51
|
Sompornpailin D, Ratanatawanate C, Chantanavorakunchai N, Punyapalakul P. Effects of electrolytes and fractionated dissolved organic matter on selective adsorption of pharmaceuticals on terephthalic acid-based metal-organic frameworks. ENVIRONMENTAL RESEARCH 2021; 196:110335. [PMID: 33075356 DOI: 10.1016/j.envres.2020.110335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the synergetic effects of coexisting electrolytes and dissolved organic matter (DOM) on Carbamazepine (CBZ) and Ciprofloxacin (CIP) adsorption on the 1D flexible structure of MIL-53(Al) and 3D rigid structure of UiO-66(Zr). The effects of electrolytes on the adsorption of CBZ and CIP on 1D flexible framework of MIL-53(Al) were more significant than those observed from the 3D framework of UiO-66(Zr). The presence of sulfate, nitrate, and phosphate anions indicates high potential to promote the adsorption of CBZ and CIP onto MIL-53(Al) and UiO-66(Zr) because of the decrease of solubility and strengthening of electrostatic interactions by substitution of oxo-anions at the metal complex node via covalent bonding. The lower hydration energy of the potassium ion enhanced CBZ adsorption on MIL-53(Al), while the higher hydration energy of calcium and magnesium ions reduced the adsorption capacity of CBZ and CIP on MIL-53(Al) and UiO-66(Zr). CBZ interacted with fractionated humic acid better than CIP. High-density carboxylic and aromatic functional groups on humic acid ensured that only humic acid larger than 1KDa was adsorbed by MIL-53(Al). Tryptophan-like and humic acid-like DOM were both detected in real hospital effluent, and their effects on CIP and CBZ adsorption onto MIL-53(Al) were investigated. The presence of tryptophan did not affect CBZ adsorption on MIL-53(Al) (except when coexisting with calcium ions). Conversely, tryptophan interfered with CIP adsorption. The presence of humic acid lower than 1KDa promoted the adsorption of CBZ and CIP by increasing the breathing effect of MIL-53(Al)'s 1D flexible framework. The presence of humic acid with molecular size greater than 1KDa enhanced both CBZ and CIP adsorption via a multilayer adsorption mechanism.
Collapse
Affiliation(s)
- Dujduan Sompornpailin
- International Postgraduate Programs in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chalita Ratanatawanate
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand; Research Network of NANOTEC - CU on Environment, Bangkok, 10330, Thailand
| | | | - Patiparn Punyapalakul
- Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok, 10330, Thailand; Research Network of NANOTEC - CU on Environment, Bangkok, 10330, Thailand.
| |
Collapse
|
52
|
The Effect of the Oleophobicity Deterioration of a Membrane Surface on Its Rejection Capacity: A Computational Fluid Dynamics Study. MEMBRANES 2021; 11:membranes11040253. [PMID: 33807347 PMCID: PMC8065469 DOI: 10.3390/membranes11040253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022]
Abstract
In this work, the effects of the deteriorating affinity-related properties of membranes due to leaching and erosion on their rejection capacity were studied via computational fluid dynamics (CFD). The function of affinity-enhancing agents is to modify the wettability state of the surface of a membrane for dispersed droplets. The wettability conditions can be identified by the contact angle a droplet makes with the surface of the membrane upon pinning. For the filtration of fluid emulsions, it is generally required that the surface of the membrane is nonwetting for the dispersed droplets such that the interfaces that are formed at the pore openings provide the membrane with a criterion for the rejection of dispersals. Since materials that make up the membrane do not necessarily possess the required affinity, it is customary to change it by adding affinity-enhancing agents to the base material forming the membrane. The bonding and stability of these materials can be compromised during the lifespan of a membrane due to leaching and erosion (in crossflow filtration), leading to a deterioration of the rejection capacity of the membrane. In order to investigate how a decrease in the contact angle can lead to the permeation of droplets that would otherwise get rejected, a CFD study was conducted. In the CFD study, a droplet was released in a crossflow field that involved a pore opening and the contact angle was considered to decrease with time as a consequence of the leaching of affinity-enhancing agents. The CFD analysis revealed that the decrease in the contact angle resulted in the droplet spreading over the surface more. Furthermore, the interface that was formed at the entrance of the pore opening flattened as the contact angle decreased, leading the interface to advance more inside the pore. The droplet continued to pass over the pore opening until the contact angle reached a certain value, at which point, the droplet became pinned at the pore opening.
Collapse
|
53
|
Chen M, Li S, Jin C, Shao M, Huang Z, Xie X. Removal of metal-cyanide complexes and recovery of Pt(II) and Pd(II) from wastewater using an alkali-tolerant metal-organic resin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124315. [PMID: 33131943 DOI: 10.1016/j.jhazmat.2020.124315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Metal-cyanide complexes are hazardous and toxic pollutants that can accumulate in organisms, and their natural degradation is difficult. These complexes are primarily present in alkaline wastewater effluents, and an effective technique for their removal must be developed. Herein, we have successfully synthesized a novel quaternary ammonium-functionalized Zr4+ metal-organic resin (MOR) (H16[Zr6O16(MPATP)4]Cl8·xH2O, MPATP = 2-((1-methylpyridin-1-ium-2-ylmethyl)amino)-terephthalic acid), which we refer to as MOR-2-QAS. With alkali resistance, high surface area, and high anion exchange capacity, it acts by introducing positively charged pyridine into the organic ligand. The experimental results indicate that MOR-2-QAS becomes rapidly attached and efficiently removes Pt(CN)42-, Pd(CN)42-, Co(CN)63-, and Fe(CN)63-. Valuable metals (Pt(II) and Pd(II)) can be effectively recovered from the simulated wastewater containing four-component cyanide complexes via the two-step elution process. The recovery efficiency of Pt(II) and Pd(II) was higher than 90.0% after three adsorption-desorption cycles. The adsorption mechanism, which proceeded via ionic association (ion-exchange) and complied with the minimum surface charge density experiential principle, was confirmed using density functional theory. This study provides ideas for developing efficient and stable MORs to enable the simultaneous removal of multiple metal-cyanide complexes and recovery of valuable metals.
Collapse
Affiliation(s)
- Muhan Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Shunling Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Ci Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Min Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhangjie Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Xiaoguang Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
54
|
Zhao J, Xu L, Su Y, Yu H, Liu H, Qian S, Zheng W, Zhao Y. Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption. J Environ Sci (China) 2021; 101:177-188. [PMID: 33334514 DOI: 10.1016/j.jes.2020.08.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have attracted widespread attention due to their high specific surface area, high porosity, abundant metal active sites and excellent hydrothermal stability. However, Zr-MOFs materials are mostly powdery in nature and thus difficult to separate from aqueous media, which limits their application in wastewater treatment. In this study, PDA/Zr-MOFs/PU foam was constructed by growing Zr-MOFs nanoparticles on a dopamine-modified polyurethane foam substrate by in-situ hydrothermal synthesis as an adsorbent for removing dyes from wastewater. The results demonstrated that the polydopamine coating improves the dispersion of the Zr-MOFs nanoparticles on the substrate and enhances the interaction between the Zr-MOFs nanoparticles and the PU foam substrate. As a result, compared with Zr-MOFs/PU foam, the prepared PDA/Zr-MOFs/PU foam exhibits higher adsorption capacity for crystal violet (CV) (63.38 mg/g) and rhodamine B (RB) (67.73 mg/g), with maximum adsorption efficiencies of CV and RB of 98.4% (pH=11) and 93.5% (pH=7), respectively, at a concentration of 10 mg/L. The PDA/Zr-MOFs/PU foam can simultaneously remove CV and RB from the mixed solution. Moreover, the PDA/Zr-MOFs/PU foam still exhibits high stability and reusability after five cycles.
