51
|
Han HJ, Ekweremadu C, Patel N. Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
52
|
Scimeca M, Urbano N, Bonfiglio R, Duggento A, Toschi N, Schillaci O, Bonanno E. Novel insights into breast cancer progression and metastasis: A multidisciplinary opportunity to transition from biology to clinical oncology. Biochim Biophys Acta Rev Cancer 2019; 1872:138-148. [PMID: 31348975 DOI: 10.1016/j.bbcan.2019.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
According to the most recent epidemiological studies, breast cancer shows the highest incidence and the second leading cause of death in women. Cancer progression and metastasis are the main events related to poor survival of breast cancer patients. This can be explained by the presence of highly resistant to chemo- and radiotherapy stem cells in many breast tumor tissues. In this context, numerous studies highlighted the possible involvement of epithelial to mesenchymal transition phenomenon as biological program to generate cancer stem cells, and thus participate to both metastatic and drug resistance process. Therefore, the comprehension of mechanisms (both cellular and molecular) involved in breast cancer occurrence and progression can lay the foundation for the development of new diagnostic and therapeutical protocols. In this review, we reported the most important findings in the field of breast cancer highlighting the most recent data concerning breast tumor biology, diagnosis and therapy.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano (Mi), Italy.
| | | | - Rita Bonfiglio
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; Neuromed Group, "Diagnostica Medica" and "Villa dei Platani", Avellino, Italy
| |
Collapse
|
53
|
Zahiri M, Babaei M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Hybrid nanoreservoirs based on dextran‐capped dendritic mesoporous silica nanoparticles for CD133‐targeted drug delivery. J Cell Physiol 2019; 235:1036-1050. [DOI: 10.1002/jcp.29019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Mahsa Zahiri
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Babaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Medicinal Chemistry, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
54
|
Perlecan-targeted nanoparticles for drug delivery to triple-negative breast cancer. FUTURE DRUG DISCOVERY 2019; 1:FDD8. [PMID: 31448368 PMCID: PMC6700713 DOI: 10.4155/fdd-2019-0005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Aim: We previously developed two antibodies that bind to a cell surface protein, perlecan, overexpressed in triple-negative breast cancer (TNBC). The goal of this study was to investigate these antibodies as targeting ligands for nanoparticle-mediated drug delivery. Methods: Paclitaxel-loaded poly(D,L-lactide-co-glycolide) nanoparticles were functionalized with antibodies using thiol–maleimide chemistry. Effect of antibody functionalization on therapeutic efficacy of drug-loaded nanoparticles was investigated using in vitro and in vivo models of TNBC. Results: The antibodies were covalently conjugated to nanoparticles without affecting antibody binding affinity or nanoparticle properties. Perlecan-targeted nanoparticles showed improved cell uptake, retention, cytotoxicity in vitro and enhanced tumor growth inhibition in vivo. Conclusion: The data presented here indicates that perlecan-targeted nanoparticles can improve tumor drug delivery to TNBC.
Collapse
|
55
|
Pindiprolu SH, Pindiprolu SKSS. CD133 receptor mediated delivery of STAT3 inhibitor for simultaneous elimination of cancer cells and cancer stem cells in oral squamous cell carcinoma. Med Hypotheses 2019; 129:109241. [PMID: 31371076 DOI: 10.1016/j.mehy.2019.109241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/19/2019] [Indexed: 02/01/2023]
Abstract
Oral Squamous Cell Carcinoma (OSCC) is one of the major causes of cancer related deaths worldwide. Presence of chemoresistant cancer stem cells is the major reason behind metastasis, tumor relapse and treatment resistance in OSCC. STAT 3 signalling plays a key role in survival of cancer stem cells (CSC's), Epithelial Mesenchymal Transition (EMT) mediated metastasis in OSCC. CD 133 is the surface marker for identification of cancer stem cells. In the present study we hypothesise the selective targeting of CSC's using CD 133 mediated delivery of STAT 3 inhibitor, Niclosamide to specifically target CSC's and Non CSC's.
Collapse
Affiliation(s)
| | - Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education and Research, India
| |
Collapse
|
56
|
Aghajani M, Mansoori B, Mohammadi A, Asadzadeh Z, Baradaran B. New emerging roles of CD133 in cancer stem cell: Signaling pathway and miRNA regulation. J Cell Physiol 2019; 234:21642-21661. [PMID: 31102292 DOI: 10.1002/jcp.28824] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSC) are rare immortal cells within a tumor that are able to initiate tumor progression, development, and resistance. Advances studies show that, like normal stem cells, CSCs can be both self-renewed and given rise to many cell types, therefore form tumors. A number of cell surface markers, such as CD44, CD24, and CD133 are frequently used to identify CSCs. CD133, a transmembrane glycoprotein, either alone or in collaboration with other markers, has been mainly considered to identify CSCs from different solid tumors. However, the exactness of CD133 as a cancer stem cell biomarker has not been approved yet. The clinical importance of CD133 is as a CSC marker in many cancers. Also, it contributes to shorter survival, tumor progression, and tumor recurrence. The expression of CD133 is controlled by many extracellular or intracellular factors, such as tumor microenvironment, epigenetic factors, signaling pathways, and miRNAs. In this study, it was attempted to determine: 1) CD133 function; 2) the role of CD133 in cancer; 3) CD133 regulation; 4) the therapeutic role of CD133 in cancers.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
57
|
Jiménez-López J, El-Hammadi MM, Ortiz R, Cayero-Otero MD, Cabeza L, Perazzoli G, Martin-Banderas L, Baeyens JM, Prados J, Melguizo C. A novel nanoformulation of PLGA with high non-ionic surfactant content improves in vitro and in vivo PTX activity against lung cancer. Pharmacol Res 2019; 141:451-465. [PMID: 30634051 DOI: 10.1016/j.phrs.2019.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/14/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Paclitaxel (PTX), a chemotherapy agent widely used to treat lung cancer, is characterised by high toxicity, low bioavailability and the need to use of excipients with serious side effects that limit its use. Paclitaxel encapsulation into nanoparticles (NPs) generates drug pharmacokinetic and pharmacodynamic advantages compared to free PTX. In this context, a NP carrier formed from a copolymer of lactic acid and glycolic acid (PLGA) has demonstrated high biocompatibility and low toxicity and therefore being approved by FDA to be used in humans. We synthesised a new PLGA NP and loaded it with PTX to improve drug efficacy and reduce side effects. This nanoformulation showed biocompatibility and no toxicity to human immune system. These NPs favor the intracellular uptake of PTX and enhance its antitumor effect in human and murine lung cancer cells, with up to 3.6-fold reductions in the PTX's IC50. Although PLGA NPs did not show any inhibitory capacity against P-glycoprotein, they increased the antitumor activity of PTX in cancer stem cells. Treatment with PLGA-PTX NPs increased apoptosis and significantly reduced the volume of the tumorspheres derived from A549 and LL2 cells by up to 36% and 46.5%, respectively. Biodistribution studies with PLGA-PTX NPs revealed an increase in drug circulation time, as well as a greater accumulation in lung and brain tissues compared to free PTX. Low levels of PTX were detected in the dorsal root ganglion with PLGA-PTX NPs, which could exert a protective effect against peripheral neuropathy. In vivo treatment with PLGA-PTX NPs showed a greater decrease in tumor volume (44.6%) in immunocompetent mice compared to free PTX (24.4%) and without increasing the toxicity of the drug. These promising results suggest that developed nanosystem provide a potential strategy for improving the chemotherapeutic effect and reducing the side effects of PTX.
