51
|
Abstract
The symptoms of Alzheimer disease reflect a loss of neural circuit integrity in the brain, but neurons do not work in isolation. Emerging evidence suggests that the intricate balance of interactions between neurons, astrocytes, microglia and vascular cells required for healthy brain function becomes perturbed during the disease, with early changes likely protecting neural circuits from damage, followed later by harmful effects when the balance cannot be restored. Moving beyond a neuronal focus to understand the complex cellular interactions in Alzheimer disease and how these change throughout the course of the disease may provide important insight into developing effective therapeutics.
Collapse
|
52
|
Ferrer MD, Busquets-Cortés C, Capó X, Tejada S, Tur JA, Pons A, Sureda A. Cyclooxygenase-2 Inhibitors as a Therapeutic Target in Inflammatory Diseases. Curr Med Chem 2019; 26:3225-3241. [PMID: 29756563 DOI: 10.2174/0929867325666180514112124] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 02/07/2023]
Abstract
Inflammation plays a crucial role in the development of many complex diseases and disorders including autoimmune diseases, metabolic syndrome, neurodegenerative diseases, and cardiovascular pathologies. Prostaglandins play a regulatory role in inflammation. Cyclooxygenases are the main mediators of inflammation by catalyzing the initial step of arachidonic acid metabolism and prostaglandin synthesis. The differential expression of the constitutive isoform COX-1 and the inducible isoform COX-2, and the finding that COX-1 is the major form expressed in the gastrointestinal tract, lead to the search for COX-2-selective inhibitors as anti-inflammatory agents that might diminish the gastrointestinal side effects of traditional non-steroidal anti-inflammatory drugs (NSAIDs). COX-2 isoform is expressed predominantly in inflammatory cells and decidedly upregulated in chronic and acute inflammations, becoming a critical target for many pharmacological inhibitors. COX-2 selective inhibitors happen to show equivalent efficacy with that of conventional NSAIDs, but they have reduced gastrointestinal side effects. This review would elucidate the most recent findings on selective COX-2 inhibition and their relevance to human pathology, concretely in inflammatory pathologies characterized by a prolonged pro-inflammatory status, including autoimmune diseases, metabolic syndrome, obesity, atherosclerosis, neurodegenerative diseases, chronic obstructive pulmonary disease, arthritis, chronic inflammatory bowel disease and cardiovascular pathologies.
Collapse
Affiliation(s)
- Miguel D Ferrer
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| | - Carla Busquets-Cortés
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain
| | - Xavier Capó
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Josep A Tur
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Pons
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Sureda
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
53
|
Golde TE. Harnessing Immunoproteostasis to Treat Neurodegenerative Disorders. Neuron 2019; 101:1003-1015. [PMID: 30897353 DOI: 10.1016/j.neuron.2019.02.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Immunoproteostasis is a term used to reflect interactions between the immune system and the proteinopathies that are presumptive "triggers" of many neurodegenerative disorders. The study of immunoproteostasis is bolstered by several observations. Mutations or rare variants in genes expressed in microglial cells, known to regulate immune functions, or both can cause, or alter risk for, various neurodegenerative disorders. Additionally, genetic association studies identify numerous loci harboring genes that encode proteins of known immune function that alter risk of developing Alzheimer's disease (AD) and other neurodegenerative proteinopathies. Further, preclinical studies reveal beneficial effects and liabilities of manipulating immune pathways in various neurodegenerative disease models. Although there are concerns that manipulation of the immune system may cause more harm than good, there is considerable interest in developing immune modulatory therapies for neurodegenerative disorders. Herein, I highlight the promise and challenges of harnessing immunoproteostasis to treat neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Todd E Golde
- McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience and Neurology, University of Florida, Gainesville, FL 32607, USA.
| |
Collapse
|
54
|
Prokop S, Lee VMY, Trojanowski JQ. Neuroimmune interactions in Alzheimer's disease-New frontier with old challenges? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:183-201. [PMID: 31699314 PMCID: PMC6939624 DOI: 10.1016/bs.pmbts.2019.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The perceived role of the immune system in neurodegenerative diseases has undergone drastic changes over time. Initially considered as a passive bystander, then condemned as a mediator of neurodegeneration and now established as an important player in the pathogenetic cascade, neuroimmune interactions have come a long way to arrive center stage in Alzheimer's disease research. Despite major breakthroughs in recent years, basic questions remain unanswered as conflicting data describe immune overactivation, inadequate response or exhaustion of the immune system in neurodegenerative diseases. Furthermore, difficulties in translating in vitro and in vivo studies in model systems to the complex human disease condition with multiple overlapping pathologies and the long disease duration in patients suffering from neurodegenerative diseases have hampered progress. Development of novel, advanced model systems, as well as new technologies to interrogate existing disease models and valuable collections of human tissue samples, including brain tissue in parallel with improved imaging and biomarker technologies are guiding the way to better understand the role of the immune system in Alzheimer's disease with hopes for more effective interventions in the future.
Collapse
Affiliation(s)
- Stefan Prokop
- Department of Pathology, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States; Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States; McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, AD Center Core (ADCC), Center for Neurodegenerative Disease Research, University of Pennsylvania (PENN), School of Medicine, Philadelphia, PA, United States
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, AD Center Core (ADCC), Center for Neurodegenerative Disease Research, University of Pennsylvania (PENN), School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
55
|
Ramírez-Serrano CE, Jiménez-Ferrer E, Herrera-Ruiz M, Zamilpa A, Vargas-Villa G, Ramírez-Carreto RJ, Chavarría A, Tortoriello J, Pedraza-Alva G, Pérez-Martínez L. A Malva parviflora´s fraction prevents the deleterious effects resulting from neuroinflammation. Biomed Pharmacother 2019; 118:109349. [DOI: 10.1016/j.biopha.2019.109349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/18/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023] Open
|
56
|
O'Bryant SE, Zhang F, Johnson LA, Hall J, Edwards M, Grammas P, Oh E, Lyketsos CG, Rissman RA. A Precision Medicine Model for Targeted NSAID Therapy in Alzheimer's Disease. J Alzheimers Dis 2019; 66:97-104. [PMID: 30198872 DOI: 10.3233/jad-180619] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND To date, the therapeutic paradigm for Alzheimer's disease (AD) has focused on a single intervention for all patients. However, a large literature in oncology supports the therapeutic benefits of a precision medicine approach to therapy. Here we test a precision-medicine approach to AD therapy. OBJECTIVE To determine if a baseline, blood-based proteomic companion diagnostic predicts response to NSAID therapy. METHODS Proteomic assays of plasma from a multicenter, randomized, double-blind, placebo-controlled, parallel group trial, with 1-year exposure to rofecoxib (25 mg once daily), naproxen (220 mg twice-daily) or placebo. RESULTS 474 participants with mild-to-moderate AD were screened with 351 enrolled into the trial. Using support vector machine (SVM) analyses, 89% of the subjects randomized to either NSAID treatment arms were correctly classified using a general NSAID companion diagnostic. Drug-specific companion diagnostics yielded 98% theragnostic accuracy in the rofecoxib arm and 97% accuracy in the naproxen arm. CONCLUSION Inflammatory-based companion diagnostics have significant potential to identify select patients with AD who have a high likelihood of responding to NSAID therapy. This work provides empirical support for a precision medicine model approach to treating AD.
Collapse
Affiliation(s)
- Sid E O'Bryant
- Department of Pharmacology & Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Fan Zhang
- Vermont Genetics Network, University of Vermont, VT, USA
| | - Leigh A Johnson
- Department of Pharmacology & Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - James Hall
- Department of Pharmacology & Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, RI, USA
| | - Esther Oh
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | | | - Robert A Rissman
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
57
|
Teter B, Morihara T, Lim GP, Chu T, Jones MR, Zuo X, Paul RM, Frautschy SA, Cole GM. Curcumin restores innate immune Alzheimer's disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol Dis 2019; 127:432-448. [PMID: 30951849 PMCID: PMC8092921 DOI: 10.1016/j.nbd.2019.02.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) genetics implies a causal role for innate immune genes, TREM2 and CD33, products that oppose each other in the downstream Syk tyrosine kinase pathway, activating microglial phagocytosis of amyloid (Aβ). We report effects of low (Curc-lo) and high (Curc-hi) doses of curcumin on neuroinflammation in APPsw transgenic mice. Results showed that Curc-lo decreased CD33 and increased TREM2 expression (predicted to decrease AD risk) and also increased TyroBP, which controls a neuroinflammatory gene network implicated in AD as well as phagocytosis markers CD68 and Arg1. Curc-lo coordinately restored tightly correlated relationships between these genes' expression levels, and decreased expression of genes characteristic of toxic pro-inflammatory M1 microglia (CD11b, iNOS, COX-2, IL1β). In contrast, very high dose curcumin did not show these effects, failed to clear amyloid plaques, and dysregulated gene expression relationships. Curc-lo stimulated microglial migration to and phagocytosis of amyloid plaques both in vivo and in ex vivo assays of sections of human AD brain and of mouse brain. Curcumin also reduced levels of miR-155, a micro-RNA reported to drive a neurodegenerative microglial phenotype. In conditions without amyloid (human microglial cells in vitro, aged wild-type mice), Curc-lo similarly decreased CD33 and increased TREM2. Like curcumin, anti-Aβ antibody (also reported to engage the Syk pathway, increase CD68, and decrease amyloid burden in human and mouse brain) increased TREM2 in APPsw mice and decreased amyloid in human AD sections ex vivo. We conclude that curcumin is an immunomodulatory treatment capable of emulating anti-Aβ vaccine in stimulating phagocytic clearance of amyloid by reducing CD33 and increasing TREM2 and TyroBP, while restoring neuroinflammatory networks implicated in neurodegenerative diseases.
