51
|
Musialek P, Tekieli L, Kostkiewicz M, Majka M, Szot W, Walter Z, Zebzda A, Pieniazek P, Kadzielski A, Banys RP, Olszowska M, Pasowicz M, Zmudka K, Tracz W. Randomized transcoronary delivery of CD34(+) cells with perfusion versus stop-flow method in patients with recent myocardial infarction: Early cardiac retention of ⁹⁹(m)Tc-labeled cells activity. J Nucl Cardiol 2011; 18:104-16. [PMID: 21161463 PMCID: PMC3032199 DOI: 10.1007/s12350-010-9326-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 09/20/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND For transcoronary progenitor cells' administration, injections under flow arrest (over-the-wire balloon technique, OTW) are used universally despite lack of evidence for being required for cell delivery or being effective in stimulating myocardial engraftment. Flow-mediated endothelial rolling is mandatory for subsequent cell adhesion and extravasation. METHODS To optimize cell directing toward the coronary endothelium under maintained flow, the authors developed a cell-delivery side-holed perfusion catheter (PC). Thirty-four patients (36-69 years, 30 men) with primary stent-assisted angioplasty-treated anterior MI (peak TnI 151 [53-356]ng/dL, mean[range]) were randomly assigned to OTW or PC autologous ⁹⁹Tc-extametazime-labeled bone marrow CD34(+) cells (4.34 [0.92-7.54] × 10⁶) administration at 6-14 days after pPCI (LVEF 37.1 [24-44]%). Myocardial perfusion (⁹⁹(m)Tc-MIBI) and labeled cells' activity were evaluated (SPECT) at, respectively, 36-48 h prior to and 60 min after delivery. RESULTS In contrast to OTW coronary occlusions, no intolerance or ventricular arrhythmia occurred with PC cells' administration (P < .001). One hour after delivery, 4.86 [1.7-7.6]% and 5.05 [2.2-9.9]% activity was detected in the myocardium (OTW and PC, respectively, P = .84). Labeled cell activity was clearly limited to the (viable) peri-infarct zone in 88% patients, indicating that the infarct core zone may be largely inaccessible to transcoronary-administered cells. CONCLUSIONS Irrespective of the transcoronary delivery method, only ≈ 5% of native (i.e., non-engineered) CD34(+) cells spontaneously home to the injured myocardium, and cell retention occurs preferentially in the viable peri-infarct zone. Although the efficacy of cell delivery is not increased with the perfusion method, by avoiding provoking ischemic episodes PC offers a rational alternative to the OTW delivery.
Collapse
Affiliation(s)
- Piotr Musialek
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Institute of Cardiology, Jagiellonian University, ul. Pradnicka 80, 31-202 Krakow, Poland
- John Paul II Hospital, Krakow, Poland
| | - Lukasz Tekieli
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Institute of Cardiology, Jagiellonian University, ul. Pradnicka 80, 31-202 Krakow, Poland
- John Paul II Hospital, Krakow, Poland
| | - Magdalena Kostkiewicz
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Institute of Cardiology, Jagiellonian University, ul. Pradnicka 80, 31-202 Krakow, Poland
- John Paul II Hospital, Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Jagiellonian University, Krakow, Poland
| | | | - Zbigniew Walter
- Department of Hematology, Jagiellonian University, Krakow, Poland
| | - Anna Zebzda
- Department of Transplantation, Jagiellonian University, Krakow, Poland
| | - Piotr Pieniazek
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Institute of Cardiology, Jagiellonian University, ul. Pradnicka 80, 31-202 Krakow, Poland
- John Paul II Hospital, Krakow, Poland
| | | | | | - Maria Olszowska
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Institute of Cardiology, Jagiellonian University, ul. Pradnicka 80, 31-202 Krakow, Poland
- John Paul II Hospital, Krakow, Poland
| | | | - Krzysztof Zmudka
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Institute of Cardiology, Jagiellonian University, ul. Pradnicka 80, 31-202 Krakow, Poland
- John Paul II Hospital, Krakow, Poland
| | - Wieslawa Tracz
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Institute of Cardiology, Jagiellonian University, ul. Pradnicka 80, 31-202 Krakow, Poland
- John Paul II Hospital, Krakow, Poland
| |
Collapse
|
52
|
Anastasiadis K, Antonitsis P, Argiriadou H, Koliakos G, Doumas A, Khayat A, Papakonstantinou C, Westaby S. Hybrid approach of ventricular assist device and autologous bone marrow stem cells implantation in end-stage ischemic heart failure enhances myocardial reperfusion. J Transl Med 2011; 9:12. [PMID: 21247486 PMCID: PMC3034699 DOI: 10.1186/1479-5876-9-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/19/2011] [Indexed: 12/29/2022] Open
Abstract
We challenge the hypothesis of enhanced myocardial reperfusion after implanting a left ventricular assist device together with bone marrow mononuclear stem cells in patients with end-stage ischemic cardiomyopathy. Irreversible myocardial loss observed in ischemic cardiomyopathy leads to progressive cardiac remodelling and dysfunction through a complex neurohormonal cascade. New generation assist devices promote myocardial recovery only in patients with dilated or peripartum cardiomyopathy. In the setting of diffuse myocardial ischemia not amenable to revascularization, native myocardial recovery has not been observed after implantation of an assist device as destination therapy. The hybrid approach of implanting autologous bone marrow stem cells during assist device implantation may eventually improve native cardiac function, which may be associated with a better prognosis eventually ameliorating the need for subsequent heart transplantation. The aforementioned hypothesis has to be tested with well-designed prospective multicentre studies.
Collapse
|
53
|
|
54
|
Preliminary evaluation of two radioiodinated maleimide derivatives targeting peripheral and membrane sulfhydryl groups for in vitro cell labeling. Appl Radiat Isot 2011; 69:163-70. [DOI: 10.1016/j.apradiso.2010.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 07/14/2010] [Accepted: 08/11/2010] [Indexed: 11/20/2022]
|
55
|
Jiang H, Cheng Z, Tian M, Zhang H. In vivo imaging of embryonic stem cell therapy. Eur J Nucl Med Mol Imaging 2010; 38:774-84. [PMID: 21107558 DOI: 10.1007/s00259-010-1667-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/01/2010] [Indexed: 12/11/2022]
Abstract
Embryonic stem cells (ESCs) have the most pluripotent potential of any stem cell. These cells, isolated from the inner cell mass of the blastocyst, are "pluripotent," meaning that they can give rise to all cell types within the developing embryo. As a result, ESCs have been regarded as a leading candidate source for novel regenerative medicine therapies and have been used to derive diverse cell populations, including myocardial and endothelial cells. However, before they can be safely applied clinically, it is important to understand the in vivo behavior of ESCs and their derivatives. In vivo analysis of ESC-derived cells remains critically important to define how these cells may function in novel regenerative medicine therapies. In this review, we describe several available imaging modalities for assessing cell engraftment and discuss their strengths and limitations. We also analyze the applications of these modalities in assessing the utility of ESCs in regenerative medicine therapies.
