51
|
Farah S. Protective Layer Development for Enhancing Stability and Drug-Delivery Capabilities of DES Surface-Crystallized Coatings. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9010-9022. [PMID: 29436817 DOI: 10.1021/acsami.7b18733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Carrier-free drug-eluting stents (DES)-based crystalline coatings are gaining prominence because of their function, skipping many limitations and clinical complications of the currently marketed DES. However, their usage has been humbled by inflexibility of the crystalline coating and limited mechanical and physical properties. This study reports for the first time the development of a protective top coating for enhancing the merits and delivery capabilities of the crystalline coating. Flexible and water-soluble polysaccharide top coating was developed and applied onto rapamycin (RM) crystalline carpet. The top coating prevented crystalline coating delamination during stent crimping and expansion without affecting its release profile. Crystalline coating strata and its interfaces with the metallic substrate and top coating were fully studied and characterized. The crystalline top-coated stents showed significant physical, mechanical, and chemical stability enhancement with ∼2% RM degradation after 1 year under different storage conditions. Biocompatibility study of the top-coated stents implanted subcutaneously for 1 month into SD rats did not provoke any safety concerns. Incorporating RM into the top coating to develop a bioactive protective coating for multilayer release purposes was also investigated. The developed protective coating had wide applicability and may be further implemented for various drugs and implantable medical devices.
Collapse
Affiliation(s)
- Shady Farah
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis , The Hebrew University of Jerusalem , Jerusalem 91120 , Israel
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , 500 Main Street , Cambridge , Massachusetts 02139 , United States
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
52
|
Bukka M, Rednam PJ, Sinha M. Drug-eluting balloon: design, technology and clinical aspects. ACTA ACUST UNITED AC 2018; 13:032001. [PMID: 29227279 DOI: 10.1088/1748-605x/aaa0aa] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A drug-eluting balloon is a non-stent technology in which the effective homogenous delivery of anti-proliferative drugs is processed by the vessel wall through an inflated balloon. This is done to restore luminal vascularity in order to treat atherosclerosis, in-stent restenosis and reduce the risk of late thrombosis without implanting a permanent foreign object. The balloon technology relies on the concept of targeted drug delivery, which helps in the rapid healing of the vessel wall and prevents the proliferation of smooth muscle cells. Several drug eluting devices in the form of coated balloons are currently in clinical use, namely DIOR®, PACCOCATH®, SeQuent®Please and IN.PACT™. The device varies in terms of the material used for making the balloon, the coating techniques, the choice of coated drug and the release pattern of the drug at the site. This review gives an insight into the evolution, rationale and comparison of the marketed drug-eluting balloons. Here, different coating techniques have been analysed for the application and critical analysis of available DEB technologies, and a technical comparison has been done.
Collapse
Affiliation(s)
- Meenasree Bukka
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A) Palaj, Opp. Air Force Station, Gandhinagar-382355, Gujarat, India
| | | | | |
Collapse
|
53
|
Farah S, Domb AJ. Crystalline paclitaxel coated DES with bioactive protective layer development. J Control Release 2018; 271:107-117. [PMID: 29289571 DOI: 10.1016/j.jconrel.2017.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/29/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023]
Abstract
Drug eluting stents (DES) based on polymeric-carriers currently lead the market, however, reports on clinical complications encourage the development of safer and more effective DES. We recently reported on carrier-free DES based on rapamycin crystalline coating as a potential therapeutic solution. Here, we report for the first time surface crystallization of paclitaxel (PT) onto metallic stents. The physicochemical principles of crystallization and key process parameters were extensively studied for fabrication of controllable and homogeneous crystalline coatings on stent scaffolds. Stents loaded with nearly 100μg PT were chosen as a potential therapeutic device with a multilayer coating of 4-7μm thickness. In vitro PT release from these coated stents shows constant release for at least 28days with 10% cumulatively released. The effect of fast dissolving top coating on the physical stability of the coated stent was determined. The top coating enhances the mechanical stability of the crystalline coating during deployment and expansion simulations. Also, incorporating PT in the protective top coating for developing bioactive top coating for multilayer controlled release purpose was intensively studied. This process has wide applications that can be further implemented for other drugs for effective local drug delivery from implantable medical devices.
Collapse
Affiliation(s)
- Shady Farah
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis, The Hebrew University of Jerusalem, 91120, Israel.
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
54
|
Zippel C, Bohnet-Joschko S. Innovation for Safe and Effective Medical Devices: Contributions From Postmarket Surveillance. Ther Innov Regul Sci 2017; 51:237-245. [DOI: 10.1177/2168479016674040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
55
|
Naghipoor J, Rabczuk T. A mechanistic model for drug release from PLGA-based drug eluting stent: A computational study. Comput Biol Med 2017; 90:15-22. [DOI: 10.1016/j.compbiomed.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 11/15/2022]
|
56
|
Jang BN, Kang SN, Eom TG, Han DK, An SH, Noh I, Kum CH. Controlled release of paclitaxel using a drug-eluting stent through modulation of the size of drug particles in vivo. J Biomed Mater Res B Appl Biomater 2017; 106:2275-2283. [PMID: 29087014 DOI: 10.1002/jbm.b.34035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/26/2017] [Accepted: 10/13/2017] [Indexed: 11/09/2022]
Abstract
Drug-eluting stents (DESs) are generally used in percutaneous coronary intervention. Paclitaxel (PTX) is widely used in DESs to suppress neointima, which causes restenosis. However, the PTX release profile is slow owing to its hydrophobic properties, resulting in negative effects on re-endothelialization in vessels. In this study, we assessed the effects of the controlled release of PTX particles of specific sizes on in-stent restenosis (ISR). PTX particle sizes were controlled by adjusting the evaporating temperature of the solvent from 25 to 80°C during ultrasonic coating, and DESs were prepared. The properties of prepared films and DESs were analyzed, and cell viability was assessed in vitro and in vivo. Poly(lactic-co-glycolic acid) (PLGA)/PTX500-loaded stents showed the most rapid release for 58 days, and smaller drug particles exhibited lower PTX release rates. In vivo, PLGA/PTX50-, PLGA/PTX250-, and PLGA/PTX500-loaded stents showed good efficacy for alleviating ISR as compared with bare metal stents and PLGA/PTX5-loaded stents. However, PLGA/PTX250- and PLGA/PTX500-loaded stents exhibited strut exposure and reduced recovery of the vascular compared with PLGA/PTX50-loaded stents. PTX drug particles of approximately 50 nm were most effective in vivo, and the control of particle size is a promising strategy for improving the performance of PTX-eluting stents. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2275-2283, 2018.
Collapse
Affiliation(s)
- Bu Nam Jang
- Stent Research and Development Center, Osstemcardiotec, Seoul, Korea.,Convergence Program of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, Seoul, Korea
| | - Sung Nam Kang
- Stent Research and Development Center, Osstemcardiotec, Seoul, Korea
| | - Tae-Gwan Eom
- Stent Research and Development Center, Osstemcardiotec, Seoul, Korea
| | - Dong Keun Han
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Sang-Hyun An
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Insup Noh
- Convergence Program of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, Seoul, Korea
| | - Chang Hun Kum
- Stent Research and Development Center, Osstemcardiotec, Seoul, Korea
| |
Collapse
|
57
|
Bagheri M, Mohammadi M, Steele TW, Ramezani M. Nanomaterial coatings applied on stent surfaces. Nanomedicine (Lond) 2017; 11:1309-26. [PMID: 27111467 DOI: 10.2217/nnm-2015-0007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The advent of percutaneous coronary intervention and intravascular stents has revolutionized the field of interventional cardiology. Nonetheless, in-stent restenosis, inflammation and late-stent thrombosis are the major obstacles with currently available stents. In order to enhance the hemocompatibility of stents, advances in the field of nanotechnology allow novel designs of nanoparticles and biomaterials toward localized drug/gene carriers or stent scaffolds. The current review focuses on promising polymers used in the fabrication of newer generations of stents with a short synopsis on atherosclerosis and current commercialized stents, nanotechnology's impact on stent development and recent advancements in stent biomaterials is discussed in context.
