51
|
Bouclier C, Simon M, Laconde G, Pellerano M, Diot S, Lantuejoul S, Busser B, Vanwonterghem L, Vollaire J, Josserand V, Legrand B, Coll JL, Amblard M, Hurbin A, Morris MC. Stapled peptide targeting the CDK4/Cyclin D interface combined with Abemaciclib inhibits KRAS mutant lung cancer growth. Am J Cancer Res 2020; 10:2008-2028. [PMID: 32104498 PMCID: PMC7019173 DOI: 10.7150/thno.40971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
CDK4/cyclin D kinase constitutes an attractive pharmacological target for development of anticancer therapeutics, in particular in KRAS-mutant lung cancer patients, who have a poor prognosis and no targeted therapy available yet. Although several ATP-competitive inhibitors of CDK4 have been developed for anticancer therapeutics, they suffer from limited specificity and efficacy. Methods: As an alternative to ATP-competitive inhibitors we have designed a stapled peptide to target the main interface between CDK4 and cyclin D, and have characterized its physico-chemical properties and affinity to bind cyclin D1. Results: We have validated a positive correlation between CDK4/cyclin D level and KRAS mutation in lung cancer patients. The stapled peptide enters cells rapidly and efficiently, and inhibits CDK4 kinase activity and proliferation in lung cancer cells. Its intrapulmonary administration in mice enables its retention in orthotopic lung tumours and complete inhibition of their growth when co-administered with Abemaciclib. Conclusion: The stapled peptide targeting the main interface between CDK4 and cyclin D provides promising therapeutic perspectives for patients with lung cancer.
Collapse
|
52
|
Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody. Int J Mol Sci 2019; 20:ijms20205073. [PMID: 31614869 PMCID: PMC6829326 DOI: 10.3390/ijms20205073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe aggravating respiratory failure in infected patients, frequently resulting in mechanical ventilation. As limited therapeutic antibody is accumulated in lung tissue following systemic administration, inhalation is newly recognized as an alternative, possibly better, route of therapeutic antibody for pulmonary diseases. The nebulization process, however, generates diverse physiological stresses, and thus, the therapeutic antibody must be resistant to these stresses, remain stable, and form minimal aggregates. We first isolated a MERS-CoV neutralizing antibody that is reactive to the receptor-binding domain (RBD) of spike (S) glycoprotein. To increase stability, we introduced mutations into the complementarity-determining regions (CDRs) of the antibody. In the HCDRs (excluding HCDR3) in this clone, two hydrophobic residues were replaced with Glu, two residues were replaced with Asp, and four residues were replaced with positively charged amino acids. In LCDRs, only two Leu residues were replaced with Val. These modifications successfully generated a clone with significantly greater stability and equivalent reactivity and neutralizing activity following nebulization compared to the original clone. In summary, we generated a MERS-CoV neutralizing human antibody that is reactive to recombinant MERS-CoV S RBD protein for delivery via a pulmonary route by introducing stabilizing mutations into five CDRs.
Collapse
|
53
|
Brunaugh AD, Wu T, Kanapuram SR, Smyth HDC. Effect of Particle Formation Process on Characteristics and Aerosol Performance of Respirable Protein Powders. Mol Pharm 2019; 16:4165-4180. [PMID: 31448924 DOI: 10.1021/acs.molpharmaceut.9b00496] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pulmonary delivery of biopharmaceuticals may enable targeted local therapeutic effect and noninvasive systemic administration. Dry powder inhaler (DPI) delivery is an established patient-friendly approach for delivering large molecules to the lungs; however, the complexities of balancing protein stability with aerosol performance require that the design space of biopharmaceutical DPI formulations is rigorously explored. Utilizing four rationally selected formulations obtained using identical atomization conditions, an extensive study of the effect of the particle formation process (spray drying or spray freeze-drying) on powder properties, aerosol performance, and protein stability was performed. Multiple linear regression analysis was used to understand the relationship between powder properties, device dispersion mechanism, and aerosol performance. Spray drying and spray freeze-drying, despite the same spraying conditions, produced powders with vastly different physical characteristics, though similar aerosol performance. The resulting regression model points to the significance of particle size, density, and surface properties on the resulting aerosol performance, with these factors weighing differently according to the device dispersion mechanism utilized (shear-based or impaction-based). The physical properties of the produced spray dried and spray freeze-dried powders have differing implications for long-term stability, which will be explored extensively in a future study.
