guo R. Distant metastasis due to heavily pigmented epithelioid melanoma with underlying
BRAF
V600E,
NOTCH1
,
ERBB3
, and
PTEN
mutations. J Cutan Pathol 2019; 46:613-618. [DOI: 10.1111/cup.13485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Kiran Motaparthi
- Department of DermatologyUniversity of Florida College of Medicine Gainesville Florida
| | - Eva V. George
- Department of DermatologyUniversity of Florida College of Medicine Gainesville Florida
| | - Ruifeng Guo
- Department of Laboratory Medicine and PathologyMayo Medical School Rochester Minnesota
| |
Collapse
|
94
|
Family history of cancer and risk of paediatric and young adult's testicular cancer: A Norwegian cohort study. Br J Cancer 2019; 120:1007-1014. [PMID: 30967648 PMCID: PMC6734662 DOI: 10.1038/s41416-019-0445-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this study was to examine the association of a family history of cancer with the risk of testicular cancer in young adults. Methods This is a prospective cohort study including 1,974,287 males born 1951–2015, of whom 2686 were diagnosed with TC before the age of 30. Results A history of TC in male relatives was significantly associated with a diagnosis of TC among children and young adults, including brothers (6.3-fold), sons (4.7-fold), fathers (4.4-fold), paternal uncles (2.0-fold) and maternal uncles (1.9-fold). Individuals with a father diagnosed with a carcinoma or sarcoma showed an elevated risk (1.1-fold and 1.8-fold, respectively). A family history of mesothelioma was positively associated with a risk of TC [(father (2.8-fold), mother (4.6-fold) and maternal uncles and aunt (4.4-fold)]. Elevated risks were also observed when siblings were diagnosed with malignant melanoma (1.4-fold). The risk of TC was also increased when fathers (11.1-fold), paternal (4.9-fold) and maternal uncles and aunts (4.6-fold) were diagnosed with malignant neuroepithelial-tumours. Conclusion We found an increased risk of TC among children and young adults with a family history of TC, carcinoma, mesothelioma, sarcoma, malignant melanoma and malignant neuroepithelial tumours. Hereditary cancer syndromes might underlie some of the associations reported in this study.
Collapse
|
95
|
Grafanaki K, Anastasakis D, Kyriakopoulos G, Skeparnias I, Georgiou S, Stathopoulos C. Translation regulation in skin cancer from a tRNA point of view. Epigenomics 2018; 11:215-245. [PMID: 30565492 DOI: 10.2217/epi-2018-0176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is a central and dynamic process, frequently deregulated in cancer through aberrant activation or expression of translation initiation factors and tRNAs. The discovery of tRNA-derived fragments, a new class of abundant and, in some cases stress-induced, small Noncoding RNAs has perplexed the epigenomics landscape and highlights the emerging regulatory role of tRNAs in translation and beyond. Skin is the biggest organ in human body, which maintains homeostasis of its multilayers through regulatory networks that induce translational reprogramming, and modulate tRNA transcription, modification and fragmentation, in response to various stress signals, like UV irradiation. In this review, we summarize recent knowledge on the role of translation regulation and tRNA biology in the alarming prevalence of skin cancer.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece.,Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios Anastasakis
- National Institute of Musculoskeletal & Arthritis & Skin, NIH, 50 South Drive, Room 1152, Bethesda, MD 20892, USA
| | - George Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
96
|
cAMP-mediated regulation of melanocyte genomic instability: A melanoma-preventive strategy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 115:247-295. [PMID: 30798934 DOI: 10.1016/bs.apcsb.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant melanoma of the skin is the leading cause of death from skin cancer and ranks fifth in cancer incidence among all cancers in the United States. While melanoma mortality has remained steady for the past several decades, melanoma incidence has been increasing, particularly among fair-skinned individuals. According to the American Cancer Society, nearly 10,000 people in the United States will die from melanoma this year. Individuals with dark skin complexion are protected damage generated by UV-light due to the high content of UV-blocking melanin pigment in their epidermis as well as better capacity for melanocytes to cope with UV damage. There is now ample evidence that suggests that the melanocortin 1 receptor (MC1R) is a major melanoma risk factor. Inherited loss-of-function mutations in MC1R are common in melanoma-prone persons, correlating with a less melanized skin complexion and poorer recovery from mutagenic photodamage. We and others are interested in the MC1R signaling pathway in melanocytes, its mechanisms of enhancing genomic stability and pharmacologic opportunities to reduce melanoma risk based on those insights. In this chapter, we review melanoma risk factors, the MC1R signaling pathway, and the relationship between MC1R signaling and DNA repair.