Collapse
Affiliation(s)
- Julia Jiménez-López
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Mazen M El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Maria D Cayero-Otero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Lucia Martin-Banderas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Jose M Baeyens
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| |
Collapse
|
58
|
Jiang W, Gao Y, Wang Z, Gong C, Hu C, Ding X, Qiang L, Gao S, Ren F. Codelivery of miR-4638–5p and Docetaxel Based on Redox-Sensitive Polypeptide Micelles as an Improved Strategy for the Treatment of Castration-Resistant Prostate Cancer. Mol Pharm 2018; 16:437-447. [PMID: 30452268 DOI: 10.1021/acs.molpharmaceut.8b01074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wenjun Jiang
- Department of Pharmacy, East China University of Science and Technology, Shanghai, China
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuan Gao
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhuo Wang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chunai Gong
- Department of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Chuling Hu
- Department of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xueying Ding
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lei Qiang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shen Gao
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Fuzheng Ren
- Department of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
59
|
Liou GY. CD133 as a regulator of cancer metastasis through the cancer stem cells. Int J Biochem Cell Biol 2018; 106:1-7. [PMID: 30399449 DOI: 10.1016/j.biocel.2018.10.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/28/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
Cancer stem cells are the cancer cells that have abilities to self-renew, differentiate into defined progenies, and initiate and maintain tumor growth. They also contribute to cancer metastasis and therapeutic resistance, both of which are the major causes of cancer mortality. Among the reported makers of the cancer stem cells, CD133 is the most well-known marker for isolating and studying cancer stem cells in different types of cancer. The CD133high population of cancer cells are not only capable of self-renewal, proliferation, but also highly metastatic and resistant to therapy. Despite very limited information on physiological functions of CD133, many ongoing studies are aimed to reveal the mechanisms that CD133 utilizes to modulate cancer dissemination and drug resistance with a long-term goal for bringing down the number of cancer deaths. In this review, in addition to the regulation of CD133, and its involvement in cancer initiation, and development, the recent updates on how CD133 modulates cancer dissemination, and therapeutic resistance are provided. The key signaling pathways that are upstream or downstream of CD133 during these processes are summarized. A comprehensive understanding of CD133-mediated cancer initiation, development, and dissemination through its pivotal role in cancer stem cells will offer new strategies in cancer therapy.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Clark Atlanta University, Center for Cancer Research & Therapeutic Development, and Department of Biological Sciences, 223 James P. Brawley Drive SW, Atlanta, GA 30314, USA.
| |
Collapse
|
60
|
Sun Y, Kim HS, Kang S, Piao YJ, Jon S, Moon WK. Magnetic Resonance Imaging-Guided Drug Delivery to Breast Cancer Stem-Like Cells. Adv Healthc Mater 2018; 7:e1800266. [PMID: 30146770 DOI: 10.1002/adhm.201800266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/14/2018] [Indexed: 01/16/2023]
Abstract
The feasibility of detecting breast cancer stem-like cells (BCSCs) with magnetic resonance imaging using extradomain-B of fibronectin (EDB-FN)-specific peptide (APTEDB )-conjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (APTEDB -TCL-SPIONs) is previously demonstrated. Here, doxorubicin (Dox)-loaded APTEDB -TCL-SPIONs (Dox@APTEDB -TCL-SPIONs) are generated and their theranostic ability in a BCSC xenograft mouse model is assessed. The Dox@APTEDB -TCL-SPIONs enable more efficient delivery of Dox to tumors than nontargeted Dox@TCL-SPIONs. Much greater inhibition of BCSC tumor growth is observed after treatment with the Dox@APTEDB -TCL-SPIONs than with either Dox@TCL-SPIONs or free Dox. Hypointense signals are observed in the majority of the mice in postcontrast but not precontrast T2*-weighted MR images of tumors 7 days after treatment with Dox@APTEDB -TCL-SPIONs. An inverse correlation is observed between signal intensity and both EDB-FN expression and response to chemotherapy. The data indicate Dox@APTEDB -TCL-SPIONs can detect BCSCs within tumors by targeting EDB-FN-expressing cells. These nanoparticles thus have theranostic potential in breast cancer.
Collapse
Affiliation(s)
- Yujin Sun
- Department of Radiology; Seoul National University Hospital; 101 Daehak-ro Jongno-gu Seoul 03080 Republic of Korea
- Department of Radiology; Yanbian University Hospital; 1327 JuZi Street Yanji City Jilin Province 133000 China
| | - Hoe Suk Kim
- Department of Radiology; Seoul National University Hospital; 101 Daehak-ro Jongno-gu Seoul 03080 Republic of Korea
| | - Sukmo Kang
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Yin Ji Piao
- Department of Biomedical Science and Radiology; Seoul National University College of Medicine; 103 Daehak-ro Jongno-gu Seoul 03080 Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Woo Kyung Moon
- Department of Radiology; Seoul National University Hospital; 101 Daehak-ro Jongno-gu Seoul 03080 Republic of Korea
- Department of Biomedical Science and Radiology; Seoul National University College of Medicine; 103 Daehak-ro Jongno-gu Seoul 03080 Republic of Korea
| |
Collapse
|
61
|
Mahvi DA, Liu R, Grinstaff MW, Colson YL, Raut CP. Local Cancer Recurrence: The Realities, Challenges, and Opportunities for New Therapies. CA Cancer J Clin 2018; 68:488-505. [PMID: 30328620 PMCID: PMC6239861 DOI: 10.3322/caac.21498] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Locoregional recurrence negatively impacts both long-term survival and quality of life for several malignancies. For appropriate-risk patients with an isolated, resectable, local recurrence, surgery represents the only potentially curative therapy. However, oncologic outcomes remain inferior for patients with locally recurrent disease even after macroscopically complete resection. Unfortunately, these operations are often extensive, with significant perioperative morbidity and mortality. This review highlights selected malignancies (mesothelioma, sarcoma, lung cancer, breast cancer, rectal cancer, and peritoneal surface malignancies) in which surgical resection is a key treatment modality and local recurrence plays a significant role in overall oncologic outcome with regard to survival and quality of life. For each type of cancer, the current, state-of-the-art treatment strategies and their outcomes are assessed. The need for additional therapeutic options is presented given the limitations of the current standard therapies. New and emerging treatment modalities, including polymer films and nanoparticles, are highlighted as potential future solutions for both prevention and treatment of locally recurrent cancers. Finally, the authors identify additional clinical and research opportunities and propose future research strategies based on the various patterns of local recurrence among the different cancers.
Collapse
Affiliation(s)
- David A Mahvi
- Postdoctoral Research Fellow, Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rong Liu
- Instructor in Surgery, Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mark W Grinstaff
- Professor of Translational Research, Biomedical Engineering, Chemistry, Materials Science and Engineering, and Medicine, Department of Chemistry, Boston University, Boston, MA
| | - Yolonda L Colson
- Michael A. Bell Family Distinguished Chair in Healthcare Innovation and Professor of Surgery, Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Chandrajit P Raut
- Associate Professor of Surgery, Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
62
|
Bai X, Ni J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev 2018; 69:152-163. [PMID: 30029203 DOI: 10.1016/j.ctrv.2018.07.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Abstract
Development of therapeutic resistance and metastasis is a major challenge with current breast cancer (BC) therapy. Mounting evidence suggests that a subpopulation of cancer stem cells (CSCs) contribute to the cancer therapeutic resistance and metastasis, leading to the recurrence and death in patients. Breast cancer stem cells (BCSCs) are not only a consequence of mutations that overactivate the self-renewal ability of normal stem cells or committed progenitors but also a result of the de-differentiation of cancer cells induced by somatic mutations or microenvironmental components under treatment. Eradication of BCSCs may bring hope and relief to patients whose lives are threatened by recurrent BCs. Therefore, a better understanding of the generation, regulatory mechanisms, and identification of CSCs in BC therapeutic resistance and metastasis will be imperative for developing BCSC-targeted strategies. Here we summarize the latest studies about cell surface markers and signalling pathways that sustain the stemness of BCSC and discuss the associations of mechanisms behind these traits with phenotype and behavior changes in BCSCs. More importantly, their implications for future study are also evaluated and potential BCSC-targeted strategies are proposed to break through the limitation of current therapies.
Collapse
Affiliation(s)
- Xupeng Bai
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Jie Ni
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Julia Beretov
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Peter Graham
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; School of Basic Medical Sciences, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
63
|
Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J Immunol Res 2018; 2018:7394268. [PMID: 30116755 PMCID: PMC6079467 DOI: 10.1155/2018/7394268] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/27/2018] [Indexed: 01/30/2023] Open
Abstract
Neuroblastoma is a pediatric solid cancer of heterogeneous clinical behavior. The unique features of this type of cancer frequently hamper the process of determining clinical presentation and predicting therapy effectiveness. The tumor can spontaneously regress without treatment or actively develop and give rise to metastases despite aggressive multimodal therapy. In recent years, immunotherapy has become one of the most promising approaches to the treatment of neuroblastoma. Still, only one drug for targeted immunotherapy of neuroblastoma, chimeric monoclonal GD2-specific antibodies, is used in the clinic today, and its application has significant limitations. In this regard, the development of effective and safe GD2-targeted immunotherapies and analysis of other potential molecular targets for the treatment of neuroblastoma represents an important and topical task. The review summarizes biological characteristics of the origin and development of neuroblastoma and outlines molecular markers of neuroblastoma and modern immunotherapy approaches directed towards these markers.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University “MEPhI”, Moscow 115409, Russia
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| |
Collapse
|
64
|
Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med 2018; 7:18. [PMID: 29984391 PMCID: PMC6035906 DOI: 10.1186/s40169-018-0198-1] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the abundant ongoing research efforts, cancer remains one of the most challenging diseases to treat globally. Due to the heterogenous nature of cancer, one of the major clinical challenges in therapeutic development is the cancer’s ability to develop resistance. It has been hypothesized that cancer stem cells are the cause for this resistance, and targeting them will lead to tumor regression. A pentaspan transmembrane glycoprotein, CD133 has been suggested to mark cancer stem cells in various tumor types, however, the accuracy of CD133 as a cancer stem cell biomarker has been highly controversial. There are numerous speculations for this, including differences in cell culture conditions, poor in vivo assays, and the inability of current antibodies to detect CD133 variants and deglycosylated epitopes. This review summarizes the most recent and relevant research regarding the controversies surrounding CD133 as a normal stem cell and cancer stem cell biomarker. Additionally, it aims to establish the overall clinical significance of CD133 in cancer. Recent clinical studies have shown that high expression of CD133 in tumors has been indicated as a prognostic marker of disease progression. As such, a spectrum of immunotherapeutic strategies have been developed to target these CD133pos cells with the goal of translation into the clinic. This review compiles the current therapeutic strategies targeting CD133 and discusses their prognostic potential in various cancer subtypes.