Collapse
Affiliation(s)
- Mahsa Bagheri
- Shariati Hospital, Mashhad University of Medical Sciences, Mashhad, PO Box 935189-9983, Iran.,Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, PO Box 91775-1365, Iran
| | - Marzieh Mohammadi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, PO Box 91775-1365, Iran
| | - Terry Wj Steele
- Division of Materials Technology, Materials & Science Engineering, Nanyang Technological University, Singapore
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, PO Box 91775-1365, Iran
| |
Collapse
|
58
|
Kim KY, Park JH, Kim DH, Tsauo J, Kim MT, Son WC, Kang SG, Kim DH, Song HY. Sirolimus-eluting Biodegradable Poly-l-Lactic Acid Stent to Suppress Granulation Tissue Formation in the Rat Urethra. Radiology 2017; 286:140-148. [PMID: 28787263 DOI: 10.1148/radiol.2017170414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To investigate the use of sirolimus-eluting biodegradable stents (SEBSs) to suppress granulation tissue formation after stent placement in a rat urethral model. Materials and Methods All experiments were approved by the animal research committee. A total of 36 male Sprague-Dawley rats were randomized into three equal groups after biodegradable stent placement. Group A received control biodegradable stents. Groups B and C received stents coated with 90 µg/cm2 and 450 µg/cm2 sirolimus, respectively. Six rats in each group were sacrificed after 4 weeks; the remaining rats were sacrificed after 12 weeks. The therapeutic effectiveness of SEBSs was assessed by comparing the results of retrograde urethrography and histologic examination. Analysis of variance with post hoc comparisons was used to evaluate statistical differences. Results SEBS placement was technically successful in all rats. Urethrographic and histologic examinations revealed significantly less granulation tissue formation at both time points in the rats receiving SEBSs (groups B and C) compared with those that received control stents (group A) (P < .05 for all). There were no significant differences in urethrographic and histologic findings between groups B and C (P > .05 for all). However, the mean number of epithelial layers in group B was higher than that in group C at 4 weeks after stent placement (P < .001). Apoptosis increased in group C compared with groups A and B (P < .05 for all). Conclusion The use of SEBSs suppressed granulation tissue formation secondary to stent placement in a rat urethral model; local therapy with SEBSs may be used to decrease stent-related granulation tissue formation. © RSNA, 2017.
Collapse
Affiliation(s)
- Kun Yung Kim
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Jung-Hoon Park
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Do Hoon Kim
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Jiaywei Tsauo
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Min Tae Kim
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Woo-Chan Son
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Sung-Gwon Kang
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Dong-Hyun Kim
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Ho-Young Song
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| |
Collapse
|
59
|
Mentias A, Hill E, Barakat AF, Raza MQ, Youssef D, Banerjee K, Sawant AC, Ellis S, Murat Tuzcu E, Kapadia SR. An alarming trend: Change in the risk profile of patients with ST elevation myocardial infarction over the last two decades. Int J Cardiol 2017; 248:69-72. [PMID: 28693891 DOI: 10.1016/j.ijcard.2017.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) is the leading cause of mortality around the world. We sought to study changes in the risk profile of patients presenting with ST elevation myocardial infarction (STEMI). METHODS We retrospectively studied all patients presenting with STEMI to our center between 1995 and 2014. Patients were divided into four quartiles, 5years each. Baseline risk factors and comorbidities were recorded. Sub-analysis was done for patients with established CAD and their household incomes. RESULTS A total of 3913 patients (67.9% males) were included; 42.5% presented with anterior STEMI and 57.5% inferior STEMI. Ages were 64±12, 62±13, 61±13 and 60±13 in the four quartiles respectively. Obesity prevalence was 31, 37, 38 and 40% and diabetes mellitus prevalence was 24, 25, 24 and 31%, while hypertension was 55, 67, 70 and 77%, respectively, p<0.01 for all. Smoking prevalence was 28, 32, 42 and 46, p<0.01. When subgroup analysis was done for patients with history of CAD, prevalence of smoking, obesity, diabetes and hypertension significantly increased across the four quartiles. When patients were divided to four groups based on household income (poor, low middle, middle and high income), prevalence of diabetes, hypertension, smoking and obesity were significantly higher in patients with low income. CONCLUSION Despite better understanding of cardiovascular risk factors and more focus on preventive cardiology, patients presenting with STEMI over the past 20years are getting younger and more obese, with more prevalence of smoking, hypertension, and diabetes mellitus. This trend is greater in the lower income population.
Collapse
Affiliation(s)
- Amgad Mentias
- Heart and Vascular Institute, Cleveland Clinic, OH, United States
| | - Elizabeth Hill
- Heart and Vascular Institute, Cleveland Clinic, OH, United States
| | - Amr F Barakat
- Heart and Vascular Institute, Cleveland Clinic, OH, United States
| | - Mohammad Q Raza
- Heart and Vascular Institute, Cleveland Clinic, OH, United States
| | - Dalia Youssef
- Heart and Vascular Institute, Cleveland Clinic, OH, United States
| | - Kinjal Banerjee
- Heart and Vascular Institute, Cleveland Clinic, OH, United States
| | | | - Stephen Ellis
- Heart and Vascular Institute, Cleveland Clinic, OH, United States
| | - E Murat Tuzcu
- Heart and Vascular Institute, Cleveland Clinic, OH, United States
| | - Samir R Kapadia
- Heart and Vascular Institute, Cleveland Clinic, OH, United States.
| |
Collapse
|
60
|
Li G, Qin L, Wang L, Li X, Caulk AW, Zhang J, Chen PY, Xin S. Inhibition of the mTOR pathway in abdominal aortic aneurysm: implications of smooth muscle cell contractile phenotype, inflammation, and aneurysm expansion. Am J Physiol Heart Circ Physiol 2017; 312:H1110-H1119. [PMID: 28213405 DOI: 10.1152/ajpheart.00677.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/18/2022]
Abstract
The development of effective pharmacological treatment of abdominal aortic aneurysm (AAA) potentially offers great benefit to patients with preaneurysmal aortic dilation by slowing the expansion of aneurysms and reducing the need for surgery. To date, therapeutic targets for slowing aortic dilation have had low efficacy. Thus, in this study, we aim to elucidate possible mechanisms driving aneurysm progression to identify potential targets for pharmacological intervention. We demonstrate that mechanistic target of rapamycin (mTOR) signaling is overactivated in aortic smooth muscle cells (SMCs), which contributes to murine AAA. Rapamycin, a typical mTOR pathway inhibitor, dramatically limits the expansion of the abdominal aorta following intraluminal elastase perfusion. Furthermore, reduction of aortic diameter is achieved by inhibition of the mTOR pathway, which preserves and/or restores the contractile phenotype of SMCs and downregulates macrophage infiltration, matrix metalloproteinase expression, and inflammatory cytokine production. Taken together, these results highlight the important role of the mTOR cascade in aneurysm progression and the potential application of rapamycin as a therapeutic candidate for AAA. NEW & NOTEWORTHY This study provides novel observations that mechanistic target of rapamycin (mTOR) signaling is overactivated in aortic smooth muscle cells and contributes to mouse abdominal aortic aneurysm (AAA) and that rapamycin protects against aneurysm development. Our data highlight the importance of preservation and/or restoration of the smooth muscle cell contractile phenotype and reduction of inflammation by mTOR inhibition in AAA.
Collapse
Affiliation(s)
- Guangxin Li
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Lei Wang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xuan Li
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Alexander W. Caulk
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; and
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Pei-Yu Chen
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
61
|
Li Y, Chu Z, Li X, Ding X, Guo M, Zhao H, Yao J, Wang L, Cai Q, Fan Y. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters. Regen Biomater 2017; 4:179-190. [PMID: 28596915 PMCID: PMC5458542 DOI: 10.1093/rb/rbx009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.
Collapse
Affiliation(s)
- Ying Li
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Zhaowei Chu
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Xiaoming Li
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Xili Ding
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Meng Guo
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Haoran Zhao
- Department of Biomedical Engineer, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jie Yao
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Lizhen Wang
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Qiang Cai
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
- National Research Center for Rehabilitation Technical Aids, Beijing 100176, People’s Republic of China
| |
Collapse
|
62
|
Shi Y, Zhang L, Chen J, Zhang J, Yuan F, Shen L, Chen C, Pei J, Li Z, Tan J, Yuan G. In vitro and in vivo degradation of rapamycin-eluting Mg-Nd-Zn-Zr alloy stents in porcine coronary arteries. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:1-6. [PMID: 28866142 DOI: 10.1016/j.msec.2017.05.124] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/04/2017] [Accepted: 05/13/2017] [Indexed: 10/19/2022]
Abstract
In this work, rapamycin-eluting poly (d, l-lactic acid) coating (PDLLA/RAPA) was prepared on biodegradable Mg-Nd-Zn-Zr alloy (JDBM) for both in vitro and in vivo investigation of the degradation behaviors of the magnesium alloy stent platform. Electrochemical tests and hydrogen evolution test demonstrated significant in vitro protection of the polymeric coating against magnesium degradation both in short and long term. The 3-month in vivo study on the RAPA-eluting JDBM stent implanted into porcine coronary arteries confirmed its favorable safety, and in the meanwhile revealed similar neointima proliferation compared to the second generation DES Firebird 2 with no occurrence of adverse complications. Moreover, Micro-CT examination combined with IVUS and OCT detection indicated a remarkably lower degradation rate and prolonged radial supporting duration of the drug-eluting JDBM stent as compared to the bare, attributable to the protection of the coating in vivo. Hence, rapamycin-eluting JDBM stents exhibit great potential for clinical application.