Collapse
Affiliation(s)
- B Teter
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America; Alzheimer's Translational Center, Veterans Administration (Research 151), Bldg. 114, Rm. 114-1, 11301 Wilshire Blvd, Los Angeles, CA 90073, United States of America.
| | - T Morihara
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America.
| | - G P Lim
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America
| | - T Chu
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America
| | - M R Jones
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America
| | - X Zuo
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America
| | - R M Paul
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Medicine, University of California, Los Angeles (UCLA), United States of America
| | - S A Frautschy
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Medicine, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America.
| | - G M Cole
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Medicine, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America.
| |
Collapse
|
58
|
Eden BD, Rice AJ, Lovett TD, Toner OM, Geissler EP, Bowman WE, Young SC. Microwave-assisted synthesis and in vitro stability of N-benzylamide non-steroidal anti-inflammatory drug conjugates for CNS delivery. Bioorg Med Chem Lett 2019; 29:1487-1491. [PMID: 30987893 DOI: 10.1016/j.bmcl.2019.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
Abstract
More effective delivery of non-steroidal anti-inflammatory drugs (NSAIDs) to the brain could treat the underlying inflammatory pathology of a range of CNS diseases and conditions. Use of a blood-brain barrier shuttle such as the N-benzylamide moiety, which has been largely unexplored for this purpose, could improve the brain bioavailabilities of NSAIDs. A series of novel N-benzylamide NSAID conjugates was synthesized via a three-step process with a microwave-assisted bimolecular nucleophilic substitution as the final step. We explored conditions to promote substitution over a competing elimination reaction, which was successfully suppressed with isopropyl alcohol solvent. All molecules exhibit physicochemical properties consistent with those of brain-penetrant molecules. Furthermore, they exhibit long (>48 h) half-lives in phosphate-buffered saline (PBS; pH 7.4) and short to moderate half-lives in human plasma. N-Benzylamide NSAID conjugates represent promising CNS drug discovery leads.
Collapse
Affiliation(s)
- Brandon D Eden
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Andrew J Rice
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Troy D Lovett
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Olivia M Toner
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Evan P Geissler
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - William E Bowman
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States
| | - Sherri C Young
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, United States.
| |
Collapse
|
59
|
Clarke JR, Ribeiro FC, Frozza RL, De Felice FG, Lourenco MV. Metabolic Dysfunction in Alzheimer's Disease: From Basic Neurobiology to Clinical Approaches. J Alzheimers Dis 2019; 64:S405-S426. [PMID: 29562518 DOI: 10.3233/jad-179911] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical trials have extensively failed to find effective treatments for Alzheimer's disease (AD) so far. Even after decades of AD research, there are still limited options for treating dementia. Mounting evidence has indicated that AD patients develop central and peripheral metabolic dysfunction, and the underpinnings of such events have recently begun to emerge. Basic and preclinical studies have unveiled key pathophysiological mechanisms that include aberrant brain stress signaling, inflammation, and impaired insulin sensitivity. These findings are in accordance with clinical and neuropathological data suggesting that AD patients undergo central and peripheral metabolic deregulation. Here, we review recent basic and clinical findings indicating that metabolic defects are central to AD pathophysiology. We further propose a view for future therapeutics that incorporates metabolic defects as a core feature of AD pathogenesis. This approach could improve disease understanding and therapy development through drug repurposing and/or identification of novel metabolic targets.
Collapse
Affiliation(s)
- Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rudimar L Frozza
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
60
|
Ali MM, Ghouri RG, Ans AH, Akbar A, Toheed A. Recommendations for Anti-inflammatory Treatments in Alzheimer's Disease: A Comprehensive Review of the Literature. Cureus 2019; 11:e4620. [PMID: 31312547 PMCID: PMC6615583 DOI: 10.7759/cureus.4620] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in elderly patients, affecting individuals older than 60 years. It is a complex degenerative brain disease characterized by progressive cognitive impairment. AD constitutes a major global health concern. A central role for inflammation has been implicated in the pathogenesis of AD. Despite the understanding of multiple molecular pathways in the pathophysiology of AD, novel treatment agents with a possible role in modifying the disease activity are still lacking. Our article provides a comprehensive review of various observational studies and randomized trials encompassing the use of anti-inflammatory agents in the management of AD patients and utilizes the conclusions derived therefrom to give recommendations in this regard.
Collapse
Affiliation(s)
- Muhammad Mohsin Ali
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| | - Raza G Ghouri
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| | - Armghan H Ans
- Cardiology, University of Pennsylvania, Philadelphia, USA
| | - Arshia Akbar
- Internal Medicine, Rawalpindi Medical College, Rawalpindi, PAK
| | - Ahmed Toheed
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| |
Collapse
|
61
|
Meyer PF, Tremblay-Mercier J, Leoutsakos J, Madjar C, Lafaille-Magnan ME, Savard M, Rosa-Neto P, Poirier J, Etienne P, Breitner J. INTREPAD: A randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease. Neurology 2019; 92:e2070-e2080. [PMID: 30952794 PMCID: PMC6512884 DOI: 10.1212/wnl.0000000000007232] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/07/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the safety and efficacy of low-dose naproxen for prevention of progression in presymptomatic Alzheimer disease (AD) among cognitively intact persons at risk. METHODS Investigation of Naproxen Treatment Effects in Pre-symptomatic Alzheimer's Disease (INTREPAD), a 2-year double-masked pharmaco-prevention trial, enrolled 195 AD family history-positive elderly (mean age 63 years) participants screened carefully to exclude cognitive disorder (NCT-02702817). These were randomized 1:1 to naproxen sodium 220 mg twice daily or placebo. Multimodal imaging, neurosensory, cognitive, and (in ∼50%) CSF biomarker evaluations were performed at baseline, 3, 12, and 24 months. A modified intent-to-treat analysis considered 160 participants who remained on-treatment through their first follow-up examination. The primary outcome was rate of change in a multimodal composite presymptomatic Alzheimer Progression Score (APS). RESULTS Naproxen-treated individuals showed a clear excess of adverse events. Among treatment groups combined, the APS increased by 0.102 points/year (SE 0.014; p < 10-12), but rate of change showed little difference by treatment assignment (0.019 points/year). The treatment-related rate ratio of 1.16 (95% confidence interval 0.64-1.96) suggested that naproxen does not reduce the rate of APS progression by more than 36%. Secondary analyses revealed no notable treatment effects on individual CSF, cognitive, or neurosensory biomarker indicators of progressive presymptomatic AD. CONCLUSIONS In cognitively intact individuals at risk, sustained treatment with naproxen sodium 220 mg twice daily increases frequency of adverse health effects but does not reduce apparent progression of presymptomatic AD. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that, for people who are cognitively intact, low-dose naproxen does not significantly reduce progression of a composite indicator of presymptomatic AD.
Collapse
Affiliation(s)
- Pierre-François Meyer
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Jennifer Tremblay-Mercier
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Jeannie Leoutsakos
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Cécile Madjar
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Marie-Elyse Lafaille-Magnan
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Melissa Savard
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Pedro Rosa-Neto
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Judes Poirier
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - Pierre Etienne
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD
| | - John Breitner
- From the McGill Centre for Integrative Neuroscience, Montreal Neurological Institute (C.M.), and McGill University Research Centre for Studies in Aging (M.S., P.R.-N.), McGill University (P.-F.M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.); StoP-AD Centre (P.-F.M., J.T.-M., M.-E.L.-M., P.R.-N., J.P., P.E., J.B.), Douglas Mental Health University Institute Research Centre, Montréal, Canada; and John Hopkins University (J.L.), Baltimore, MD.
| |
Collapse
|
62
|
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer's disease. Inflammopharmacology 2019; 27:663-677. [PMID: 30874945 DOI: 10.1007/s10787-019-00580-x] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is of high importance to the neuroscience world, yet the complex pathogenicity is not fully understood. Inflammation is usually observed in AD and could implicate both beneficial or detrimental effects depending on the severity of the disease. During initial AD pathology, microglia and astrocyte activation is beneficial since they are involved in amyloid-beta clearance. However, with the progression of the disease, activated microglia elicit detrimental effects by the overexpression of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) bringing forth neurodegeneration in the surrounding brain regions. This results in decline in Aβ clearance by microglia; Aβ accumulation thus increases in the brain resulting in neuroinflammation. Thus, Aβ accumulation is the effect of increased release of pro-inflammatory molecules. Reactive astrocytes acquire gain of toxic function and exhibits neurotoxic effects with loss of neurotrophic functions. Astrocyte dysfunctioning results in increased release of cytokines and inflammatory mediators, neurodegeneration, decreased glutamate uptake, loss of neuronal synapses, and ultimately cognitive deficits in AD. We discuss the role of intracellular signaling pathways in the inflammatory responses produced by astrocytes and microglial activation, including the glycogen synthase kinase-3β, nuclear factor kappa B cascade, mitogen-activated protein kinase pathways and c-Jun N-terminal kinase. In this review, we describe the role of neuroinflammation in the chronicity of AD pathogenesis and an overview of the recent research towards the development of new therapies to treat this disorder.