Collapse
Affiliation(s)
- Paige M Glumac
- Department of Pharmacology, University of Minnesota Medical School, Nils Hasselmo Hall 3-104, 312 Church St. SE, Minneapolis, MN, 55455, USA
| | - Aaron M LeBeau
- Department of Pharmacology, University of Minnesota Medical School, Nils Hasselmo Hall 3-104, 312 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
65
|
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 2018; 53:90-109. [PMID: 29966677 DOI: 10.1016/j.semcancer.2018.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
Collapse
|
66
|
Alibolandi M, Abnous K, Anvari S, Mohammadi M, Ramezani M, Taghdisi SM. CD133-targeted delivery of self-assembled PEGylated carboxymethylcellulose-SN38 nanoparticles to colorectal cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018. [PMID: 29519158 DOI: 10.1080/21691401.2018.1446969] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Poor aqueous solubility of chemotherapeutics such as SN38 (7-ethyl-10-hydroxycamptothecin) and the associated systemic adverse effects are serious limitations of their clinical use. To improve the drug delivery efficiency of such compounds, they were covalently conjugated to hydrophilic macromolecular carriers that specifically deliver the drug moiety to the tumour cells. In the current study, we developed a PEGylated acetylated carboxymethylcellulose conjugate of SN38 which was covalently attached to an aptamer against a cancer stem cell marker, CD133. Then, the designed nanoplatform was used to specifically deliver SN38 to colorectal cancer cells. The results demonstrated that the synthesized conjugate was self-assembled to nanoparticles with 169 nm in size and poly dispersity index of 0.11. Besides, the targeted self-assembled nanoparticles could significantly enhance the cellular uptake by CD133-expressing HT29 cell line confirmed by fluorescent microscopy and flow cytometry. Moreover, our results revealed that the targeted self-assembled nanoconjugate exhibited significantly lower IC50 in HT29 cells overexpressing CD133 compared to non-targeted self-assembled nanoconjugate. The promising data suggest that the prepared targeted self-assembled drug conjugate nanoparticles possess the potential to offer the desirable physicochemical properties thereby enhancing the solubility and the therapeutic index of poorly soluble cytotoxic agents.
Collapse
Affiliation(s)
- Mona Alibolandi
- a Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Khalil Abnous
- a Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Sajjad Anvari
- a Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Marzieh Mohammadi
- b Nanotechnology Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- a Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran.,b Nanotechnology Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Seyed Mohammad Taghdisi
- c Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
67
|
Schmohl JU, Felices M, Todhunter D, Taras E, Miller JS, Vallera DA. Tetraspecific scFv construct provides NK cell mediated ADCC and self-sustaining stimuli via insertion of IL-15 as a cross-linker. Oncotarget 2018; 7:73830-73844. [PMID: 27650544 PMCID: PMC5342017 DOI: 10.18632/oncotarget.12073] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/05/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The design of a highly effective anti-cancer immune-engager would include targeting of highly drug refractory cancer stem cells (CSC). The design would promote effective antibody-dependent cell-mediated cytotoxicity (ADCC) and simultaneously promote costimulation to expand and self-sustain the effector NK cell population. Based on our bispecific NK cell engager platform we constructed a tetraspecific killer engager (TetraKE) comprising single-chain variable fragments (scFvs) binding FcγRIII (CD16) on NK cells, EpCAM on carcinoma cells and CD133 on cancer stem cells in order to promote ADCC. Furthermore, an Interleukin (IL)-15-crosslinker enhanced NK cell related proliferation resulting in a highly active drug termed 1615EpCAM133. RESULTS Proliferation assays showed TetraKE promoted proliferation and enhanced NK cell survival. Drug-target binding, NK cell related degranulation, and IFN-γ production was specific for both tumor related antigens in EpCAM and CD133 bearing cancer cell lines. The TetraKE showed higher killing activity and superior dose dependent degranulation. Cytokine profiling showed a moderately enhanced IFN-γ production, enhanced GM-CSF production, but no evidence of induction of excessive cytokine release. METHODS Assembly and synthesis of hybrid genes encoding the TetraKE were performed using DNA shuffling and ligation. The TetraKE was tested for efficacy, specificity, proliferation, survival, and cytokine production using carcinoma cell lines and functional assays measuring NK cell activity. CONCLUSION 1615EpCAM133 combines improved induction of ADCC with enhanced proliferation, limited cytokine response, and prolonged survival and proliferation of NK cells. By linking scFv-related targeting of carcinoma and CSCs with a sustaining IL-15 signal, our new construct shows great promise to target cancer and CSCs.
Collapse
Affiliation(s)
- Joerg U Schmohl
- University of Minnesota, Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA.,University of Tuebingen, Department for Hematology and Oncology, Medicine Department 2, University Hospital of Tuebingen, Tuebingen, Germany
| | - Martin Felices
- University of Minnesota, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN, USA
| | - Deborah Todhunter
- University of Minnesota, Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth Taras
- University of Minnesota, Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S Miller
- University of Minnesota, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN, USA
| | - Daniel A Vallera
- University of Minnesota, Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
68
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK. Pharmacological targets of breast cancer stem cells: a review. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:463-479. [PMID: 29476201 DOI: 10.1007/s00210-018-1479-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India.
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| |
Collapse
|
69
|
Qiu L, Li H, Fu S, Chen X, Lu L. Surface markers of liver cancer stem cells and innovative targeted-therapy strategies for HCC. Oncol Lett 2017; 15:2039-2048. [PMID: 29434903 DOI: 10.3892/ol.2017.7568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Liver cancer stem cells (LCSCs) have important roles in the occurrence, development, recurrence, therapy resistance and metastasis of hepatocellular carcinoma (HCC). Therefore, intensive studies are undergoing to identify the mechanisms by which LCSCs contribute to HCC invasion and metastasis, and to design more efficient treatments for this disease. With continuous efforts in LCSC research over the years, therapies targeting LCSCs are thought to have great potential for the clinical treatment and prognosis of liver cancer. Novel LCSC surface markers are continuously discovered and several have been used in targeted therapies to reduce HCC recurrence, metastasis, and drug resistance following tumor resection. The present review describes the surface markers characterizing LCSCs and the recent progress in therapies targeting these markers, including antibodies and polypeptides.
Collapse
Affiliation(s)
- Lige Qiu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| | - Hailiang Li
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Sirui Fu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaofang Chen
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China.,Stem Cell and Regenerative Medicine Laboratory, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China
| | - Ligong Lu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
70
|
Leiva MC, Ortiz R, Contreras-Cáceres R, Perazzoli G, Mayevych I, López-Romero JM, Sarabia F, Baeyens JM, Melguizo C, Prados J. Tripalmitin nanoparticle formulations significantly enhance paclitaxel antitumor activity against breast and lung cancer cells in vitro. Sci Rep 2017; 7:13506. [PMID: 29044153 PMCID: PMC5647375 DOI: 10.1038/s41598-017-13816-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 09/29/2017] [Indexed: 01/24/2023] Open
Abstract
Paclitaxel (PTX) is one of the drugs of choice in the treatment of breast and lung cancer. However, its severe side effects, including mielosuppression, cardiotoxicity and neurotoxicity, frequently cause treatment to be discontinued. Solid lipid nanoparticles (NPs) of glyceril tripalmitate (tripalmitin) loaded with PTX (Tripalm-NPs-PTX) including modifications by the addition of hexa(ethylene glycol), β-cyclodextrin and macelignan were developed. All NPs-PTX formulations displayed excellent hemocompatibility and significantly enhanced PTX antitumor activity in human breast (MCF7, MDAMB231, SKBR3 and T47D) and lung (A549, NCI-H520 and NCI-H460) cancer cells. Tripalm-NPs-PTX decreased PTX IC50 by as much as 40.5-fold in breast and 38.8-fold in lung cancer cells and Tripalm-NPs-PTX macelignan inhibited P-glycoprotein in resistant tumor cells. In addition, Tripalm-NPs-PTX significantly decreased the volume of breast and lung multicellular tumor spheroids that mimics in vivo tumor mass. Finally, Tripalm-NPs-PTX decreased the PTX IC50 of cancer stem cells (CSCs) derived from both lung and breast cancer cells (6.7- and 14.9-fold for MCF7 and A549 CSCs, respectively). These results offer a new PTX nanoformulation based on the use of tripalmitin which improves the antitumor activity of PTX and that may serve as an alternative PTX delivery system in breast and lung cancer treatment.