Collapse
Affiliation(s)
- Ashlee D Brunaugh
- College of Pharmacy , The University of Texas at Austin , 2409 West University Avenue, PHR 4.214 , Austin , Texas 78712 , United States
| | - Tian Wu
- Amgen , One Amgen Center Drive , Thousand Oaks , California 91320 , United States
| | - Sekhar R Kanapuram
- Amgen , One Amgen Center Drive , Thousand Oaks , California 91320 , United States
| | - Hugh D C Smyth
- College of Pharmacy , The University of Texas at Austin , 2409 West University Avenue, PHR 4.214 , Austin , Texas 78712 , United States
| |
Collapse
|
54
|
Sécher T, Dalonneau E, Ferreira M, Parent C, Azzopardi N, Paintaud G, Si-Tahar M, Heuzé-Vourc'h N. In a murine model of acute lung infection, airway administration of a therapeutic antibody confers greater protection than parenteral administration. J Control Release 2019; 303:24-33. [PMID: 30981816 DOI: 10.1016/j.jconrel.2019.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/06/2019] [Accepted: 04/03/2019] [Indexed: 11/28/2022]
Abstract
Due to growing antibiotic resistance, pneumonia caused by Pseudomonas aeruginosa is a major threat to human health and is driving the development of novel anti-infectious agents. Preventively or curatively administered pathogen-specific therapeutic antibodies (Abs) have several advantages, including a low level of toxicity and a unique pharmacological profile. At present, most Abs against respiratory infections are administered parenterally; this may not be optimal for therapeutics that have to reach the lungs to be effective. Although the airways constitute a logical delivery route for biologics designed to treat respiratory diseases, there are few scientific data on the advantages or disadvantages of this route in the context of pneumonia treatment. The objective of the present study was to evaluate the efficacy and fate of an anti-P. aeruginosa Ab targeting pcrV (mAb166) as a function of the administration route during pneumonia. The airway-administered mAb166 displayed a favorable pharmacokinetic profile during the acute phase of the infection, and was associated with greater protection (relative to other delivery routes) of infected animals. Airway administration was associated with lower levels of lung inflammation, greater bacterial clearance, and recruitment of neutrophils in the airways. In conclusion, the present study is the first to have compared the pharmacokinetics and efficacy of an anti-infectious Ab administered by different routes in an animal model of pneumonia. Our findings suggest that local delivery to the airways is associated with a more potent anti-bacterial response (relative to parenteral administration), and thus open up new perspectives for the prevention and treatment of pneumonia with Abs.
Collapse
Affiliation(s)
- Thomas Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Emilie Dalonneau
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Marion Ferreira
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France; CHRU de Tours, Département de Pneumologie et d'exploration respiratoire fonctionnelle, F-37032 Tours, France
| | - Christelle Parent
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France
| | | | - Gilles Paintaud
- Université de Tours, GICC, PATCH Team, F-37032 Tours, France; CHRU de Tours, Laboratoire de Pharmacologie-Toxicologie, F-37032 Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France.
| |
Collapse
|
55
|
Chauvin D, Hust M, Schütte M, Chesnay A, Parent C, Moreira GMSG, Arroyo J, Sanz AB, Pugnière M, Martineau P, Chandenier J, Heuzé-Vourc'h N, Desoubeaux G. Targeting Aspergillus fumigatus Crf Transglycosylases With Neutralizing Antibody Is Relevant but Not Sufficient to Erase Fungal Burden in a Neutropenic Rat Model. Front Microbiol 2019; 10:600. [PMID: 30972049 PMCID: PMC6443627 DOI: 10.3389/fmicb.2019.00600] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus is an airborne opportunistic fungal pathogen responsible for severe infections. Among them, invasive pulmonary aspergillosis has become a major concern as mortality rates exceed 50% in immunocompromised hosts. In parallel, allergic bronchopulmonary aspergillosis frequently encountered in cystic fibrosis patients, is also a comorbidity factor. Current treatments suffer from high toxicity which prevents their use in weakened subjects, resulting in impaired prognostic. Because of their low toxicity and high specificity, anti-infectious therapeutic antibodies could be a new alternative to conventional therapeutics. In this study, we investigated the potential of Chitin Ring Formation cell wall transglycosylases of A. fumigatus to be therapeutic targets for therapeutic antibodies. We demonstrated that the Crf target was highly conserved, regardless of the pathophysiological context; whereas the CRF1 gene was found to be 100% conserved in 92% of the isolates studied, Crf proteins were expressed in 98% of the strains. In addition, we highlighted the role of Crf proteins in fungal growth, using a deletion mutant for CRF1 gene, for which a growth decrease of 23.6% was observed after 48 h. It was demonstrated that anti-Crf antibodies neutralized the enzymatic activity of recombinant Crf protein, and delayed fungal growth by 12.3% in vitro when added to spores. In a neutropenic rat model of invasive pulmonary aspergillosis, anti-Crf antibodies elicited a significant recruitment of neutrophils, macrophages and T CD4 lymphocytes but it was not correlated with a decrease of fungal burden in lungs and improvement in survival. Overall, our study highlighted the potential relevance of targeting Crf cell wall protein (CWP) with therapeutic antibodies.