Collapse
Affiliation(s)
- Han Jiang
- Department of Nuclear Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | | | | | | |
Collapse
|
56
|
Immunologic and Inflammatory Reactions to Exogenous Stem Cells. J Am Coll Cardiol 2010; 56:1693-700. [DOI: 10.1016/j.jacc.2010.06.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/17/2010] [Accepted: 06/21/2010] [Indexed: 12/29/2022]
|
57
|
|
58
|
Nguyen PK, Nag D, Wu JC. Methods to assess stem cell lineage, fate and function. Adv Drug Deliv Rev 2010; 62:1175-86. [PMID: 20816906 DOI: 10.1016/j.addr.2010.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 01/19/2023]
Abstract
Stem cell therapy has the potential to regenerate injured tissue. For stem cells to achieve their full therapeutic potential, stem cells must differentiate into the target cell, reach the site of injury, survive, and engraft. To fully characterize these cells, evaluation of cell morphology, lineage specific markers, cell specific function, and gene expression must be performed. To monitor survival and engraftment, cell fate imaging is vital. Only then can organ specific function be evaluated to determine the effectiveness of therapy. In this review, we will discuss methods for evaluating the function of transplanted cells for restoring the heart, nervous system, and pancreas. We will also highlight the specific challenges facing these potential therapeutic areas.
Collapse
Affiliation(s)
- Patricia K Nguyen
- Department of Medicine, Stanford University School of Medicine, CA 94305, USA
| | | | | |
Collapse
|
59
|
Krause K, Schneider C, Kuck KH, Jaquet K. REVIEW: Stem Cell Therapy in Cardiovascular Disorders. Cardiovasc Ther 2010; 28:e101-10. [DOI: 10.1111/j.1755-5922.2010.00208.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
60
|
Wu Z, Kandeel F. Radionuclide probes for molecular imaging of pancreatic beta-cells. Adv Drug Deliv Rev 2010; 62:1125-38. [PMID: 20854861 DOI: 10.1016/j.addr.2010.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/09/2010] [Accepted: 09/13/2010] [Indexed: 12/16/2022]
Abstract
Islet transplantation is a promising treatment option for patients with type 1 diabetes (T1D); however, the fate of the graft over time remains difficult to follow, due to the lack of available tools capable of monitoring graft rejection and inflammation prior to islet graft loss. Due to the challenges imposed by the location of the pancreas and the sparsely dispersed beta-cell population within the pancreas, currently, the clinical verification of beta-cell abnormalities can only be obtained indirectly via metabolic studies, which typically is not possible until after a significant deterioration in islet function has already occurred. The development of non-invasive imaging methods for the assessment of the pancreatic beta-cells, however, offers the potential for the early detection of beta-cell dysfunction prior to the clinical onset of T1D and type 2 diabetes (T2D). Ideal islet imaging agents would have an acceptable residence time in the human body, be capable of providing high-resolution images with minimal uptake in surrounding tissues (e.g., the liver), would not be toxic to islets, and would not require pre-treatment of islets prior to transplantation. A variety of currently available imaging techniques, including magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and nuclear imaging have been tested for the study of beta-cell diseases. In this article, we summarize the recent advances made in nuclear imaging techniques for non-invasive imaging of pancreatic beta-cells. The use of radioactive probes for islet imaging is also discussed.
Collapse
|
61
|
Haack-Sorensen M, Friis T, Kastrup J. Mesenchymal stromal cell and mononuclear cell therapy in heart disease. Future Cardiol 2010; 4:481-94. [PMID: 19804342 DOI: 10.2217/14796678.4.5.481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Despite progress in percutaneous coronary intervention, bypass surgery and drug therapy, rates of mortality and morbidity after acute coronary syndrome are high due to ventricular remodeling and heart failure. Mesenchymal stromal cells (MSCs) from adult bone marrow or adipose tissue are considered potential candidates for therapeutic regenerative treatment in cardiovascular disease. Recent animal studies have demonstrated that MSCs can induce neovascularization and improve myocardial function in postinfarction myocardial ischemic hearts. This review will focus on the present preclinical and clinical knowledge about the use of mononuclear cells and MSCs for cardiac regenerative medicine, the source of MSCs for clinical use and problems to consider when conducting clinical MSC therapy.
Collapse
Affiliation(s)
- Mandana Haack-Sorensen
- Rigshospitalet University Hospital, Cardiac Stem Cell Laboratory, The Heart Centre, Copenhagen, Denmark.
| | | | | |
Collapse
|
62
|
The paracrine effect: pivotal mechanism in cell-based cardiac repair. J Cardiovasc Transl Res 2010; 3:652-62. [PMID: 20559770 DOI: 10.1007/s12265-010-9198-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 05/26/2010] [Indexed: 12/27/2022]
Abstract
Cardiac cell therapy has emerged as a controversial yet promising therapeutic strategy. Both experimental data and clinical applications in this field have shown modest but tangible benefits on cardiac structure and function and underscore that transplanted stem-progenitor cells can attenuate the postinfarct microenvironment. The paracrine factors secreted by these cells represent a pivotal mechanism underlying the benefits of cell-mediated cardiac repair. This article reviews key studies behind the paracrine effect related to the cardiac reparative effects of cardiac cell therapy.
Collapse
|
63
|
Ransohoff KJ, Wu JC. Advances in cardiovascular molecular imaging for tracking stem cell therapy. Thromb Haemost 2010; 104:13-22. [PMID: 20458434 DOI: 10.1160/th09-08-0530] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 12/30/2009] [Indexed: 12/14/2022]
Abstract
The high mortality rate associated with cardiovascular disease is partially due to the lack of proliferative cells in the heart. Without adequate repair following myocardial infarction, progressive dilation can lead to heart failure. Stem cell therapies present one promising option for treating cardiovascular disease, though the specific mechanisms by which they benefit the heart remain unclear. Before stem cell therapies can be used safely in human populations, their biology must be investigated using innovative technologies such as multi-modality molecular imaging. The present review will discuss the basic principles, labelling techniques, clinical applications, and drawbacks associated with four major modalities: radionuclide imaging, magnetic resonance imaging, bioluminescence imaging, and fluorescence imaging.
Collapse
Affiliation(s)
- Katherine J Ransohoff
- Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA.
| | | |
Collapse
|
64
|
Anderson CJ, Bulte JWM, Chen K, Chen X, Khaw BA, Shokeen M, Wooley KL, VanBrocklin HF. Design of targeted cardiovascular molecular imaging probes. J Nucl Med 2010; 51 Suppl 1:3S-17S. [PMID: 20395345 DOI: 10.2967/jnumed.109.068130] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Molecular imaging relies on the development of sensitive and specific probes coupled with imaging hardware and software to provide information about the molecular status of a disease and its response to therapy, which are important aspects of disease management. As genomic and proteomic information from a variety of cardiovascular diseases becomes available, new cellular and molecular targets will provide an imaging readout of fundamental disease processes. A review of the development and application of several cardiovascular probes is presented here. Strategies for labeling cells with superparamagnetic iron oxide nanoparticles enable monitoring of the delivery of stem cell therapies. Small molecules and biologics (e.g., proteins and antibodies) with high affinity and specificity for cell surface receptors or cellular proteins as well as enzyme substrates or inhibitors may be labeled with single-photon-emitting or positron-emitting isotopes for nuclear molecular imaging applications. Labeling of bispecific antibodies with single-photon-emitting isotopes coupled with a pretargeting strategy may be used to enhance signal accumulation in small lesions. Emerging nanomaterials will provide platforms that have various sizes and structures and that may be used to develop multimeric, multimodal molecular imaging agents to probe one or more targets simultaneously. These platforms may be chemically manipulated to afford molecules with specific targeting and clearance properties. These examples of molecular imaging probes are characteristic of the multidisciplinary nature of the extraction of advanced biochemical information that will enhance diagnostic evaluation and drug development and predict clinical outcomes, fulfilling the promise of personalized medicine and improved patient care.