Collapse
Affiliation(s)
- María Carmen Leiva
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain.,Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18014, Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Department of Health Science, University of Jaén, 23071, Jaén, Spain
| | | | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain
| | - Iryna Mayevych
- Department of Organic Chemistry, Faculty of Science. University of Málaga, 29071, Málaga, Spain
| | - Juan Manuel López-Romero
- Department of Organic Chemistry, Faculty of Science. University of Málaga, 29071, Málaga, Spain.
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Science. University of Málaga, 29071, Málaga, Spain
| | - Jose Manuel Baeyens
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain.,Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18014, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071, Granada, Spain.,Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18014, Granada, Spain
| |
Collapse
|
71
|
Sato-Dahlman M, Miura Y, Huang JL, Hajeri P, Jacobsen K, Davydova J, Yamamoto M. CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget 2017. [PMID: 29100290 DOI: 10.18632/oncotarget.18340.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oncolytic Adenoviruses (OAds) are one of the most promising anti-cancer agents that can induce cancer specific cell death. Recently, we generated infectivity-selective OAd, and the resultant OAd tumor-specific binding shows strong efficacy and mitigates toxicity. In this study, we applied this strategy based on adenovirus library screening system for generation of CD133-targeted OAd, and examined their oncolytic activity against colorectal cancer (CRC) in vitro and in vivo. CD133 (Prominin-1) is an important cell surface marker of cancer stem (like) cells (CSCs) in various cancers, including CRC. Elimination of CSCs has a high likelihood to improve CRC treatment because CSCs population in the tumor contributes to recurrence, metastases, chemotherapy resistance, and poor survival. The OAd with CD133-targeting motif (AdML-TYML) selectively infected CD133+ cultured cells and lysed them efficiently. Treatment with AdML-TYML prior to tumor inoculation inhibited the establishment of tumor of CD133+ CRC cell lines in nude mice. AdML-TYML also showed strong antitumor effect after intratumoral injections in already established CD133+ CRC subcutaneous xenografts. Our results indicate that CD133-targeted OAd selectively infected CD133+ CRC, and exhibited anti-tumorigenicity and therapeutic effect in established tumors. This novel infectivity selective virus could be a potent tool for the prevention of metastases and relapses in CRC.
Collapse
Affiliation(s)
| | - Yoshiaki Miura
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jing Li Huang
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
72
|
Sato-Dahlman M, Miura Y, Huang JL, Hajeri P, Jacobsen K, Davydova J, Yamamoto M. CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget 2017; 8:76044-76056. [PMID: 29100290 PMCID: PMC5652684 DOI: 10.18632/oncotarget.18340] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/19/2017] [Indexed: 12/19/2022] Open
Abstract
Oncolytic Adenoviruses (OAds) are one of the most promising anti-cancer agents that can induce cancer specific cell death. Recently, we generated infectivity-selective OAd, and the resultant OAd tumor-specific binding shows strong efficacy and mitigates toxicity. In this study, we applied this strategy based on adenovirus library screening system for generation of CD133-targeted OAd, and examined their oncolytic activity against colorectal cancer (CRC) in vitro and in vivo. CD133 (Prominin-1) is an important cell surface marker of cancer stem (like) cells (CSCs) in various cancers, including CRC. Elimination of CSCs has a high likelihood to improve CRC treatment because CSCs population in the tumor contributes to recurrence, metastases, chemotherapy resistance, and poor survival. The OAd with CD133-targeting motif (AdML-TYML) selectively infected CD133+ cultured cells and lysed them efficiently. Treatment with AdML-TYML prior to tumor inoculation inhibited the establishment of tumor of CD133+ CRC cell lines in nude mice. AdML-TYML also showed strong antitumor effect after intratumoral injections in already established CD133+ CRC subcutaneous xenografts. Our results indicate that CD133-targeted OAd selectively infected CD133+ CRC, and exhibited anti-tumorigenicity and therapeutic effect in established tumors. This novel infectivity selective virus could be a potent tool for the prevention of metastases and relapses in CRC.
Collapse
Affiliation(s)
| | - Yoshiaki Miura
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jing Li Huang
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
73
|
Mokhtarzadeh A, Hassanpour S, Vahid ZF, Hejazi M, Hashemi M, Ranjbari J, Tabarzad M, Noorolyai S, de la Guardia M. Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers. J Control Release 2017; 266:166-186. [PMID: 28941992 DOI: 10.1016/j.jconrel.2017.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are one of the most important origins of cancer progression and metastasis. CSCs have unique self-renewal properties and diverse cell membrane receptors that induced the resistance to the conventional chemotherapeutic agents. Therefore, the therapeutic removal of CSCs could result in the cancer cure with lack of recurrence and metastasis. In this regard, targeting CSCs in accordance to their specific biomarkers is a talented attitude in cancer therapy. Various CSCs surface biomarkers have been described, which some of them exhibited similarities on different cancer cell types, while the others are cancer specific and have just been reported on one or a few types of cancers. In this review, the importance of CSCs in cancer development and therapeutic response has been stated. Different CSCs cluster of differentiation (CD) biomarkers and their specific function and applications in the treatment of cancers have been discussed, Special attention has been made on targeted nano-delivery systems. In this regard, several examples have been illustrated concerning specific natural and artificial ligands against CSCs CD biomarkers that could be decorated on various nanoparticulated drug delivery systems to enhance therapeutic index of chemotherapeutic agents or anticancer gene therapy. The outlook of CSCs biomarkers discovery and therapeutic/diagnostic applications was discussed.
Collapse
Affiliation(s)
- Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Soodabeh Hassanpour
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | | | | | - Maryam Hashemi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Noorolyai
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
74
|
Bozorg-Ghalati F, Hedayati M, Dianatpour M, Azizi F, Mosaffa N, Mehrabani D. Effects of a Phosphoinositide-3-Kinase Inhibitor on Anaplastic Thyroid Cancer Stem Cells. Asian Pac J Cancer Prev 2017; 18:2287-2291. [PMID: 28843268 PMCID: PMC5697493 DOI: 10.22034/apjcp.2017.18.8.2287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Thyroidectomy, radioactive iodine therapy, chemotherapy, or their combination are treatments of choice for thyroid cancers. However, cancer stem cells (CSCs) may become resistant to therapy, and mutations in somatic genes affect radioiodine uptake. This study determined the effect of a phosphoinositide-3-kinase (PI3K) inhibitor on anaplastic thyroid CSCs. Materials and Methods: The magnetic-activated cell sorting assay was used for segregating CD133-positive CSCs from three anaplastic thyroid carcinoma (ATC) cell lines (C643, SW1736, and 8305C). After confirming the cells’ purity by flow cytometry, they were treated with 5, 10, 20, or 25 μM LY294002, a PI3K inhibitor, and then evaluated at 24 and 48 h. The sodium-iodide symporter (NIS) mRNA level was determined using the quantitative real-time polymerase chain reaction. NIS protein expression was evaluated using western blotting. Results: The PI3K inhibitor, at different concentrations and times, increased the NIS mRNA level (1.30-6.17-fold, P < 0.0001). If the NIS mRNA level in LY294002-treated CD133-positive CSCs was increased more than 2-fold, the NIS protein content was detectable. Conclusions: CD133-positive CSCs isolated from ATC cell lines expressed NIS mRNA and protein after PI3K inhibition. Our findings suggest that molecularly targeted CSC therapy may improve the treatment efficacy of aggressive cancers like ATC.