Collapse
Affiliation(s)
- Yongjuan Shi
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahui Chen
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Shen
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chenxin Chen
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhonghua Li
- Microport Endovascular (Shanghai) Co., Ltd, Shanghai 201318, China
| | - Jinyun Tan
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
63
|
Chen C, Yao C, Yang J, Luo D, Kong X, Chung SM, Lee IS. Biomimetic apatite formed on cobalt-chromium alloy: A polymer-free carrier for drug eluting stent. Colloids Surf B Biointerfaces 2017; 151:156-164. [DOI: 10.1016/j.colsurfb.2016.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022]
|
64
|
Koenig O, Zengerle D, Perle N, Hossfeld S, Neumann B, Behring A, Avci-Adali M, Walker T, Schlensak C, Wendel HP, Nolte A. RNA-Eluting Surfaces for the Modulation of Gene Expression as A Novel Stent Concept. Pharmaceuticals (Basel) 2017; 10:ph10010023. [PMID: 28208634 PMCID: PMC5374427 DOI: 10.3390/ph10010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Presently, a new era of drug-eluting stents is continuing to improve late adverse effects such as thrombosis after coronary stent implantation in atherosclerotic vessels. The application of gene expression–modulating stents releasing specific small interfering RNAs (siRNAs) or messenger RNAs (mRNAs) to the vascular wall might have the potential to improve the regeneration of the vessel wall and to inhibit adverse effects as a new promising therapeutic strategy. Different poly (lactic-co-glycolic acid) (PLGA) resomers for their ability as an siRNA delivery carrier against intercellular adhesion molecule (ICAM)-1 with a depot effect were tested. Biodegradability, hemocompatibility, and high cell viability were found in all PLGAs. We generated PLGA coatings with incorporated siRNA that were able to transfect EA.hy926 and human vascular endothelial cells. Transfected EA.hy926 showed significant siICAM-1 knockdown. Furthermore, co-transfection of siRNA and enhanced green fluorescent protein (eGFP) mRNA led to the expression of eGFP as well as to the siRNA transfection. Using our PLGA and siRNA multilayers, we reached high transfection efficiencies in EA.hy926 cells until day six and long-lasting transfection until day 20. Our results indicate that siRNA and mRNA nanoparticles incorporated in PLGA films have the potential for the modulation of gene expression after stent implantation to achieve accelerated regeneration of endothelial cells and to reduce the risk of restenosis.
Collapse
Affiliation(s)
- Olivia Koenig
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Diane Zengerle
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Nadja Perle
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Susanne Hossfeld
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Bernd Neumann
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Andreas Behring
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Meltem Avci-Adali
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Tobias Walker
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Christian Schlensak
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Hans Peter Wendel
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | - Andrea Nolte
- Department of Thoracic, Cardiac, and Vascular Surgery, University of Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| |
Collapse
|
65
|
Koenig O, Nothdurft D, Perle N, Neumann B, Behring A, Degenkolbe I, Walker T, Schlensak C, Wendel HP, Nolte A. An Atelocollagen Coating for Efficient Local Gene Silencing by Using Small Interfering RNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 6:290-301. [PMID: 28325296 PMCID: PMC5363512 DOI: 10.1016/j.omtn.2017.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/13/2023]
Abstract
In the last decades, many efforts have been made to counteract adverse effects after stenting atherosclerotic coronary arteries. A breakthrough in better vascular wall regeneration was noted in the new era of drug-eluting stents. A novel personalized approach is the development of gene-eluting stents promising an alteration in gene expression involved in regeneration. We investigated a coating system consisting of the polymer atelocollagen (ATCOL) and a specific small interfering RNA (siRNA) for intercellular adhesion molecule-1 (ICAM-1) found on the surface of defective endothelial cells (ECs). We demonstrated very high cell viability, in which EA.hy926 grew on 0.008% or 0.032% ATCOL layers. Additionally, hemocompatibility assays proved the biocompatibility of this coating. The highest transfection efficiency with EA.hy926 was achieved with 5 μg siRNA immobilized in ATCOL after 2 days. The release of fluorescent-labeled siRNA was about 9 days. Long-term knockdown of ICAM-1 was analyzed by flow cytometry, revealing that the coating with 0.008% ATCOL and 5 μg siICAM-1 provoked gene silencing up to 8 days. 5′-RNA ligase-mediated rapid amplification of cDNA ends PCR (RLM-RACE-PCR) demonstrated the specificity of our established ATCOL gene-silencing coating, meaning that our coating is well suited for further investigations in in vivo studies. Herein, we would like to demonstrate that our ATCOL is well-suited for better artery wall regeneration after stent implantation.
Collapse
Affiliation(s)
- Olivia Koenig
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, Tuebingen, 72076 Baden-Wuerttemberg, Germany
| | - Dimitrios Nothdurft
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, Tuebingen, 72076 Baden-Wuerttemberg, Germany
| | - Nadja Perle
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, Tuebingen, 72076 Baden-Wuerttemberg, Germany
| | - Bernd Neumann
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, Tuebingen, 72076 Baden-Wuerttemberg, Germany
| | - Andreas Behring
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, Tuebingen, 72076 Baden-Wuerttemberg, Germany
| | - Ilka Degenkolbe
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, Tuebingen, 72076 Baden-Wuerttemberg, Germany
| | - Tobias Walker
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, Tuebingen, 72076 Baden-Wuerttemberg, Germany
| | - Christian Schlensak
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, Tuebingen, 72076 Baden-Wuerttemberg, Germany
| | - Hans Peter Wendel
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, Tuebingen, 72076 Baden-Wuerttemberg, Germany.
| | - Andrea Nolte
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, Tuebingen, 72076 Baden-Wuerttemberg, Germany
| |
Collapse
|
66
|
Saleh YE, Gepreel MA, Allam NK. Functional Nanoarchitectures For Enhanced Drug Eluting Stents. Sci Rep 2017; 7:40291. [PMID: 28079127 PMCID: PMC5227685 DOI: 10.1038/srep40291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Different strategies have been investigated to allow for optimum duration and conditions for endothelium healing through the enhancement of coronary stents. In this study, a nanoarchitectured system is proposed as a surface modification for drug eluting stents. Highly oriented nanotubes were vertically grown on the surface of a new Ni-free biocompatible Ti-based alloy, as a potential material for self-expandable stents. The fabricated nanotubes were self-grown from the potential stent substrate, which are also proposed to enhance endothelial proliferation while acting as drug reservoir to hinder Vascular Smooth Muscle Cells (VSMC) proliferation. Two morphologies were synthesized to investigate the effect of structure homogeneity on the intended application. The material was characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Nanoindentation technique was used to study the mechanical properties of the fabricated material. Cytotoxicity and proliferation studies were performed and compared for the two fabricated nanoarchitectures, versus smooth untextured samples, using in-vitro cultured endothelial cells. Finally, the drug loading capacity was experimentally studied and further supported by computational modeling of the release profile.
Collapse
Affiliation(s)
- Yomna E Saleh
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed A Gepreel
- Department of Materials Science and Engineering, Egypt-Japan University for Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
67
|
Thakkar AS, Dave BA. Revolution of Drug-Eluting Coronary Stents: An Analysis of Market Leaders. EUROPEAN MEDICAL JOURNAL 2016. [DOI: 10.33590/emj/10314703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Percutaneous coronary intervention with drug-eluting stents (DES) is a well-established and widely-accepted treatment approach in patients with coronary artery disease. Although the underlying principle of DES remains constant for different stents available on the market, certain factors may offer variations with respect to deliverability (ease of placement), efficacy (preventing restenosis), and safety (thrombosis rates). These factors may include the type of drug (sirolimus, everolimus, biolimus, zotarolimus, novolimus, paclitaxel, docetaxel), type of stent platforms (stainless steel, platinum, cobalt-chromium, cobalt-nickel, platinum-chromium), type of polymers (permanent, biodegradable, polymer-free), thickness of stent struts (thick, thin, ultra-thin), type of coating (abluminal, conformal), and type of stent design (open-cell, closed-cell, combination of open-closed cell). In this context, we present a review on characteristic features of several of the most widely used coronary stents worldwide. Furthermore, the advancements of completely biodegradable stents are discussed. In addition, the future directions for the development of creating an ideal or perfect DES are debated.