Collapse
Affiliation(s)
- Carolyn J Anderson
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Terrovitis JV, Smith RR, Marbán E. Assessment and optimization of cell engraftment after transplantation into the heart. Circ Res 2010; 106:479-94. [PMID: 20167944 DOI: 10.1161/circresaha.109.208991] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Myocardial regeneration using stem and progenitor cell transplantation in the injured heart has recently become a major goal in the treatment of cardiac disease. Experimental studies and clinical applications have generally been encouraging, although the functional benefits that have been attained clinically are modest and inconsistent. Low cell retention and engraftment after myocardial delivery is a key factor limiting the successful application of cell therapy, irrespective of the type of cell or the delivery method. To improve engraftment, accurate methods for tracking cell fate and quantifying cell survival need to be applied. Several laboratory techniques (histological methods, real-time quantitative polymerase chain reaction, radiolabeling) have provided invaluable information about cell engraftment. In vivo imaging (nuclear medicine modalities, bioluminescence, and MRI) has the potential to provide quantitative information noninvasively, enabling longitudinal assessment of cell fate. In the present review, we present several available methods for assessing cell engraftment, and we critically discuss their strengths and limitations. In addition to providing insights about the mechanisms mediating cell loss after transplantation, these methods can evaluate techniques for augmenting engraftment, such as tissue engineering approaches, preconditioning, and genetic modification, allowing optimization of cell therapies.
Collapse
|
66
|
|
67
|
99mTc-tricarbonyl labeled agents for cell labeling: Development, biodistribution in normal mice and preliminary in vitro evaluation. Bioorg Med Chem 2010; 18:396-402. [DOI: 10.1016/j.bmc.2009.10.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/23/2009] [Accepted: 10/24/2009] [Indexed: 11/21/2022]
|
68
|
Abstract
Despite promising preclinical data, the treatment of cardiovascular diseases using embryonic, bone-marrow-derived, and skeletal myoblast stem cells has not yet come to fruition within mainstream clinical practice. Major obstacles in cardiac stem cell investigations include the ability to monitor cell engraftment and survival following implantation within the myocardium. Several cellular imaging modalities, including reporter gene and MRI-based tracking approaches, have emerged that provide the means to identify, localize, and monitor stem cells longitudinally in vivo following implantation. This Review will examine the various cardiac cellular tracking modalities, including the combinatorial use of several probes in multimodality imaging, with a focus on data from the past 5 years.
Collapse
|
69
|
Lyngbaek S, Ripa RS, Haack-Sørensen M, Cortsen A, Kragh L, Andersen CB, Jørgensen E, Kjaer A, Kastrup J, Hesse B. Serial in vivo imaging of the porcine heart after percutaneous, intramyocardially injected 111In-labeled human mesenchymal stromal cells. Int J Cardiovasc Imaging 2009; 26:273-84. [PMID: 19921546 DOI: 10.1007/s10554-009-9532-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/29/2009] [Indexed: 11/25/2022]
Abstract
This pilot trial aimed to investigate the utilization of (111)In-labeling of mesenchymal stromal cells (MSC) for in vivo tracking after intramyocardial transplantation in a xenotransplantation model with gender mismatched cells. Human male MSC were expanded ex vivo and labeled with (111)In-tropolone. Ten female pigs were included. The labeled cells were transplanted intramyocardially using a percutaneous injection system. The (111)In activity was determined using gamma camera imaging. Excised hearts were analyzed by fluorescence in situ hybridization (FISH) and microscopy. Gamma camera imaging revealed focal cardiac (111)In accumulations up to 6 days after injection (N = 4). No MSC could be identified with FISH, and microscopy identified widespread acute inflammation. Focal (111)In accumulation, inflammation but no human MSC were similarly seen in pigs (N = 2) after immunosuppression. A comparable retention of (111)In activity was observed after intramyocardial injection of (111)In-tropolone (without cells) (N = 2), but without sign of myocardial inflammation. Injection of labeled non-viable cells (N = 1) also led to high focal (111)In activity up to 6 days after intramyocardial injection. As a positive control of the FISH method, we identified labeled cells both in culture and immediately after cell injection in one pig. This pilot trial suggests that after intramyocardial injection (111)In stays in the myocardium despite possible disappearance of labeled cells. This questions the clinical use of (111)In-labeled cells for tracking. The results further suggest that xenografting of human MSC into porcine hearts leads to inflammation contradicting previous studies implying a special immunoprivileged status for MSC.
Collapse
Affiliation(s)
- Stig Lyngbaek
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Wilson BC, Vitkin IA, Matthews DL. The potential of biophotonic techniques in stem cell tracking and monitoring of tissue regeneration applied to cardiac stem cell therapy. JOURNAL OF BIOPHOTONICS 2009; 2:669-681. [PMID: 19787683 DOI: 10.1002/jbio.200910079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The use of injected stem cells, leading to regeneration of ischemic heart tissue, for example, following coronary artery occlusion, has emerged as a major new option for managing 'heart attack' patients. While some clinical trials have been encouraging, there have also been failures and there is little understanding of the multiplicity of factors that lead to the outcome. In this overview paper, the opportunities and challenges in applying biophotonic techniques to regenerative medicine, exemplified by the challenge of stem cell therapy of ischemic heart disease, are considered. The focus is on optical imaging to track stem cell distribution and fate, and optical spectroscopies and/or imaging to monitor the structural remodeling of the tissue and the resulting functional changes. The scientific, technological, and logistics issues involved in moving some of these techniques from pre-clinical research mode ultimately into the clinic are also highlighted.
Collapse
Affiliation(s)
- Brian C Wilson
- Division of Biophysics and Bioimaging, University Health Network, 610 University Ave., Toronto, ON M5G 2M9, Canada.
| | | | | |
Collapse
|
71
|
Karamitsos TD, Francis JM, Myerson S, Selvanayagam JB, Neubauer S. The role of cardiovascular magnetic resonance imaging in heart failure. J Am Coll Cardiol 2009; 54:1407-24. [PMID: 19796734 DOI: 10.1016/j.jacc.2009.04.094] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/14/2009] [Accepted: 04/28/2009] [Indexed: 01/08/2023]
Abstract
Noninvasive imaging plays a central role in the diagnosis of heart failure, assessment of prognosis, and monitoring of therapy. Cardiovascular magnetic resonance (CMR) offers a comprehensive assessment of heart failure patients and is now the gold standard imaging technique to assess myocardial anatomy, regional and global function, and viability. Furthermore, it allows assessment of perfusion and acute tissue injury (edema and necrosis), whereas in nonischemic heart failure, fibrosis, infiltration, and iron overload can be detected. The information derived from CMR often reveals the underlying etiology of heart failure, and its high measurement accuracy makes it an ideal technique for monitoring disease progression and the effects of treatment. Evidence on the prognostic value of CMR-derived parameters in heart failure is rapidly emerging. This review summarizes the advantages of CMR for patients with heart failure and its important role in key areas.