Collapse
Affiliation(s)
- Farzaneh Bozorg-Ghalati
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. , dianatpour@sums.
ac.ir
| | | | | | | | | | | |
Collapse
|
75
|
Klapdor R, Wang S, Hacker U, Büning H, Morgan M, Dörk T, Hillemanns P, Schambach A. Improved Killing of Ovarian Cancer Stem Cells by Combining a Novel Chimeric Antigen Receptor-Based Immunotherapy and Chemotherapy. Hum Gene Ther 2017; 28:886-896. [PMID: 28836469 DOI: 10.1089/hum.2017.168] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer represents the most lethal gynecological cancer. Although cytoreductive chemotherapy and surgery lead to complete macroscopic tumor removal, most of the patients in advanced stages suffer from recurrent disease and subsequently die. This may be explained by the activity of cancer stem cells (CSC), which are a subpopulation of cells with an elevated chemoresistance and an increased capacity for self-renewal and metastatic spread. Specifically targeting these cells by adoptive immunotherapy represents a promising strategy to reduce the risk for recurrent disease. This study selected the widely accepted CSC marker CD133 as a target for a chimeric antigen receptor (CAR)-based immunotherapeutic approach to treat ovarian cancer. A lentiviral vector was generated encoding a third-generation anti-CD133-CAR, and clinically used NK92 cells were transduced. These engineered natural killer (NK) cells showed specific killing against CD133-positive ovarian cancer cell lines and primary ovarian cancer cells cultured from sequential ascites harvests. Additionally, specific activation of these engineered NK cells was demonstrated via interferon-gamma secretion assays. To improve clinical efficacy of ovarian cancer treatment, the effect of the chemotherapeutic agent cisplatin was evaluated together with CAR-transduced NK cell treatment. It was demonstrated that NK cells remain cytotoxic and active under cisplatin treatment and, importantly, that sequential treatment with cisplatin followed by CAR-NK cells led to the strongest killing effect. The specific eradication of ovarian CSCs by anti-CD133-CAR expressing NK92 cells represents a promising strategy and, when confirmed in vivo, shall be the basis of future clinical studies with the aim to prevent recurrent disease.
Collapse
Affiliation(s)
- Rüdiger Klapdor
- 1 Department of Gynecology and Obstetrics, Hannover Medical School , Hannover, Germany .,2 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany .,3 Cluster of Excellence REBIRTH, Hannover Medical School , Hannover, Germany
| | - Shuo Wang
- 1 Department of Gynecology and Obstetrics, Hannover Medical School , Hannover, Germany .,2 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany
| | - Ulrich Hacker
- 2 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany .,4 University Cancer Center Leipzig (UCCL), University Hospital Leipzig , Leipzig, Germany
| | - Hildegard Büning
- 2 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany .,3 Cluster of Excellence REBIRTH, Hannover Medical School , Hannover, Germany
| | - Michael Morgan
- 2 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany .,3 Cluster of Excellence REBIRTH, Hannover Medical School , Hannover, Germany
| | - Thilo Dörk
- 1 Department of Gynecology and Obstetrics, Hannover Medical School , Hannover, Germany
| | - Peter Hillemanns
- 1 Department of Gynecology and Obstetrics, Hannover Medical School , Hannover, Germany
| | - Axel Schambach
- 2 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany .,3 Cluster of Excellence REBIRTH, Hannover Medical School , Hannover, Germany .,5 Division of Hematology/Oncology, Boston Children's Hospital , Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
76
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK, Karri VVSR. Nanocarrier based approaches for targeting breast cancer stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:885-898. [PMID: 28826237 DOI: 10.1080/21691401.2017.1366337] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer stem cells (BCSCs) are heterogeneous subpopulation of tumour initiating cells within breast tumours. They are spared even after chemotherapy and responsible for tumour relapse. Targeting BCSCs is, therefore, necessary to achieve radical cure in breast cancer. Despite the availability of agents targeting BCSCs, their clinical application is limited due to their off-target effects and bioavailability issues. Nanotechnology based drug carriers (nanocarriers) offer various advantages to deliver anti-BCSCs agents specifically to their target sites by overcoming their bioavailability issues. In this review, we describe various strategies for targeting BCSCs using nanocarriers.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- a Department of Pharmacology , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| | - Praveen T Krishnamurthy
- a Department of Pharmacology , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| | - Pavan Kumar Chintamaneni
- a Department of Pharmacology , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| | - Veera Venkata Satyanarayana Reddy Karri
- b Department of Pharmaceutics , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| |
Collapse
|
77
|
Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine 2017; 12:5879-5892. [PMID: 28860754 PMCID: PMC5566389 DOI: 10.2147/ijn.s123437] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common malignant disease in women worldwide, but the current drug therapy is far from optimal as indicated by the high death rate of breast cancer patients. Nanomedicine is a promising alternative for breast cancer treatment. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for breast cancer adjuvant therapy with favorable clinical outcomes. However, these products were originally designed for generic anticancer purpose and not specifically for breast cancer treatment. With better understanding of the molecular biology of breast cancer, a number of novel promising nanotherapeutic strategies and devices have been developed in recent years. In this review, we will first give an overview of the current breast cancer treatment and the updated status of nanomedicine use in clinical setting, then discuss the latest important trends in designing breast cancer nanomedicine, including passive and active cancer cell targeting, breast cancer stem cell targeting, tumor microenvironment-based nanotherapy and combination nanotherapy of drug-resistant breast cancer. Researchers may get insight from these strategies to design and develop nanomedicine that is more tailored for breast cancer to achieve further improvements in cancer specificity, antitumorigenic effect, antimetastasis effect and drug resistance reversal effect.
Collapse
Affiliation(s)
- Di Wu
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Mengjie Si
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Hui-Yi Xue
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Ho-Lun Wong
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
78
|
Singh VK, Saini A, Chandra R. The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies. Front Mol Biosci 2017; 4:52. [PMID: 28785557 PMCID: PMC5520001 DOI: 10.3389/fmolb.2017.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) are believed to exhibit distinctive self-renewal, proliferation, and differentiation capabilities, and thus play a significant role in various aspects of cancer. CSCs have significant impacts on the progression of tumors, drug resistance, recurrence and metastasis in different types of malignancies. Due to their primary role, most researchers have focused on developing anti-CSC therapeutic strategies, and tremendous efforts have been put to explore methods for selective eradication of these therapeutically resistant CSCs. In recent years, many reports have shown the use of CSCs-specific approaches such as ATP-binding cassette (ABC) transporters, blockade of self-renewal and survival of CSCs, CSCs surface markers targeted drugs delivery and eradication of the tumor microenvironment. Also, various therapeutic agents such as small molecule drugs, nucleic acids, and antibodies are said to destroy CSCs selectively. Targeted drug delivery holds the key to the success of most of the anti-CSCs based drugs/therapies. The convention CSCs-specific therapeutic agents, suffer from various problems. For instance, limited water solubility, small circulation time and inconsistent stability of conventional therapeutic agents have significantly limited their efficacy. Recent advancement in the drug delivery technology has demonstrated that specially designed nanocarrier-based drug delivery approaches (nanomedicine) can be useful in delivering sufficient amount of drug molecules even in the most interiors of CSCs niches and thus can overcome the limitations associated with the conventional free drug delivery methods. The nanomedicine has also been promising in designing effective therapeutic regime against pump-mediated drug resistance (ATP-driven) and reduces detrimental effects on normal stem cells. Here we focus on the biological processes regulating CSCs' drug resistance and various strategies developed so far to deal with them. We also review the various nanomedicine approaches developed so far to overcome these CSCs related issues and their future perspectives.
Collapse
Affiliation(s)
- Vimal K. Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological UniversityNew Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of DelhiNew Delhi, India
| |
Collapse
|
79
|
Cheng MF, Lin SR, Tseng FJ, Huang YC, Tsai MJ, Fu YS, Weng CF. The autophagic inhibition oral squamous cell carcinoma cancer growth of 16-hydroxy-cleroda-3,14-dine-15,16-olide. Oncotarget 2017; 8:78379-78396. [PMID: 29108236 PMCID: PMC5667969 DOI: 10.18632/oncotarget.18987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
16-hydroxycleroda-3, 13-dine-15, 16-olide (HCD) isolated from Polyalthia longifolia possesses numerous biological activities. Previous studies have reported that HCD can block phosphorylation activity of cancer cells to inhibit tumor cell growth, but the anti-tumor activity in oral squamous cell carcinoma is unrevealed. This study investigates the inhibiting effect of HCD on human OSCC cell growth; thereby, developing a new oral cancer drug. In in vitro cultured human OSCC cells (OECM1 and SAS) were employed to test the inhibitory growth of HCD via cell cytotoxic effect using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, Western blotting, and further determining of the inhibitory efficacy of tumor growth by a xenograft tumor on BALB/c male nude mice (in vivo test). Under various concentrations of HCD and time course treatments were shown to effectively cause cell death and cell-cycle arrest in OECM1 and SAS cells, which was confirmed via a clinical drug (cisplatin) as a positive control. In addition, HCD induced the autophagic cell death in OECM1 and SAS cells by LC3-mediated LC3-I/LC3-II/p62 pathway at the in vitro level. An in vivo assay indicated that HCD could treat oral cancer by deferring tumor growth. These findings provide a favorable assessment for further elucidating the role of HCD that targets autophagic cell death pathways as a potential agent for cancer therapy.