Collapse
Affiliation(s)
| | - Bhargav A. Dave
- Manish Therapy Services, Madison Heights, Texas, USA; Department of Physical Therapy, Srinivas University, Mangaluru, Karnataka, India
| |
Collapse
|
68
|
Barros AA, Browne S, Oliveira C, Lima E, Duarte ARC, Healy KE, Reis RL. Drug-eluting biodegradable ureteral stent: New approach for urothelial tumors of upper urinary tract cancer. Int J Pharm 2016; 513:227-237. [PMID: 27590593 DOI: 10.1016/j.ijpharm.2016.08.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
Upper urinary tract urothelial carcinoma (UTUC) accounts for 5-10% of urothelial carcinomas and is a disease that has not been widely studied as carcinoma of the bladder. To avoid the problems of conventional therapies, such as the need for frequent drug instillation due to poor drug retention, we developed a biodegradable ureteral stent (BUS) impregnated by supercritical fluid CO2 (scCO2) with the most commonly used anti-cancer drugs, namely paclitaxel, epirubicin, doxorubicin, and gemcitabine. The release kinetics of anti-cancer therapeutics from drug-eluting stents was measured in artificial urine solution (AUS). The in vitro release showed a faster release in the first 72h for the four anti-cancer drugs, after this time a plateau was achieved and finally the stent degraded after 9days. Regarding the amount of impregnated drugs by scCO2, gemcitabine showed the highest amount of loading (19.57μg drug/mg polymer: 2% loaded), while the lowest amount was obtained for paclitaxel (0.067μg drug/mg polymer: 0.01% loaded). A cancer cell line (T24) was exposed to graded concentrations (0.01-2000ng/ml) of each drugs for 4 and 72h to determine the sensitivities of the cells to each drug (IC50). The direct and indirect contact study of the anti-cancer biodegradable ureteral stents with the T24 and HUVEC cell lines confirmed the anti-tumoral effect of the BUS impregnated with the four anti-cancer drugs tested, reducing around 75% of the viability of the T24 cell line after 72h and demonstrating minimal cytotoxic effect on HUVECs.
Collapse
Affiliation(s)
- Alexandre A Barros
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, 4805-017 Barco GMR, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Shane Browne
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA 94720, USA; Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Ireland
| | - Carlos Oliveira
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Estevão Lima
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Ana Rita C Duarte
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, 4805-017 Barco GMR, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Kevin E Healy
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Rui L Reis
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, 4805-017 Barco GMR, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
69
|
Liu J, Zheng B, Wang P, Wang X, Zhang B, Shi Q, Xi T, Chen M, Guan S. Enhanced in Vitro and in Vivo Performance of Mg-Zn-Y-Nd Alloy Achieved with APTES Pretreatment for Drug-Eluting Vascular Stent Application. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17842-17858. [PMID: 27331417 DOI: 10.1021/acsami.6b05038] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bioabsorbable magnesium alloys are becoming prominent as temporary functional implants, as they avoid the risks generated by permanent metallic implants such as persistent inflammation and late restenosis. Nevertheless, the overfast corrosion of Mg alloys under physiological conditions hinders their wider application as medical implant materials. Here we investigate a simple one-step process to introduce a cross-linked 3-amino-propyltrimethoxysilane (APTES) silane physical barrier layer on the surface of Mg-Zn-Y-Nd alloys prior to electrostatic spraying with rapamycin-eluting poly(lactic-co-glycolic acid) (PLGA) layer. Surface microstructure was characterized by scanning electron microscope and Fourier transform infrared spectroscopy. Nanoscratch test verified the superior adhesion strength of PLGA coating in the group pretreated with APTES. Electrochemical tests combined with long-term immersion results suggested that the preferable in vitro anticorrosion behavior could be achieved by dense APTES barrier. Cell morphology and proliferation data demonstrated that APTES pretreated group resulted in remarkably preferable compatibility for both human umbilical vein endothelial cells and vascular smooth muscle cells. On the basis of excellent in vitro mechenical property, the animal study on the APTES pretreated Mg-Zn-Y-Nd stent implanted into porcine coronary arteries confirmed benign tissue compatibility as well as re-endothelialization without thrombogenesis or in-stent restenosis at six-month followup.
Collapse
Affiliation(s)
- Jing Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Bo Zheng
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Pei Wang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Xingang Wang
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Bin Zhang
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Qiuping Shi
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Tingfei Xi
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
- Shenzhen Research Institute, Peking University , Shenzhen 518055, China
| | - Ming Chen
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University , Zhengzhou 450002, China
| |
Collapse
|
70
|
Drug deposition in coronary arteries with overlapping drug-eluting stents. J Control Release 2016; 238:1-9. [PMID: 27432751 DOI: 10.1016/j.jconrel.2016.07.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/20/2023]
Abstract
Drug-eluting stents are accepted as mainstream endovascular therapy, yet concerns for their safety may be under-appreciated. While failure from restenosis has dropped to below 5%, the risk of stent thrombosis and associated mortality remain relatively high. Further optimization of drug release is required to minimize thrombosis risk while maintaining therapeutic dose. The complex three-dimensional geometry of deployed stents together with the combination of diffusive and advective drug transport render an intuitive understanding of the situation exceedingly difficult. In situations such as this, computational modeling has proven essential, helping define the limits of efficacy, determine the mode and mechanism of drug release, and identify alternatives to avoid toxicity. A particularly challenging conformation is encountered in coronary arteries with overlapping stents. To study hemodynamics and drug deposition in such vessels we combined high-resolution, multi-scale ex vivo computed tomography with a flow and mass transfer computational model. This approach ensures high geometric fidelity and precise, simultaneous calculation of blood flow velocity, shear stress and drug distribution. Our calculations show that drug uptake by the arterial tissue is dependent both on the patterns of flow disruption near the wall, as well as on the relative positioning of drug-eluting struts. Overlapping stent struts lead to localized peaks of drug concentration that may increase the risk of thrombosis. Such peaks could be avoided by anisotropic stent structure or asymmetric drug release designed to yield homogeneous drug distribution along the coronary artery and, at the least, suggest that these issues need to remain in the forefront of consideration in clinical practice.
Collapse
|
71
|
Dreher ML, Nagaraja S, Batchelor B. Effects of fatigue on the chemical and mechanical degradation of model stent sub-units. J Mech Behav Biomed Mater 2016; 59:139-145. [DOI: 10.1016/j.jmbbm.2015.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
72
|
Prasad LK, McGinity JW, Williams RO. Electrostatic powder coating: Principles and pharmaceutical applications. Int J Pharm 2016; 505:289-302. [DOI: 10.1016/j.ijpharm.2016.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/04/2016] [Accepted: 04/10/2016] [Indexed: 11/26/2022]
|
73
|
JC Bose R, Lee SH, Park H. Lipid polymer hybrid nanospheres encapsulating antiproliferative agents for stent applications. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
74
|
Yan YF, Jiang L, Zhang MD, Li XH, Nie MX, Feng TT, Zhao X, Wang LY, Zhao QM. Can Platforms Affect the Safety and Efficacy of Drug-Eluting Stents in the Era of Biodegradable Polymers?: A Meta-Analysis of 34,850 Randomized Individuals. PLoS One 2016; 11:e0151259. [PMID: 27032086 PMCID: PMC4816558 DOI: 10.1371/journal.pone.0151259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/25/2016] [Indexed: 12/05/2022] Open
Abstract
Objective In the era of bare metal stents (BMSs), alloys have been considered to be better materials for stent design than stainless steel. In the era of biodegradable polymer drug-eluting stents (BP-DESs), the safety and efficacy of BP-DESs with different metal platforms (stainless steel or alloys) have not yet been reported, although their polymers are eventually absorbed, and only the metal platforms remain in the body. This study sought to determine the clinical safety and efficacy of BP-DESs with different platforms compared with other stents (other DESs and BMSs). Methods PubMed, Embase and Clinical Trials.gov were searched for randomized controlled trials (RCTs) that compared BP-DESs with other stents. After performing pooled analysis of BP-DESs and other stents, we performed a subgroup analysis using two classification methods: stent platform and follow-up time. The study characteristics, patient characteristics and clinical outcomes were abstracted. Results Forty RCTs (49 studies) comprising 34,850 patients were included. Biodegradable polymer stainless drug-eluting stents (BP-stainless DESs) were superior to the other stents [mainly stainless drug-eluting stents (DESs)] in terms of pooled definite/probable stent thrombosis (ST) (OR [95% CI] = 0.76[0.61–0.95], p = 0.02), long-term definite/probable ST (OR [95% CI] = 0.73[0.57–0.94], p = 0.01), very late definite/probable ST (OR [95% CI] = 0.56[0.33–0.93], p = 0.03) and long-term definite ST. BP-stainless DESs had lower rates of pooled, mid-term and long-term target vessel revascularization (TVR) and target lesion revascularization (TLR) than the other stainless DESs and BMSs. Furthermore, BP-stainless DESs were associated with lower rates of long-term death than other stainless DESs and lower rates of mid-term myocardial infarction than BMSs. However, only the mid-term and long-term TVR rates were superior in BP-alloy DESs compared with the other stents. Conclusion Our results indirectly suggest that BP-stainless DESs may offer more benefits than BP-alloy DESs in the era of BP-DESs. Further well-designed RCTs comparing BP-stainless with BP-alloy DESs are needed to confirm which platform is better.