Collapse
Affiliation(s)
- Jingjing Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Linqiong Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yaozhuo Su
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hongwei Yu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hui Liu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shaoping Qian
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wenge Zheng
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yongqing Zhao
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
55
|
Mofradi M, Karimi H, Dashtian K, Ghaedi M. Processing Guar Gum into polyester fabric based promising mixed matrix membrane for water treatment. Carbohydr Polym 2021; 254:116806. [PMID: 33357837 DOI: 10.1016/j.carbpol.2020.116806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
A reactive and mechano-chemically stable support was prepared from Ag-nanoparticles decorated polyester fabric which was subsequently coated by a casting solution containing polyvinylidene fluoride matrix, guar gum (GG) exo-polysaccharide hydrophilic agent, and UiO-66 filler. FE-SEM, XRD, FT-IR, water contact angle technique, and mechanical stability tests were applied to characterize the prepared membranes. The water contact angle measurements indicated the hydrophilicity of the prepared membrane which can be attributed to the nature of bio-GG and UiO-66. The prepared membrane was employed for purifying contaminated waters containing N-cetyl-N,N,N-trimethylammonium bromide (CTAB) and congo-red (CR) dye through a cross-module set-up. The central composite design was also exploited to study the effect of operational parameters such as CTAB and CR concentration, pH solution, and pressure on the removal efficiency. Particularly, the bio-based GG/UiO-66 dispersion showed excellent self-healing properties, which enabled an effective pollutant separation ability and facilitated the recyclability/sustainability of the as-prepared membrane.
Collapse
Affiliation(s)
- Marziyeh Mofradi
- Chemical Engineering Department, Yasouj University, Yasouj, Iran
| | - Hajir Karimi
- Chemical Engineering Department, Yasouj University, Yasouj, Iran.
| | | | | |
Collapse
|
56
|
Imanipoor J, Ghafelebashi A, Mohammadi M, Dinari M, Ehsani MR. Fast and effective adsorption of amoxicillin from aqueous solutions by L-methionine modified montmorillonite K10. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
57
|
Jia X, Zhang B, Chen C, Fu X, Huang Q. Immobilization of chitosan grafted carboxylic Zr-MOF to porous starch for sulfanilamide adsorption. Carbohydr Polym 2021; 253:117305. [DOI: 10.1016/j.carbpol.2020.117305] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/04/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
|
58
|
Xia J, Gao Y, Yu G. Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: Adsorption isotherm, kinetic and mechanism studies. J Colloid Interface Sci 2021; 590:495-505. [PMID: 33567374 DOI: 10.1016/j.jcis.2021.01.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/30/2020] [Accepted: 01/16/2021] [Indexed: 11/25/2022]
Abstract
The adsorptive removal of tetracycline (TC) was studied with three types of zirconium-based metal-organic frameworks (Zr-MOFs), UiO-66, NU-1000 and MOF-525. The adsorption kinetics best fitted with the pseudo-second-order kinetic model and the adsorption equilibrium was rapidly reached within 40 min on UiO-66 and NU-1000, and 120 min on MOF-525. The adsorption isotherms best fitted with Sips model, and the maximum Sips adsorption capacities of TC on UiO-66, NU-1000 and MOF-525 were 145 mg·g-1, 356 mg·g-1 and 807 mg·g-1 respectively, which were much higher than common adsorbents. The X-ray photoelectron spectra measurements and the influence of pH suggested that the π-π interaction played a crucial role during the adsorption. Pore characteristics and topology of MOFs showed great effect on adsorption performance. The cages whose size match well with TC helped MOF-525 to get highest adsorption amount per surface area among MOFs we studied. The proper topology of NU-1000 contributed to its high adsorption rate. River water was also used to confirm the excellent adsorptive performance of these three Zr-MOFs in practical application. These results might aid us to comprehend the adsorption of TC on Zr-MOFs and expand the application of Zr-MOFs in water treatment for removal of emerging contaminants.
Collapse
Affiliation(s)
- Jing Xia
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, PR China.
| | - Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China.
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
59
|
Ahmadijokani F, Tajahmadi S, Rezakazemi M, Sehat AA, Molavi H, Aminabhavi TM, Arjmand M. Aluminum-based metal-organic frameworks for adsorptive removal of anti-cancer (methotrexate) drug from aqueous solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111448. [PMID: 33254841 DOI: 10.1016/j.jenvman.2020.111448] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 05/16/2023]
Abstract
A series of metal-organic frameworks (MOFs) based on aluminum-benzene dicarboxylates (MIL-53, NH2-MIL-53, and NH2-MIL-101) at different ratios have been synthesized, and their adsorption performances for methotrexate (MTX), an anti-cancer drug, have been investigated in terms of adsorption kinetics, isotherms, solution pH, thermodynamics, mechanism, and recyclability. Maximum adsorption values of 374.97, 387.82, and 457.69 mg/g were observed for MIL-53, NH2-MIL-53, and NH2-MIL-101 , respectively. Our study shows that adsorption capacity of MTX depends not only on surface area and pore volume but also on the zeta potential and the presence of suitable functional groups. Higher adsorption of NH2-MIL-101 observed for MTX than the other synthesized MOFs may be attributed to its large surface area, large total pore volume, high positive zeta potential, and polar amino functional groups located on its surface, which are responsible for its increased interactions with MTX molecules. Adsorption isotherms and kinetics of MTX onto NH2-MIL-101 followed the Langmuir and pseudo-second-order kinetic equations. Thermodynamic data suggest that adsorption of MTX onto NH2-MIL-101 is spontaneous and exothermic, while the adsorption mechanism is governed by electrostatic interactions, π-π stacking interactions, and H-bonding. Regeneration and recyclability of NH2-MIL-101 were also investigated by washing with ethanol to observe its decreased adsorption performance towards MTX. It was slightly decreased after seven adsorption-desorption cycles, indicating excellent regeneration and good structural stability under the chosen experimental conditions.
Collapse
Affiliation(s)
- Farhad Ahmadijokani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Akbari Sehat
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, Soniya College of Pharmacy, Dharwad, 580-007, India.
| | - Mohammad Arjmand
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
60
|
Machabaphala KM, Hlekelele L, Dlamini LN. The photoreduction of selenite and selenate on the surface of few layer black phosphorus and a UiO-66 p–n junction heterostructure. NEW J CHEM 2021. [DOI: 10.1039/d1nj01056e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synthesis and characterization of a type-II heterojunction consisting of UiO-66 and few-layer black phosphorus with superior selenium oxyanion photo-reduction efficiency.
Collapse
Affiliation(s)
| | - Lerato Hlekelele
- Polymers and Composites
- Materials Science and Manufacturing
- Council for Scientific and Industrial Research
- Pretoria
- South Africa
| | | |
Collapse
|
61
|
Huang L, Shen R, Shuai Q. Adsorptive removal of pharmaceuticals from water using metal-organic frameworks: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111389. [PMID: 33069144 DOI: 10.1016/j.jenvman.2020.111389] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 05/12/2023]
Abstract
Pharmaceutical pollution has emerged as a highly concerned issue due to its adverse effects. Elevated concentrations of pharmaceuticals in water should be regulated to satisfy the requirement for the provision of clean water. Metal-organic frameworks (MOFs) with high specific surface area, controllable porous structure, and facile modification can serve as promising adsorbents for the removal of pharmaceutical contaminants from water. In this review, a selected collection illustrating the reliable strategies and concepts to prepare the MOFs-based materials with superior water stability is described. In addition, recent progress on the adsorptive removal of pharmaceutical pollutant using burgeoning and functional MOFs is also summarized in terms of maximum capacity, equilibrium time, and regenerate ability. Meanwhile, to understand the adsorption mechanism, related interactions including coordination with unsaturated site, pore-filling effect, hydrogen bonding, electrostatic, and π-π stacking are further discussed. Finally, critical perspectives/assessment of future research emphasising on fabricating desirable MOFs and establishing structure-property relationships to facilitate capture performance are identified.