Collapse
Affiliation(s)
- Darshpreet Kaur
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Vivek Sharma
- Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India.
| |
Collapse
|
63
|
Cuello AC, Hall H, Do Carmo S. Experimental Pharmacology in Transgenic Rodent Models of Alzheimer's Disease. Front Pharmacol 2019; 10:189. [PMID: 30886583 PMCID: PMC6409318 DOI: 10.3389/fphar.2019.00189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
This Mini Review discusses the merits and shortfalls of transgenic (tg) rodents modeling aspects of the human Alzheimer’s disease (AD) pathology and their application to evaluate experimental therapeutics. It addresses some of the differences between mouse and rat tg models for these investigations. It relates, in a condensed fashion, the experience of our research laboratory with the application of anti-inflammatory compounds and S-adenosylmethionine (SAM) at the earliest stages of AD-like amyloid pathology in tg mice. The application of SAM was intended to revert the global brain DNA hypomethylation unleashed by the intraneuronal accumulation of amyloid-β-immunoreactive material, an intervention that restored levels of DNA methylation including of the bace1 gene. This review also summarizes experimental pharmacology observations made in the McGill tg rat model of AD-like pathology by applying “nano-lithium” or a drug with allosteric M1 muscarinic and sigma 1 receptor agonistic properties (AF710B). Extremely low doses of lithium (up to 400 times lower than used in the clinic) had remarkable beneficial effects on lowering pathology and improving cognitive functions in tg rats. Likewise, AF710B treatment, even at advanced stages of the pathology, displayed remarkable beneficial effects. This drug, in experimental conditions, demonstrated possible “disease-modifying” properties as pathology was frankly diminished and cognition improved after a month of “wash-out” period. The Mini-Review ends with a discussion on the predictive value of similar experimental pharmacological interventions in current rodent tg models. It comments on the validity of some of these approaches for early interventions at preclinical stages of AD, interventions which may be envisioned once definitive diagnosis of AD before clinical presentation is made possible.
Collapse
Affiliation(s)
- A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Hélène Hall
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
64
|
Rosenzweig N, Dvir-Szternfeld R, Tsitsou-Kampeli A, Keren-Shaul H, Ben-Yehuda H, Weill-Raynal P, Cahalon L, Kertser A, Baruch K, Amit I, Weiner A, Schwartz M. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun 2019; 10:465. [PMID: 30692527 PMCID: PMC6349941 DOI: 10.1038/s41467-019-08352-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous disorder with multiple etiologies. Harnessing the immune system by blocking the programmed cell death receptor (PD)-1 pathway in an amyloid beta mouse model was shown to evoke a sequence of immune responses that lead to disease modification. Here, blocking PD-L1, a PD-1 ligand, was found to have similar efficacy to that of PD-1 blocking in disease modification, in both animal models of AD and of tauopathy. Targeting PD-L1 in a tau-driven disease model resulted in increased immunomodulatory monocyte-derived macrophages within the brain parenchyma. Single cell RNA-seq revealed that the homing macrophages expressed unique scavenger molecules including macrophage scavenger receptor 1 (MSR1), which was shown here to be required for the effect of PD-L1 blockade in disease modification. Overall, our results demonstrate that immune checkpoint blockade targeting the PD-1/PD-L1 pathway leads to modification of common factors that go awry in AD and dementia, and thus can potentially provide an immunotherapy to help combat these diseases.
Collapse
Affiliation(s)
- Neta Rosenzweig
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Raz Dvir-Szternfeld
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | | | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Hila Ben-Yehuda
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Pierre Weill-Raynal
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liora Cahalon
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alex Kertser
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kuti Baruch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Assaf Weiner
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
65
|
Irwin MR, Vitiello MV. Implications of sleep disturbance and inflammation for Alzheimer's disease dementia. Lancet Neurol 2019; 18:296-306. [PMID: 30661858 DOI: 10.1016/s1474-4422(18)30450-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 02/08/2023]
Abstract
Nearly half of all adults older than 60 years of age report sleep disturbance, as characterised either by reports of insomnia complaints with daytime consequences, dissatisfaction with sleep quality or quantity, or the diagnosis of insomnia disorder. Accumulating evidence shows that sleep disturbance contributes to cognitive decline and might also increase the risk of Alzheimer's disease dementia by increasing β-amyloid burden. That sleep disturbance would be a candidate risk factor for Alzheimer's disease might seem surprising, given that disturbed sleep is usually considered a consequence of Alzheimer's disease. However, a bidirectional relationship between sleep and Alzheimer's disease is supported by advances in our understanding of sleep disturbance-induced increases in systemic inflammation, which can be viewed as an early event in the course of Alzheimer's disease. Inflammation increases β-amyloid burden and is thought to drive Alzheimer's disease pathogenesis. Improved understanding of the mechanisms linking sleep disturbance and Alzheimer's disease risk could facilitate the identification of targets for prevention, given that both sleep disturbance and inflammatory activation might be modifiable risk factors for Alzheimer's disease.
Collapse
Affiliation(s)
- Michael R Irwin
- Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Michael V Vitiello
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
66
|
Flanagan ME, Larson EB, Walker RL, Keene CD, Postupna N, Cholerton B, Sonnen JA, Dublin S, Crane PK, Montine TJ. Associations between Use of Specific Analgesics and Concentrations of Amyloid-β 42 or Phospho-Tau in Regions of Human Cerebral Cortex. J Alzheimers Dis 2019; 61:653-662. [PMID: 29226863 DOI: 10.3233/jad-170414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analgesics are commonly used by older adults, raising the question of whether their use might contribute to dementia risk and neuropathologic changes of Alzheimer's disease (AD). The Adult Changes in Thought (ACT) study is a population-based study of brain aging and incident dementia among people 65 years or older who are community dwelling and not demented at entry. Amyloid-β (Aβ)42 and phospho-tau were quantified using Histelide in regions of cerebral cortex from 420 brain autopsies. Total standard daily doses of prescription opioid and non-aspirin nonsteroidal anti-inflammatory drug (NSAID) exposure during a defined 10-year exposure window were identified using automated pharmacy dispensing data and used to classify people as having no/low, intermediate, or high exposure. People with high NSAID exposure had significantly greater Aβ42 concentration in middle frontal gyrus and superior and middle temporal gyri, but not inferior parietal lobule; no Aβ42 regional concentration was associated with prescription opioid usage. People with high opioid usage had significantly greater concentration of phospho-tau in middle frontal gyrus than people with little-to-no opioid usage. Consistent with our previous studies, findings suggest that high levels of NSAID use in older individuals may promote Aβ42 accumulation in cerebral cortex.
Collapse
Affiliation(s)
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rod L Walker
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Joshua A Sonnen
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Sascha Dublin
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
67
|
Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches. J Clin Neurosci 2019; 59:6-11. [DOI: 10.1016/j.jocn.2018.10.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023]
|
68
|
Albeely AM, Ryan SD, Perreault ML. Pathogenic Feed-Forward Mechanisms in Alzheimer's and Parkinson's Disease Converge on GSK-3. Brain Plast 2018; 4:151-167. [PMID: 30598867 PMCID: PMC6311352 DOI: 10.3233/bpl-180078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) share many commonalities ranging from signaling deficits such as altered cholinergic activity, neurotrophin and insulin signaling to cell stress cascades that result in proteinopathy, mitochondrial dysfunction and neuronal cell death. These pathological processes are not unidirectional, but are intertwined, resulting in a series of feed-forward loops that worsen symptoms and advance disease progression. At the center of these loops is glycogen synthase kinase-3 (GSK-3), a keystone protein involved in many of the multidirectional biological processes that contribute to AD and PD neuropathology. Here, a unified overview of the involvement of GSK-3 in the major processes involved in these diseases will be presented. The mechanisms by which these processes are linked will be discussed and the feed-forward pathways identified. In this regard, this review will put forth the notion that combination therapy, targeting these multiple facets of AD or PD neuropathology is a necessary next step in the search for effective therapies.