Collapse
Affiliation(s)
- Yun-Feng Yan
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Department of Cardiology, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Long Jiang
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Department of Atherosclerosis, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Ming-Duo Zhang
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Department of Cardiology, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xin-He Li
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Department of Cardiology, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Mao-Xiao Nie
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Department of Cardiology, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Ting-Ting Feng
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Department of Cardiology, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xin Zhao
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Department of Cardiology, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Lu-Ya Wang
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Department of Atherosclerosis, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- * E-mail: (QMZ); (LYW)
| | - Quan-Ming Zhao
- Beijing Anzhen Hospital, Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodelling-related Cardiovascular Diseases, Ministry of Education, Department of Atherosclerosis, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- * E-mail: (QMZ); (LYW)
| |
Collapse
|
75
|
Role of red blood cell distribution in predicting drug-eluting stent restenosis in patients with stable angina pectoris after coronary stenting. Coron Artery Dis 2016; 26:220-4. [PMID: 25647458 DOI: 10.1097/mca.0000000000000221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND It has been reported that increased red blood cell distribution width (RDW) predicts adverse events in cardiovascular disease and in patients undergoing percutaneous coronary intervention. However, the role of serum RDW levels in drug-eluting stent (DES) restenosis remains unclear. We aimed to investigate the relationship between serum RDW levels and in-stent restenosis (ISR) after coronary stenting with DES in stable angina pectoris (SAP) patients. MATERIALS AND METHODS A total of 293 consecutive chronic SAP patients with coronary DES implantation were enrolled in this study. The ISR was analyzed by coronary angiography analysis at a mean follow-up of 8 months. According to whether ISR was detected, patients were divided into two groups: the ISR group (n=45) and the non-ISR group (n=247). Serum RDW was assessed both at admission and at the 8-month follow-up in all patients. Standard medication was continued throughout the investigation period. RESULTS Baseline characteristics of the two groups were similar. Patients in the ISR group had significantly higher RDW levels compared with patients in the non-ISR group both at admission and at follow-up (P<0.01, respectively). Furthermore, the ISR group had significantly longer stent length and lower stent diameter compared with the non-ISR group (P<0.01, respectively). In a multivariate analysis, diabetes mellitus, current smoking, RDW levels, C-reactive protein levels, stent length, and stent diameter were associated independently with ISR. CONCLUSION Serum RDW level may independently predict ISR at both admission and follow-up in SAP patients with coronary DES implantation, which indicates that a chronic inflammatory response might be involved in the pathogenesis of ISR.
Collapse
|
76
|
Karimi M, Zare H, Bakhshian Nik A, Yazdani N, Hamrang M, Mohamed E, Sahandi Zangabad P, Moosavi Basri SM, Bakhtiari L, Hamblin MR. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine (Lond) 2016; 11:513-30. [PMID: 26906471 DOI: 10.2217/nnm.16.3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nanotechnology could provide a new complementary approach to treat coronary artery disease (CAD) which is now one of the biggest killers in the Western world. The course of events, which leads to atherosclerosis and CAD, involves many biological factors and cellular disease processes which may be mitigated by therapeutic methods enhanced by nanotechnology. Nanoparticles can provide a variety of delivery systems for cargoes such as drugs and genes that can address many problems within the arteries. In order to improve the performance of current stents, nanotechnology provides different nanomaterial coatings, in addition to controlled-release nanocarriers, to prevent in-stent restenosis. Nanotechnology can increase the efficiency of drugs, improve local and systematic delivery to atherosclerotic plaques and reduce the inflammatory or angiogenic response after intravascular intervention. Nanocarriers have potential for delivery of imaging and diagnostic agents to precisely targeted destinations. This review paper will cover the current applications and future outlook of nanotechnology, as well as the main diagnostic methods, in the treatment of CAD.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zare
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Amirala Bakhshian Nik
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran 1439957131 Tehran, Iran
| | - Narges Yazdani
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Mohammad Hamrang
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Elmira Mohamed
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science & Engineering, Sharif University of Technology, P.O. Box 11365-9466, 14588 Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- School of Computer Science, Institute for Research in Fundamental Sciences, Tehran, Iran.,Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Leila Bakhtiari
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA.,Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| |
Collapse
|
77
|
McKittrick CM, Kennedy S, Oldroyd KG, McGinty S, McCormick C. Modelling the Impact of Atherosclerosis on Drug Release and Distribution from Coronary Stents. Ann Biomed Eng 2016; 44:477-87. [PMID: 26384667 PMCID: PMC4764635 DOI: 10.1007/s10439-015-1456-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/09/2015] [Indexed: 11/24/2022]
Abstract
Although drug-eluting stents (DES) are now widely used for the treatment of coronary heart disease, there remains considerable scope for the development of enhanced designs which address some of the limitations of existing devices. The drug release profile is a key element governing the overall performance of DES. The use of in vitro, in vivo, ex vivo, in silico and mathematical models has enhanced understanding of the factors which govern drug uptake and distribution from DES. Such work has identified the physical phenomena determining the transport of drug from the stent and through tissue, and has highlighted the importance of stent coatings and drug physical properties to this process. However, there is limited information regarding the precise role that the atherosclerotic lesion has in determining the uptake and distribution of drug. In this review, we start by discussing the various models that have been used in this research area, highlighting the different types of information they can provide. We then go on to describe more recent methods that incorporate the impact of atherosclerotic lesions.
Collapse
Affiliation(s)
- C M McKittrick
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - S Kennedy
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - K G Oldroyd
- West of Scotland Region Heart and Lung Centre, Golden Jubilee National Hospital, Dunbartonshire, UK
| | - S McGinty
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - C McCormick
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
78
|
Doro FG, Ferreira KQ, da Rocha ZN, Caramori GF, Gomes AJ, Tfouni E. The versatile ruthenium(II/III) tetraazamacrocycle complexes and their nitrosyl derivatives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
79
|
|
80
|
Abstract
Implantation of drug-eluting stents (DESs) via percutaneous coronary intervention is the most popular treatment option to restore blood flow to occluded vasculature. The many devices currently used in clinic and under examination in research laboratories are manufactured using a variety of coating techniques to create the incorporated drug release platforms. These coating techniques offer various benefits including ease of use, expense of equipment, and design variability. This review paper discusses recent novel DES designs utilizing individual or a combination of these coating techniques and their resulting drug release profiles.
Collapse
Affiliation(s)
- Megan Livingston
- Department of Regenerative Medicine and Orthopaedics, Houston Methodist Research Institute, Houston, USA
| | - Aaron Tan
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, UCL Medical School, University College London (UCL), London, UK
| |
Collapse
|
81
|
Trant JF, Sran I, de Bruyn JR, Ingratta M, Borecki A, Gillies ER. Synthesis and properties of arborescent polyisobutylene derivatives and a paclitaxel conjugate: Towards stent coatings with prolonged drug release. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
82
|
Moore SS, O’Sullivan KJ, Verdecchia F. Shrinking the Supply Chain for Implantable Coronary Stent Devices. Ann Biomed Eng 2015; 44:497-507. [DOI: 10.1007/s10439-015-1471-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022]
|
83
|
In vitro Study of a Novel Stent Coating Using Modified CD39 Messenger RNA to Potentially Reduce Stent Angioplasty-Associated Complications. PLoS One 2015; 10:e0138375. [PMID: 26381750 PMCID: PMC4575070 DOI: 10.1371/journal.pone.0138375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/27/2015] [Indexed: 11/26/2022] Open
Abstract
Background Stent angioplasty provides a minimally invasive treatment for atherosclerotic vessels. However, no treatment option for atherosclerosis-associated endothelial dysfunction, which is accompanied by a loss of CD39, is available, and hence, adverse effects like thromboembolism and restenosis may occur. Messenger RNA (mRNA)-based therapy represents a novel strategy, whereby de novo synthesis of a desired protein is achieved after delivery of a modified mRNA to the target cells. Methods and Findings Our study aimed to develop an innovative bioactive stent coating that induces overexpression of CD39 in the atherosclerotic vessel. Therefore, a modified CD39-encoding mRNA was produced by in vitro transcription. Different endothelial cells (ECs) were transfected with the mRNA, and CD39 expression and functionality were analyzed using various assays. Furthermore, CD39 mRNA was immobilized using poly(lactic-co-glycolic-acid) (PLGA), and the transfection efficiency in ECs was analyzed. Our data show that ECs successfully translate in vitro-generated CD39 mRNA after transfection. The overexpressed CD39 protein is highly functional in hydrolyzing ADP and in preventing platelet activation. Furthermore, PLGA-immobilized CD39 mRNA can be delivered to ECs without losing its functionality. Summary In summary, we present a novel and promising concept for a stent coating for the treatment of atherosclerotic blood vessels, whereby patients could be protected against angioplasty-associated complications.