Collapse
Affiliation(s)
- Lijin Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan, 430074, PR China.
| | - Rujia Shen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan, 430074, PR China
| | - Qin Shuai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan, 430074, PR China.
| |
Collapse
|
62
|
Jin E, Lee S, Kang E, Kim Y, Choe W. Metal-organic frameworks as advanced adsorbents for pharmaceutical and personal care products. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213526] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
63
|
Xu Y, Wang H, Li X, Zeng X, Du Z, Cao J, Jiang W. Metal-organic framework for the extraction and detection of pesticides from food commodities. Compr Rev Food Sci Food Saf 2020; 20:1009-1035. [PMID: 33443797 DOI: 10.1111/1541-4337.12675] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Pesticide residues in food matrices, threatening the survival and development of humanity, is one of the critical challenges worldwide. Metal-organic frameworks (MOFs) possess excellent properties, which include excellent adsorption capacity, tailorable shape and size, hierarchical structure, numerous surface-active sites, high specific surface areas, high chemical stabilities, and ease of modification and functionalization. These promising properties render MOFs as advantageous porous materials for the extraction and detection of pesticides in food samples. This review is based on a brief introduction of MOFs and highlights recent advances in pesticide extraction and detection through MOFs. Furthermore, the challenges and prospects in this field are also described.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Hui Wang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xiangquan Zeng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Zhenjiao Du
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
64
|
Hassan MH, Stanton R, Secora J, Trivedi DJ, Andreescu S. Ultrafast Removal of Phosphate from Eutrophic Waters Using a Cerium-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52788-52796. [PMID: 33198461 DOI: 10.1021/acsami.0c16477] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phosphate removal has become a critical need to mitigate the negative effect of water eutrophication, which is responsible for the overgrowth of toxic algal blooms and the significant ecological harm generated to aquatic ecosystems. However, some of the currently available adsorbents have low removal capacity and function optimally at specific pH ranges. Here, we present an example of a cerium-based metal-organic framework (MOF) as a high-capacity sorbent for phosphate removal from eutrophic waters. Specifically, a Ce(IV)-based UiO-66 analogue, Ce 1,4-benzenedicarboxylate (Ce-BDC), was selected due to its water stability, high surface area, microporous structure, and the high binding affinity of phosphate with its open metal sites. Mechanistic studies supported by density functional theory (DFT) calculations indicate the formation of a Ce-O-P bond through ion exchange between the terminal (nonbridging) hydroxyl groups at the missing linker sites and the phosphate adducts. Experimental results demonstrate that Ce-BDC is highly selective for phosphates over other common anions (Cl-, Br-, I-, NO3-, HCO3-, SO42-) and stable in a broad pH range of (2-12), covering the relevant range for the treatment of contaminants in aquatic systems. The sorbent shows a fast removal rate, capturing significant amounts of phosphate within 4 min with a maximum adsorption capacity of 179 mg·g-1, outperforming other porous materials. These results show a remarkable adsorption capacity and fast kinetics compared with the current state-of-the-art crystalline porous materials. This study may advance the design of new microporous materials with high adsorption capabilities, good stability, and make a significant contribution to the development of future generation technology to mitigate the negative effects of water eutrophication.
Collapse
Affiliation(s)
- Mohamed H Hassan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Robert Stanton
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Jeremy Secora
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Dhara J Trivedi
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
65
|
Zango ZU, Jumbri K, Sambudi NS, Ramli A, Abu Bakar NHH, Saad B, Rozaini MNH, Isiyaka HA, Jagaba AH, Aldaghri O, Sulieman A. A Critical Review on Metal-Organic Frameworks and Their Composites as Advanced Materials for Adsorption and Photocatalytic Degradation of Emerging Organic Pollutants from Wastewater. Polymers (Basel) 2020; 12:E2648. [PMID: 33182825 PMCID: PMC7698011 DOI: 10.3390/polym12112648] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022] Open
Abstract
Water-borne emerging pollutants are among the greatest concern of our modern society. Many of these pollutants are categorized as endocrine disruptors due to their environmental toxicities. They are harmful to humans, aquatic animals, and plants, to the larger extent, destroying the ecosystem. Thus, effective environmental remediations of these pollutants became necessary. Among the various remediation techniques, adsorption and photocatalytic degradation have been single out as the most promising. This review is devoted to the compilations and analysis of the role of metal-organic frameworks (MOFs) and their composites as potential materials for such applications. Emerging organic pollutants, like dyes, herbicides, pesticides, pharmaceutical products, phenols, polycyclic aromatic hydrocarbons, and perfluorinated alkyl substances, have been extensively studied. Important parameters that affect these processes, such as surface area, bandgap, percentage removal, equilibrium time, adsorption capacity, and recyclability, are documented. Finally, we paint the current scenario and challenges that need to be addressed for MOFs and their composites to be exploited for commercial applications.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
- Chemistry Department, Al-Qalam University Katsina, Katsina 2137, Nigeria
| | - Khairulazhar Jumbri
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Nonni Soraya Sambudi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Anita Ramli
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | | | - Bahruddin Saad
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Muhammad Nur’ Hafiz Rozaini
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Hamza Ahmad Isiyaka
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Ahmad Hussaini Jagaba
- Civil Engineering Department, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria;
| | - Osamah Aldaghri
- Physics Department, College of Science, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abduaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|
66
|
Kabtamu DM, Wu YN, Li F. Hierarchically porous metal-organic frameworks: synthesis strategies, structure(s), and emerging applications in decontamination. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122765. [PMID: 32438242 DOI: 10.1016/j.jhazmat.2020.122765] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) with high porosity have received much attention as promising materials for many applications owing to their unique properties. However, to date, most of the reported MOFs have microporous structures, which slow down diffusion/mass transfer and limit the accessibility of bulky molecules to its internal surface. Thus, it is crucial to develop an efficient way to create larger pores (mesoporous and/or macroporous) into microporous MOFs to form hierarchical porous metal-organic frameworks (HP-MOFs), which facilitate the diffusion and mass transfer of guest molecules. HP-MOFs are excellent and promising candidates for environmental applications under the background of environmental contaminations. In this review paper, we are primarily focusing on the latest progress in the preparation of HP-MOFs by employing template-assisted and template-free synthetic approaches for environmental cleaning applications. Particularly, the adsorptive purification of the most common toxic substances, including gases, dyes, heavy metal ions, and antibiotics from the environment using HP-MOFs as adsorbents is briefly discussed. The overall results clearly showed that the superiority of HP-MOFs compared with conventional microporous MOFs. Finally, we summarize the remaining challenges and provide personal perspectives on possible future development of HP-MOFs.