Collapse
Affiliation(s)
- Theodoros D Karamitsos
- University of Oxford Centre for Clinical Magnetic Resonance Research, Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
72
|
Higuchi T, Anton M, Saraste A, Dumler K, Pelisek J, Nekolla SG, Bengel FM, Schwaiger M. Reporter gene PET for monitoring survival of transplanted endothelial progenitor cells in the rat heart after pretreatment with VEGF and atorvastatin. J Nucl Med 2009; 50:1881-6. [PMID: 19837770 DOI: 10.2967/jnumed.109.067801] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED It has been suggested that vascular endothelial growth factor (VEGF) and statins enhance the survival, proliferation, and function of endothelial progenitor cells (EPCs). We investigated whether reporter gene PET can be used to detect the effects of atorvastatin and VEGF on survival of EPCs after transplantation in the rat heart. METHODS Healthy nude rats received an intramyocardial injection of 4 million human EPCs retrovirally transduced with the sodium/iodide symporter gene for reporter gene imaging. Reporter gene expression was imaged at days 1 and 3 after injection on a small-animal PET scanner with (124)I, and the presence of EPCs was confirmed by immunohistochemistry with human CD31 antibodies. The control group received EPCs transduced only with the reporter gene, whereas treatment groups received oral atorvastatin (10 mg/kg/d) and EPCs cotransduced with adenoviral vectors encoding VEGF in addition to sodium/iodide symporter. RESULTS Immunohistochemistry showed more EPCs at the site of injection after atorvastatin treatment and in the presence of VEGF expression in EPCs than in controls. PET successfully visualized EPCs as focal (124)I accumulation at the site of injection. The quantitative amount of (124)I accumulation assessed by PET was significantly higher in the pretreatment than control group. Autoradiography confirmed (124)I accumulation in the myocardium that correlated with the number of EPCs. CONCLUSION Early survival of transplanted EPCs in the rat myocardium is prolonged by pretreatment with a combination of atorvastatin and VEGF. Reporter gene PET, by successfully quantifying the effect, is an attractive tool for monitoring stem cell survival in vivo.
Collapse
Affiliation(s)
- Takahiro Higuchi
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
From bone marrow transplants 5 decades ago to the most recent stem cell-derived organ transplants, regenerative medicine is increasingly recognized as an emerging core component of modern practice. In cardiovascular medicine, innovation in stem cell biology has created curative solutions for the treatment of both ischemic and nonischemic cardiomyopathy. Multiple cell-based platforms have been developed, harnessing the regenerative potential of various natural and bioengineered sources. Clinical experience from the first 1000 patients (approximately) who have received stem cell therapy worldwide indicates a favorable safety profile with modest improvement in cardiac function and structural remodeling in the setting of acute myocardial infarction or chronic heart failure. Further investigation is required before early adoption and is ongoing. Broader application in practice will require continuous scientific advances to match each patient with the most effective reparative phenotype, while ensuring optimal cell delivery, dosing, and timing of intervention. An interdisciplinary effort across the scientific and clinical community within academia, biotechnology, and government will drive the successful realization of this next generation of therapeutic agents for the "broken" heart.
Collapse
Affiliation(s)
- Bernard J Gersh
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
74
|
Gianella A, Guerrini U, Tilenni M, Sironi L, Milano G, Nobili E, Vaga S, Capogrossi MC, Tremoli E, Pesce M. Magnetic resonance imaging of human endothelial progenitors reveals opposite effects on vascular and muscle regeneration into ischaemic tissues. Cardiovasc Res 2009; 85:503-13. [DOI: 10.1093/cvr/cvp325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
75
|
Abstract
From bone marrow transplants 5 decades ago to the most recent stem cell-derived organ transplants, regenerative medicine is increasingly recognized as an emerging core component of modern practice. In cardiovascular medicine, innovation in stem cell biology has created curative solutions for the treatment of both ischemic and nonischemic cardiomyopathy. Multiple cell-based platforms have been developed, harnessing the regenerative potential of various natural and bioengineered sources. Clinical experience from the first 1000 patients (approximately) who have received stem cell therapy worldwide indicates a favorable safety profile with modest improvement in cardiac function and structural remodeling in the setting of acute myocardial infarction or chronic heart failure. Further investigation is required before early adoption and is ongoing. Broader application in practice will require continuous scientific advances to match each patient with the most effective reparative phenotype, while ensuring optimal cell delivery, dosing, and timing of intervention. An interdisciplinary effort across the scientific and clinical community within academia, biotechnology, and government will drive the successful realization of this next generation of therapeutic agents for the "broken" heart.
Collapse
Affiliation(s)
- Bernard J Gersh
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
76
|
Adler ED, Bystrup A, Briley-Saebo KC, Mani V, Young W, Giovanonne S, Altman P, Kattman SJ, Frank JA, Weinmann HJ, Keller GM, Fayad ZA. In vivo detection of embryonic stem cell-derived cardiovascular progenitor cells using Cy3-labeled Gadofluorine M in murine myocardium. JACC Cardiovasc Imaging 2009; 2:1114-22. [PMID: 19761992 PMCID: PMC3638738 DOI: 10.1016/j.jcmg.2009.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 03/31/2009] [Accepted: 04/06/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The aim of the current study is to test the ability to label and detect murine embryonic stem cell-derived cardiovascular progenitor cells (ES-CPC) with cardiac magnetic resonance (CMR) using the novel contrast agent Gadofluorine M-Cy3 (GdFM-Cy3). BACKGROUND Cell therapy shows great promise for the treatment of cardiovascular disease. An important limitation to previous clinical studies is the inability to accurately identify transplanted cells. GdFM-Cy3 is a lipophilic paramagnetic contrast agent that contains a perfluorinated side chain and an amphiphilic character that allows for micelle formation in an aqueous solution. Previous studies reported that it is easily taken up and stored within the cytosol of mesenchymal stem cells, thereby allowing for paramagnetic cell labeling. Investigators in our laboratory have recently developed techniques for the robust generation of ES-CPC. We reasoned that GdFM-Cy3 would be a promising agent for the in vivo detection of these cells after cardiac cell transplantation. METHODS ES-CPC were labeled with GdFM-Cy3 by incubation. In vitro studies were performed to assess the impact of GdFM-Cy3 on cell function and survival. A total of 500,000 GdFM-Cy3-labeled ES-CPC or control ES-CPC were injected into the myocardium of mice with and without myocardial infarction. Mice were imaged (9.4-T) before and over a 2-week time interval after stem cell transplantation. Mice were then euthanized, and their hearts were sectioned for fluorescence microscopy. RESULTS In vitro studies demonstrated that GdFM-Cy3 was easily transfectable, nontoxic, stayed within cells after labeling, and could be visualized using CMR and fluorescence microscopy. In vivo studies confirmed the efficacy of the agent for the detection of cells transplanted into the hearts of mice after myocardial infarction. A correspondence between CMR and histology was observed. CONCLUSIONS The results of the current study suggest that it is possible to identify and potentially track GdFM-Cy3-labeled ES-CPC in murine infarct models via CMR.
Collapse
Affiliation(s)
- Eric D Adler
- Cardiovascular Institute and Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Nyolczas N, Charwat S, Posa A, Hemetsberger R, Pavo N, Hemetsberger H, Pavo IJ, Glogar D, Maurer G, Gyöngyösi M. Tracking the migration of cardially delivered therapeutic stem cells in vivo: state of the art. Regen Med 2009; 4:407-22. [PMID: 19438316 DOI: 10.2217/rme.09.14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell-based therapy is a promising, novel therapeutic strategy for cardiovascular disease. The rapid transition of this approach from the benchside to clinical trials has left a gap in the understanding of the mechanisms of cell therapy. Monitoring of cell homing and the fate of cardially delivered stem cells is fundamental for clarification of the myocardial regenerative process. Noninvasive imaging techniques allow an in vivo evaluation of the survival, migration and differentiation of implanted stem cells over time, and by this means, can help to answer unresolved questions. The most promising in vivo tracking methods involve the direct, nonspecific labeling of cells including MRI, radionuclide imaging and the use of reporter-gene imaging. This review summarizes the most important results of animal and human studies in which the fate and biodistribution of cardially delivered stem cells are assessed through different in vivo tracking methods.