Collapse
Affiliation(s)
- Ming-Fang Cheng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Histological and Clinical Pathology, Hualian Armed Forces General Hospital, Hualien, Taiwan
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Fong-Jen Tseng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan.,Department of Orthopedics, Hualien Armed Forces General Hospital, Hualien, Taiwan
| | - Yi-Chao Huang
- Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
80
|
MacEwan SR, Chilkoti A. From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers. Angew Chem Int Ed Engl 2017; 56:6712-6733. [PMID: 28028871 PMCID: PMC6372097 DOI: 10.1002/anie.201610819] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Indexed: 12/21/2022]
Abstract
The molecular complexity and heterogeneity of cancer has led to a persistent, and as yet unsolved, challenge to develop cures for this disease. The pharmaceutical industry focuses the bulk of its efforts on the development of new drugs, but an alternative approach is to improve the delivery of existing drugs with drug carriers that can manipulate when, where, and how a drug exerts its therapeutic effect. For the treatment of solid tumors, systemically delivered drug carriers face significant challenges that are imposed by the pathophysiological barriers that lie between their site of administration and their site of therapeutic action in the tumor. Furthermore, drug carriers face additional challenges in their translation from preclinical validation to clinical approval and adoption. Addressing this diverse network of challenges requires a systems engineering approach for the rational design of optimized carriers that have a realistic prospect for translation from the laboratory to the patient.
Collapse
Affiliation(s)
- Sarah R MacEwan
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, NC, 27708, USA
- Research Triangle MRSEC, Durham, NC, 27708, USA
- Present address: Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, NC, 27708, USA
- Research Triangle MRSEC, Durham, NC, 27708, USA
| |
Collapse
|
81
|
Agliano A, Calvo A, Box C. The challenge of targeting cancer stem cells to halt metastasis. Semin Cancer Biol 2017; 44:25-42. [DOI: 10.1016/j.semcancer.2017.03.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022]
|
82
|
MacEwan SR, Chilkoti A. Von der Zusammensetzung zur Heilung: ein systemtechnischer Ansatz zur Entwicklung von Trägern für Tumortherapeutika. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sarah R. MacEwan
- Department of Biomedical Engineering; Duke University; P.O. Box 90281 Durham NC 27708 USA
- Research Triangle MRSEC; Durham NC 27708 USA
- Institute for Molecular Engineering; University of Chicago; Chicago IL 60637 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering; Duke University; P.O. Box 90281 Durham NC 27708 USA
- Research Triangle MRSEC; Durham NC 27708 USA
| |
Collapse
|
83
|
Geddert H, Braun A, Kayser C, Dimmler A, Faller G, Agaimy A, Haller F, Moskalev EA. Epigenetic Regulation of CD133 in Gastrointestinal Stromal Tumors. Am J Clin Pathol 2017; 147:515-524. [PMID: 28398518 DOI: 10.1093/ajcp/aqx028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study ascertained the regulation of the stem cell marker CD133 and its potential applicability for prognostication of gastrointestinal stromal tumors (GISTs). METHODS A total of 95 resected GISTs were included in the study. CD133 protein expression was assessed immunohistochemically on tissue microarrays. Methylation percentage was quantified by pyrosequencing. Gene expression in cell lines GIST48b and GIST882 upon treatment with DNA demethylation agent 5-aza-2'-deoxycytidine was analyzed by quantitative polymerase chain reaction. RESULTS The expression of hypermethylated CD133 could be reactivated in the GIST cell line upon hypomethylation with the drug. Similarly, in patient material, CD133 methylation percentage correlated inversely with the protein expression and reflected tumor size with hypermethylation in small (<2 cm) tumors and virtually no methylation in large (>10 cm) GISTs. The gene's methylation percentage and expression level were clearly specific to anatomic sites and distinct driver mutations. KIT -mutant gastric GISTs exhibited significantly lower methylation degrees and concomitant high CD133 protein abundance compared with KIT -mutant GISTs from the small intestine. CD133 hypermethylation was documented in PDGFRA -mutant gastric GISTs along with low CD133 expression compared with KIT -mutant gastric GISTs. High CD133 expression was a prognosticator of shorter disease-free survival in all patients. In a subgroup of KIT -mutant gastric GISTs, low CD133 methylation degree was correlated with a shorter disease-free survival. CONCLUSIONS Our results strongly suggest epigenetic regulation of CD133 expression by promoter methylation in GISTs. Pending further validation studies, high abundance of the protein can serve as a marker for malignant GISTs.
Collapse
Affiliation(s)
- Helene Geddert
- Institute for Pathology, St Vincentius Hospital, Karlsruhe, Germany
| | - Alexander Braun
- Institute for Pathology, Albert Ludwigs University, Freiburg, Germany
| | - Claudia Kayser
- Institute for Pathology, Albert Ludwigs University, Freiburg, Germany
| | - Arno Dimmler
- Institute for Pathology, St Vincentius Hospital, Karlsruhe, Germany
| | - Gerhard Faller
- Institute for Pathology, St Vincentius Hospital, Karlsruhe, Germany
| | - Abbas Agaimy
- Institute for Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Florian Haller
- Institute for Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Evgeny A Moskalev
- Institute for Pathology, Friedrich Alexander University, Erlangen, Germany
| |
Collapse
|
84
|
188Re-Liposome Can Induce Mitochondrial Autophagy and Reverse Drug Resistance for Ovarian Cancer: From Bench Evidence to Preliminary Clinical Proof-of-Concept. Int J Mol Sci 2017; 18:ijms18050903. [PMID: 28441355 PMCID: PMC5454816 DOI: 10.3390/ijms18050903] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
Despite standard treatment, about 70% of ovarian cancer will recur. Cancer stem cells (CSCs) have been implicated in the drug-resistance mechanism. Several drug resistance mechanisms have been proposed, and among these, autophagy plays a crucial role for the maintenance and tumorigenicity of CSCs. Compared to their differentiated counterparts, CSCs have been demonstrated to display a significantly higher level of autophagy flux. Moreover, mitophagy, a specific type of autophagy that selectively degrades excessive or damaged mitochondria, is shown to contribute to cancer progression and recurrence in several types of tumors. Nanomedicine has been shown to tackle the CSCs problem by overcoming drug resistance. In this work, we developed a nanomedicine, 188Re-liposome, which was demonstrated to target autophagy and mitophagy in the tumor microenvironment. Of note, the inhibition of autophagy and mitophagy could lead to significant tumor inhibition in two xenograft animal models. Lastly, we presented two cases of recurrent ovarian cancer, both in drug resistance status that received a level I dose from a phase I clinical trial. Both cases developing drug resistance showed drug sensitivity to 188Re-liposome. These results suggest that inhibition of autophagy and mitophagy by a nanomedicine may be a novel strategy to overcome drug resistance in ovarian cancer.
Collapse
|
85
|
Qin W, Zheng Y, Qian BZ, Zhao M. Prostate Cancer Stem Cells and Nanotechnology: A Focus on Wnt Signaling. Front Pharmacol 2017; 8:153. [PMID: 28400729 PMCID: PMC5368180 DOI: 10.3389/fphar.2017.00153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the most common cancer among men worldwide. However, current treatments for prostate cancer patients in advanced stage often fail because of relapse. Prostate cancer stem cells (PCSCs) are resistant to most standard therapies, and are considered to be a major mechanism of cancer metastasis and recurrence. In this review, we summarized current understanding of PCSCs and their self-renewal signaling pathways with a specific focus on Wnt signaling. Although multiple Wnt inhibitors have been developed to target PCSCs, their application is still limited by inefficient delivery and toxicity in vivo. Recently, nanotechnology has opened a new avenue for cancer drug delivery, which significantly increases specificity and reduces toxicity. These nanotechnology-based drug delivery methods showed great potential in targeting PCSCs. Here, we summarized current advancement of nanotechnology-based therapeutic strategies for targeting PCSCs and highlighted the challenges and perspectives in designing future therapies to eliminate PCSCs.
Collapse
Affiliation(s)
- Wei Qin
- The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China
| | - Yongjiang Zheng
- The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University Guangzhou, China
| | - Bin-Zhi Qian
- Edinburgh Cancer Research UK Centre and MRC University of Edinburgh Centre for Reproductive Health, University of Edinburgh Edinburgh, UK
| | - Meng Zhao
- The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
86
|
Guo Y, Feng K, Wang Y, Han W. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment. Protein Cell 2017; 9:516-526. [PMID: 28290053 PMCID: PMC5966354 DOI: 10.1007/s13238-017-0394-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/23/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs), a subpopulation of tumor cells, have self-renewal and multi-lineage differentiation abilities that play an important role in cancer initiation, maintenance, and metastasis. An accumulation of evidence indicates that CSCs can cause conventional therapy failure and cancer recurrence because of their treatment resistance and self-regeneration characteristics. Therefore, approaches that specifically and efficiently eliminate CSCs to achieve a durable clinical response are urgently needed. Currently, treatments with chimeric antigen receptor-modified T (CART) cells have shown successful clinical outcomes in patients with hematologic malignancies, and their safety and feasibility in solid tumors was confirmed. In this review, we will discuss in detail the possibility that CART cells inhibit CSCs by specifically targeting their cell surface markers, which will ultimately improve the clinical response for patients with various types of cancer. A number of viewpoints were summarized to promote the application of CSC-targeted CART cells in clinical cancer treatment. This review covers the key aspects of CSC-targeted CART cells against cancers in accordance with the premise of the model, from bench to bedside and back to bench.