Collapse
|
97
|
Gironi LC, Colombo E, Pasini B, Giorgione R, Farinelli P, Zottarelli F, Esposto E, Zavattaro E, Allara E, Ogliara P, Betti M, Dianzani I, Savoia P. Melanoma-prone families: new evidence of distinctive clinical and histological features of melanomas in CDKN2A mutation carriers. Arch Dermatol Res 2018; 310:769-784. [PMID: 30218143 DOI: 10.1007/s00403-018-1866-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/30/2018] [Accepted: 09/08/2018] [Indexed: 11/26/2022]
Abstract
Germline mutations on the CDKN2A gene, the most important known genetic factors associated with cutaneous melanomas (CMs), predispose carriers to multiple primary CMs (MPMs) with higher frequency and younger onset compared to non-carriers. Most of the largest published studies concerning clinical and histological characteristics of CMs with CDKN2A mutation carriers did not specify if the described CMs are first or subsequent to the first, and they used sporadic CMs from non-genotyped patients as controls. We conducted a single-centre observational study to compare clinical and histological CM features of 32 unrelated carriers (MUT) of 5 germline CDKN2A mutations (one of which was never previously described) compared to 100 genotyped wild-type (WT) patients. We stratified the data based on time of diagnosis, anatomical site and histological subtype of CMs, demonstrating several significant unreported differences between the two groups. MUT developed a higher number of dysplastic nevi and MPMs. We proved for the first time that anatomical distribution of CMs in MUT was independent of gender, unlike WTs. MUTs developed in situ and superficial spreading melanomas (SSMs) more frequently, with significantly higher number of SSMs on the head/neck. In MUTs, Breslow thickness was significantly lower for all invasive CMs. When CMs were stratified on the basis of the time of occurrence, statistical significance was maintained only for SSMs subsequent to the first. In WTs, Clark level was significantly higher, and ulceration was more prevalent than in MUTs. Significant differences in ulceration were observed only in SSMs. In nodular CMs, we did not find differences in terms of Breslow thickness or ulceration between WTs and MUTs. In situ CMs developed 10 years earlier in MUTs with respect to WTs, whereas no significant differences were observed in invasive CMs. In contrast to those reported previously by other authors, we did not find a difference in skin phototype.
Collapse
Affiliation(s)
- Laura Cristina Gironi
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy.
| | - Enrico Colombo
- Department of Translational Medicine, A. Avogadro University of Eastern Piedmont, Novara, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Giorgione
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Pamela Farinelli
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Francesca Zottarelli
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Elia Esposto
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Elisa Zavattaro
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Elias Allara
- NIHR Blood and Transplant Research Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paola Ogliara
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Marta Betti
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Paola Savoia
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| |
Collapse
|
98
|
Stratigos AJ, Fargnoli MC, De Nicolo A, Peris K, Puig S, Soura E, Menin C, Calista D, Ghiorzo P, Mandala M, Massi D, Rodolfo M, Del Regno L, Stefanaki I, Gogas H, Bataille V, Tucker MA, Whiteman D, Nagore E, Landi MT. MelaNostrum: a consensus questionnaire of standardized epidemiologic and clinical variables for melanoma risk assessment by the melanostrum consortium. J Eur Acad Dermatol Venereol 2018; 32:2134-2141. [PMID: 30098061 DOI: 10.1111/jdv.15208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many melanoma observational studies have been carried out across different countries and geographic areas using heterogeneous assessments of epidemiologic risk factors and clinical variables. AIM To develop a consensus questionnaire to standardize epidemiologic and clinical data collection for melanoma risk assessment. METHODS We used a stepwise strategy that included: compilation of variables from case-control datasets collected at various centres of the MelaNostrum Consortium; integration of variables from published case-control studies; consensus discussion of the collected items by MelaNostrum members; revision by independent experts; addition of online tools and image-based charts; questionnaire testing across centres and generation of a final draft. RESULTS We developed a core consensus questionnaire (MelanoQ) that includes four separate sections: A. general and demographic data; B. phenotypic and ultraviolet radiation exposure risk factors and lifestyle habits; C. clinical examination, medical and family history; and D. diagnostic data on melanoma (cases only). Accompanying online tools, informative tables, and image-based charts aid standardization. Different subsections of the questionnaire are designed for self-administration, patient interviews performed by a physician or study nurse, and data collection from medical records. CONCLUSIONS The MelanoQ questionnaire is a useful tool for the collection and standardization of epidemiologic and clinical data across different studies, centres, cultures and languages. This will expedite ongoing efforts to compile high-quality data for pooled analyses or meta-analyses and offer a solid base for the design of clinical, epidemiologic and translational studies on melanoma.