Collapse
Affiliation(s)
- N Nyolczas
- Department of Cardiology, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Cardiac positron emission tomography. J Am Coll Cardiol 2009; 54:1-15. [PMID: 19555834 DOI: 10.1016/j.jacc.2009.02.065] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/27/2009] [Accepted: 02/23/2009] [Indexed: 11/23/2022]
Abstract
Positron emission tomography (PET) is a powerful, quantitative imaging modality that has been used for decades to noninvasively investigate cardiovascular biology and physiology. Due to limited availability, methodologic complexity, and high costs, it has long been seen as a research tool and as a reference method for validation of other diagnostic approaches. This perception, fortunately, has changed significantly within recent years. Increasing diversity of therapeutic options for coronary artery disease, and increasing specificity of novel therapies for certain biologic pathways, has resulted in a clinical need for more accurate and specific diagnostic techniques. At the same time, the number of PET centers continues to grow, stimulated by PET's success in oncology. Methodologic advances as well as improved radiotracer availability have further contributed to more widespread use. Evidence for diagnostic and prognostic usefulness of myocardial perfusion and viability assessment by PET is increasing. Some studies suggest overall cost-effectiveness of the technique despite higher costs of a single study, because unnecessary follow-up procedures can be avoided. The advent of hybrid PET-computed tomography (CT), which enables integration of PET-derived biologic information with multislice CT-derived morphologic information, and the key role of PET in the development and translation of novel molecular-targeted imaging compounds, have further contributed to more widespread acceptance. Today, PET promises to play a leading diagnostic role on the pathway toward a future of high-powered, comprehensive, personalized, cardiovascular medicine. This review summarizes the state-of-the-art in current imaging methodology and clinical application, and outlines novel developments and future directions.
Collapse
|
79
|
Blackwood KJ, Lewden B, Wells RG, Sykes J, Stodilka RZ, Wisenberg G, Prato FS. In vivo SPECT quantification of transplanted cell survival after engraftment using (111)In-tropolone in infarcted canine myocardium. J Nucl Med 2009; 50:927-35. [PMID: 19470852 DOI: 10.2967/jnumed.108.058966] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Current investigations of cell transplant therapies in damaged myocardium are limited by the inability to quantify cell transplant survival in vivo. We describe how the labeling of cells with (111)In can be used to monitor transplanted cell viability in a canine infarction model. METHODS We experimentally determined the contribution of the (111)In signal associated with transplanted cell (TC) death and radiolabel leakage to the measured SPECT signal when (111)In-labeled cells were transplanted into the myocardium. Three groups of experiments were performed in dogs. Radiolabel leakage was derived by labeling canine myocardium in situ with free (111)In-tropolone (n = 4). To understand the contribution of extracellular (111)In (e.g., after cell death), we developed a debris impulse response function (DIRF) by injecting lysed (111)In-labeled cells within reperfused (n = 3) and nonreperfused (n = 5) myocardial infarcts and within normal (n = 3) canine myocardium. To assess the application of the modeling derived from these experiments, (111)In-labeled cells were transplanted into infarcted myocardium (n = 4; 3.1 x 10(7) +/- 5.4 x 10(6) cells). Serial SPECT images were acquired after direct epicardial injection to determine the time-dependent radiolabel clearance. Clearance kinetics were used to correct for (111)In associated with viable TCs. RESULTS (111)In clearance followed a biphasic response and was modeled as a biexponential with a short (T(1/2)(s)) and long (T(1/2)(l)) biologic half-life. The T(1/2)(s) was not significantly different between experimental groups, suggesting that initial losses were due to transplantation methodology, whereas the T(1/2)(l) reflected the clearance of retained (111)In. DIRF had an average T(1/2)(l) of 19.4 +/- 4.1 h, and the T(1/2)(l) calculated from free (111)In-tropolone injected in situ was 882.7 +/- 242.8 h. The measured T(1/2)(l) for TCs was 74.3 h and was 71.2 h when corrections were applied. CONCLUSION A new quantitative method to assess TC survival in myocardium using SPECT and (111)In has been introduced. At the limits, method accuracy is improved if appropriate corrections are applied. In vivo (111)In imaging most accurately describes cell viability half-life if T(1/2)(l) is between 20 h and 37 d.
Collapse
|
80
|
|
81
|
Higuchi T, Anton M, Dumler K, Seidl S, Pelisek J, Saraste A, Welling A, Hofmann F, Oostendorp RAJ, Gansbacher B, Nekolla SG, Bengel FM, Botnar RM, Schwaiger M. Combined reporter gene PET and iron oxide MRI for monitoring survival and localization of transplanted cells in the rat heart. J Nucl Med 2009; 50:1088-94. [PMID: 19525455 DOI: 10.2967/jnumed.108.060665] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED There is a need for in vivo monitoring of cell engraftment and survival after cardiac cell transplantation therapy. This study assessed the feasibility and usefulness of combined PET and MRI for monitoring cell engraftment and survival after cell transplantation. METHODS Human endothelial progenitor cells (HEPCs), derived from CD34+ mononuclear cells of umbilical cord blood, were retrovirally transduced with the sodium iodide symporter (NIS) gene for reporter gene imaging by (124)I-PET and labeled with iron oxides for visualization by MRI. Imaging and histologic analysis were performed on 3 groups of nude rats on days 1, 3, and 7 after intramyocardial injection of 4 million HEPCs. RESULTS In vitro studies demonstrated stable expression of functional NIS protein and normal viability of HEPCs after transduction. On day 1, after intramyocardial transplantation, iron- and NIS-labeled HEPCs were visualized successfully on MRI as a regional signal void in the healthy myocardium and on PET as (124)I accumulation. The (124)I uptake decreased on day 3 and was undetectable on day 7, and the MRI signal remained unchanged throughout the follow-up period. Histologic analysis with CD31 and CD68 antibodies confirmed the presence of either labeled or nonlabeled control transplanted HEPCs at the site of injection on day 1 but not on day 7, when only iron-loaded macrophages were seen. Furthermore, deoxyuride-5'-triphosphate biotin nick end labeling showed extensive apoptosis at the site of transplantation. CONCLUSION The combination of MRI and PET allows imaging of localization and survival of transplanted HEPCs together with morphologic information about the heart. Although iron labeling rapidly loses specificity for cell viability because of phagocytosis of iron particles released from dead cells, reporter gene expression provided specific information on the number of surviving cells. This multimodality approach allows complementary analysis of cell localization and viability.
Collapse
Affiliation(s)
- Takahiro Higuchi
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Advances in noninvasive imaging techniques may aid in the understanding of cardiac stem cell therapy. Nuclear imaging enables in vivo evaluation of myocardial perfusion, metabolism, and function, in addition to the stem cell fate. This article summarizes recent clinical and experimental nuclear imaging studies in cardiac stem cell therapy.