Collapse
Affiliation(s)
- David Chauvin
- INSERM, Centre d'Étude des Pathologies Respiratoires, U1100, Tours, France.,Department Faculté de Médecine, Université de Tours, Tours, France
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mark Schütte
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Adélaïde Chesnay
- INSERM, Centre d'Étude des Pathologies Respiratoires, U1100, Tours, France.,Department Faculté de Médecine, Université de Tours, Tours, France.,Service de Parasitologie - Mycologie - Médecine Tropicale, CHU de Tours, Tours, France
| | - Christelle Parent
- INSERM, Centre d'Étude des Pathologies Respiratoires, U1100, Tours, France.,Department Faculté de Médecine, Université de Tours, Tours, France
| | | | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Ana Belén Sanz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Pierre Martineau
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Jacques Chandenier
- INSERM, Centre d'Étude des Pathologies Respiratoires, U1100, Tours, France.,Department Faculté de Médecine, Université de Tours, Tours, France.,Service de Parasitologie - Mycologie - Médecine Tropicale, CHU de Tours, Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Étude des Pathologies Respiratoires, U1100, Tours, France.,Department Faculté de Médecine, Université de Tours, Tours, France
| | - Guillaume Desoubeaux
- INSERM, Centre d'Étude des Pathologies Respiratoires, U1100, Tours, France.,Department Faculté de Médecine, Université de Tours, Tours, France.,Service de Parasitologie - Mycologie - Médecine Tropicale, CHU de Tours, Tours, France
| |
Collapse
|
56
|
FcRn-Dependent Transcytosis of Monoclonal Antibody in Human Nasal Epithelial Cells In Vitro: A Prerequisite for a New Delivery Route for Therapy? Int J Mol Sci 2019; 20:ijms20061379. [PMID: 30893823 PMCID: PMC6470570 DOI: 10.3390/ijms20061379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) are promising therapies to treat airway chronic inflammatory disease (asthma or nasal polyps). To date, no study has specifically assessed, in vitro, the potential function of neonatal Fc receptor (FcRn) in IgG transcytosis through the human nasal airway epithelium. The objective of this study was to report the in vitro expression and function of FcRn in nasal human epithelium. FcRn expression was studied in an air–liquid interface (ALI) primary culture model of human nasal epithelial cells (HNEC) from polyps. FcRn expression was characterized by quantitative RT-PCR, western blot, and immunolabeling. The ability of HNECs to support mAb transcytosis via FcRn was assessed by transcytosis assay. This study demonstrates the expression of FcRn mRNA and protein in HNEC. We report a high expression of FcRn in the cytosol of ciliated, mucus, and basal cells by immunohistochemistry with a higher level of FcRn proteins in differentiated HNEC. We also proved in vitro transepithelial delivery of an IgG1 therapeutic mAb with a dose–response curve. This is the first time that FcRn expression and mAb transcytosis has been shown in a model of human nasal respiratory epithelium in vitro. This study is a prerequisite for FcRn-dependent nasal administration of mAbs.