Collapse
Affiliation(s)
- Daniel Manaye Kabtamu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Department of Chemistry, Debre Berhan University, Po. Box: 445, Debre Berhan, Ethiopia
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Fengting Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
67
|
Wang W, Saeed A, He J, Wang Z, Zhan D, Li Z, Wang C, Sun Y, Tao F, Xu W. Bio-inspired porous helical carbon fibers with ultrahigh specific surface area for super-efficient removal of sulfamethoxazole from water. J Colloid Interface Sci 2020; 578:304-314. [DOI: 10.1016/j.jcis.2020.05.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022]
|
68
|
Chao Y, Tang B, Luo J, Wu P, Tao D, Chang H, Chu X, Huang Y, Li H, Zhu W. Hierarchical porous boron nitride with boron vacancies for improved adsorption performance to antibiotics. J Colloid Interface Sci 2020; 584:154-163. [PMID: 33069015 DOI: 10.1016/j.jcis.2020.09.075] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Designing atomically defective adsorbents with high specific surface area has emerged as a promising approach to improve sorption properties. Herein, hierarchical porous boron nitride nanosheets with boron vacancies (Bv-BNNSs) were in-situ synthesized via a one-step ZnCl2-assisted strategy. Being benefitted from the dual-functional template of zinc salt, highly-active boron vacancies and abundant hierarchical pores were simultaneously generated in the Bv-BNNSs framework. By employing the boron vacancies engineering strategy, the morphological and electronic structures were controllably tuned. Meanwhile, the specific surface area was improved to as high as 1104 m2/g. Owning to the abundance of accessible surface active-sites, the sorption capacity to antibiotic tetracycline (TC) on Bv-BNNSs was boosted by 38% compared to the pristine boron nitride nanosheets (BNNSs). Detailed fitting results showed that TC sorption on Bv-BNNSs obeyed the pseudo-second order kinetic equation and the Freundlich isotherm model. The pi - pi interaction with a multi-layered stacking form was proposed as the dominated sorption mechanism. Furthermore, DFT calculations verified that the interaction energy between Bv-BNNSs and TC was enhanced. The high activity, excellent selectivity, and remarkable durability of the Bv-BNNSs nanomaterial suggest the great potential in practical wastewater treatment.
Collapse
Affiliation(s)
- Yanhong Chao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Baichuan Tang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Peiwen Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Duanjian Tao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Honghong Chang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaozhong Chu
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, PR China
| | - Yan Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongping Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
69
|
Jarai BM, Stillman Z, Attia L, Decker GE, Bloch ED, Fromen CA. Evaluating UiO-66 Metal-Organic Framework Nanoparticles as Acid-Sensitive Carriers for Pulmonary Drug Delivery Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38989-39004. [PMID: 32805901 PMCID: PMC7719435 DOI: 10.1021/acsami.0c10900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Developing novel drug carriers for pulmonary delivery is necessary to achieve higher efficacy and consistency for treating pulmonary diseases while limiting off-target side effects that occur from alternative routes of administration. Metal-organic frameworks (MOFs) have recently emerged as a class of materials with characteristics well-suited for pulmonary drug delivery, with chemical tunability, high surface area, and pore size, which will allow for efficient loading of therapeutic cargo and deep lung penetration. UiO-66, a zirconium and terephthalic acid-based MOF, has displayed notable chemical and physical stability and potential biocompatibility; however, its feasibility for use as a pulmonary drug delivery vehicle has yet to be examined. Here, we evaluate the use of UiO-66 nanoparticles (NPs) as novel pulmonary drug delivery vehicles and assess the role of missing linker defects in their utility for this application. We determined that missing linker defects result in differences in NP aerodynamics but have minimal effects on the loading of model and therapeutic cargo, cargo release, biocompatibility, or biodistribution. This is a critical result, as it indicates the robust consistency of UiO-66, a critical feature for pulmonary drug delivery, which is plagued by inconsistent dosage because of variable properties. Not only that, but UiO-66 NPs also demonstrate pH-dependent stability, with resistance to degradation in extracellular conditions and breakdown in intracellular environments. Furthermore, the carriers exhibit high biocompatibility and low cytotoxicity in vitro and are well-tolerated in in vivo murine evaluations of orotracheally administered NPs. Following pulmonary delivery, UiO-66 NPs remain localized to the lungs before clearance over the course of seven days. Our results demonstrate the feasibility of using UiO-66 NPs as a novel platform for pulmonary drug delivery through their tunable NP properties, which allow for controlled aerodynamics and internalization-dependent cargo release while displaying remarkable pulmonary biocompatibility.
Collapse
Affiliation(s)
- Bader M. Jarai
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Lucas Attia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Gerald E. Decker
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- corresponding author. Catherine A. Fromen, PhD, , 150 Academy St., Newark, DE 19716, (302) 831-3649
| |
Collapse
|
70
|
Liu L, Cui W, Lu C, Zain A, Zhang W, Shen G, Hu S, Qian X. Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: Functional groups dependence of adsorption performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110630. [PMID: 32510425 DOI: 10.1016/j.jenvman.2020.110630] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, four functional Zr-MOFs (UiO-66-H, -NH2, -NO2, -Cl) were prepared, characterized (FESEM, XRD, BET, XPS, FT-IR) and compared to remove low-concentration Amoxicillin (AMX) from water. Then UiO-66-NH2 was selected for further experiments due to its highest adsorption capacity (2.3 ± 0.4 mg g-1). The adsorption process followed pseudo-second order, Langmuir and Freundlich models. With pH increasing, deprotonation of functional groups in UiO-66-NH2 and AMX made adsorption interactions variable. The obvious spectra shift of FT-IR/XPS indicated that Lewis acid-base interaction was the main adsorption impetus; meanwhile hydrogen bonding interaction and π-π/n-π (electron-donator-acceptor) EDA interaction should be included. For Lewis acid-base interaction, the strength was controlled by percentage of amine group in UiO-66-NH2, mainly interacting with phenolic hydroxyl group in AMX. Due to changes in charge distribution of functional groups, there existed six kinds of π-π/n-π EDA interactions and thirteen types of hydrogen/π-hydrogen bonding interactions. Additionally, electrostatic interaction and molecular attraction also contributed to the AMX adsorption. Conclusively, analysis of functional groups interactions could help to comprehend adsorption mechanisms more profoundly and exploit functional adsorbents more efficiently.
Collapse
Affiliation(s)
- Lin Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wei Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cong Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shangtex Architectural Design Research Institute, Shanghai 200060, China, Shanghai, 200233, China.
| | - Abbas Zain
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Xiaoyong Qian
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| |
Collapse
|
71
|
Wu G, Ma J, Li S, Wang S, Jiang B, Luo S, Li J, Wang X, Guan Y, Chen L. Cationic metal-organic frameworks as an efficient adsorbent for the removal of 2,4-dichlorophenoxyacetic acid from aqueous solutions. ENVIRONMENTAL RESEARCH 2020; 186:109542. [PMID: 32353788 DOI: 10.1016/j.envres.2020.109542] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 05/19/2023]
Abstract
Metal-organic frameworks (MOFs) material with high surface area, good chemical stability and multi-functionality, has become an emerging adsorbent for water treatment. A novel kind of quaternary amine anionic-exchange MOFs UiO-66 namely UiO-66-NMe3+ was firstly synthesized for adsorptive removal of a widely used toxic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solutions. The well-prepared UiO-66-NMe3+ MOFs were fully characterized, and then the main parameters affecting the adsorption process including solution pH, adsorbent dosage and coexisting anions were systematically investigated. The maximum adsorption capacity of UiO-66-NMe3+ toward 2,4-D reached as high as 279 mg g-1, much higher than that of pristine UiO-66 and aminated UiO-66. The adsorption mechanism could be attributed to the electrostatic interactions efficiently enhanced by the functionalization of quaternary amine groups, combining with the π-π conjugations between the linkers in MOFs and 2,4-D molecules, leading to the better adsorption performance of UiO-66-NMe3+. Additionally, the UiO-66-NMe3+ could be well regenerated by simple solvent washing and exhibited a slight decline of adsorption capacity after seven successive recycle. Furthermore, satisfactory adsorption capacity and reusability of the MOFs in environmental water samples were attained. Comparing with reported activated carbon and resin materials, the UiO-66-NMe3+ MOFs possessed higher adsorption capacity and shorter equilibrium time, as well as good reusability and practicality. The developed ion-exchange functionalized MOFs provided an ideal alternative for efficient adsorptive-removal of 2,4-D from complicated aqueous environment.