Collapse
|
83
|
Zhu H, Song X, Jin LJ, Jin LY, Jin P, Guan R, Liu X, Li XQ. Comparison of intra-coronary cell transplantation after myocardial infarction: Autologous skeletal myoblasts versus bone marrow mesenchymal stem cells. J Int Med Res 2009; 37:298-307. [PMID: 19383222 DOI: 10.1177/147323000903700203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cell transplantation promises restoration of cardiac function after myocardial infarction (MI). Comparison of intracoronary cell transplantation with skeletal myoblasts (SMs) versus bone marrow mesenchymal stem cells (BM-MSCs) was carried out in rabbits with MI induced by ligation of the left anterior descending artery. The infarction-affected artery was injected with SMs, BM-MSCs or cell-free medium (control) 24 h post-infarction (n = 15 per group). At baseline, there were no differences in cardiac parameters between the groups. At 4 weeks post-transplantation, left ventricular ejection fraction significantly improved and left ventricular end-diastolic diameter was significantly decreased in the cell-treated groups compared with pre-transplantation and the control group. Engrafted cells were found in all of the cell-treated rabbits. The cell-treated animals had significantly higher numbers of neovessels compared with the control. No significant difference was seen between the SM and BM-MSC groups. In conclusion, intra-coronary transplantation of SMs and BM-MSCs induced neoangiogenesis with comparable enhancements of cardiac performance and reduced cardiac remodelling in a rabbit MI model.
Collapse
Affiliation(s)
- H Zhu
- Cardiovascular Centre, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Molecular imaging holds the promise of becoming a key diagnostic modality in cardiovascular medicine by allowing visualization of specific targets and pathways that precede or underlie changes in morphology, physiology, and function. As such, molecular imaging aims at detecting precursors or early stages of cardiovascular disease and at monitoring and guiding novel, increasingly specific and versatile cardiovascular therapies. Imaging of myocardial metabolism and autonomic innervation are already used in current practice, and a wide variety of other targets and probes is on the horizon. This focused review provides an overview of the opportunities and challenges that molecular imaging faces to fulfill its promises in clinical cardiovascular medicine.
Collapse
Affiliation(s)
- Frank M Bengel
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Johns Hopkins University, 601 N. Caroline St./JHOC 3225, Baltimore, MD 21287, USA.
| |
Collapse
|
85
|
|
86
|
The role of cardiac ultrasound in stem cell therapy. J Cardiovasc Transl Res 2009; 2:2-8. [PMID: 20559963 DOI: 10.1007/s12265-008-9085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
The role of cardiac ultrasound in evaluating and treating patients with stem cell therapy is reviewed. A number of ultrasound techniques can be used in the evaluation, therapy delivery, and follow-up of patients treated with stem cell therapy. These techniques include evaluation of myocardial systolic and diastolic function, perfusion, ischemia, viability, synchrony, and imaging targeted to specific cell types.
Collapse
|
87
|
Agashi K, Chau DYS, Shakesheff KM. The effect of delivery via narrow-bore needles on mesenchymal cells. Regen Med 2009; 4:49-64. [PMID: 19105616 DOI: 10.2217/17460751.4.1.49] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS Recently, there have been numerous preclinical and human studies investigating the regenerative capacity of cell suspensions following their direct injection into a target organ: the fundamental parameters for successful (clinical) cell therapy. At present, limited data exist in the identification of factors important for the survival of these cells (i.e., morphology, viability and proliferation rates) during and following their ejection via narrow-bore needles. MATERIALS & METHODS Primary murine mesenchymal stem cells (mMSCs) were isolated, expanded and processed into a concentrated cell suspension consisting of either HBSS or HBSS supplemented with the antioxidant n-acetyl-cysteine. This suspension was then ejected from a 10 microl Hamilton syringe, via a variety of bore-sized needles, at different ejection rates. Cell characteristics including viability, spreading and attachment, apoptosis and proliferative ability were then assessed. RESULTS Following manipulation within a syringe, a decrease in the viability and cell spreading of mMSCs and a concurrent increase in the production of the caspase-3 protein, an early regulatory event in apoptosis, occurs. These detrimental effects were found to be increased when the cells were left in the syringe chamber for increased periods of time, and were similar at 5 microl/min and 1 microl/min ejection rates. However, on increasing the needle bore diameter, a significant reduction in these characteristics was observed. By comparison, mMSCs that were left to stand at room temperature (18-20 degrees C), but were not manipulated within a syringe, showed a significantly greater viability compared with manipulated cells. However, cells kept at 4 degrees C demonstrated a decreased viability compared with manipulated cells. When the mMSC were incubated with n-acetyl-cysteine, a known antioxidant, no significant change in caspase-3 production or cell spreading was observed. CONCLUSIONS This study highlights potential parameters, such as minimizing the time period the cells are within the syringe and the use of wider-bore needles, involved in maintaining the high viable cell density required for the delivery of cell suspensions for cell therapy applications.
Collapse
Affiliation(s)
- Kapil Agashi
- Division of Drug Delivery & Tissue Engineering, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, UK
| | | | | |
Collapse
|
88
|
Sadek H, Latif S, Collins R, Garry MG, Garry DJ. Use of ferumoxides for stem cell labeling. Regen Med 2009; 3:807-16. [PMID: 18947305 DOI: 10.2217/17460751.3.6.807] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM Although numerous clinical trials have shown promising results with regards to the cardiac regenerative capacity of different types of stem cells, there remains virtually no evidence of the fate of stem cells in these human studies, primarily owing to safety concerns associated with the use of cell-labeling strategies. METHODS In this study, we utilized two cell types that are used extensively in cardiac regeneration studies, namely bone marrow-derived human mononuclear cells and C2C12 skeletal myoblasts. The US FDA-approved compounds feridex (ferumoxide) and protamine sulfate (as a transfection agent) were used in combination for cellular labeling. We assessed the effect of this cell labeling strategy on cellular viability, proliferation and differentiation both in vitro and in vivo. RESULTS The ferumoxide-protamine sulfate combination had no effect on cellular viability, proliferation or differentiation. We show that the labeled human mononuclear cells were easily identified within the rat myocardium 1 month following injection into the myocardium. These human cells expressed human-specific cardiac troponin I, whereas the neighboring rat myocardium did not. Furthermore, we demonstrated that this labeling strategy can be used with high accuracy for magnetic separation of the labeled cells based on the intracellular ferumoxide particles. CONCLUSIONS The ferumoxide-protamine sulfate combination can be used safely and effectively to enhance the detection and isolation of cardiogenic stem cell populations.
Collapse
Affiliation(s)
- Hesham Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, TX, USA
| | | | | | | | | |
Collapse
|
89
|
Holz A, Lautamäki R, Sasano T, Merrill J, Nekolla SG, Lardo AC, Bengel FM. Expanding the Versatility of Cardiac PET/CT: Feasibility of Delayed Contrast Enhancement CT for Infarct Detection in a Porcine Model. J Nucl Med 2009; 50:259-65. [DOI: 10.2967/jnumed.108.056218] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
90
|
Kim YJ, Huh YM, Choe KO, Choi BW, Choi EJ, Jang Y, Lee JM, Suh JS. In vivo magnetic resonance imaging of injected mesenchymal stem cells in rat myocardial infarction; simultaneous cell tracking and left ventricular function measurement. Int J Cardiovasc Imaging 2009; 25 Suppl 1:99-109. [PMID: 19132547 DOI: 10.1007/s10554-008-9407-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 02/06/2023]
Abstract
To determine whether magnetic resonance imaging (MRI) can enable magnetically labeled mesenchymal stem cell (MSC) tracking and simultaneous in vivo functional data acquisition in rat models of myocardial infarction. Superparamagnetic iron oxide-laden human MSCs were injected into rat myocardium infarcted by cryoinjury 3 weeks after myocardial infarction. The control group received cell-free media injection. Before injection and for 3 months after, in vivo serial MRI was performed. Electrocardiography-gated gradient echo sequence MRI and cine MRI were performed for in vivo cell tracking and assessing cardiac function using left ventricular ejection fraction (LVEF), respectively. MRI revealed a persistent signal-void representing iron-laden MSCs until ten post-injection weeks. Serial follow-up MRI revealed that LVEF was significantly higher in the MSC injection group than in the control group. We conclude that MRI enables in vivo tracking of injected cells and evaluation of the long-term therapeutic potential of MSCs for myocardial infarction.