Collapse
|
57
|
Guillon A, Pardessus J, Lhommet P, Parent C, Respaud R, Marchand D, Montharu J, De Monte M, Janiak P, Boixel C, Audat H, Huille S, Guillot E, Heuze-Vourc'h N. Exploring the fate of inhaled monoclonal antibody in the lung parenchyma by microdialysis. MAbs 2019; 11:297-304. [PMID: 30714473 DOI: 10.1080/19420862.2018.1556081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Therapeutic antibodies (Abs) are emerging as major drugs to treat respiratory diseases, and inhalation may provide substantial benefits for their delivery. Understanding the behavior of Abs after pulmonary deposition is critical for their development. We investigated the pharmacokinetics of a nebulized Ab by continuous sampling in lung parenchyma using microdialysis in non-human primates. We defined the optimal conditions for microdialysis of Ab and demonstrated that lung microdialysis of Ab is feasible over a period of several days. The concentration-profile indicated a two-phase non-linear elimination and/or distribution of inhaled mAbX. Lung exposition was higher than the systemic one over a period of 33 hours and above MabX affinity for its target. The microdialysis results were supported by an excellent relationship with dosages from lung extracts.
Collapse
Affiliation(s)
- Antoine Guillon
- a Centre d'Etude des Pathologies Respiratoires , UMR 1100 , INSERM , Tours, France.,b Université de Tours , Tours , France.,c Service de Médecine intensive - réanimation , CHRU de Tours , Tours , France
| | - Jeoffrey Pardessus
- a Centre d'Etude des Pathologies Respiratoires , UMR 1100 , INSERM , Tours, France.,b Université de Tours , Tours , France
| | - Pierre Lhommet
- d Service de Chirurgie Thoracique , CHRU de Tours , Tours , France
| | - Christelle Parent
- a Centre d'Etude des Pathologies Respiratoires , UMR 1100 , INSERM , Tours, France.,b Université de Tours , Tours , France
| | - Renaud Respaud
- a Centre d'Etude des Pathologies Respiratoires , UMR 1100 , INSERM , Tours, France.,b Université de Tours , Tours , France.,e Service de Pharmacie , CHRU de Tours , Tours , France
| | - Denis Marchand
- a Centre d'Etude des Pathologies Respiratoires , UMR 1100 , INSERM , Tours, France.,b Université de Tours , Tours , France
| | | | | | - Philip Janiak
- g Cardiovascular & Metabolism , Sanofi R&D , Chilly-Mazarin , France
| | | | - Héloïse Audat
- i Analytics & Formulation Department/Biologics , Vitry Sur Seine , France
| | - Sylvain Huille
- i Analytics & Formulation Department/Biologics , Vitry Sur Seine , France
| | - Etienne Guillot
- g Cardiovascular & Metabolism , Sanofi R&D , Chilly-Mazarin , France
| | - Nathalie Heuze-Vourc'h
- a Centre d'Etude des Pathologies Respiratoires , UMR 1100 , INSERM , Tours, France.,b Université de Tours , Tours , France
| |
Collapse
|
58
|
Guillon A, Pène F, de Prost N. Modèles expérimentaux d’agression pulmonaire aiguë. MEDECINE INTENSIVE REANIMATION 2018. [DOI: 10.3166/rea-2018-0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
59
|
Mikami M, Perez-Zoghbi JF, Zhang Y, Emala CW. Attenuation of murine and human airway contraction by a peptide fragment of the cytoskeleton regulatory protein gelsolin. Am J Physiol Lung Cell Mol Physiol 2018; 316:L105-L113. [PMID: 30407863 DOI: 10.1152/ajplung.00368.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have previously reported that mice genetically deficient in the actin binding protein gelsolin exhibit impaired airway smooth muscle (ASM) relaxation. Primary cultured ASM cells from these mice demonstrate enhanced inositol triphosphate (IP3) synthesis and increased intracellular calcium in response to Gq-coupled agonists. We hypothesized that this was due to increased intracellular availability of unbound phosphatidylinositol 4,5-bisphosphate (PIP2), based on the fact that gelsolin contains a short peptide region that binds PIP2, presumably making it a less available substrate. We now questioned whether a peptide that corresponds to the PIP2 binding region of gelsolin could modulate ASM signaling and contraction. The 10 amino acid sequence of the gelsolin peptide within the PIP2-binding region was incubated with primary cultures of human ASM cells, and IP3 synthesis was measured in response to a Gq-coupled agonist. Gelsolin peptide-treated cells generated less IP3 under basal and bradykinin or acetylcholine (Gq-coupled) conditions. Acetylcholine-induced contractile force measured in isolated tracheal rings from mice and human tracheal muscle strips in organ baths was attenuated in the presence of the gelsolin peptide. The gelsolin peptide also attenuated methacholine-induced airway constriction in murine precision-cut lung slices. Furthermore, this peptide fragment delivered to the respiratory system of mice via nebulization attenuated subsequent methacholine-induced increases in airway resistance in vivo. The current study demonstrates that introduction of this small gelsolin peptide into the airway may be a novel therapeutic option in bronchoconstrictive diseases.