Collapse
Affiliation(s)
- Alexander J Stratigos
- First Department of Dermatology, National and Kapodistrian University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | | | - Arcangela De Nicolo
- Cancer Genomics Program, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Ketty Peris
- Institute of Dermatology, Catholic University, Rome, Italy
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Instituto de Investigacion Biomedica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Efthymia Soura
- First Department of Dermatology, National and Kapodistrian University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Donato Calista
- Dermatology Unit, Maurizio Bufalini Hospital, Cesena, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa and Genetics of Rare Cancers, University Hospital Policlinico San Martino-IRCCS, Genoa, Italy
| | - Mario Mandala
- Unit of Melanoma, Department of Oncology and Hematology, Papa Giovanni XXIII Cancer Center Hospital, Bergamo, Italy
| | - Daniela Massi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Monica Rodolfo
- Immunotherapy Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Irene Stefanaki
- First Department of Dermatology, National and Kapodistrian University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Helen Gogas
- Department of Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Veronique Bataille
- Department of Twin Research and Genetic Epidemiology, Kings College, London, UK
| | - Margaret A Tucker
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Whiteman
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain
| | - Maria Teresa Landi
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
99
|
Zhan W, Shelton CA, Greer PJ, Brand RE, Whitcomb DC. Germline Variants and Risk for Pancreatic Cancer: A Systematic Review and Emerging Concepts. Pancreas 2018; 47:924-936. [PMID: 30113427 PMCID: PMC6097243 DOI: 10.1097/mpa.0000000000001136] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer requires many genetic mutations. Combinations of underlying germline variants and environmental factors may increase the risk of cancer and accelerate the oncogenic process. We systematically reviewed, annotated, and classified previously reported pancreatic cancer-associated germline variants in established risk genes. Variants were scored using multiple criteria and binned by evidence for pathogenicity, then annotated with published functional studies and associated biological systems/pathways. Twenty-two previously identified pancreatic cancer risk genes and 337 germline variants were identified from 97 informative studies that met our inclusion criteria. Fifteen of these genes contained 66 variants predicted to be pathogenic (APC, ATM, BRCA1, BRCA2, CDKN2A, CFTR, CHEK2, MLH1, MSH2, NBN, PALB2, PALLD, PRSS1, SPINK1, TP53). Pancreatic cancer risk genes were organized into key biological mechanisms that promote pancreatic oncogenesis within an oncogenic model. Development of precision medicine approaches requires updated variant information within the framework of an oncogenic progression model. Complex risk modeling may improve interpretation of early biomarkers and guide pathway-specific treatment for pancreatic cancer in the future. Precision medicine is within reach.
Collapse
Affiliation(s)
- Wei Zhan
- School of Medicine, Tsinghua University, Beijing, China
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Celeste A. Shelton
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Phil J. Greer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Randall E. Brand
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - David C. Whitcomb
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
100
|
Abstract
Melanoma represents the most aggressive and the deadliest form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted therapy. The therapeutic strategy can include single agents or combined therapies, depending on the patient’s health, stage, and location of the tumor. The efficiency of these treatments can be decreased due to the development of diverse resistance mechanisms. New therapeutic targets have emerged from studies of the genetic profile of melanocytes and from the identification of molecular factors involved in the pathogenesis of the malignant transformation. In this review, we aim to survey therapies approved and under evaluation for melanoma treatment and relevant research on the molecular mechanisms underlying melanomagenesis.
Collapse
Affiliation(s)
- Beatriz Domingues
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Manuel Lopes
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Hospital S João, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Helena Pópulo
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|