Collapse
Affiliation(s)
- Yelei Guo
- Molecular & Immunological Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kaichao Feng
- Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yao Wang
- Molecular & Immunological Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weidong Han
- Molecular & Immunological Department, Chinese PLA General Hospital, Beijing, 100853, China. .,Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
87
|
Li B, Li Q, Mo J, Dai H. Drug-Loaded Polymeric Nanoparticles for Cancer Stem Cell Targeting. Front Pharmacol 2017; 8:51. [PMID: 28261093 PMCID: PMC5306366 DOI: 10.3389/fphar.2017.00051] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells (CSCs) have been reported to play critical roles in tumor initiation, propagation, and regeneration of cancer. Nano-size vehicles are employed to deliver drugs to target the CSCs for cancer therapy. Polymeric nanoparticles have been considered as the most efficient vehicles for drug delivery due to their excellent pharmacokinetic properties. The CSCs specific antibodies or ligands can be conjugated onto the surface or interior of nanoparticles to successfully target and finally eliminate CSCs. In this review, we focus on the approaches of polymeric nanoparticles design for loading drug, and their potential application for CSCs targeting in cancer therapy.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan, China
- Biomedical Materials and Engineering Research Center of Hubei ProvinceWuhan, China
| | - Qinghua Li
- Department of Neurology, Affiliated Hospital of Guilin Medical UniversityGuilin, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of EducationGuangzhou, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of TechnologyWuhan, China
- Biomedical Materials and Engineering Research Center of Hubei ProvinceWuhan, China
| |
Collapse
|
88
|
Qin W, Huang G, Chen Z, Zhang Y. Nanomaterials in Targeting Cancer Stem Cells for Cancer Therapy. Front Pharmacol 2017; 8:1. [PMID: 28149278 PMCID: PMC5241315 DOI: 10.3389/fphar.2017.00001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/03/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer stem cells (CSCs) have been identified in almost all cancers and give rise to metastases and can also act as a reservoir of cancer cells that may cause a relapse after surgery, radiation, or chemotherapy. Thus they are obvious targets in therapeutic approaches and also a great challenge in cancer treatment. The threat presented by CSCs lies in their unlimited proliferative ability and multidrug resistance. These findings have necessitated an effective novel strategy to target CSCs for cancer treatment. Nanomaterials are on the route to providing novel methods in cancer therapies. Although, there have been a large number of excellent work in the field of targeted cancer therapy, it remains an open question how nanomaterials can meet future demands for targeting and eradicating of CSCs. In this review, we summarized recent and highlighted future prospects for targeting CSCs for cancer therapies by using a variety of nanomaterials.
Collapse
Affiliation(s)
- Weiwei Qin
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou, China
| | - Guan Huang
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou, China
| | - Zuanguang Chen
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou, China
| | - Yuanqing Zhang
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou, China
| |
Collapse
|
89
|
CD133 expression may be useful as a prognostic indicator in colorectal cancer, a tool for optimizing therapy and supportive evidence for the cancer stem cell hypothesis: a meta-analysis. Oncotarget 2017; 7:10023-36. [PMID: 26840260 PMCID: PMC4891101 DOI: 10.18632/oncotarget.7054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022] Open
Abstract
We performed a meta-analysis of CD133-related clinical data to investigate the role of cancer stem cells (CSCs) in the clinical outcomes of colorectal cancer (CRC) patients, analyzing the effectiveness of various therapeutic strategies and examining the validity of the CSC hypothesis. For 28 studies (4546 patients), the relative risk (RR) to survival outcomes associated with CD133+ CRCs were calculated using STATA 12.0 software. Pooled results showed that CD133High patients had poor 5-year overall survival (RR 0.713, 95% CI 0·616-0·826) and 5-year disease free survival (RR 0·707, 95% CI 0·602-0·831). Both associations were consistently observed across different races, research techniques and therapeutic strategies. In a subgroup receiving adjuvant therapy, CD133Low patients achieved significantly better survival than CD133High patients. The findings suggest that CD133 could serve as a predictive marker of poor prognosis and treatment failure in CRC. CD133Low patients could benefit from adjuvant treatments, while CD133High patients should be given novel treatments besides adjuvant therapy. Our results also provide evidence in support of the CSC hypothesis.
Collapse
|
90
|
Autocrine and Paracrine Mechanisms Promoting Chemoresistance in Cholangiocarcinoma. Int J Mol Sci 2017; 18:ijms18010149. [PMID: 28098760 PMCID: PMC5297782 DOI: 10.3390/ijms18010149] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/19/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023] Open
Abstract
Resistance to conventional chemotherapeutic agents, a typical feature of cholangiocarcinoma, prevents the efficacy of the therapeutic arsenal usually used to combat malignancy in humans. Mechanisms of chemoresistance by neoplastic cholangiocytes include evasion of drug-induced apoptosis mediated by autocrine and paracrine cues released in the tumor microenvironment. Here, recent evidence regarding molecular mechanisms of chemoresistance is reviewed, as well as associations between well-developed chemoresistance and activation of the cancer stem cell compartment. It is concluded that improved understanding of the complex interplay between apoptosis signaling and the promotion of cell survival represent potentially productive areas for active investigation, with the ultimate aim of encouraging future studies to unveil new, effective strategies able to overcome current limitations on treatment.
Collapse
|
91
|
Qiao S, Zhao Y, Geng S, Li Y, Hou X, Liu Y, Lin FH, Yao L, Tian W. A novel double-targeted nondrug delivery system for targeting cancer stem cells. Int J Nanomedicine 2016; 11:6667-6678. [PMID: 27994463 PMCID: PMC5154727 DOI: 10.2147/ijn.s116230] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Instead of killing cancer stem cells (CSCs), the conventional chemotherapy used for cancer treatment promotes the enrichment of CSCs, which are responsible for tumor growth, metastasis, and recurrence. However, most therapeutic agents are only able to kill a small proportion of CSCs by targeting one or two cell surface markers or dysregulated CSC pathways, which are usually shared with normal stem cells (NSCs). In this study, we developed a novel nondrug delivery system for the dual targeting of CSCs by conjugating hyaluronic acid (HA) and grafting the doublecortin-like kinase 1 (DCLK1) monoclonal antibody to the surface of poly(ethylene glycol) (PEG)–poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs), which can specifically target CD44 receptors and the DCLK1 surface marker – the latter was shown to possess the capacity to distinguish between CSCSs and NSCs. The size and morphology of these NPs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). This was followed by studies of NP encapsulation efficiency and in vitro drug release properties. Then, the cytotoxicity of the NPs was tested via Cell Counting Kit-8 assay. Finally, the 4T1 CSCs were obtained from the alginate-based platform, which we developed as an in vitro tumor model. Tumor-bearing nude mice were used as in vivo models to systematically detect the ability of NPs to target CSCs. Our results showed that the DCLK1–HA–PEG–PLGA NPs exhibited a targeting effect toward CSCs both in vitro and in vivo. These findings have important implications for the rational design of drug delivery systems that target CSCs with high efficacy.
Collapse
Affiliation(s)
- Shupei Qiao
- School of Life Science and Technology, Harbin Institute of Technology
| | - Yufang Zhao
- School of Life Science and Technology, Harbin Institute of Technology
| | - Shuai Geng
- Department of Pharmacology, Harbin Medical University
| | - Yong Li
- School of Life Science and Technology, Harbin Institute of Technology
| | - Xiaolu Hou
- School of Life Science and Technology, Harbin Institute of Technology; Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yi Liu
- School of Life Science and Technology, Harbin Institute of Technology
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology
| |
Collapse
|
92
|
Ham SL, Joshi R, Luker GD, Tavana H. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors. Adv Healthc Mater 2016; 5:2788-2798. [PMID: 27603912 PMCID: PMC5142748 DOI: 10.1002/adhm.201600644] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/03/2016] [Indexed: 01/11/2023]
Abstract
Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research.