Collapse
Affiliation(s)
- Maya Mikami
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University , New York, New York
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University , New York, New York
| | - Yi Zhang
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University , New York, New York
| | - Charles W Emala
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University , New York, New York
| |
Collapse
|
60
|
Nanotechnology Enabled Inhalation of Bio-therapeutics for Pulmonary Diseases: Design Considerations and Challenges. CURRENT PATHOBIOLOGY REPORTS 2018. [DOI: 10.1007/s40139-018-0183-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
61
|
Bioavailability of protein therapeutics in rats following inhalation exposure: Relevance to occupational exposure limit calculations. Regul Toxicol Pharmacol 2018; 100:35-44. [PMID: 30291877 DOI: 10.1016/j.yrtph.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 11/23/2022]
Abstract
Protein therapeutics represent a rapidly growing proportion of new medicines being developed by the pharmaceutical industry. As with any new drug, an Occupational Exposure Limit (OEL) should be developed to ensure worker safety. Part of the OEL determination addresses bioavailability (BA) after inhalation, which is poorly understood for protein therapeutics. To explore this, male Sprague-Dawley rats were exposed intravenously or by nose-only inhalation to one of five test proteins of varying molecular size (10-150 kDa), including a polyethylene glycol-conjugated protein. Blood, lung tissue and bronchoalveolar lavage (BAL) fluid were collected over various time-points depending on the expected test protein clearance (8 minutes-56 days), and analyzed to determine the pharmacokinetic profiles. Since the BAL half-life of the test proteins was observed to be > 4.5 h after an inhalation exposure, accumulation and direct lung effects should be considered in the hazard assessment for protein therapeutics with lung-specific targets. The key finding was the low systemic bioavailability after inhalation exposure for all test proteins (∼≤1%) which did not appear molecular weight-dependent. Given that this study examined the inhalation of typical protein therapeutics in a manner mimicking worker exposure, a default 1% BA assumption is reasonable to utilize when calculating OELs for protein therapeutics.
Collapse
|
62
|
Proudfoot A, Bayliffe A, O'Kane CM, Wright T, Serone A, Bareille PJ, Brown V, Hamid UI, Chen Y, Wilson R, Cordy J, Morley P, de Wildt R, Elborn S, Hind M, Chilvers ER, Griffiths M, Summers C, McAuley DF. Novel anti-tumour necrosis factor receptor-1 (TNFR1) domain antibody prevents pulmonary inflammation in experimental acute lung injury. Thorax 2018; 73:723-730. [PMID: 29382797 PMCID: PMC6204954 DOI: 10.1136/thoraxjnl-2017-210305] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/20/2017] [Accepted: 12/11/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Tumour necrosis factor alpha (TNF-α) is a pleiotropic cytokine with both injurious and protective functions, which are thought to diverge at the level of its two cell surface receptors, TNFR1 and TNFR2. In the setting of acute injury, selective inhibition of TNFR1 is predicted to attenuate the cell death and inflammation associated with TNF-α, while sparing or potentiating the protective effects of TNFR2 signalling. We developed a potent and selective antagonist of TNFR1 (GSK1995057) using a novel domain antibody (dAb) therapeutic and assessed its efficacy in vitro, in vivo and in a clinical trial involving healthy human subjects. METHODS We investigated the in vitro effects of GSK1995057 on human pulmonary microvascular endothelial cells (HMVEC-L) and then assessed the effects of pretreatment with nebulised GSK1995057 in a non-human primate model of acute lung injury. We then tested translation to humans by investigating the effects of a single nebulised dose of GSK1995057 in healthy humans (n=37) in a randomised controlled clinical trial in which subjects were subsequently exposed to inhaled endotoxin. RESULTS Selective inhibition of TNFR1 signalling potently inhibited cytokine and neutrophil adhesion molecule expression in activated HMVEC-L monolayers in vitro (P<0.01 and P<0.001, respectively), and also significantly attenuated inflammation and signs of lung injury in non-human primates (P<0.01 in all cases). In a randomised, placebo-controlled trial of nebulised GSK1995057 in 37 healthy humans challenged with a low dose of inhaled endotoxin, treatment with GSK1995057 attenuated pulmonary neutrophilia, inflammatory cytokine release (P<0.01 in all cases) and signs of endothelial injury (P<0.05) in bronchoalveolar lavage and serum samples. CONCLUSION These data support the potential for pulmonary delivery of a selective TNFR1 dAb as a novel therapeutic approach for the prevention of acute respiratory distress syndrome. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT01587807.