Collapse
|
84
|
Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent. J Colloid Interface Sci 2015; 460:189-99. [PMID: 26319336 DOI: 10.1016/j.jcis.2015.08.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/13/2015] [Accepted: 08/22/2015] [Indexed: 01/19/2023]
Abstract
Drug-eluting stents (DESs) have been used to treat coronary artery diseases by placing in the arteries. However, current DESs still suffer from polymer coating defects such as delamination and peeling-off that follows stent deployment. Such coating defects could increase the roughness of DES and might act as a source of late or very late thrombosis and might increase the incident of restenosis. In this regard, we modified the cobalt-chromium (Co-Cr) alloy surface with hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) or hydrophobic poly(2-hydroxyethyl methacrylate)-grafted-poly(caprolactone) (PHEMA-g-PCL) brushes. The resulting surfaces were biocompatible and biodegradable, which could act as anchoring layer for the drug-in-polymer matrix coating. The two modifications were characterized by ATR-FTIR, XPS, water contact angle measurements, SEM and AFM. On the control and modified Co-Cr samples, a sirolimus (SRL)-containing poly(D,L-lactide) (PDLLA) were ultrasonically spray-coated, and the drug release was examined for 8weeks under physiological conditions. The results demonstrated that PHEMA as a primer coating improved the coating stability and degradation morphology, and drug release profile for short-term as compared to control Co-Cr, but fails after 7weeks in physiological buffer. On the other hand, the hydrophobic PHEMA-g-PCL brushes not only enhanced the stability and degradation morphology of the PDLLA coating layer, but also sustained SRL release for long-term. At 8-week of release test, the surface morphologies and release profiles of coated PDLLA layers verified the beneficial effect of hydrophobic PCL brushes as well as their thickness on coating stability. Our study concludes that 200nm thickness of PHEMA-g-PCL as interfacial layer affects the stability and degradation morphology of the biodegradable coating intensively to be applied for various biodegradable-based DESs.
Collapse
|
85
|
Wang H, Weihrauch D, Kersten JR, Toth JM, Passerini AG, Rajamani A, Schrepfer S, LaDisa JF. Alagebrium inhibits neointimal hyperplasia and restores distributions of wall shear stress by reducing downstream vascular resistance in obese and diabetic rats. Am J Physiol Heart Circ Physiol 2015; 309:H1130-40. [PMID: 26254329 DOI: 10.1152/ajpheart.00123.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/03/2015] [Indexed: 01/28/2023]
Abstract
Mechanisms of restenosis in type 2 diabetes mellitus (T2DM) are incompletely elucidated, but advanced glycation end-product (AGE)-induced vascular remodeling likely contributes. We tested the hypothesis that AGE-related collagen cross-linking (ARCC) leads to increased downstream vascular resistance and altered in-stent hemodynamics, thereby promoting neointimal hyperplasia (NH) in T2DM. We proposed that decreasing ARCC with ALT-711 (Alagebrium) would mitigate this response. Abdominal aortic stents were implanted in Zucker lean (ZL), obese (ZO), and diabetic (ZD) rats. Blood flow, vessel diameter, and wall shear stress (WSS) were calculated after 21 days, and NH was quantified. Arterial segments (aorta, carotid, iliac, femoral, and arterioles) were harvested to detect ARCC and protein expression, including transforming growth factor-β (TGF-β) and receptor for AGEs (RAGE). Downstream resistance was elevated (60%), whereas flow and WSS were significantly decreased (44% and 56%) in ZD vs. ZL rats. NH was increased in ZO but not ZD rats. ALT-711 reduced ARCC and resistance (46%) in ZD rats while decreasing NH and producing similar in-stent WSS across groups. No consistent differences in RAGE or TGF-β expression were observed in arterial segments. ALT-711 modified lectin-type oxidized LDL receptor 1 but not RAGE expression by cells on decellularized matrices. In conclusion, ALT-711 decreased ARCC, increased in-stent flow rate, and reduced NH in ZO and ZD rats through RAGE-independent pathways. The study supports an important role for AGE-induced remodeling within and downstream of stent implantation to promote enhanced NH in T2DM.
Collapse
Affiliation(s)
- Hongfeng Wang
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Judy R Kersten
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey M Toth
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin; Department of Orthopaedic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Anita Rajamani
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Sonja Schrepfer
- Transplant and Stem Cell Immunobiology Laboratory, University Heart Center and Cardiovascular Research Center, University of Hamburg, Hamburg, Germany; Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - John F LaDisa
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin; Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
86
|
Trant JF, McEachran MJ, Sran I, Turowec BA, de Bruyn JR, Gillies ER. Covalent Polyisobutylene-Paclitaxel Conjugates for Controlled Release from Potential Vascular Stent Coatings. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14506-14517. [PMID: 26066902 DOI: 10.1021/acsami.5b04001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of covalent polyisobutylene (PIB)-paclitaxel (PTX) conjugates as a potential approach to controlling drug release from vascular stent coatings is described. PIB-PTX materials containing ∼24 and ∼48 wt % PTX, conjugated via ester linkages, were prepared. The PTX release profiles were compared with those of physical mixtures of PTX with carboxylic acid-functionalized PIB and with the triblock copolymer polystyrene-b-PIB-b-polystyrene (SIBS). Covalent conjugation led to significantly slower drug release. Atomic force microscopy imaging of coatings of the materials suggested that the physical mixtures exhibited multiple domains corresponding to phase separation, whereas the materials in which PTX was covalently conjugated appeared homogeneous. Coatings of the conjugated materials on stainless steel surfaces suffered less surface erosion than the physically mixed materials, remained intact, and adhered well to the surface throughout the thirty-five day study. Tensile testing and rheological studies suggested that the incorporation of PTX into the polymer introduces similar physical changes to the PIB as the incorporation of a glassy polystyrene block does in SIBS. Cytotoxicity assays showed that the coatings did not release toxic levels of PTX or other species into a cell culture medium over a 24 h period, yet the levels of PTX in the materials were sufficient to prevent C2C12 cells from adhering to and proliferating on them. Overall, these results indicate that covalent PIB-PTX conjugates have promise as coatings for vascular stents.
Collapse
Affiliation(s)
- John F Trant
- †Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London N6A 5B7, Canada
| | - Matthew J McEachran
- †Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London N6A 5B7, Canada
| | - Inderpreet Sran
- ‡Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Sreet, London N6A 5B9, Canada
| | - Bethany A Turowec
- §Biomedical Engineering Graduate Program, The University of Western Ontario, 1151 Richmond Street, London N6A 5B9, Canada
| | - John R de Bruyn
- ∥Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London N6A 5B7, Canada
| | - Elizabeth R Gillies
- †Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London N6A 5B7, Canada
- ‡Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Sreet, London N6A 5B9, Canada
| |
Collapse
|
87
|
Chen W, Habraken TCJ, Hennink WE, Kok RJ. Polymer-Free Drug-Eluting Stents: An Overview of Coating Strategies and Comparison with Polymer-Coated Drug-Eluting Stents. Bioconjug Chem 2015; 26:1277-88. [PMID: 26041505 DOI: 10.1021/acs.bioconjchem.5b00192] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Clinical evaluations have proven the efficacy of drug-elution stents (DES) in reduction of in-stent restenosis rates as compared to drug-free bare metal stents (BMS). Typically, DES are metal stents that are covered with a polymer film loaded with anti-inflammatory or antiproliferative drugs that are released in a sustained manner. However, although favorable effects of the released drugs have been observed, the polymer coating as such has been associated with several adverse clinical effects, such as late stent thrombosis. Elimination of the polymeric carrier of DES may therefore potentially lead to safer DES. Several technologies have been developed to design polymer-free DES, such as the use of microporous stents and inorganic coatings that can be drug loaded. Several drugs, including sirolimus, tacrolimus, paclitaxel, and probucol have been used in the design of carrier-free stents. Due to the function of the polymeric coating to control the release kinetics of a drug, polymer-free stents are expected to have a faster drug elution rate, which may affect the therapeutic efficacy. However, several polymer-free stents have shown similar efficacy and safety as the first-generation DES, although the superiority of polymer-free DES has not been established in clinical trials.
Collapse
Affiliation(s)
- Weiluan Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tom C J Habraken
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Robbert J Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
88
|
Vijayaratnam PRS, O’Brien CC, Reizes JA, Barber TJ, Edelman ER. The Impact of Blood Rheology on Drug Transport in Stented Arteries: Steady Simulations. PLoS One 2015; 10:e0128178. [PMID: 26066041 PMCID: PMC4466567 DOI: 10.1371/journal.pone.0128178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/24/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND METHODS It is important to ensure that blood flow is modelled accurately in numerical studies of arteries featuring drug-eluting stents due to the significant proportion of drug transport from the stent into the arterial wall which is flow-mediated. Modelling blood is complicated, however, by variations in blood rheological behaviour between individuals, blood's complex near-wall behaviour, and the large number of rheological models which have been proposed. In this study, a series of steady-state computational fluid dynamics analyses were performed in which the traditional Newtonian model was compared against a range of non-Newtonian models. The impact of these rheological models was elucidated through comparisons of haemodynamic flow details and drug transport behaviour at various blood flow rates. RESULTS Recirculation lengths were found to reduce by as much as 24% with the inclusion of a non-Newtonian rheological model. Another model possessing the viscosity and density of blood plasma was also implemented to account for near-wall red blood cell losses and yielded recirculation length increases of up to 59%. However, the deviation from the average drug concentration in the tissue obtained with the Newtonian model was observed to be less than 5% in all cases except one. Despite the small sensitivity to the effects of viscosity variations, the spatial distribution of drug matter in the tissue was found to be significantly affected by rheological model selection. CONCLUSIONS/SIGNIFICANCE These results may be used to guide blood rheological model selection in future numerical studies. The clinical significance of these results is that they convey that the magnitude of drug uptake in stent-based drug delivery is relatively insensitive to individual variations in blood rheology. Furthermore, the finding that flow separation regions formed downstream of the stent struts diminish drug uptake may be of interest to device designers.