Collapse
Affiliation(s)
- Gege Wu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| | - Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Shasha Wang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Bo Jiang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Siyi Luo
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yafeng Guan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
72
|
Sompornpailin D, Ratanatawanate C, Sattayanon C, Namuangruk S, Punyapalakul P. Selective adsorption mechanisms of pharmaceuticals on benzene-1,4-dicarboxylic acid-based MOFs: Effects of a flexible framework, adsorptive interactions and the DFT study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137449. [PMID: 32135284 DOI: 10.1016/j.scitotenv.2020.137449] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The synergetic effects of benzene-1,4-dicarboxylic acid (BDC) linker structure and the metal cluster of MOFs on adsorption mechanisms of carbamazepine, ciprofloxacin and mefenamic acid were investigated in single and mixed solutions. A 1D flexible framework MIL-53(Al), 3D rigid framework UiO-66(Zr) and 3D flexible framework MIL-88B(Fe) were applied as adsorbents. The breathing effect of MIL-53(Al) caused by its flexible structure can enhance intraparticle diffusion for all pharmaceuticals and perform a critical role in excellent adsorption performances. The 3D rigid BDC structure of UiO-66(Zr) caused a steric effect that reflected low or negligible adsorption. Unless concerning accessibility through the internal structure of the MOFs, the binding strengths calculated by the DFT study were in the following order: MIL-88B(Fe) > MIL-53(Al) > UiO-66(Zr). The Fe cluster in MIL-88B(Fe) seems to have the highest affinity for the carboxylic group of pharmaceuticals compared with Al and Zr; however, the lower porosity of MIL-88B(Fe) might limit the adsorption capacity. Moreover, in mixed solutions, the higher acidity of mefenamic acid can enhance competitive performance in interactions with the metal cation cluster of each MOF. Together with the breathing effect, H-bonding and π-π interaction were shown to be the alternative interactions of synergetic adsorption mechanisms.
Collapse
Affiliation(s)
- Dujduan Sompornpailin
- International Postgraduate Programs in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalita Ratanatawanate
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.; Research Network of NANOTEC - CU on Environment, Bangkok 10330, Thailand
| | - Chanchai Sattayanon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Patiparn Punyapalakul
- Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok 10330, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Research unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330, Thailand; Research Network of NANOTEC - CU on Environment, Bangkok 10330, Thailand.
| |
Collapse
|
73
|
Chang Z, Li F, Qi X, Jiang B, Kou J, Sun C. Selective and efficient adsorption of Au (III) in aqueous solution by Zr-based metal-organic frameworks (MOFs): An unconventional way for gold recycling. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122175. [PMID: 32045802 DOI: 10.1016/j.jhazmat.2020.122175] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Recycling precious metals from secondary resources is of great environmental and economic significance. In this study, the Zr-based MOFs UiO-66-NH2 was synthesized and used to adsorb Au (III) in aqueous solution. The ultrafine particle size (∼50 nm), excellent crystallinity and huge specific surface area (1039.2 m2 ·g-1) were verified by transmission electron microscope (TEM), powder X-ray diffraction (PXRD) and surface area analysis. About 50 % Au (III) was adsorbed within 6 min and the maximum adsorption capacity at 298 K reached up to 650 mg·g-1, showing superiority to traditional adsorbents. The general order kinetics model and Liu equation were suitable to describe the adsorption process, which was spontaneous, endothermic and driven by the increasing system entropy. Electrostatic attraction between -NH3+ and Au (III) anions and inner complexation to Zr-OH played a vital role in adsorption. Au (Ⅲ) was reduced to Au° by amino groups via redox reaction certified by X-ray photoelectron spectroscopy (XPS), PXRD and high-resolution transmission electron microscopy (HRTEM) analysis. Moreover, UiO-66-NH2 displayed high selectivity, robust stability and excellent reusability, making it an ideal candidate for gold recycling in industrial practice.
Collapse
Affiliation(s)
- Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Fangxu Li
- Guangdong Institute of Resources Comprehensive Utilization, 363 Changxing Road, Guangzhou, 510650, China; State Key Laboratory of Rare Metals Separation and Comprehensive Utilization, 363 Changxing Road, Guangzhou, 510650, China.
| | - Xiaoyue Qi
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jue Kou
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chunbao Sun
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
74
|
Cheng L, Zhao K, Zhang Q, Li Y, Zhai Q, Chen J, Lou Y. Chiral Proline-Decorated Bifunctional Pd@NH2-UiO-66 Catalysts for Efficient Sequential Suzuki Coupling/Asymmetric Aldol Reactions. Inorg Chem 2020; 59:7991-8001. [DOI: 10.1021/acs.inorgchem.0c00065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lin Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Kaiyuan Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Qingsong Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Yiming Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Qingchao Zhai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| |
Collapse
|
75
|
Zhao L, Zhang Q, Li X, Ye J, Chen J. Adsorption of Cu(II) by phosphogypsum modified with sodium dodecyl benzene sulfonate. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121808. [PMID: 31901841 DOI: 10.1016/j.jhazmat.2019.121808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Phosphogypsum (PG) is a solid waste generated during the wet production of phosphoric acid, and stockpiling PG causes serious pollution to the environment. Therefore, we prepared an adsorption material modified with sodium dodecyl benzene sulfonate (SDBS) based on PG (SDBS@PG). SDBS@PG can be regenerated and used in several adsorption-desorption cycles. The optimum conditions for Cu(II) removal are as follows: the Cu(II) concentration is 10 mg/L, the amount of adsorbent is 1.6 g/L, the pH is 6, and the contact time is 60 min. Under these conditions, the removal rate is 99.23 %. The kinetic data of adsorption conform to the pseudo-second-order model. The equilibrium isotherm results are consistent with the Langmuir isotherm equation. Furthermore, plausible mechanisms were proposed: PG was modified with SDBS, which greatly improved the adsorption of Cu(II) onto PG. The main reason is that SDBS is adsorbed on the surface of PG by chemical action in the form of micelles and then Cu(II) is adsorbed on the anionic SDBS micelles of SDBS@PG due to chemical and electrostatic interactions. This work indicates that SDBS@PG can be used for the removal of Cu(II) and is qualified for practical application.