Collapse
MESH Headings
- Acute Lung Injury/drug therapy
- Acute Lung Injury/immunology
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Biomarkers, Pharmacological
- Bronchoalveolar Lavage Fluid/cytology
- Dose-Response Relationship, Drug
- Endothelial Cells/drug effects
- Flow Cytometry
- Humans
- Inflammation/drug therapy
- Macaca fascicularis
- Molecular Targeted Therapy
- Nebulizers and Vaporizers
- Pharmacology, Clinical
- Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction
- Translational Research, Biomedical
Collapse
Affiliation(s)
| | | | - Cecilia M O'Kane
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Experimental Medicine, Queen's University of Belfast, Belfast, UK
| | - Tracey Wright
- GlaxoSmithKline Research and Development, Stevenage, UK
| | - Adrian Serone
- GlaxoSmithKline R&D, Philadelphia, Pennsylvania, USA
| | | | - Vanessa Brown
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Experimental Medicine, Queen's University of Belfast, Belfast, UK
| | - Umar I Hamid
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Experimental Medicine, Queen's University of Belfast, Belfast, UK
| | - Younan Chen
- GlaxoSmithKline R&D, Philadelphia, Pennsylvania, USA
| | - Robert Wilson
- GlaxoSmithKline Research and Development, Stevenage, UK
| | - Joanna Cordy
- GlaxoSmithKline Research and Development, Stevenage, UK
| | - Peter Morley
- GlaxoSmithKline Research and Development, Stevenage, UK
| | - Ruud de Wildt
- GlaxoSmithKline Research and Development, Stevenage, UK
| | - Stuart Elborn
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Experimental Medicine, Queen's University of Belfast, Belfast, UK
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College, London, UK
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Mark Griffiths
- National Heart and Lung Institute, Imperial College, London, UK
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Charlotte Summers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Daniel Francis McAuley
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Experimental Medicine, Queen's University of Belfast, Belfast, UK
| |
Collapse
|
63
|
Bodier-Montagutelli E, Mayor A, Vecellio L, Respaud R, Heuzé-Vourc’h N. Designing inhaled protein therapeutics for topical lung delivery: what are the next steps? Expert Opin Drug Deliv 2018; 15:729-736. [DOI: 10.1080/17425247.2018.1503251] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Elsa Bodier-Montagutelli
- Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- Centre d'Etude des Pathologies Respiratoires, U1100, INSERM, Centre d’Etude des Pathologies Respiratoires, Tours, France
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Alexie Mayor
- Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- Centre d'Etude des Pathologies Respiratoires, U1100, INSERM, Centre d’Etude des Pathologies Respiratoires, Tours, France
- Formulation Development Unit – Biotherapeutics, Sanofi Aventis Recherche Développement, Vitry-sur-Seine, France
| | - Laurent Vecellio
- Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- Centre d'Etude des Pathologies Respiratoires, U1100, INSERM, Centre d’Etude des Pathologies Respiratoires, Tours, France
| | - Renaud Respaud
- Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- Centre d'Etude des Pathologies Respiratoires, U1100, INSERM, Centre d’Etude des Pathologies Respiratoires, Tours, France
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Nathalie Heuzé-Vourc’h
- Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- Centre d'Etude des Pathologies Respiratoires, U1100, INSERM, Centre d’Etude des Pathologies Respiratoires, Tours, France
| |
Collapse
|
64
|
Ladel S, Flamm J, Zadeh AS, Filzwieser D, Walter JC, Schlossbauer P, Kinscherf R, Lischka K, Luksch H, Schindowski K. Allogenic Fc Domain-Facilitated Uptake of IgG in Nasal Lamina Propria: Friend or Foe for Intranasal CNS Delivery? Pharmaceutics 2018; 10:pharmaceutics10030107. [PMID: 30050027 PMCID: PMC6161100 DOI: 10.3390/pharmaceutics10030107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022] Open
Abstract
Background: The use of therapeutic antibodies for the treatment of neurological diseases is of increasing interest. Nose-to-brain drug delivery is one strategy to bypass the blood brain barrier. The neonatal Fc receptor (FcRn) plays an important role in transepithelial transcytosis of immunoglobulin G (IgG). Recently, the presence of the FcRn was observed in nasal respiratory mucosa. The aim of the present study was to determine the presence of functional FcRn in olfactory mucosa and to evaluate its role in drug delivery. Methods: Immunoreactivity and messenger RNA (mRNA) expression of FcRn was determined in ex vivo porcine olfactory mucosa. Uptake of IgG was performed in a side-by-side cell and analysed by immunofluorescence. Results: FcRn was found in epithelial and basal cells of the olfactory epithelium as well as in glands, cavernous bodies and blood vessels. Allogenic porcine IgGs were found time-dependently in the lamina propria and along axonal bundles, while only small amounts of xenogenic human IgGs were detected. Interestingly, lymphoid follicles were spared from allogenic IgGs. Conclusion: Fc-mediated transport of IgG across the nasal epithelial barrier may have significant potential for intranasal delivery, but the relevance of immune interaction in lymphoid follicles must be clarified to avoid immunogenicity.