Collapse
Affiliation(s)
- Abdalla M. Albeely
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Scott D. Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Melissa L. Perreault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
69
|
Presta I, Vismara M, Novellino F, Donato A, Zaffino P, Scali E, Pirrone KC, Spadea MF, Malara N, Donato G. Innate Immunity Cells and the Neurovascular Unit. Int J Mol Sci 2018; 19:E3856. [PMID: 30513991 PMCID: PMC6321635 DOI: 10.3390/ijms19123856] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have clarified many still unknown aspects related to innate immunity and the blood-brain barrier relationship. They have also confirmed the close links between effector immune system cells, such as granulocytes, macrophages, microglia, natural killer cells and mast cells, and barrier functionality. The latter, in turn, is able to influence not only the entry of the cells of the immune system into the nervous tissue, but also their own activation. Interestingly, these two components and their interactions play a role of great importance not only in infectious diseases, but in almost all the pathologies of the central nervous system. In this paper, we review the main aspects in the field of vascular diseases (cerebral ischemia), of primitive and secondary neoplasms of Central Nervous System CNS, of CNS infectious diseases, of most common neurodegenerative diseases, in epilepsy and in demyelinating diseases (multiple sclerosis). Neuroinflammation phenomena are constantly present in all diseases; in every different pathological state, a variety of innate immunity cells responds to specific stimuli, differentiating their action, which can influence the blood-brain barrier permeability. This, in turn, undergoes anatomical and functional modifications, allowing the stabilization or the progression of the pathological processes.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Marco Vismara
- Department of Cell Biotechnologies and Hematology, University "La Sapienza" of Rome, 00185 Rome, Italy.
| | - Fabiana Novellino
- Institute of Molecular Bioimaging and Physiology, National Research Council, 88100 Catanzaro, Italy.
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Paolo Zaffino
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Elisabetta Scali
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Krizia Caterina Pirrone
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Maria Francesca Spadea
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Giuseppe Donato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
70
|
Pazos P, Leira Y, Domínguez C, Pías-Peleteiro J, Blanco J, Aldrey J. Association between periodontal disease and dementia: A literature review. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2016.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
71
|
Mishra A, Brinton RD. Inflammation: Bridging Age, Menopause and APOEε4 Genotype to Alzheimer's Disease. Front Aging Neurosci 2018; 10:312. [PMID: 30356809 PMCID: PMC6189518 DOI: 10.3389/fnagi.2018.00312] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Neuro-inflammatory processes that contribute to development of Alzheimer’s are evident early in the latent prodromal phase and worsen during the course of the disease. Despite substantial mechanistic and clinical evidence of inflammation, therapeutic approaches targeting inflammation have failed to alter the course of the disease. Disparate results from epidemiological and clinical trials targeting inflammation, highlight the complexity of the inflammatory process. Herein we review the dynamics of the inflammatory process across aging, midlife endocrine transitions, and the APOEε4 genotype and their contribution to progression of Alzheimer’s disease (AD). We discuss the chronic inflammatory processes that are activated during midlife chronological and endocrine aging, which ultimately limit the clearance capacity of microglia and lead to immune senescence. Aging, menopause, and APOEε4 combine the three hits of a compromised bioenergetic system of menopause with the chronic low grade innate inflammation of aging with the APOEε4 dyslipidemia and adaptive immune response. The inflammatory immune response is the unifying factor that bridges across each of the risk factors for AD. Immune system regulators that are specific to stage of disease and inflammatory phenotype would provide a therapeutic strategy to disconnect the bridge that drives disease. Outcomes of this analysis provide plausible mechanisms underlying failed clinical trials of anti-inflammatory agents in Alzheimer’s patients. Further, they highlight the need for stratifying AD clinical trial cohorts based on inflammatory phenotype. Combination therapies that include targeted use of anti-inflammatory agent’s specific to the immune phenotype are considered.
Collapse
Affiliation(s)
- Aarti Mishra
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Roberta D Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
72
|
Mason A, Holmes C, Edwards CJ. Inflammation and dementia: Using rheumatoid arthritis as a model to develop treatments? Autoimmun Rev 2018; 17:919-925. [PMID: 30005856 DOI: 10.1016/j.autrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
Dementia is a major international public health problem which looks set to grow as the ageing population increases. Despite large amounts of investment there has been relatively little progress in developing new therapies to combat this. There is a growing body of evidence that both local and systemic inflammation are important in dementia; with cerebral inflammation occurring secondarily to beta-amyloid plaques, raised levels of serum inflammatory molecules and cytokines being present in Alzheimer's disease patients and systemic inflammation being associated with cerebral microvasculature disease in vascular dementia. Observational studies had suggested that non-steroidal anti-inflammatory drugs may reduce the risk of dementia, but subsequent interventional studies have been disappointing. More recently some observational studies have suggested a protective effect from conventional synthetic disease modifying anti-rheumatic drugs (csDMARDS) and tumour necrosis factor inhibiting (TNFi) biological therapies. Treatments for inflammatory rheumatic diseases have previously been repurposed and used successfully in other diseases, such as TNFi for inflammatory bowel disease. There are also studies looking at the use of csDMARDs such as methotrexate to improve outcomes after cardiovascular events. Ongoing interventional trials are currently looking at whether therapies designed to treat inflammatory and autoimmune diseases have the potential to be used to treat dementia.
Collapse
Affiliation(s)
- Alice Mason
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Christopher J Edwards
- University Hospital Southampton NHS Foundation Trust, Southampton, UK; MSK Research Unit, NIHR Clinical Research Facility, University of Southampton & University Hospital Southampton NHS Foundation Trust, UK.
| |
Collapse
|
73
|
Chatterjee S, Mudher A. Alzheimer's Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits. Front Neurosci 2018; 12:383. [PMID: 29950970 PMCID: PMC6008657 DOI: 10.3389/fnins.2018.00383] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) and Type 2 Diabetes Mellitus (T2DM) are two of the most prevalent diseases in the elderly population worldwide. A growing body of epidemiological studies suggest that people with T2DM are at a higher risk of developing AD. Likewise, AD brains are less capable of glucose uptake from the surroundings resembling a condition of brain insulin resistance. Pathologically AD is characterized by extracellular plaques of Aβ and intracellular neurofibrillary tangles of hyperphosphorylated tau. T2DM, on the other hand is a metabolic disorder characterized by hyperglycemia and insulin resistance. In this review we have discussed how Insulin resistance in T2DM directly exacerbates Aβ and tau pathologies and elucidated the pathophysiological traits of synaptic dysfunction, inflammation, and autophagic impairments that are common to both diseases and indirectly impact Aβ and tau functions in the neurons. Elucidation of the underlying pathways that connect these two diseases will be immensely valuable for designing novel drug targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Shreyasi Chatterjee
- Centre of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Amritpal Mudher
- Centre of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
74
|
Abstract
BACKGROUND High-sensitivity C-reactive protein (hs-CRP) has been suggested to be involved in the process of cognitive decline. However, the results from previous studies exploring the relationship between hs-CRP concentration and cognitive decline are inconsistent. METHOD We employed data from wave 2 (2004-2005) to wave 7 (2014-2015) of the English Longitudinal Study of Ageing. Cognitive function was assessed at baseline (wave 2) and reassessed biennially at waves 3-7. RESULTS A total of 5257 participants (54.9% women, mean age 65.4 ± 9.4 years) with baseline hs-CRP levels ranged from 0.2 to 210.0 mg/L (median: 2.0 mg/L, interquartile range: 0.9-4.1 mg/L) were studied. The mean follow-up duration was 8.1 ± 2.8 years, and the mean number of cognitive assessment was 4.9 ± 1.5. Linear mixed models show that a one-unit increment in natural log-transformed hs-CRP was associated with faster declines in global cognitive scores [-0.048 points/year, 95% confidence interval (CI) -0.072 to -0.023], memory scores (-0.022 points/year, 95% CI -0.031 to -0.013), and executive function scores (-0.025 points/year, 95% CI -0.043 to -0.006), after multivariable adjustment. Compared with the lowest quartile of hs-CRP, the multivariable-adjusted rate of global cognitive decline associated with the second, third, and highest quartile was faster by -0.043 points/year (95% CI -0.116 to 0.029), -0.090 points/year (95% CI -0.166 to -0.015), -0.145 (95% CI -0.221 to -0.069), respectively (p for trend <0.001). Similarly, memory and executive function also declined faster with increasing quartiles of hs-CRP. CONCLUSIONS A significant association between hs-CRP concentration and long-term cognitive decline was observed in this study. Hs-CRP might serve as a biomarker for cognitive decline.
Collapse
Affiliation(s)
- Fanfan Zheng
- Brainnetome Center,Institute of Automation,Chinese Academy of Sciences,Beijing,China
| | - Wuxiang Xie
- Peking University Clinical Research Institute,Peking University Health Science Center,Beijing,China
| |
Collapse
|
75
|
Shal B, Ding W, Ali H, Kim YS, Khan S. Anti-neuroinflammatory Potential of Natural Products in Attenuation of Alzheimer's Disease. Front Pharmacol 2018; 9:548. [PMID: 29896105 PMCID: PMC5986949 DOI: 10.3389/fphar.2018.00548] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder associated with dementia and cognitive impairment most common in elderly population. Various pathophysiological mechanisms have been proposed by numerous researcher, although, exact mechanism is not yet elucidated. Several studies have been indicated that neuroinflammation associated with deposition of amyloid- beta (Aβ) in brain is a major hallmark toward the pathology of neurodegenerative diseases. So, there is a need to unravel the link of inflammatory process in neurodegeneration. Increased microglial activation, expression of cytokines, reactive oxygen species (ROS), and nuclear factor kappa B (NF-κB) participate in inflammatory process of AD. This review mainly concentrates on involvement of neuroinflammation and the molecular mechanisms adapted by various natural compounds, phytochemicals and herbal formulations in various signaling pathways involved in neuroprotection. Currently, pharmacologically active natural products, having anti-neuroinflammatory potential are being focused which makes them potential candidate to cure AD. A number of preclinical and clinical trials have been done on nutritional and botanical agents. Analysis of anti-inflammatory and neuroprotective phytochemicals such as terpenoids, phenolic derivatives, alkaloids, glycosides, and steroidal saponins displays therapeutic potential toward amelioration and prevention of devastating neurodegeneration observed in AD.