Collapse
Affiliation(s)
- Stephanie L. Ham
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States
| | - Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States
| | - Gary D. Luker
- Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States
| |
Collapse
|
93
|
Song K, Kwon H, Han C, Zhang J, Dash S, Lim K, Wu T. Active glycolytic metabolism in CD133(+) hepatocellular cancer stem cells: regulation by MIR-122. Oncotarget 2016; 6:40822-35. [PMID: 26506419 PMCID: PMC4747371 DOI: 10.18632/oncotarget.5812] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023] Open
Abstract
Although altered metabolic pathway is an important diagnostic maker and therapeutic target in cancer, it is poorly understood in cancer stem cells (CSCs). Here we show that the CD133 (+) hepatocellular CSCs have distinct metabolic properties, characterized by more active glycolysis over oxidative phosphorylation, compared to the CD133 (−) cells. Inhibition of PDK4 and LDHA markedly suppresses CD133 (+) stemness characteristics and overcome resistance to sorafenib (current chemotherapeutic agent for hepatocellular cancer). Addition of glucose or lactate to CD133 (−) cells promotes CSC phenotypes, as evidenced by increased CD133 (+) cell population, elevated stemness gene expression and enhanced spheroid formation. Furthermore, the liver-specific miRNA, miR-122, inhibits CSC phenotypes by regulating glycolysis through targeting PDK4. Our findings suggest that enhanced glycolysis is associated with CD133 (+) stem-like characteristics and that metabolic reprogramming through miR-122 or PDK4 may represent a novel therapeutic approach for the treatment of hepatocellular cancer.
Collapse
Affiliation(s)
- Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hyunjoo Kwon
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Cancer Research Institute and Infection Signaling Network Research Center, Chungnam National University, Daejeon, Korea
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
94
|
He L, Gu J, Lim LY, Yuan ZX, Mo J. Nanomedicine-Mediated Therapies to Target Breast Cancer Stem Cells. Front Pharmacol 2016; 7:313. [PMID: 27679576 PMCID: PMC5020043 DOI: 10.3389/fphar.2016.00313] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidences have suggested the existence of breast cancer stem cells (BCSCs), which possess the potential of both self-renewal and differentiation. The origin of BCSCs might have relationship to the development of normal mammary stem cells. BCSCs are believed to play a key role in the initiation, recurrence and chemo-/radiotherapy resistances of breast cancer. Therefore, elimination of BCSCs is crucial for breast cancer therapy. However, conventional chemo and radiation therapies cannot eradicate BCSCs effectively. Fortunately, nanotechnology holds great potential for specific and efficient anti-BCSCs treatment. “Smart” nanocarriers can distinguish BCSCs from the other breast cancer cells and selectively deliver therapeutic agents to the BCSCs. Emerging findings suggest that BCSCs in breast cancer could be successfully inhibited and even eradicated by functionalized nanomedicines. In this review, we focus on origin of BCSCs, strategies used to target BCSCs, and summarize the nanotechnology-based delivery systems that have been applied for eliminating BCSCs in breast cancer.
Collapse
Affiliation(s)
- Lili He
- College of Pharmacy, Southwest University for Nationalities Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest University for Nationalities Chengdu, China
| | - Lee Y Lim
- Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA, Australia
| | - Zhi-Xiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education Guangzhou, China
| |
Collapse
|
95
|
Koren E, Fuchs Y. The bad seed: Cancer stem cells in tumor development and resistance. Drug Resist Updat 2016; 28:1-12. [DOI: 10.1016/j.drup.2016.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/11/2016] [Accepted: 06/19/2016] [Indexed: 12/17/2022]
|
96
|
Ning ST, Lee SY, Wei MF, Peng CL, Lin SYF, Tsai MH, Lee PC, Shih YH, Lin CY, Luo TY, Shieh MJ. Targeting Colorectal Cancer Stem-Like Cells with Anti-CD133 Antibody-Conjugated SN-38 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17793-804. [PMID: 27348241 DOI: 10.1021/acsami.6b04403] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cancer stem-like cells play a key role in tumor development, and these cells are relevant to the failure of conventional chemotherapy. To achieve favorable therapy for colorectal cancer, PEG-PCL-based nanoparticles, which possess good biological compatibility, were fabricated as nanocarriers for the topoisomerase inhibitor, SN-38. For cancer stem cell therapy, CD133 (prominin-1) is a theoretical cancer stem-like cell (CSLC) marker for colorectal cancer and is a proposed therapeutic target. Cells with CD133 overexpression have demonstrated enhanced tumor-initiating ability and tumor relapse probability. To resolve the problem of chemotherapy failure, SN-38-loaded nanoparticles were conjugated with anti-CD133 antibody to target CD133-positive (CD133(+)) cells. In this study, anti-CD133 antibody-conjugated SN-38-loaded nanoparticles (CD133Ab-NPs-SN-38) efficiently bound to HCT116 cells, which overexpress CD133 glycoprotein. The cytotoxic effect of CD133Ab-NPs-SN-38 was greater than that of nontargeted nanoparticles (NPs-SN-38) in HCT116 cells. Furthermore, CD133Ab-NPs-SN-38 could target CD133(+) cells and inhibit colony formation compared with NPs-SN-38. In vivo studies in an HCT116 xenograft model revealed that CD133Ab-NPs-SN-38 suppressed tumor growth and retarded recurrence. A reduction in CD133 expression in HCT116 cells treated with CD133Ab-NPs-SN-38 was also observed in immunohistochemistry results. Therefore, this CD133-targeting nanoparticle delivery system could eliminate CD133-positive cells and is a potential cancer stem cell targeted therapy.
Collapse
Affiliation(s)
- Sin-Tzu Ning
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Shin-Yu Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Ming-Feng Wei
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research , Longtan, Taoyuan 325, Taiwan
| | - Susan Yun-Fan Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Ming-Hsien Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Pei-Chi Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Ying-Hsia Shih
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
- Isotope Application Division, Institute of Nuclear Energy Research , Longtan, Taoyuan 325, Taiwan
| | - Chun-Yen Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Tsai-Yueh Luo
- Isotope Application Division, Institute of Nuclear Energy Research , Longtan, Taoyuan 325, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital and College of Medicine , Taipei 100, Taiwan
| |
Collapse
|
97
|
CD133, Selectively Targeting the Root of Cancer. Toxins (Basel) 2016; 8:toxins8060165. [PMID: 27240402 PMCID: PMC4926132 DOI: 10.3390/toxins8060165] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSC) are capable of promoting tumor initiation and self-renewal, two important hallmarks of carcinoma formation. This population comprises a small percentage of the tumor mass and is highly resistant to chemotherapy, causing the most difficult problem in the field of cancer research, drug refractory relapse. Many CSC markers have been reported. One of the most promising and perhaps least ubiquitous is CD133, a membrane-bound pentaspan glycoprotein that is frequently expressed on CSC. There is evidence that directly targeting CD133 with biological drugs might be the most effective way to eliminate CSC. We have investigated two entirely unrelated, but highly effective approaches for selectively targeting CD133. The first involves using a special anti-CD133 single chain variable fragment (scFv) to deliver a catalytic toxin. The second utilizes this same scFv to deliver components of the immune system. In this review, we discuss the development and current status of these CD133 associated biological agents. Together, they show exceptional promise by specific and efficient CSC elimination.
Collapse
|
98
|
McIntosh K, Balch C, Tiwari AK. Tackling multidrug resistance mediated by efflux transporters in tumor-initiating cells. Expert Opin Drug Metab Toxicol 2016; 12:633-44. [DOI: 10.1080/17425255.2016.1179280] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kyle McIntosh
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Curt Balch
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
99
|
Intraperitoneal 188Re-Liposome delivery switches ovarian cancer metabolism from glycolysis to oxidative phosphorylation and effectively controls ovarian tumour growth in mice. Radiother Oncol 2016; 119:282-90. [DOI: 10.1016/j.radonc.2016.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 12/24/2015] [Accepted: 02/01/2016] [Indexed: 01/02/2023]
|
100
|
Xie J, Yang Z, Zhou C, Zhu J, Lee RJ, Teng L. Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol Adv 2016; 34:343-353. [PMID: 27071534 DOI: 10.1016/j.biotechadv.2016.04.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/01/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023]
Abstract
The aim of this review is to summarize advances that have been made in the delivery of phytochemicals for cancer therapy by the use of nanotechnology. Over recent decades, much research effort has been invested in developing phytochemicals as cancer therapeutic agents. However, several impediments to their wide spread use as drugs still have to be overcome. Among these are low solubility, poor penetration into cells, high hepatic disposition, and narrow therapeutic index. Rapid clearance or uptake by normal tissues and wide tissue distribution result in low drug accumulation in the target tumor sites can result in undesired drug exposure in normal tissues. Association with or encapsulation in nanoscale drug carriers is a potential strategy to address these problems. This review discussed lessons learned on the use of nanotechnology for delivery of phytochemicals that been tested in clinical trials or are moving towards the clinic.
Collapse
Affiliation(s)
- Jing Xie
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhaogang Yang
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus OH 43210, USA
| | - Chenguang Zhou
- Department of Pharmacokinetics and Pharmacodynamics, Genentech, San Francisco 94080, CA, USA
| | - Jing Zhu
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus OH 43210, USA
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun 130012, China; Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus OH 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|