Collapse
Affiliation(s)
- Young Jin Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, 120-752 Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Schächinger V, Aicher A, Döbert N, Röver R, Diener J, Fichtlscherer S, Assmus B, Seeger FH, Menzel C, Brenner W, Dimmeler S, Zeiher AM. Pilot Trial on Determinants of Progenitor Cell Recruitment to the Infarcted Human Myocardium. Circulation 2008; 118:1425-32. [DOI: 10.1161/circulationaha.108.777102] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background—
Clinical trials indicate a beneficial effect of intracoronary infusion of progenitor cells on myocardial function in patients with ischemic heart disease. The extent and potential determinants of proangiogenic progenitor cell homing into the damaged myocardium after intracoronary infusion and the underlying mechanisms are still unknown.
Method and Results—
Circulating proangiogenic progenitor cells isolated from peripheral blood and cultivated for 3 days were labeled with radioactive indium oxine (
111
In-oxine). Radiolabeled proangiogenic progenitor cells (7.6±3.0 MBq, mean±SD) were administered to patients with previous myocardial infarction and a revascularized infarct vessel at various stages after infarction (5 days to 17 years). Viability of the infarcted myocardium was determined by
18
F-fluorodeoxyglucose–positron emission tomography and microcirculatory function by intracoronary Doppler measurements. One hour after application of progenitor cells, a mean of 6.9±4.7% (range, 1% to 19%; n=17) of total radioactivity was detected in the heart, which declined to 2±1% after 3 to 4 days. Average activity within the first 24 hours was highest among patients with acute myocardial infarction (≤14 days; 6.3±2.9%; n=8) and progressively decreased in patients treated in an intermediate phase (>14 days to 1 year; 4.5±3.2%; n=4) or a chronic stage (infarct age >1 year; 2.5±1.6%; n=5). Low viability of the infarcted myocardium and reduced coronary flow reserve were significant (
P
<0.05) predictors of proangiogenic progenitor cell homing.
Conclusions—
In patients after myocardial infarction undergoing intracoronary infusion of
111
In-oxine–labeled proangiogenic progenitor cells, a substantial amount of radioactivity is detected for several days in the heart, indicating homing of progenitor cells to the myocardium. The amount of proangiogenic progenitor cells retained in the heart decreased progressively with time after the acute myocardial infarction. Proangiogenic progenitor cells preferentially home to extensive acute myocardial infarcts characterized by low viability and reduced coronary flow reserve.
Collapse
Affiliation(s)
- Volker Schächinger
- From the Department of Medicine III, Division of Cardiology (V.S., A.A., R.R., S.F., B.A., F.H.S., S.D., A.M.Z.), and Department of Nuclear Medicine (N.D., J.D., C.M.), J.W. Goethe University Frankfurt, Frankfurt am Main, and Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (W.B.), Germany
| | - Alexandra Aicher
- From the Department of Medicine III, Division of Cardiology (V.S., A.A., R.R., S.F., B.A., F.H.S., S.D., A.M.Z.), and Department of Nuclear Medicine (N.D., J.D., C.M.), J.W. Goethe University Frankfurt, Frankfurt am Main, and Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (W.B.), Germany
| | - Natascha Döbert
- From the Department of Medicine III, Division of Cardiology (V.S., A.A., R.R., S.F., B.A., F.H.S., S.D., A.M.Z.), and Department of Nuclear Medicine (N.D., J.D., C.M.), J.W. Goethe University Frankfurt, Frankfurt am Main, and Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (W.B.), Germany
| | - Rainer Röver
- From the Department of Medicine III, Division of Cardiology (V.S., A.A., R.R., S.F., B.A., F.H.S., S.D., A.M.Z.), and Department of Nuclear Medicine (N.D., J.D., C.M.), J.W. Goethe University Frankfurt, Frankfurt am Main, and Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (W.B.), Germany
| | - Jürgen Diener
- From the Department of Medicine III, Division of Cardiology (V.S., A.A., R.R., S.F., B.A., F.H.S., S.D., A.M.Z.), and Department of Nuclear Medicine (N.D., J.D., C.M.), J.W. Goethe University Frankfurt, Frankfurt am Main, and Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (W.B.), Germany
| | - Stephan Fichtlscherer
- From the Department of Medicine III, Division of Cardiology (V.S., A.A., R.R., S.F., B.A., F.H.S., S.D., A.M.Z.), and Department of Nuclear Medicine (N.D., J.D., C.M.), J.W. Goethe University Frankfurt, Frankfurt am Main, and Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (W.B.), Germany
| | - Birgit Assmus
- From the Department of Medicine III, Division of Cardiology (V.S., A.A., R.R., S.F., B.A., F.H.S., S.D., A.M.Z.), and Department of Nuclear Medicine (N.D., J.D., C.M.), J.W. Goethe University Frankfurt, Frankfurt am Main, and Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (W.B.), Germany
| | - Florian H. Seeger
- From the Department of Medicine III, Division of Cardiology (V.S., A.A., R.R., S.F., B.A., F.H.S., S.D., A.M.Z.), and Department of Nuclear Medicine (N.D., J.D., C.M.), J.W. Goethe University Frankfurt, Frankfurt am Main, and Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (W.B.), Germany
| | - Christian Menzel
- From the Department of Medicine III, Division of Cardiology (V.S., A.A., R.R., S.F., B.A., F.H.S., S.D., A.M.Z.), and Department of Nuclear Medicine (N.D., J.D., C.M.), J.W. Goethe University Frankfurt, Frankfurt am Main, and Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (W.B.), Germany
| | - Winfried Brenner
- From the Department of Medicine III, Division of Cardiology (V.S., A.A., R.R., S.F., B.A., F.H.S., S.D., A.M.Z.), and Department of Nuclear Medicine (N.D., J.D., C.M.), J.W. Goethe University Frankfurt, Frankfurt am Main, and Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (W.B.), Germany
| | - Stefanie Dimmeler
- From the Department of Medicine III, Division of Cardiology (V.S., A.A., R.R., S.F., B.A., F.H.S., S.D., A.M.Z.), and Department of Nuclear Medicine (N.D., J.D., C.M.), J.W. Goethe University Frankfurt, Frankfurt am Main, and Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (W.B.), Germany
| | - Andreas M. Zeiher
- From the Department of Medicine III, Division of Cardiology (V.S., A.A., R.R., S.F., B.A., F.H.S., S.D., A.M.Z.), and Department of Nuclear Medicine (N.D., J.D., C.M.), J.W. Goethe University Frankfurt, Frankfurt am Main, and Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (W.B.), Germany
| |
Collapse
|
92
|
Marwick TH, Schwaiger M. The Future of Cardiovascular Imaging in the Diagnosis and Management of Heart Failure, Part 2. Circ Cardiovasc Imaging 2008; 1:162-70. [DOI: 10.1161/circimaging.108.811109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Thomas H. Marwick
- From the School of Medicine, University of Queensland, Brisbane, Australia (T.H.M.); and Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der lsar, Technische Universität of Munich, Munich, Germany (M.S.)