Collapse
Affiliation(s)
- Pujith R. S. Vijayaratnam
- School of Mechanical and Manufacturing Engineering, the University of New South Wales, Sydney, New South Wales, Australia
| | - Caroline C. O’Brien
- Harvard-MIT Biomedical Engineering Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John A. Reizes
- School of Mechanical and Manufacturing Engineering, the University of New South Wales, Sydney, New South Wales, Australia
| | - Tracie J. Barber
- School of Mechanical and Manufacturing Engineering, the University of New South Wales, Sydney, New South Wales, Australia
| | - Elazer R. Edelman
- Harvard-MIT Biomedical Engineering Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
89
|
Hu T, Yang J, Cui K, Rao Q, Yin T, Tan L, Zhang Y, Li Z, Wang G. Controlled Slow-Release Drug-Eluting Stents for the Prevention of Coronary Restenosis: Recent Progress and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11695-11712. [PMID: 26011753 DOI: 10.1021/acsami.5b01993] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Drug-eluting stents (DES) have become more widely used by cardiologists than bare metal stents (BMS) because of their better ability to control restenosis. However, recognized negative events, particularly including delayed or incomplete endothelialization and late stent thrombosis, have caused concerns over the long-term safety of DES. Although stent-based drug delivery can facilitate a drug's release directly to the restenosis site, a burst of drug release can seriously affect the pharmacological action and is a major factor accounting for adverse effects. Therefore, the drug release rate has become an important criterion in evaluating DES. The factors affecting the drug release rate include the drug carrier, drug, coating methods, drug storage, elution direction, coating thickness, pore size in the coating, release conditions (release medium, pH value, temperature), and hemodynamics after the stent implantation. A better understanding of how these factors influence drug release is particularly important for the reasonable use of efficient control strategies for drug release. This review summarizes the factors influencing the drug release from DES and presents strategies for enhancing the control of the drug's release, including the stent design, the application of absorbable stents, the development of new polymers, and the application of nanocarriers and improvements in the coating technology. Therefore, this paper provides a reference for the preparation of novel controlled slow-release DES.
Collapse
Affiliation(s)
- Tingzhang Hu
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jiali Yang
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Kun Cui
- ‡Center of Cardiology, Chongqing Zhongshan Hospital, Chongqing 400013, China
| | - Qiong Rao
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tieying Yin
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lili Tan
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yuan Zhang
- ‡Center of Cardiology, Chongqing Zhongshan Hospital, Chongqing 400013, China
| | - Zhenggong Li
- ‡Center of Cardiology, Chongqing Zhongshan Hospital, Chongqing 400013, China
| | - Guixue Wang
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
90
|
Park HS, Kim JW, Lee SH, Yang HK, Ham DS, Sun CL, Hong TH, Khang G, Park CG, Yoon KH. Antifibrotic effect of rapamycin containing polyethylene glycol-coated alginate microcapsule in islet xenotransplantation. J Tissue Eng Regen Med 2015; 11:1274-1284. [DOI: 10.1002/term.2029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/05/2015] [Accepted: 03/20/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Heon-Seok Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine; Catholic University of Korea; Seoul Republic of Korea
| | - Ji-Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine; Catholic University of Korea; Seoul Republic of Korea
- Convergent Research Consortium for Immunologic Disease, Seoul St Mary's Hospital; Catholic University of Korea; Seoul Republic of Korea
| | - Seung-Hwan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine; Catholic University of Korea; Seoul Republic of Korea
| | - Hae Kyung Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine; Catholic University of Korea; Seoul Republic of Korea
| | - Dong-Sik Ham
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine; Catholic University of Korea; Seoul Republic of Korea
| | - Cheng-Lin Sun
- Department of Endocrinology and Metabolism; First Hospital of Jilin University; Changchun Jilin People's Republic of China
| | - Tae Ho Hong
- Department of Surgery, College of Medicine; Catholic University of Korea; Seoul Republic of Korea
| | - Gilson Khang
- Department of Polymer Nano Science and Technology, Department of BIN Fusion Technology and BK-21 Polymer BIN Fusion Research Team; Chonbuk National University, Dukjin; Jeonju Republic of Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Translational Xenotransplantation Research Centre, Cancer Research Institute, Biomedical Research Institute, College of Medicine; Seoul National University; Republic of Korea
| | - Kun-Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine; Catholic University of Korea; Seoul Republic of Korea
- Convergent Research Consortium for Immunologic Disease, Seoul St Mary's Hospital; Catholic University of Korea; Seoul Republic of Korea
| |
Collapse
|
91
|
Ren K, Zhang M, He J, Wu Y, Ni P. Preparation of Polymeric Prodrug Paclitaxel-Poly(lactic acid)-b-Polyisobutylene and Its Application in Coatings of a Drug Eluting Stent. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11263-11271. [PMID: 25955234 DOI: 10.1021/acsami.5b01410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To develop a novel biodegradable and quite adhesive coating material for fabricating a paclitaxel (PTX)-containing eluting stent, herein, we report two kinds of drug eluting stent (DES) materials. One of them is a prodrug, PTX end-capped poly(lactic acid)-b-polyisobutylene (PTX-PLA-b-PIB) diblock copolymer, which possesses favorable biodegradability and biocompatibility. The other is a mixture of PIB-b-PLA diblock copolymer and PTX. PIB-b-PLA was synthesized via the ring-opening polymerization (ROP) using hydroxyl-terminated polyisobutylene (PIB-OH) as the initiator, while the PTX-PLA-b-PIB prodrug was prepared through a combination of ROP and Cu(I)-catalyzed azide-alkyne cycloaddition "click" reaction. The chemical structures and compositions as well as the molecular weights and molecular weight distributions of these copolymers have been fully characterized by (1)H nuclear magnetic resonance, Fourier transform infrared, and gel permeation chromatography measurements. The thermal degradation behavior and glass transition temperature (Tg) of the copolymers were studied by thermogravimetric analysis and differential scanning calorimetry, respectively. The solutions of PTX-PLA-b-PIB and the PIB-b-PLA/PTX mixture were separately coated onto the bare metal stents to form the PTX-containing DES. Subsequently, the surface structures and morphologies of the bare stent and DES were studied by atomic force microscopy and scanning electron microscopy, respectively. The in vitro release of PTX from these stents was conducted in a buffer medium (PBS 7.4) at 37 °C. The results showed that the coating formed by a blend of PTX-PLA-b-PIB, PIB-b-PLA, and PTX yielded a release that was better sustained than those of the individual PTX-PLA-b-PIB prodrug or PIB-b-PLA/PTX mixture. MTT assays demonstrated that the stent coated with PTX-PLA-b-PIB displayed a cytotoxicity lower than that of the PIB-b-PLA/PTX mixed layer, and the biocompatibility of coatings can be effectively improved by the prodrug.
Collapse
Affiliation(s)
- Kai Ren
- †College of Chemistry, Chemical Engineering and Materials Science, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou 215123, China
| | - Mingzu Zhang
- †College of Chemistry, Chemical Engineering and Materials Science, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou 215123, China
| | - Jinlin He
- †College of Chemistry, Chemical Engineering and Materials Science, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou 215123, China
| | - Yixian Wu
- ‡State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peihong Ni
- †College of Chemistry, Chemical Engineering and Materials Science, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou 215123, China
| |
Collapse
|
92
|
In vitro study of sirolimus release from a drug-eluting stent: Comparison of the release profiles obtained using different test setups. Eur J Pharm Biopharm 2015; 93:328-38. [DOI: 10.1016/j.ejpb.2015.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/11/2015] [Accepted: 04/26/2015] [Indexed: 11/21/2022]
|
93
|
Zhu X, Braatz RD. Modeling and analysis of drug-eluting stents with biodegradable PLGA coating: consequences on intravascular drug delivery. J Biomech Eng 2015; 136:1894901. [PMID: 25084767 DOI: 10.1115/1.4028135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 11/08/2022]
Abstract
Increasing interests have been raised toward the potential applications of biodegradable poly(lactic-co-glycolic acid) (PLGA) coatings for drug-eluting stents in order to improve the drug delivery and reduce adverse outcomes in stented arteries in patients. This article presents a mathematical model to describe the integrated processes of drug release in a stent with PLGA coating and subsequent drug delivery, distribution, and drug pharmacokinetics in the arterial wall. The integrated model takes into account the PLGA degradation and erosion, anisotropic drug diffusion in the arterial wall, and reversible drug binding. The model simulations first compare the drug delivery from a biodegradable PLGA coating with that from a biodurable coating, including the drug release profiles in the coating, average arterial drug levels, and arterial drug distribution. Using the model for the PLGA stent coating, the simulations further investigate drug internalization, interstitial fluid flow in the arterial wall, and stent embedment for their impact on drug delivery. Simulation results show that these three factors, while imposing little change in the drug release profiles, can greatly change the average drug concentrations in the arterial wall. In particular, each of the factors leads to significant and yet distinguished alterations in the arterial drug distribution that can potentially influence the treatment outcomes. The detailed integrated model provides insights into the design and evaluation of biodegradable PLGA-coated drug-eluting stents for improved intravascular drug delivery.