Collapse
Affiliation(s)
- Lina Zhao
- College of Mining, Guizhou University, Guiyang, 550025, China; National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas, Guiyang, 550025, China; Guizhou Key Laboratory of Comprehensive Utilization of Nonmetallic Mineral Resources, Guiyang, 550025, China
| | - Qin Zhang
- College of Mining, Guizhou University, Guiyang, 550025, China; National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas, Guiyang, 550025, China; Guizhou Key Laboratory of Comprehensive Utilization of Nonmetallic Mineral Resources, Guiyang, 550025, China.
| | - Xianbo Li
- College of Mining, Guizhou University, Guiyang, 550025, China; National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas, Guiyang, 550025, China; Guizhou Key Laboratory of Comprehensive Utilization of Nonmetallic Mineral Resources, Guiyang, 550025, China
| | - Junjian Ye
- College of Mining, Guizhou University, Guiyang, 550025, China; National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas, Guiyang, 550025, China; Guizhou Key Laboratory of Comprehensive Utilization of Nonmetallic Mineral Resources, Guiyang, 550025, China
| | - Jiuyan Chen
- College of Mining, Guizhou University, Guiyang, 550025, China; National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas, Guiyang, 550025, China; Guizhou Key Laboratory of Comprehensive Utilization of Nonmetallic Mineral Resources, Guiyang, 550025, China
| |
Collapse
|
76
|
CO2 and N2 adsorption and separation using aminated UiO-66 and Cu3(BTC)2: A comparative study. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0433-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
77
|
Xie X, Huang S, Zheng J, Ouyang G. Trends in sensitive detection and rapid removal of sulfonamides: A review. J Sep Sci 2020; 43:1634-1652. [PMID: 32043724 DOI: 10.1002/jssc.201901341] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Sulfonamides in environmental water, food, and feed are a major concern for both aquatic ecosystems and public health, because they may lead to the health risk of drug resistance. Thus, numerous sensitive detection and rapid removal methodologies have been established. This review summarizes the sample preparation techniques and instrumental methods used for sensitive detection of sulfonamides. Additionally, adsorption and photocatalysis for the rapid removal of sulfonamides are also discussed. This review provides a comprehensive perspective on future sulfonamide analyses that have good performance, and on the basic methods for the rapid removal of sulfonamides.
Collapse
Affiliation(s)
- Xintong Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
78
|
Duan H, Hu X, Sun Z. Magnetic zeolite imidazole framework material-8 as an effective and recyclable adsorbent for removal of ceftazidime from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121406. [PMID: 31648894 DOI: 10.1016/j.jhazmat.2019.121406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) was synthesized by solvothermal method and the adsorption pore size was adjusted by changing the amount of template agent. The ZIF-8@SiO2@Fe3O4 derived from self-assembly of ZIF-8 and SiO2@Fe3O4 were then synthesized and used for ceftazidime (CAZ) removal. ZIF-8 was a regular dodecahedral particle with uniform particle size. The pore diameter was 6.47 nm and the specific surface area was 1182.5 m²·g-1 in ZIF-8@SiO2@Fe3O4. The adsorption of CAZ on ZIF-8@SiO2@Fe3O4 as a function of adsorption temperature, contact time, ionic strength solution pH, and humic acid concentration were investigated. The error of equilibrium adsorption capacity between model fitting and actual experiments is only 1.19%. Kinetics for CAZ removal on ZIF-8@SiO2@Fe3O4 was found to follow pseudo-second-order kinetics. Langmuir, Freundlich and Sips isotherm fitted the adsorption data well and gave similar correlation coefficients, suggesting a single layer adsorption of CAZ on ZIF-8@SiO2@Fe3O4. The ZIF-8@SiO2@Fe3O4 showed no apparent loss in CAZ adsorption after five cycles. These features indicate that the ZIF-8@SiO2@Fe3O4 may be a promising adsorbent for CAZ removal from aqueous solution.
Collapse
Affiliation(s)
- Hanxiao Duan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiang Hu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhirong Sun
- College of Environmental & Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
79
|
Rojas S, Horcajada P. Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem Rev 2020; 120:8378-8415. [DOI: 10.1021/acs.chemrev.9b00797] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Rojas
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
80
|
Alamgir, Talha K, Wang B, Liu JH, Ullah R, Feng F, Yu J, Chen S, Li JR. Effective adsorption of metronidazole antibiotic from water with a stable Zr(IV)-MOFs: Insights from DFT, kinetics and thermodynamics studies. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:103642. [DOI: 10.1016/j.jece.2019.103642] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
81
|
Xie L, Xu M, Liu X, Zhao M, Li J. Hydrophobic Metal-Organic Frameworks: Assessment, Construction, and Diverse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901758. [PMID: 32099755 PMCID: PMC7029650 DOI: 10.1002/advs.201901758] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/18/2019] [Indexed: 05/28/2023]
Abstract
Tens of thousands of metal-organic frameworks (MOFs) have been developed in the past two decades, and only ≈100 of them have been demonstrated as porous and hydrophobic. These hydrophobic MOFs feature not only a rich structural variety, highly crystalline frameworks, and uniform micropores, but also a low affinity toward water and superior hydrolytic stability, which make them promising adsorbents for diverse applications, including humid CO2 capture, alcohol/water separation, pollutant removal from air or water, substrate-selective catalysis, energy storage, anticorrosion, and self-cleaning. Herein, the recent research advancements in hydrophobic MOFs are presented. The existing techniques for qualitatively or quantitatively assessing the hydrophobicity of MOFs are first introduced. The reported experimental methods for the preparation of hydrophobic MOFs are then categorized. The concept that hydrophobic MOFs normally synthesized from predesigned organic ligands can also be prepared by the postsynthetic modification of the internal pore surface and/or external crystal surface of hydrophilic or less hydrophobic MOFs is highlighted. Finally, an overview of the recent studies on hydrophobic MOFs for various applications is provided and suggests the high versatility of this unique class of materials for practical use as either adsorbents or nanomaterials.
Collapse
Affiliation(s)
- Lin‐Hua Xie
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Ming‐Ming Xu
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Xiao‐Min Liu
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Min‐Jian Zhao
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Jian‐Rong Li
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| |
Collapse
|
82
|
Mendiola-Alvarez SY, Turnes Palomino G, Guzmán-Mar J, Hernández-Ramírez A, Hinojosa-Reyes L, Palomino Cabello C. Magnetic porous carbons derived from cobalt(ii)-based metal–organic frameworks for the solid-phase extraction of sulfonamides. Dalton Trans 2020; 49:8959-8966. [DOI: 10.1039/d0dt01215g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A highly porous magnetic C/Co-SIM-1 carbon obtained via a simple carbonization process as a promising material for the simultaneous extraction of sulfonamides.
Collapse
Affiliation(s)
| | - Gemma Turnes Palomino
- Department of Chemistry
- University of the Balearic Islands
- E-07122 Palma de Mallorca
- Spain
| | - Jorge Guzmán-Mar
- Facultad de Ciencias Químicas
- Universidad Autónoma de Nuevo León
- Nuevo León
- Mexico
| | | | | | | |
Collapse
|
83
|
Porous three-component hybrid hydrogen-bonded covalent organic polymers: Design, synthesis and ciprofloxacin adsorption. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
84
|
Adsorption dynamics and mechanism of Amoxicillin and Sulfachlorpyridazine by ZrOx/porous carbon nanocomposites. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
85
|
Cheng M, Song G, Zhu G, Shi D, Fan J. Reusable ionic liquid‐functionalized polystyrene for the highly efficient removal of sulfadiazine sodium. J Appl Polym Sci 2019. [DOI: 10.1002/app.47981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Meng Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of EducationHenan Normal University Xinxiang Henan 453007 People's Republic of China
- School of Environmental and Municipal EngineeringNorth China University of Water Resources and Electric Power Zhengzhou Henan 450046 People's Republic of China
| | - Gangfu Song
- School of Environmental and Municipal EngineeringNorth China University of Water Resources and Electric Power Zhengzhou Henan 450046 People's Republic of China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of EducationHenan Normal University Xinxiang Henan 453007 People's Republic of China
| | - Dongyang Shi
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of EducationHenan Normal University Xinxiang Henan 453007 People's Republic of China
| | - Jing Fan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of EducationHenan Normal University Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
86
|
Wang X, Yin R, Zeng L, Zhu M. A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:100-110. [PMID: 31306819 DOI: 10.1016/j.envpol.2019.06.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/05/2019] [Accepted: 06/18/2019] [Indexed: 05/29/2023]
Abstract
Antibiotics as emerging pharmaceutical pollutants have seriously not only threatened human life and animal health security, but also caused environmental pollution. It has drawn enormous attention and research interests in the study of antibiotics removal from aqueous environments. Graphene, an interesting one-atom-thick, 2D single-layer carbon sheet with sp2 hybridized carbon atoms, has become an important agent for removal of antibiotic, owing to its unique physiochemical properties. Recently, a variety of graphene-based nanomaterials (GNMs) are reported to efficiently remove antibiotics from aqueous solutions by different technologies. In this review, we summarize different structure and properties of GNMs for the removal of antibiotics by adsorption. Meanwhile, advanced oxidation processes (AOPs), such as photocatalysis, Fenton process, ozonation, sulfate radical and combined AOPs by the aid of GNMs are summarized. Finally, the opportunities and challenges on the future scope of GNMs for removal of antibiotics from aqueous environments are proposed.