Collapse
Affiliation(s)
- Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wei Ding
- Department of Neurosurgery, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yeong S Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
76
|
Wang MM, Miao D, Cao XP, Tan L, Tan L. Innate immune activation in Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:177. [PMID: 29951499 DOI: 10.21037/atm.2018.04.20] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is known as the most predominant cause of dementia among the aged people. Previously, two hallmarks of AD pathology including extracellular amyloid-β (Aβ) deposition and neurofibrillary tangles (NFTs) inside neurons have been identified. With a better understanding of this disease, neuroinflammation has been a focus, and as its initial event, innate immune activation plays an indispensable role. In brain, as an endogenous stimulator, extracellular Aβ deposition activates innate immunity through binding to the pattern recognition receptors (PRR), thus leading to the production and release of substantial inflammatory mediators (NO and ROS) and cytokines (IL-1β, IL-10, IL-33 and TNF-α) contributing to the development of AD. Epidemiologic evidence has suggested an affirmative influence of non-steroidal anti-inflammatory drugs (NSAIDs) on delaying the progression of AD. Therefore, blocking the inflammatory process may be an effective way to delay or even cure AD. In this review, we mainly elucidate the mechanism underlying these immune responses in AD pathogenesis and attempt to seek the therapeutic methods targeting neuroinflammation.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Dan Miao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| |
Collapse
|
77
|
Muszyński P, Groblewska M, Kulczyńska-Przybik A, Kułakowska A, Mroczko B. YKL-40 as a Potential Biomarker and a Possible Target in Therapeutic Strategies of Alzheimer's Disease. Curr Neuropharmacol 2018; 15:906-917. [PMID: 28183245 PMCID: PMC5652033 DOI: 10.2174/1570159x15666170208124324] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/14/2016] [Accepted: 01/14/2017] [Indexed: 01/06/2023] Open
Abstract
Background: Growing body of evidence suggests that the pathogenesis of Alzheimer’s disease (AD), a progressing neurodegenerative condition, is not limited to the neuronal compartment, but also involves various immunological mechanisms. Insoluble Aβ aggregates in the brain can induce the activation of microglia, resulting in the synthesis of proinflammatory mediators, which further can stimulate astrocytic expression of YKL-40. Therefore, the aim of the current review is to present up-to-date data about the role of YKL-40 as a biomarker of AD as well as the possibility of therapeutic strategies targeting neuroinflammation. Objective/Methods: We searched PubMed articles for the terms “YKL-40”, “neurodegeneration”, “neuroinflammation” and “Alzheimer’s disease”, and included papers focusing on this review’s scope. Results: Recent studies indicate that CSF concentrations of YKL-40 were significantly higher in AD patients than in cognitively normal individuals and correlated with dementia biomarkers, such as tau proteins and amyloid beta. Determination of YKL-40 CSF concentration may be also helpful in differentiation between types of dementia and in the distinction of patients in the stable phase of MCI from those who progressed to dementia. Moreover, significantly increased levels of YKL-40 mRNA were found in AD brains in comparison with non-demented controls. Additionally, it was suggested that anti-inflammatory treatment might relief the symptoms of AD and slow its progression. Conclusion: Based on the recent knowledge, YKL-40 might be useful as a possible biomarker in the diagnosis and prognosis of AD. Modulation of risk factors and targeting of immune mechanisms, including systemic inflammation could lead to future preventive or therapeutic strategies for AD.
Collapse
Affiliation(s)
- Paweł Muszyński
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, Białystok, Poland
| | | | - Alina Kułakowska
- Department of Neurology, Medical University of Białystok, Białystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
78
|
Szabó-Révész P. Modifying the physicochemical properties of NSAIDs for nasal and pulmonary administration. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 27:87-93. [PMID: 30103868 DOI: 10.1016/j.ddtec.2018.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
This review focuses on nasal and pulmonary delivery of NSAIDs (non-steroidal anti-inflammatory drugs) for fast-onset analgesia, for the potential prevention of Alzheimer's disease (AD), as well as for an add-on treatment in cystic fibrosis (CF) and non-small cell lung cancer (NSCLC). I discuss how the physicochemical properties of NSAIDs can be modified with respect to the biological characteristics of the target site. Innovative technology and/or dosage forms can promote an effective therapy.
Collapse
Affiliation(s)
- P Szabó-Révész
- University of Szeged, Institute of Pharmaceutical Technology and Regulatory Affairs, Eötvös u 6, 6720 Szeged, Hungary.
| |
Collapse
|
79
|
Zolotovskaya IA, Davydkin IL. The Cognitive Cytokine Effect of Nonsteroidal Antiinflammatory Drugs in the Treatment of Elderly Patients with Osteoarthritis. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s2079057018010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
80
|
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC, Cummings J, Dubois B, Federoff HJ, Fiandaca M, Genthon R, Haberkamp M, Karran E, Mapstone M, Perry G, Schneider LS, Welikovitch LA, Woodcock J, Baldacci F, Lista S. Precision pharmacology for Alzheimer’s disease. Pharmacol Res 2018; 130:331-365. [DOI: 10.1016/j.phrs.2018.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
|
81
|
Maysinger D, Ji J, Moquin A, Hossain S, Hancock MA, Zhang I, Chang PK, Rigby M, Anthonisen M, Grütter P, Breitner J, McKinney RA, Reimann S, Haag R, Multhaup G. Dendritic Polyglycerol Sulfates in the Prevention of Synaptic Loss and Mechanism of Action on Glia. ACS Chem Neurosci 2018; 9:260-271. [PMID: 29078046 DOI: 10.1021/acschemneuro.7b00301] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic polyglycerols (dPG), particularly dendritic polyglycerol sulfates (dPGS), have been intensively studied due to their intrinsic anti-inflammatory activity. As related to brain pathologies involving neuroinflammation, the current study examined if dPG and dPGS can (i) regulate neuroglial activation, and (ii) normalize the morphology and function of excitatory postsynaptic dendritic spines adversely affected by the neurotoxic 42 amino acid amyloid-β (Aβ42) peptide of Alzheimer disease (AD). The exact role of neuroglia, such as microglia and astrocytes, remains controversial especially their positive and negative impact on inflammatory processes in AD. To test dPGS effectiveness in AD models we used primary neuroglia and organotypic hippocampal slice cultures exposed to Aβ42 peptide. Overall, our data indicate that dPGS is taken up by both microglia and astrocytes in a concentration- and time-dependent manner. The mechanism of action of dPGS involves binding to Aβ42, i.e., a direct interaction between dPGS and Aβ42 species interfered with Aβ fibril formation and reduced the production of the neuroinflammagen lipocalin-2 (LCN2) mainly in astrocytes. Moreover, dPGS normalized the impairment of neuroglia and prevented the loss of dendritic spines at excitatory synapses in the hippocampus. In summary, dPGS has desirable therapeutic properties that may help reduce amyloid-induced neuroinflammation and neurotoxicity in AD.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Jeff Ji
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Alexandre Moquin
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Shireen Hossain
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Mark A. Hancock
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Issan Zhang
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Philip K.Y. Chang
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Matthew Rigby
- Department
of Physics, McGill University, Montreal, Canada H3A 2T8
| | | | - Peter Grütter
- Department
of Physics, McGill University, Montreal, Canada H3A 2T8
| | - John Breitner
- Douglas
Hospital Research Centre, McGill University, Montreal, Canada H4H 1R3
| | - R. Anne McKinney
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Sabine Reimann
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gerhard Multhaup
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| |
Collapse
|
82
|
Condello C, Yuan P, Grutzendler J. Microglia-Mediated Neuroprotection, TREM2, and Alzheimer's Disease: Evidence From Optical Imaging. Biol Psychiatry 2018; 83:377-387. [PMID: 29169609 PMCID: PMC5767550 DOI: 10.1016/j.biopsych.2017.10.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
Recent genetic studies have provided overwhelming evidence of the involvement of microglia-related molecular networks in the pathophysiology of Alzheimer's disease (AD). However, the precise mechanisms by which microglia alter the course of AD neuropathology remain poorly understood. Here we discuss current evidence of the neuroprotective functions of microglia with a focus on optical imaging studies that have revealed a role of these cells in the encapsulation of amyloid deposits ("microglia barrier"). This barrier modulates the degree of plaque compaction, amyloid fibril surface area, and insulation from adjacent axons thereby reducing neurotoxicity. We discuss findings implicating genetic variants of the microglia receptor, triggering receptor expressed on myeloid cells 2, in the increased risk of late onset AD. We provide evidence that increased AD risk may be at least partly mediated by deficient microglia polarization toward amyloid deposits, resulting in ineffective plaque encapsulation and reduced plaque compaction, which is associated with worsened axonal pathology. Finally, we propose possible avenues for therapeutic targeting of plaque-associated microglia with the goal of enhancing the microglia barrier and potentially reducing disease progression.