Collapse
Affiliation(s)
- Simone Ladel
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
- Faculty for Natural Sciences, University of Ulm, 89081 Ulm, Germany.
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
- Faculty for Natural Sciences, University of Ulm, 89081 Ulm, Germany.
| | - Arghavan Soleimani Zadeh
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
- Faculty for Natural Sciences, University of Ulm, 89081 Ulm, Germany.
- Faculty of Medicine, Graduate School 'Molecular Medicine', University of Ulm, 89081 Ulm, Germany.
| | - Dorothea Filzwieser
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
| | - Julia-Christina Walter
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
- Faculty for Natural Sciences, University of Ulm, 89081 Ulm, Germany.
| | - Patrick Schlossbauer
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University Marburg, 35032 Marburg, Germany.
| | - Katharina Lischka
- Chair of Zoology, Technical University of Munich, 85354 Freising-Weihenstephan, Germany.
| | - Harald Luksch
- Chair of Zoology, Technical University of Munich, 85354 Freising-Weihenstephan, Germany.
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
| |
Collapse
|
65
|
Sécher T, Guilleminault L, Reckamp K, Amanam I, Plantier L, Heuzé-Vourc'h N. Therapeutic antibodies: A new era in the treatment of respiratory diseases? Pharmacol Ther 2018; 189:149-172. [PMID: 29730443 DOI: 10.1016/j.pharmthera.2018.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Respiratory diseases affect millions of people worldwide, and account for significant levels of disability and mortality. The treatment of lung cancer and asthma with therapeutic antibodies (Abs) is a breakthrough that opens up new paradigms for the management of respiratory diseases. Antibodies are becoming increasingly important in respiratory medicine; dozens of Abs have received marketing approval, and many more are currently in clinical development. Most of these Abs target asthma, lung cancer and respiratory infections, while very few target chronic obstructive pulmonary disease - one of the most common non-communicable causes of death - and idiopathic pulmonary fibrosis. Here, we review Abs approved for or in clinical development for the treatment of respiratory diseases. We notably highlight their molecular mechanisms, strengths, and likely future trends.
Collapse
Affiliation(s)
- T Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France
| | - L Guilleminault
- Pôle des Voies respiratoires, Hôpital Larrey, CHU de Toulouse, F-31059 Toulouse, France; STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm, UPS, F-31013 Toulouse, France
| | - K Reckamp
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - I Amanam
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - L Plantier
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France; CHRU de Tours, Service de Pneumologie, F-37000 Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France.