Collapse
Affiliation(s)
- Xuandong Wang
- School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Renli Yin
- School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Lixi Zeng
- School of Environment, Jinan University, Guangzhou, 510632, PR China
| | - Mingshan Zhu
- School of Environment, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
87
|
Wang C, Zhang S, Guo F, Ge Y, Wang Y, Li H, Hu J, Liu H. Local Environment Structure in Positively Charged Porous Ionic Polymers for Ultrafast Removal of Sulfonamide Antibiotics. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chenhui Wang
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shenping Zhang
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fangyuan Guo
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu Ge
- Shanghai Institute of Quality Inspection and Technical Research, 381 Cangwu Road, Shanghai 200233, China
| | - Yimeng Wang
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - He Li
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Hu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
88
|
Yang Y, Zheng L, Zhang T, Yu H, Zhan Y, Yang Y, Zeng H, Chen S, Peng D. Adsorption behavior and mechanism of sulfonamides on phosphonic chelating cellulose under different pH effects. BIORESOURCE TECHNOLOGY 2019; 288:121510. [PMID: 31150967 DOI: 10.1016/j.biortech.2019.121510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Phosphonic chelating fiber (PCCSF) as a novel adsorbent was produced through alkalization, etherification, amination and phosphonation, and then it was applied to adsorb sulfonamides (SAs), such as sulfadiazine (SD), sulfamonomethoxine (SMM) and sulfamethoxazole (SMZ). Specially, their adsorption behavior at different pH values was studied. As a result, PCCSF was provided with amino (NH2 or NH) and PO(OH)2 (PO) groups, and its equilibrium data were generally represented by both Langmuir and Freundlich models. Combining adsorbent-to-solution distribution coefficients (Kd) values and the effect of pH, the primary mechanism suggested that adsorption capacity of PCCSF was lower in strong acid and alkali solution, due to the electrostatic repulsion and hydrophobic interactions. By contrast, its adsorption affinity became more excellent at 3 < pH < 9 owing to the π-π electron-donor-acceptor (EDA) charge-assisted H-bond, Lewis acid-base interaction and charge-assisted H-bond (CAHB).
Collapse
Affiliation(s)
- Yuebei Yang
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Liuchun Zheng
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China.
| | - Tao Zhang
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Huajian Yu
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Yiru Zhan
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Yufang Yang
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Hao Zeng
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Shukai Chen
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| |
Collapse
|
89
|
Liu T, Zheng S, Yang L. Magnetic zirconium-based metal–organic frameworks for selective phosphate adsorption from water. J Colloid Interface Sci 2019; 552:134-141. [DOI: 10.1016/j.jcis.2019.05.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
|
90
|
Lv SW, Liu JM, Wang ZH, Ma H, Li CY, Zhao N, Wang S. Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials. J Environ Sci (China) 2019; 80:169-185. [PMID: 30952335 DOI: 10.1016/j.jes.2018.12.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 05/24/2023]
Abstract
Environmental pollution is one of the most serious problems facing mankind today, and has attracted widespread attention worldwide. The burgeoning class of crystalline porous organic framework materials, metal-organic frameworks and covalent organic frameworks present promising application potential in areas related to pollution control due to their interesting surface properties. In this review, the literature of the past five years on the adsorptive removal of various hazardous materials, mainly including heavy metal ions, harmful gases, organic dyes, pharmaceutical and personal care products, and radionuclides from the environment by using COFs and MOFs, is summarized. The adsorption mechanisms are also discussed to help understand their adsorption performance and selectivity. Additionally, some insightful suggestions are given to enhance the performance of MOFs and COFs in the adsorptive removal of various hazardous materials.
Collapse
Affiliation(s)
- Shi-Wen Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhi-Hao Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Hui Ma
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
91
|
Drout RJ, Robison L, Chen Z, Islamoglu T, Farha OK. Zirconium Metal–Organic Frameworks for Organic Pollutant Adsorption. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
92
|
A multifunctional Zn(II)-based four-fold interpenetrated metal-organic framework for highly sensitive sensing 2,4,6-trinitrophenol (TNP), nitrofurazone (NFZ) and nitrofurantoin (NFT). INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
93
|
Chen X, Jiang X, Yin C, Zhang B, Zhang Q. Facile fabrication of hierarchical porous ZIF-8 for enhanced adsorption of antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:194-204. [PMID: 30594720 DOI: 10.1016/j.jhazmat.2018.12.080] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Aiming for improve mass transfer rate of antibiotics adsorption from water, a strategy of building larger pores (>2 nm) in microporous MOFs has been put forward. However, most of reported approaches are complicated and inefficient. Herein, a facile one-spot approach to fabricate hierarchical porous Zeolitic Imidazolate Framework-8 (HpZIF-8) was developed, where poly(diallyldimethylammonium chloride) (PDDA) was selected as structure-directing agent to modulate the growth of microporous ZIF-8 (mZIF-8). The final products with meso- and macropores exhibit hierarchical porosity. The mechanism was a two-step process: First, crystal nucleus aggregated initiated by electrostatic interaction between cationic PDDA and deprotonated 2-MI anions. Second, Ostwald ripening process and orientated growth occurred with further growth of crystals. For removing Tetracycline Hydrochloride (TH) and Chloramphenicol (CP) from water, hierarchical porous HpZIF-8-10(D) (D = 1.0, 1.5, 2.0) showed larger adsorption capacity than mZIF-8-10 despite of decreased BET surface area, which could be attributed to novel hierarchical porous structures. The adsorption kinetics and isotherms of TH and CP by HpZIF-8-10(1.5) were analyzed. The strategy present here may provide new thoughts for designing more abundant MOF structures and further expand their application range.