Collapse
Affiliation(s)
- Carlo Condello
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA,Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Peng Yuan
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut; Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
83
|
Tian X, Ji C, Luo Y, Yang Y, Kuang S, Mai S, Ma J, Yang J. PGE2-EP3 signaling pathway contributes to protective effects of misoprostol on cerebral injury in APP/PS1 mice. Oncotarget 2018; 7:25304-14. [PMID: 27015117 PMCID: PMC5041905 DOI: 10.18632/oncotarget.8284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/07/2016] [Indexed: 12/20/2022] Open
Abstract
Epidemiological studies indicate chronic use of non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit the enzymatic activity of the inflammatory cyclooxygenases (COX), reduces the risk of developing Alzheimer's disease (AD) in normal aging populations. Considering multiple adverse side effects of NSAIDs, findings suggest that COX downstream prostaglandin signaling function in the pre-clinical development of AD. Our previous study found that misoprostol, a synthetic prostaglandin E2 (PGE2) receptor agonist, has neuroprotection against brain injury induced by chronic aluminum overload. Here, we investigated the neuroprotective effects and mechanisms of misoprostol on neurodegeneration in overexpressing both amyloid precursor protein (APP) and mutant presenilin 1 (PS1) mice. Here were young group, elderly group, APP/PS1 group and misoprostol-treated group. Mice in misoprostol-treated group were administrated with misoprostol (200 μg·kg−1·d−1, p.o.) five days a week for 20 weeks. The spatial learning and memory function was impaired and karyopycnosis of hippocampal and cortical neurons was observed; amyloid beta (Aβ) deposition was increased; superoxide dismutase (SOD) activity was decreased and malondialdehyde (MDA) content was increased in APP/PS1 mice. However, misoprostol could significantly blunte these changes in APP/PS1 mic. Moreover, the expressions of microsomal PGE2 synthase (mPGES-1), PGE2, PGE2 receptor (EP) 2 and EP4 were increased and EP3 expression was decreased in APP/PS1 mice, while misoprostol reversed these changes. Our present experimental results indicate that misoprostol has a neuroprotective effect on brain injury and neurodegeneration of APP/PS1 mice and that the activation of PGE2-EP3 signaling and inhibition of oxidative stress contribute to the neuroprotective mechanisms of misoprostol.
Collapse
Affiliation(s)
- Xiaoyan Tian
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Chaonan Ji
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Shengnan Kuang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Shaoshan Mai
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jie Ma
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|
84
|
Oral pioglitazone ameliorates fructose-induced peripheral insulin resistance and hippocampal gliosis but not restores inhibited hippocampal adult neurogenesis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:274-285. [DOI: 10.1016/j.bbadis.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/13/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|
85
|
Clayton KA, Van Enoo AA, Ikezu T. Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Front Neurosci 2017; 11:680. [PMID: 29311768 PMCID: PMC5733046 DOI: 10.3389/fnins.2017.00680] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023] Open
Abstract
Brain aging is central to late-onset Alzheimer's disease (LOAD), although the mechanisms by which it occurs at protein or cellular levels are not fully understood. Alzheimer's disease is the most common proteopathy and is characterized by two unique pathologies: senile plaques and neurofibrillary tangles, the former accumulating earlier than the latter. Aging alters the proteostasis of amyloid-β peptides and microtubule-associated protein tau, which are regulated in both autonomous and non-autonomous manners. Microglia, the resident phagocytes of the central nervous system, play a major role in the non-autonomous clearance of protein aggregates. Their function is significantly altered by aging and neurodegeneration. This is genetically supported by the association of microglia-specific genes, TREM2 and CD33, and late onset Alzheimer's disease. Here, we propose that the functional characterization of microglia, and their contribution to proteopathy, will lead to a new therapeutic direction in Alzheimer's disease research.
Collapse
Affiliation(s)
- Kevin A Clayton
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Alicia A Van Enoo
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States.,Department of Neurology, Medical School, Boston University, Boston, MA, United States
| |
Collapse
|
86
|
Qi Y, Ji XF, Chi TY, Liu P, Jin G, Xu Q, Jiao Q, Wang LH, Zou LB. Xanthoceraside attenuates amyloid β peptide 1-42-induced memory impairments by reducing neuroinflammatory responses in mice. Eur J Pharmacol 2017; 820:18-30. [PMID: 29229533 DOI: 10.1016/j.ejphar.2017.11.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
Xanthoceraside, a novel triterpenoid saponin extracted from the husks of Xanthoceras sorbifolia Bunge, has neuroprotective effects in vivo and anti-inflammatory properties in vitro. However, the exact mechanism of xanthoceraside on anti-amyloid beta (Aβ)-induced neuroinflammatory responses has not been elucidated. Therefore, we used intracerebroventricular injection of amyloid 1-42 (Aβ1-42) to establish a mouse model to test the effects of xanthoceraside on Aβ-induced cognitive impairments and the TLR2/NF-κB and MAPK pathways. The mice received xanthoceraside (0.02, 0.08 or 0.32mg/kg) or vehicle from the day of Aβ1-42 injection. The Morris water maze test was performed 4 days after Aβ1-42 injection. The levels of inflammatory cytokines (interleukin (IL)-6 and IL-4) were measured by enzyme-linked immunosorbent assay (ELISA). The expression levels of glial fibrillary acidic protein (GFAP) and cluster of differentiation 11b (CD11b) in the hippocampus were determined with an immunohistochemistry assay. Inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) were analysed by Western blotting; iNOS, COX-2 and Toll-like receptor 2 (TLR2) mRNA expression levels were measured by reverse transcription-polymerase chain reaction (RT-PCR). Here, we observed that xanthoceraside at doses of 0.08 and 0.32mg/kg significantly improved learning and memory impairments and significantly inhibited GFAP and CD11b overexpression induced by Aβ1-42 in mice. ELISA results revealed that xanthoceraside suppressed IL-6 release and increased IL-4 levels. Western blotting results showed that xanthoceraside reduced iNOS and COX-2 protein levels in hippocampus; xanthoceraside also inhibited translocation of NF-κB p50 and p65 into the nucleus and phosphorylation of extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38. RT-PCR confirmed that xanthoceraside decreased iNOS, COX-2 and TLR2 mRNA levels. These results suggest that xanthoceraside inhibition of the TLR2 pathway and down-regulation of MAPK and NF-κB activities may be related to the improvement in learning and memory impairments.
Collapse
Affiliation(s)
- Yue Qi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Pharmacology, The Second Hospital Affiliated to Liaoning Chinese Medical University, Shenyang 110034, PR China
| | - Xue-Fei Ji
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Tian-Yan Chi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ge Jin
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qian Xu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qing Jiao
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Li-Hua Wang
- Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Li-Bo Zou
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
87
|
Larsson SC, Traylor M, Malik R, Dichgans M, Burgess S, Markus HS. Modifiable pathways in Alzheimer's disease: Mendelian randomisation analysis. BMJ 2017; 359:j5375. [PMID: 29212772 PMCID: PMC5717765 DOI: 10.1136/bmj.j5375] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine which potentially modifiable risk factors, including socioeconomic, lifestyle/dietary, cardiometabolic, and inflammatory factors, are associated with Alzheimer's disease. DESIGN Mendelian randomisation study using genetic variants associated with the modifiable risk factors as instrumental variables. SETTING International Genomics of Alzheimer's Project. PARTICIPANTS 17 008 cases of Alzheimer's disease and 37 154 controls. MAIN OUTCOME MEASURES Odds ratio of Alzheimer's per genetically predicted increase in each modifiable risk factor estimated with Mendelian randomisation analysis. RESULTS This study included analyses of 24 potentially modifiable risk factors. A Bonferroni corrected threshold of P=0.002 was considered to be significant, and P<0.05 was considered suggestive of evidence for a potential association. Genetically predicted educational attainment was significantly associated with Alzheimer's. The odds ratios were 0.89 (95% confidence interval 0.84 to 0.93; P=2.4×10-6) per year of education completed and 0.74 (0.63 to 0.86; P=8.0×10-5) per unit increase in log odds of having completed college/university. The correlated trait intelligence had a suggestive association with Alzheimer's (per genetically predicted 1 SD higher intelligence: 0.73, 0.57 to 0.93; P=0.01). There was suggestive evidence for potential associations between genetically predicted higher quantity of smoking (per 10 cigarettes a day: 0.69, 0.49 to 0.99; P=0.04) and 25-hydroxyvitamin D concentrations (per 20% higher levels: 0.92, 0.85 to 0.98; P=0.01) and lower odds of Alzheimer's and between higher coffee consumption (per one cup a day: 1.26, 1.05 to 1.51; P=0.01) and higher odds of Alzheimer's. Genetically predicted alcohol consumption, serum folate, serum vitamin B12, homocysteine, cardiometabolic factors, and C reactive protein were not associated with Alzheimer's disease. CONCLUSION These results provide support that higher educational attainment is associated with a reduced risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Matthew Traylor
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rainer Malik
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
88
|
Molteni M, Rossetti C. Neurodegenerative diseases: The immunological perspective. J Neuroimmunol 2017; 313:109-115. [PMID: 29153601 DOI: 10.1016/j.jneuroim.2017.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Increasing evidence supports the notion that the neurodegenerative process occurring in Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS) does not only imply the neuronal compartment but also involves a strong interaction with the immunological cells of the Central Nervous System (CNS), primarily microglia. Starting from the observation that the neurodegenerative disorders are frequent in elderly individuals, who have an immunological background that possibly favors this process, it is evident that a dysregulation of innate immune response triggered by misfolded and aggregated proteins, or by endogenous molecules released by injured neurons, directly contributes to disease pathogenesis and progression. There are important differences in the immunological processes occurring in AD, PD, ALS involving microglial function. Furthermore, although the contribution of adaptive immune cells in AD seems to be modest, in PD and especially in ALS models, T cells can influence microglial phenotype, inducing neuroprotection. A better understanding of the immunological mechanisms involved in the different phases of the neurodegenerative processes observed in AD, PD, ALS could effectively contribute to the development of new preventive and therapeutic strategies for such diseases.