| | - Markus Schwaiger
- From the School of Medicine, University of Queensland, Brisbane, Australia (T.H.M.); and Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der lsar, Technische Universität of Munich, Munich, Germany (M.S.)
| |
Collapse
|
93
|
Akins EJ, Dubey P. Noninvasive imaging of cell-mediated therapy for treatment of cancer. J Nucl Med 2008; 49 Suppl 2:180S-95S. [PMID: 18523073 DOI: 10.2967/jnumed.107.045971] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell-mediated therapy (immunotherapy) for the treatment of cancer is an active area of investigation in animal models and clinical trials. Despite many advances, objective responses to immunotherapy are observed in a small number of cases, for certain tumor types. To better understand differences in outcomes, it is critical to develop assays for tracking effector cell localization and function in situ. The fairly recent use of molecular imaging techniques to track cell populations has presented researchers and clinicians with a powerful diagnostic tool for determining the efficacy of cell-mediated therapy for the treatment of cancer. This review highlights the application of whole-body noninvasive radioisotopic, magnetic, and optical imaging methods for monitoring effector cells in vivo. Issues that affect sensitivity of detection, such as methods of cell marking, efficiency of cell labeling, toxicity, and limits of detection of imaging modalities, are discussed.
Collapse
Affiliation(s)
- Elizabeth J Akins
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
94
|
Singh P, Williams DJ. Cell therapies: realizing the potential of this new dimension to medical therapeutics. J Tissue Eng Regen Med 2008; 2:307-19. [DOI: 10.1002/term.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
95
|
Carr CA, Stuckey DJ, Tatton L, Tyler DJ, Hale SJM, Sweeney D, Schneider JE, Martin-Rendon E, Radda GK, Harding SE, Watt SM, Clarke K. Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: an in vivo cine-MRI study. Am J Physiol Heart Circ Physiol 2008; 295:H533-42. [PMID: 18539761 PMCID: PMC2519197 DOI: 10.1152/ajpheart.00094.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/03/2008] [Indexed: 01/10/2023]
Abstract
Basic and clinical studies have shown that bone marrow cell therapy can improve cardiac function following infarction. In experimental animals, reported stem cell-mediated changes range from no measurable improvement to the complete restoration of function. In the clinic, however, the average improvement in left ventricular ejection fraction is around 2% to 3%. A possible explanation for the discrepancy between basic and clinical results is that few basic studies have used the magnetic resonance (MR) imaging (MRI) methods that were used in clinical trials for measuring cardiac function. Consequently, we employed cine-MR to determine the effect of bone marrow stromal cells (BMSCs) on cardiac function in rats. Cultured rat BMSCs were characterized using flow cytometry and labeled with iron oxide particles and a fluorescent marker to allow in vivo cell tracking and ex vivo cell identification, respectively. Neither label affected in vitro cell proliferation or differentiation. Rat hearts were infarcted, and BMSCs or control media were injected into the infarct periphery (n = 34) or infused systemically (n = 30). MRI was used to measure cardiac morphology and function and to determine cell distribution for 10 wk after infarction and cell therapy. In vivo MRI, histology, and cell reisolation confirmed successful BMSC delivery and retention within the myocardium throughout the experiment. However, no significant improvement in any measure of cardiac function was observed at any time. We conclude that cultured BMSCs are not the optimal cell population to treat the infarcted heart.
Collapse
Affiliation(s)
- Carolyn A Carr
- Cardiac Metabolism Research Group, Dept. of Physiology, Anatomy and Genetics, Sherrington Bldg., Univ. of Oxford, Parks Road Oxford, United Kingdom OX1 3PT.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
|
97
|
Marwick TH, Schwaiger M. The Future of Cardiovascular Imaging in the Diagnosis and Management of Heart Failure, Part 1. Circ Cardiovasc Imaging 2008; 1:58-69. [DOI: 10.1161/circimaging.108.792408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas H. Marwick
- From the University of Queensland (T.H.M.), Brisbane, Australia, and Technische Universität of Munich (M.S.), Munich, Germany
| | - Markus Schwaiger
- From the University of Queensland (T.H.M.), Brisbane, Australia, and Technische Universität of Munich (M.S.), Munich, Germany
| |
Collapse
|
98
|
Bonios MJ, Terrovitis JV, Abraham MR. Stem cell: "KANT" you see it? J Cardiovasc Transl Res 2008; 1:103-5. [PMID: 20559903 DOI: 10.1007/s12265-008-9023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Affiliation(s)
- Michael J Bonios
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
99
|
Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol 2008; 17:349-74. [PMID: 18402842 DOI: 10.1016/j.carpath.2008.02.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/30/2007] [Accepted: 02/04/2008] [Indexed: 02/07/2023] Open
Abstract
During post-natal maturation of the mammalian heart, proliferation of cardiomyocytes essentially ceases as cardiomyocytes withdraw from the cell cycle and develop blocks at the G0/G1 and G2/M transition phases of the cell cycle. As a result, the response of the myocardium to acute stress is limited to various forms of cardiomyocyte injury, which can be modified by preconditioning and reperfusion, whereas the response to chronic stress is dominated by cardiomyocyte hypertrophy and myocardial remodeling. Acute myocardial ischemia leads to injury and death of cardiomyocytes and nonmyocytic stromal cells by oncosis and apoptosis, and possibly by a hybrid form of cell death involving both pathways in the same ischemic cardiomyocytes. There is increasing evidence for a slow, ongoing turnover of cardiomyocytes in the normal heart involving death of cardiomyocytes and generation of new cardiomyocytes. This process appears to be accelerated and quantitatively increased as part of myocardial remodeling. Cardiomyocyte loss involves apoptosis, autophagy, and oncosis, which can occur simultaneously and involve different individual cardiomyocytes in the same heart undergoing remodeling. Mitotic figures in myocytic cells probably represent maturing progeny of stem cells in most cases. Mitosis of mature cardiomyocytes that have reentered the cell cycle appears to be a rare event. Thus, cardiomyocyte renewal likely is mediated primarily by endogenous cardiac stem cells and possibly by blood-born stem cells, but this biological phenomenon is limited in capacity. As a consequence, persistent stress leads to ongoing remodeling in which cardiomyocyte death exceeds cardiomyocyte renewal, resulting in progressive heart failure. Intense investigation currently is focused on cell-based therapies aimed at retarding cardiomyocyte death and promoting myocardial repair and possibly regeneration. Alteration of pathological remodeling holds promise for prevention and treatment of heart failure, which is currently a major cause of morbidity and mortality and a major public health problem. However, a deeper understanding of the fundamental biological processes is needed in order to make lasting advances in clinical therapeutics in the field.
Collapse
|
100
|
Abstract
Atherosclerosis is characterized by thickening of the walls of the arteries, a process that occurs slowly and 'silently' over decades. This prolonged course of disease provides a window of opportunity for diagnosis before symptoms occur. But, until recently, only advanced atherosclerotic disease could be observed. Now, developments in imaging technology offer many enticing prospects, including detecting atherosclerosis early, grouping individuals by the probability that they will develop symptoms of atherosclerosis, assessing the results of treatment and improving the current understanding of the biology of atherosclerosis.
Collapse
|