Collapse
Affiliation(s)
- Xin Chen
- School of Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xue Jiang
- School of Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Changjie Yin
- School of Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Baoliang Zhang
- School of Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qiuyu Zhang
- School of Science, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
94
|
Subudhi S, Mansingh S, Swain G, Behera A, Rath D, Parida K. HPW-Anchored UiO-66 Metal-Organic Framework: A Promising Photocatalyst Effective toward Tetracycline Hydrochloride Degradation and H 2 Evolution via Z-Scheme Charge Dynamics. Inorg Chem 2019; 58:4921-4934. [PMID: 30919619 DOI: 10.1021/acs.inorgchem.8b03544] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The abolition of environmental pollutants and production of hydrogen (H2) from water using a heterogeneous photocatalyst is a demanding science of the current scenario to solve the increasing environmental pollution and worldwide energy catastrophe in modern life. To validate this purpose, the design of low-cost and durable semiconductor-based photocatalysts with great light absorption capacity becomes the most challenging issue for researchers. Regarding this, herein the phosphotungstic acid (HPW)-anchored Zr6O4(OH)4(BDC)6 (UiO-66) metal-organic framework (MOF), i.e., HPW@UiO-66, has been prepared by a hydrothermal method and is efficient, stable, and capable of harvesting solar energy toward the degradation of tetracycline hydrochloride (TCH) and H2 production in the presence of a sacrificial donor. The ionic interaction between HPW and UiO-66 plays a key role toward the photostability and charge-transfer mechanism of the composite and is well characterized with X-ray diffraction, UV diffuse-reflectance spectroscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy. A total of 30 wt % HPW@UiO-66 shows a maximum degradation of about 87.24% of a 20 ppm TCH solution in 60 min of solar-light irradiation and about 353.89 μmol/h of H2 production. The conduction- and valence-band potentials are well characterized with Mott-Schottky measurement and a delay charge recombination process through electrochemical impedance spectroscopy. The proposed mediator-free Z-scheme-oriented electron-hole migration route is well supported by photoluminescence, and the scavenger test well explains the better charge-carrier separation and high catalytic performance of the prepared composite. This research will bestow an advantageous blueprint to fabricate novel and challenging photocatalysts toward the photocatalytic treatment of environmental pollutants and H2 evolution.
Collapse
Affiliation(s)
- Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology , Siksha 'O' Anusnadhan (Deemed to be University) , Bhubaneswar , Odisha 751030 , India
| | - Sriram Mansingh
- Centre for Nano Science and Nanotechnology , Siksha 'O' Anusnadhan (Deemed to be University) , Bhubaneswar , Odisha 751030 , India
| | - Gayatri Swain
- Centre for Nano Science and Nanotechnology , Siksha 'O' Anusnadhan (Deemed to be University) , Bhubaneswar , Odisha 751030 , India
| | - Arjun Behera
- Centre for Nano Science and Nanotechnology , Siksha 'O' Anusnadhan (Deemed to be University) , Bhubaneswar , Odisha 751030 , India
| | - Dharitri Rath
- Department of Chemistry , Rajdhani College , Bhubaneswar , Odisha 751003 , India
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology , Siksha 'O' Anusnadhan (Deemed to be University) , Bhubaneswar , Odisha 751030 , India
| |
Collapse
|
95
|
Yao Y, Mi N, Zhu Y, Yin L, Zhang Y, Li S. Efficient removal of sulfamerazine (SMR) by ozonation in acetic acid solution after enrichment SMR from water using granular activated carbon. RSC Adv 2019; 9:9145-9152. [PMID: 35517672 PMCID: PMC9062022 DOI: 10.1039/c8ra10429h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/13/2019] [Indexed: 11/29/2022] Open
Abstract
Sulfamerazine (SMR) as a persistent organic pollutant in waste streams is of growing environmental concern. This study explores the extraction SMR from water into an acetic acid (AA) solution using granular activated carbon (GAC), and removal of SMR by ozonation in AA solution. Systematic experiments have shown that GAC can be used as an adsorbent to transfer sulfamerazine from water to AA solution. SMR removal efficiency is 99.5% in 10% AA aqueous solution, which is better than in water. The removal rate of SMR in the AA solution decreased as the initial molar ratio of SMR and O3 increased. The removal rate of SMR decreased with Fe3+ present in the reactive system. The removal of SMR is dominated by indirect ozonation in water, while the SMR removal is an effect of both direct and indirect ozonation in AA solution. It is a very efficient process for the degradation of SMR in micro polluted water when using combined GAC adsorption-desorption in AA solution and ozonation of the resulting solution.
Collapse
Affiliation(s)
- Youru Yao
- School of Environment, Nanjing Normal University Nanjing 210023 China
- School of Geography and Tourism, Anhui Normal University Wuhu 241003 China
| | - Na Mi
- School of Environment, Nanjing Normal University Nanjing 210023 China
| | - Yongqing Zhu
- School of Environment, Nanjing Normal University Nanjing 210023 China
| | - Li Yin
- School of Environment, Nanjing Normal University Nanjing 210023 China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama Tuscaloosa AL 35487 USA
| | - Shiyin Li
- School of Environment, Nanjing Normal University Nanjing 210023 China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application Nanjing 210023 China
| |
Collapse
|
96
|
Song Q, Liang J, Fang Y, Cao C, Liu Z, Li L, Huang Y, Lin J, Tang C. Selective adsorption behavior/mechanism of antibiotic contaminants on novel boron nitride bundles. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:654-662. [PMID: 30396138 DOI: 10.1016/j.jhazmat.2018.10.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
The novel hexagonal boron nitride (BN) bundles, assembled by a plenty of BN fibers with high adsorption capacity and outstanding recyclability, were prepared easily as an efficient adsorbent for antibiotics. It is an excellent substitute for carbonaceous adsorbent to overcome the shortcoming in low adsorption capacity and poor recyclability. Its high surface area can reach up to 871.456 m2 g-1. The adsorption capacity and removal percentage to sulfadiazine (SDZ, 0.328 mmol g-1, 82.192%), oxytetracycline (OTC, 0.202 mmol g-1, 92.890%) and erythromycin (EM, 0.126 mmol g-1, 90.140%) are superior compared with activated carbon and graphene nanoplatelets. It is interesting that BN bundles have a better adsorption to small molecules since huge molecules are easily restricted to enter the micropores, which was defined as micropore-filling effect. Moreover, the adsorption isotherms are well fitted by the Langmuir and Tempkin model, while pseudo-second-order model can better describe the adsorption kinetics. The adsorption mechanisms were deduced to be mainly π-π electron-donor-accepter interaction while electrostatic force and hydrophobic interaction played a significant role. The excellent reusability can be seen from the high removal efficiency after five recycles suggesting the BN bundles was a promising adsorbent for the efficient removal of antibiotics pollutants.
Collapse
Affiliation(s)
- Qianqian Song
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Jianli Liang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Yi Fang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China.
| | - Chaochao Cao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Zhenya Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Yang Huang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Jing Lin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
97
|
Understanding the adsorption of sulfonamide antibiotics on MIL-53s: Metal dependence of breathing effect and adsorptive performance in aqueous solution. J Colloid Interface Sci 2019; 535:159-168. [DOI: 10.1016/j.jcis.2018.09.090] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 11/21/2022]
|
98
|
Ma X, Luo M, Yan L, Tang N, Li J. Preparation of a magnetically recyclable visible-light-driven photocatalyst based on phthalocyanine and its visible light catalytic degradation of methyl orange and p-nitrophenol. NEW J CHEM 2019. [DOI: 10.1039/c9nj01904a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A magnetically recyclable visible-light-driven photocatalyst based on metallophthalocyanine for bidirectional degradation of methyl orange and p-nitrophenol was prepared.
Collapse
Affiliation(s)
- Xiaolong Ma
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
| | - Ming Luo
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
| | - Liqiang Yan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
| | - Ningli Tang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
| | - Jianping Li
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
| |
Collapse
|
99
|
|
100
|
Guan Y, Teng Z, Mei L, Zhang J, Wang Q, Luo Y. An entrapped metal-organic framework system for controlled release of ethylene. J Colloid Interface Sci 2019; 533:207-215. [DOI: 10.1016/j.jcis.2018.08.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
|