Collapse
Affiliation(s)
- Monica Molteni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Via Dunant, 3, 21100 Varese, Italy.
| | - Carlo Rossetti
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Via Dunant, 3, 21100 Varese, Italy
| |
Collapse
|
89
|
Rego Â, Viana SD, Ribeiro CAF, Rodrigues-Santos P, Pereira FC. Monophosphoryl Lipid-A: A Promising Tool for Alzheimer's Disease Toll. J Alzheimers Dis 2017; 52:1189-202. [PMID: 27079716 DOI: 10.3233/jad-151183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is a two-edged sword in Alzheimer's disease (AD). A certain degree of neuroinflammation is instrumental in the clearance of amyloid-β (Aβ) peptides by activated microglia, although a sustained neuroinflammation might accelerate Aβ deposition, thus fostering the neurodegenerative process and functional decline in AD. There is an increasing body of evidence suggesting that the innate immune system via Toll-like receptor 4 (TLR4) finely orchestrates the highly regulated inflammatory cascade that takes place in AD pathology. Herein we critically review pre-clinical (in vitro and in vivo approaches) and clinical studies showing that monophosphoryl lipid A (MPL), a partial TLR4 agonist, may have beneficial effect on AD physiopathology. The in vivo data elegantly showed that MPL enhanced Aβ plaque phagocytosis thus decreasing the number and the size of Aβ deposits and soluble Aβ in brain from APPswe/PS1 mice. Furthermore, MPL also improved their cognition. The mechanism underlying this MPL effect was proposed to be microglial activation by recruiting TLR4. Additionally, it was demonstrated that MPL increased the Aβ antibody titer and showed a safe profile in mice and primates, when used as a vaccine adjuvant. Clinical studies using MPL as an adjuvant in Aβ immunotherapy are currently ongoing. Overall, we argue that the TLR4 partial agonist MPL is a potentially safe and effective new pharmacological tool in AD.
Collapse
Affiliation(s)
- Ângela Rego
- Laboratório de Farmacologia e Terapêutica Experimental/IBILI, Faculdade de Medicina da Universidade de Coimbra, Portugal.,CNC.IBILI - Universidade de Coimbra, Coimbra, Portugal.,Centro Hospitalar do Porto, Largo Prof. Abel Salazar, Porto, Portugal
| | - Sofia D Viana
- Laboratório de Farmacologia e Terapêutica Experimental/IBILI, Faculdade de Medicina da Universidade de Coimbra, Portugal.,CNC.IBILI - Universidade de Coimbra, Coimbra, Portugal.,Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Farmácia, Portugal
| | - Carlos A Fontes Ribeiro
- Laboratório de Farmacologia e Terapêutica Experimental/IBILI, Faculdade de Medicina da Universidade de Coimbra, Portugal.,CNC.IBILI - Universidade de Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Instituto de Imunologia, Faculdade de Medicina da Universidade de Coimbra, Portugal.,Laboratório de Imunologia e Oncologia, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Portugal
| | - Frederico C Pereira
- Laboratório de Farmacologia e Terapêutica Experimental/IBILI, Faculdade de Medicina da Universidade de Coimbra, Portugal.,CNC.IBILI - Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
90
|
Kwon Y. Luteolin as a potential preventive and therapeutic candidate for Alzheimer's disease. Exp Gerontol 2017; 95:39-43. [DOI: 10.1016/j.exger.2017.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
|
91
|
Cuello AC. Early and Late CNS Inflammation in Alzheimer's Disease: Two Extremes of a Continuum? Trends Pharmacol Sci 2017; 38:956-966. [PMID: 28867259 DOI: 10.1016/j.tips.2017.07.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
In 1990 it was reported that individuals receiving NSAIDs (non-steroidal anti-inflammatory drugs) showed a markedly reduced prevalence of Alzheimer's disease (AD) compared to the overall population. Large epidemiological studies corroborated this assertion and provoked numerous prospective AD clinical trials with a variety of NSAIDs, all of which demonstrated lack of efficacy. It is postulated that the explanation for the success of NSAIDS in preventing AD onset when given at preclinical stages, and for their failure when administered after AD clinical presentation, lies in the changing nature of central nervous system (CNS) inflammation in the decades-long continuum of AD pathology. Early disease-aggravating CNS inflammation might start decades before the presentation of severe cognitive impairments or dementia, and the nature of this process will co-evolve with the neuropathological progression from preclinical to clinical AD stages. This early CNS inflammation should be considered a promising therapeutic target as we continue searching for an unequivocal diagnosis of AD preclinical stages.
Collapse
Affiliation(s)
- A Claudio Cuello
- McGill University Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
92
|
Impact of aging immune system on neurodegeneration and potential immunotherapies. Prog Neurobiol 2017; 157:2-28. [PMID: 28782588 DOI: 10.1016/j.pneurobio.2017.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022]
Abstract
The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging.
Collapse
|
93
|
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2017; 21:695-714. [PMID: 28686542 DOI: 10.1080/1028415x.2017.1347373] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs). They mediate significant effects in the fine-tune adjustment of body homeostasis. Phyto- and synthetic cannabinoids also rule the daily life of billions worldwide, as they are involved in obesity, depression and drug addiction. Consequently, there is growing interest to reveal novel active compounds in this field. Cloning of cannabinoid receptors in the 90s and the identification of the endogenous mediators arachidonylethanolamide (anandamide, AEA) and 2-arachidonyglycerol (2-AG), led to the characterization of the endocannabinoid system (ECS), together with their metabolizing enzymes and membrane transporters. Today, the ECS is known to be involved in diverse functions such as appetite control, food intake, energy balance, neuroprotection, neurodegenerative diseases, stroke, mood disorders, emesis, modulation of pain, inflammatory responses, as well as in cancer therapy. Western diet as well as restriction of micronutrients and fatty acids, such as DHA, could be related to altered production of pro-inflammatory mediators (e.g. eicosanoids) and ECs, contributing to the progression of cardiovascular diseases, diabetes, obesity, depression or impairing conditions, such as Alzheimer' s disease. Here we review how diets based in PUFAs might be linked to ECS and to the maintenance of central and peripheral metabolism, brain plasticity, memory and learning, blood flow, and genesis of neural cells.
Collapse
Affiliation(s)
- Hércules Rezende Freitas
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Alinny Rosendo Isaac
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | | | - Bruno Lourenço Diaz
- c Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Isis Hara Trevenzoli
- d Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Ricardo Augusto De Melo Reis
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| |
Collapse
|
94
|
Risk factors associated with the onset and progression of Alzheimer’s disease: A systematic review of the evidence. Neurotoxicology 2017; 61:143-187. [DOI: 10.1016/j.neuro.2017.03.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 12/25/2022]
|
95
|
Cornec AS, Monti L, Kovalevich J, Makani V, James MJ, Vijayendran KG, Oukoloff K, Yao Y, Lee VMY, Trojanowski JQ, Smith AB, Brunden KR, Ballatore C. Multitargeted Imidazoles: Potential Therapeutic Leads for Alzheimer's and Other Neurodegenerative Diseases. J Med Chem 2017; 60:5120-5145. [PMID: 28530811 PMCID: PMC5483893 DOI: 10.1021/acs.jmedchem.7b00475] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Alzheimer’s
disease (AD) is a complex, multifactorial disease in which different
neuropathological mechanisms are likely involved, including those
associated with pathological tau and Aβ species as well as neuroinflammation.
In this context, the development of single multitargeted therapeutics
directed against two or more disease mechanisms could be advantageous.