Collapse
|
94
|
McGinty S, Vo TT, Meere M, McKee S, McCormick C. Some design considerations for polymer-free drug-eluting stents: a mathematical approach. Acta Biomater 2015; 18:213-225. [PMID: 25712386 DOI: 10.1016/j.actbio.2015.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/15/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
Abstract
In this paper we provide the first model of drug elution from polymer-free arterial drug-eluting stents. The generalised model is capable of predicting drug release from a number of polymer-free systems including those that exhibit nanoporous, nanotubular and smooth surfaces. We derive analytical solutions which allow us to easily determine the important parameters that control drug release. Drug release profiles are provided, and we offer design recommendations so that the release profile may be tailored to achieve the desired outcome. The models presented here are not specific to drug-eluting stents and may also be applied to other biomedical implants that use nanoporous surfaces to release a drug.
Collapse
|
95
|
Mohan CC, Prabhath A, Cherian AM, Vadukumpully S, Nair SV, Chennazhi K, Menon D. Nanotextured stainless steel for improved corrosion resistance and biological response in coronary stenting. NANOSCALE 2015; 7:832-841. [PMID: 25436487 DOI: 10.1039/c4nr05015k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanosurface engineering of metallic substrates for improved cellular response is a persistent theme in biomaterials research. The need to improve the long term prognosis of commercially available stents has led us to adopt a 'polymer-free' approach which is cost effective and industrially scalable. In this study, 316L stainless steel substrates were surface modified by hydrothermal treatment in alkaline pH, with and without the addition of a chromium precursor, to generate a well adherent uniform nanotopography. The modified surfaces showed improved hemocompatibility and augmented endothelialization, while hindering the proliferation of smooth muscle cells. Moreover, they also exhibited superior material properties like corrosion resistance, surface integrity and reduced metal ion leaching. The combination of improved corrosion resistance and selective vascular cell viability provided by nanomodification can be successfully utilized to offer a cell-friendly solution to the inherent limitations pertinent to bare metallic stents.
Collapse
Affiliation(s)
- Chandini C Mohan
- Amrita Centre for Nanosciences, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Cochin 682 041, Kerala, India.
| | | | | | | | | | | | | |
Collapse
|
96
|
Local therapeutic efficacy with reduced systemic side effects by rapamycin-loaded subcapsular microspheres. Biomaterials 2014; 42:151-60. [PMID: 25542803 DOI: 10.1016/j.biomaterials.2014.11.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Kidney injury triggers fibrosis, the final common pathway of chronic kidney disease (CKD). The increase of CKD prevalence worldwide urgently calls for new therapies. Available systemic treatment such as rapamycin are associated with serious side effects. To study the potential of local antifibrotic therapy, we administered rapamycin-loaded microspheres under the kidney capsule of ureter-obstructed rats and assessed the local antifibrotic effects and systemic side effects of rapamycin. After 7 days, microsphere depots were easily identifiable under the kidney capsule. Both systemic and local rapamycin treatment reduced intrarenal mTOR activity, myofibroblast accumulation, expression of fibrotic genes, and T-lymphocyte infiltration. Upon local treatment, inhibition of mTOR activity and reduction of myofibroblast accumulation were limited to the immediate vicinity of the subcapsular pocket, while reduction of T-cell infiltration was widespread. In contrast to systemically administered rapamycin, local treatment did not induce off target effects such as weight loss. Thus subcapsular delivery of rapamycin-loaded microspheres successfully inhibited local fibrotic response in UUO with less systemic effects. Therapeutic effect of released rapamycin was most prominent in close vicinity to the implanted microspheres.
Collapse
|
97
|
Kim SY, Kim M, Kim MK, Lee H, Lee DK, Lee DH, Yang SG. Paclitaxel-eluting nanofiber-covered self-expanding nonvascular stent for palliative chemotherapy of gastrointestinal cancer and its related stenosis. Biomed Microdevices 2014; 16:897-904. [PMID: 25135441 DOI: 10.1007/s10544-014-9894-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Self-expanding non-vascular metal stents (SEMS) is now a choice of treatment for tumor-induced obstructive symptoms of gastrointestinal tract. But in-growing tumor causes re-stenosis. Here, we studied a paclitaxel-eluting nanofiber-covered stent for palliative chemotherapy of gastrointestinal cancer and its related stenosis. In vivo and in vitro feasibility of nanofiber-covered nonvascular stent was evaluated in this study. Nanofiber-covered stent released paclitaxel (PTX) in controlled manner for 30 days. PTX-NFM significantly inhibited the growth of CT-26 colon cancer in comparison with PTX injection. PTX maintained higher tumor concentrations over 1.0 μg/ml for more than 14 days without systemic exposure. TUNEL and H&E staining proved locally concentrated PTX induced the higher apoptosis than PTX injection. In this way, PTX-eluting nanofiber-covered stent possibly inhibits in-growth of cancer and extends patency of stent. Clinical feasibility of PTX-eluting nanofiber nonvascular stent for cholangiocarcinoma and gastrointestinal cancers will be investigated in further studies.
Collapse
Affiliation(s)
- Se-Yoon Kim
- Utah-Inha DDS and Advanced Therapeutics Research Center, Incheon, 406-840, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
98
|
Zhu X, Braatz RD. A mechanistic model for drug release in PLGA biodegradable stent coatings coupled with polymer degradation and erosion. J Biomed Mater Res A 2014; 103:2269-79. [PMID: 25345656 DOI: 10.1002/jbm.a.35357] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/09/2022]
Abstract
Biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) coating for applications in drug-eluting stents has been receiving increasing interest as a result of its unique properties compared with biodurable polymers in delivering drug for reducing stents-related side effects. In this work, a mathematical model for describing the PLGA degradation and erosion and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss that predicts multiple experimental studies in the literature. An analytical model for the change of the number-average degree of polymerization [or molecular weight (MW)] is also derived. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer MW change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model is used to describe in vitro sirolimus release from PLGA stent coating, and demonstrates the significance of simultaneous sirolimus release via diffusion through both polymer solid and pore space. The proposed model is compared to existing drug transport models, and the impact of model parameters, limitations and possible extensions of the model are also discussed.
Collapse
Affiliation(s)
- Xiaoxiang Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
99
|
A decade of modelling drug release from arterial stents. Math Biosci 2014; 257:80-90. [DOI: 10.1016/j.mbs.2014.06.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/16/2014] [Accepted: 06/26/2014] [Indexed: 11/20/2022]
|
100
|
Doro F, Ramos A, Schneider J, Rodrigues-Filho U, Veiga M, Yano C, Negreti A, Krieger M, Tfouni E. Deposition of organic−inorganic hybrid coatings over 316L surgical stainless steel and evaluation on vascular cells. CAN J CHEM 2014. [DOI: 10.1139/cjc-2014-0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface coating of metallic materials using the sol-gel technique is a suitable approach to obtain hybrid materials with improved properties for biomedical applications. In this study, an AISI 316L stainless steel surface was coated with ormosils prepared from tetraethylsiloxane and 3-glycidoxypropyltrimethoxysilane or polydimethylsiloxane. The characterization of structural and surface properties was performed by several techniques. Surface microstructure, morphology, and energy are dependent on organosilane type and content. Chemical stability of coatings was investigated by static immersion tests in phosphate buffer solution at 37 °C, and silicon leaching after 21 days was found to be in the range of ∼200−300 μg L−1. Mechanical adhesion was found to be within 1.0 and 3.7 N cm−1. The interaction of the samples and materials in the cardiovascular environment was investigated through cellular behavior. Biological assays were performed with slides to avoid any cytotoxic effects on human endothelial cells (HUVEC) and rabbit arterial smooth muscle cells (RASM). No significant alterations were observed after 24 h in the viability of RASM and HUVEC cells exposed to different coatings. No increase of HUVEC or RASM migration was observed after 24 h as evaluated by transwell migration assay. The hybrid materials showed suitable properties for potential application as biomaterials in cardiovascular environment as well as for incorporation of bioactive species with the aim to prepare drug-eluting stents.
Collapse
Affiliation(s)
- F.G. Doro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
- Departamento de Química Geral e Inorgânica, Instituto de Química, Universidade Federal da Bahia, 40170-290, Salvador, BA, Brazil
| | - A.P. Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - J.F. Schneider
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - U.P. Rodrigues-Filho
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13563-120 São Carlos, SP, Brazil
| | - M.A.M.S. Veiga
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - C.L. Yano
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, SP, Brazil
| | - A. Negreti
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, SP, Brazil
| | - M.H. Krieger
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, SP, Brazil
| | - E. Tfouni
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|