Starting from a series of 1,5-diarylimidazoles with microtubule (MT)-stabilizing
activity and structural similarities with known NSAIDs, we conducted
structure–activity relationship studies that led to the identification
of multitargeted prototypes with activities as MT-stabilizing agents
and/or inhibitors of the cyclooxygenase (COX) and 5-lipoxygenase (5-LOX)
pathways. Several examples are brain-penetrant and exhibit balanced
multitargeted in vitro activity in the low μM range. As brain-penetrant
MT-stabilizing agents have proven effective against tau-mediated neurodegeneration
in animal models, and because COX- and 5-LOX-derived eicosanoids are
thought to contribute to Aβ plaque deposition, these 1,5-diarylimidazoles
provide tools to explore novel multitargeted strategies for AD and
other neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne-Sophie Cornec
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ludovica Monti
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jane Kovalevich
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Vishruti Makani
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Michael J James
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Krishna G Vijayendran
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Killian Oukoloff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yuemang Yao
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania , 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
96
|
Tronel C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Dupont AC, Arlicot N. Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations. Int J Mol Sci 2017; 18:ijms18040802. [PMID: 28398245 PMCID: PMC5412386 DOI: 10.3390/ijms18040802] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Microglia, as cellular mediators of neuroinflammation, are implicated in the pathogenesis of a wide range of neurodegenerative diseases. Positron emission tomography (PET) imaging of microglia has matured over the last 20 years, through the development of radiopharmaceuticals targeting several molecular biomarkers of microglial activation and, among these, mainly the translocator protein-18 kDa (TSPO). Nevertheless, current limitations of TSPO as a PET microglial biomarker exist, such as low brain density, even in a neurodegenerative setting, expression by other cells than the microglia (astrocytes, peripheral macrophages in the case of blood brain barrier breakdown), genetic polymorphism, inducing a variation for most of TSPO PET radiopharmaceuticals’ binding affinity, or similar expression in activated microglia regardless of its polarization (pro- or anti-inflammatory state), and these limitations narrow its potential interest. We overview alternative molecular targets, for which dedicated radiopharmaceuticals have been proposed, including receptors (purinergic receptors P2X7, cannabinoid receptors, α7 and α4β2 nicotinic acetylcholine receptors, adenosine 2A receptor, folate receptor β) and enzymes (cyclooxygenase, nitric oxide synthase, matrix metalloproteinase, β-glucuronidase, and enzymes of the kynurenine pathway), with a particular focus on their respective contribution for the understanding of microglial involvement in neurodegenerative diseases. We discuss opportunities for these potential molecular targets for PET imaging regarding their selectivity for microglia expression and polarization, in relation to the mechanisms by which microglia actively participate in both toxic and neuroprotective actions in brain diseases, and then take into account current clinicians’ expectations.
Collapse
Affiliation(s)
- Claire Tronel
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Denis Guilloteau
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Anne-Claire Dupont
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Nicolas Arlicot
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| |
Collapse
|
97
|
Gandy S, Bartfai T, Lees GV, Sano M. Midlife interventions are critical in prevention, delay, or improvement of Alzheimer's disease and vascular cognitive impairment and dementia. F1000Res 2017; 6:413. [PMID: 28491285 PMCID: PMC5399952 DOI: 10.12688/f1000research.11140.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2017] [Indexed: 01/26/2023] Open
Abstract
The basic strategy for focusing exclusively on genetically identified targets for intervening in late life dementias was formulated 30 years ago. Three decades and billions of dollars later, all efforts at disease-modifying interventions have failed. Over that same period, evidence has accrued pointing to dementias as late-life clinical phenotypes that begin as midlife pathologies. Effective prevention therefore may need to begin in midlife, in order to succeed. No current interventions are sufficiently safe to justify their use in midlife dementia prevention trials. Observational studies could be informative in testing the proposal that amyloid imaging and
APOEε
4 genotype can predict those who are highly likely to develop Alzheimer’s disease and in whom higher risk interventions might be justifiable. A naturally occurring, diet-responsive cognitive decline syndrome occurs in canines that closely resembles human Alzheimer’s. Canine cognitive dysfunction could be useful in estimating how early intervention must begin in order to succeed. This model may also help identify and assess novel targets and strategies. New approaches to dementia prevention are urgently required, since none of the world’s economies can sustain the costs of caring for this epidemic of brain failure that is devastating half of the over 85-year-olds globally.
Collapse
Affiliation(s)
- Sam Gandy
- Department of Neurology and NFL Neurological Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tamas Bartfai
- Department of Neurochemistry, Stockholm University, Stockholm, 114 18, Sweden
| | | | - Mary Sano
- Department of Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
98
|
Antiaging and Anxiolytic Effects of Combinatory Formulas Based on Four Medicinal Herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4624069. [PMID: 28458714 PMCID: PMC5387814 DOI: 10.1155/2017/4624069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/26/2017] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
The objective of the present study was to search for medicinal-herb combinations based on Radix Bupleurum chinense DC (“B”), Rhizoma Corydalis yanhusuo WT Wang (“Y”), Caulis Polygonum multiflorum Thunb (“P”), and Flos Albizia julibrissin Durazz (“A”) for antiaging, anxiolytic, and sedative effects. Application of the D-galactose induced accelerated-aging model employing male ICR mice showed that oral administration of some combinations of B, Y, P, and A significantly improved spatial memory in Y-maze test and reduced brain levels of tumor necrosis factor-α and interleukin-6 based on immunoassays and oxidative stress marker malondialdehyde, based on the thiobarbituric acid test, and the loss of whiskers, indicating antiaging and antineurodegeneration effects. In addition, some of the combinatory formulas induced anxiolysis measured using the elevated plus-maze test and/or sedative effects measured using the hole-board test. Over the range of dosages examined, all possible combinations of the four herbs were devoid of any significant side effects in the form of altered locomotor activity, decreased muscle coordination, or anterograde amnesia assessed using the photobeam and rotarod and step-through passive avoidance methods, respectively. The results suggest that various combinations of the B, Y, P, and A herbs could be useful as nonsedative, antiaging and/or antineurodegenerative agents, or anxiolytic agents.
Collapse
|
99
|
Baldacci F, Lista S, Cavedo E, Bonuccelli U, Hampel H. Diagnostic function of the neuroinflammatory biomarker YKL-40 in Alzheimer’s disease and other neurodegenerative diseases. Expert Rev Proteomics 2017; 14:285-299. [DOI: 10.1080/14789450.2017.1304217] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- AXA Research Fund UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Simone Lista
- AXA Research Fund UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Enrica Cavedo
- AXA Research Fund UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
- IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- AXA Research Fund UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du cerveau et de la moelle (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| |
Collapse
|
100
|
Baldacci F, Toschi N, Lista S, Zetterberg H, Blennow K, Kilimann I, Teipel S, Cavedo E, Santos AM, Epelbaum S, Lamari F, Dubois B, Floris R, Garaci F, Bonuccelli U, Hampel H. Two‐level diagnostic classification using cerebrospinal fluid YKL‐40 in Alzheimer's disease. Alzheimers Dement 2017; 13:993-1003. [DOI: 10.1016/j.jalz.2017.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/18/2016] [Accepted: 01/12/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Filippo Baldacci
- Department of Clinical and Experimental Medicine University of Pisa Pisa Italy
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS Institut du cerveau et de la moelle (ICM) Département de Neurologie Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) Hôpital Pitié‐Salpêtrière Boulevard de l'hôpital Paris France
| | - Nicola Toschi
- Faculty of Medicine, Department of Biomedicine and Prevention University of Rome Tor Vergata Rome Italy
- Department of Radiology Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - Simone Lista
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS Institut du cerveau et de la moelle (ICM) Département de Neurologie Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) Hôpital Pitié‐Salpêtrière Boulevard de l'hôpital Paris France
- AXA Research Fund & UPMC Chair Paris France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Molecular Neuroscience UCL Institute of Neurology London UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
| | - Ingo Kilimann
- Department of Psychosomatic Medicine University of Rostock and DZNE Rostock Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine University of Rostock and DZNE Rostock Germany
| | - Enrica Cavedo
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS Institut du cerveau et de la moelle (ICM) Département de Neurologie Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) Hôpital Pitié‐Salpêtrière Boulevard de l'hôpital Paris France
- AXA Research Fund & UPMC Chair Paris France
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia Italy
| | - Antonio Melo Santos
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS Institut du cerveau et de la moelle (ICM) Département de Neurologie Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) Hôpital Pitié‐Salpêtrière Boulevard de l'hôpital Paris France
| | - Stéphane Epelbaum
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS Institut du cerveau et de la moelle (ICM) Département de Neurologie Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) Hôpital Pitié‐Salpêtrière Boulevard de l'hôpital Paris France
| | - Foudil Lamari
- AP‐HP, UF Biochimie des Maladies Neuro‐métaboliques, Service de Biochimie Métabolique Groupe Hospitalier Pitié‐Salpêtrière Paris France
| | - Bruno Dubois
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS Institut du cerveau et de la moelle (ICM) Département de Neurologie Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) Hôpital Pitié‐Salpêtrière Boulevard de l'hôpital Paris France
| | - Roberto Floris
- Faculty of Medicine, Department of Biomedicine and Prevention University of Rome Tor Vergata Rome Italy
| | - Francesco Garaci
- Faculty of Medicine, Department of Biomedicine and Prevention University of Rome Tor Vergata Rome Italy
- Casa di Cura “San Raffaele Cassino” Cassino Frosinone Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine University of Pisa Pisa Italy
| | - Harald Hampel
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS Institut du cerveau et de la moelle (ICM) Département de Neurologie Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) Hôpital Pitié‐Salpêtrière Boulevard de l'hôpital Paris France
- AXA Research Fund & UPMC Chair Paris France
| |
Collapse
|