| |
Collapse
|
66
|
Jeannot V, Gauche C, Mazzaferro S, Couvet M, Vanwonterghem L, Henry M, Didier C, Vollaire J, Josserand V, Coll JL, Schatz C, Lecommandoux S, Hurbin A. Anti-tumor efficacy of hyaluronan-based nanoparticles for the co-delivery of drugs in lung cancer. J Control Release 2018; 275:117-128. [DOI: 10.1016/j.jconrel.2018.02.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 12/20/2022]
|
67
|
Heng X, Yeates DB. Generation of High Concentrations of Respirable Solid-Phase Aerosols from Viscous Fluids. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2018; 52:933-952. [PMID: 30718938 PMCID: PMC6358172 DOI: 10.1080/02786826.2018.1488078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High outputs of respirable solid-phase aerosols were generated from viscous solutions or suspensions of low and high molecular weight polyvinylprrolidone (PVP) solutions, 10% (w/v) albumin and, gamma-globulin solutions as well as 10.3% (w/v) surfactant suspensions. A central fluid flow was aerosolized by coaxial converging compressed air. The water was evaporated from the droplets using warm dilution air and infrared radiation. The resulting aerosol particles were concentrated using a virtual impactor. The aerosols were generated at fluid flow rates between 1 and 3 ml/min and delivered at a flow rate of 44 l/min as 2.6 - 3.6 μm MMAD aerosols with geometric standard deviations between 1.5 and 2. Increases in viscosity over the range of 4 to 39 cSt caused a modest increase in MMAD. Increases in aerosol exit orifice diameter was associated with a decrease in aerosol diameter. Increases in compressed air pressure caused a decrease in aerosol diameter. Increases in fluid flow rate resulted modest increases in MMAD together with proportional increases in output mass. Aerosolizing 10% 8 kDa PVP at 3 ml/min resulted in the delivery of 193 mg/min of PVP at 64% efficiency enabling 1.2 g to be collected in 7 min. Aerosolizing 10.3% surfactant suspensions at 3 ml/min resulted in the delivery of up to 163 mg/min with 59% efficiency. The surface tension of the surfactant was not changed by these processes. SEM showed dimpled particles of PVP, albumin and gamma globulin indicating that their aerodynamic diameter was less than their morphometric diameter.
Collapse
Affiliation(s)
| | - Donovan B. Yeates
- Corresponding Author: Dr. Donovan B. Yeates, KAER Biotherapeutics Corporation, 926 S. Andreasen Dr., Suite 105, Escondido, CA 92029, United States, , www.linkedin.com/in/donovan-yeates
| |
Collapse
|
68
|
Reid AT, Veerati PC, Gosens R, Bartlett NW, Wark PA, Grainge CL, Stick SM, Kicic A, Moheimani F, Hansbro PM, Knight DA. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. Pharmacol Ther 2017; 185:155-169. [PMID: 29287707 DOI: 10.1016/j.pharmthera.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Punnam Chander Veerati
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Chris L Grainge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
69
|
Fate of PEGylated antibody fragments following delivery to the lungs: Influence of delivery site, PEG size and lung inflammation. J Control Release 2017; 272:62-71. [PMID: 29247664 DOI: 10.1016/j.jconrel.2017.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022]
Abstract
Pulmonary administration of anti-cytokine antibodies offers a targeted therapy in asthma. However, the rapid elimination of proteins from the lungs limits the efficacy of inhaled medications. PEGylation has been shown to increase the residence time of anti-interleukin (IL)-17A and anti-IL-13 antibody fragments in the lungs and to improve their therapeutic efficacy. Yet, little is known about the factors that affect the residence time of PEGylated antibody fragments in the lungs following pulmonary delivery. In this study, we showed that the molecular weight of polyethylene glycol (PEG), 20kDa or 40kDa, had a moderate effect on the residence time of an anti-IL-17A Fab' fragment in the lungs of mice. By contrast, the site of delivery of the anti-IL-17A and anti-IL-13 Fab' fragments within the lungs had a major impact on their residence time, with the deeper the delivery, the more prolonged the residence time. The nature of the Fab' fragment had an influence on its residence time as well and the anti-IL-17A Fab' benefited more from PEGylation than the anti-IL-13 Fab' did. Acute lung inflammation slightly shortened the residence time of the anti-IL-17A and anti-IL-13 Fab' fragments in the lungs but PEGylation was able to prolong their presence in both the healthy and inflamed lungs. Antibody fragments were predominately located within the airway lumen rather than the lung parenchyma. Transport experiments on monolayers of Calu-3 cells and studies of fluorescence recovery after photobleaching in respiratory mucus showed that mechanisms involved in the prolonged presence of PEGylated Fab' in the airway lumen might include binding to the mucus, reduced uptake by respiratory cells and reduced transport across lung epithelia. Finally, using I125-labeled anti-IL-17A Fab', we showed that the protein fragment hardly penetrated into the lungs following subcutaneous injection, as opposed to pulmonary delivery.
Collapse
|
70
|
Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the 'high-hanging fruit'. Nat Rev Drug Discov 2017; 17:197-223. [DOI: 10.1038/nrd.2017.227] [Citation(s) in RCA: 447] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
71
|
Guillon A, Sécher T, Dailey LA, Vecellio L, de Monte M, Si-Tahar M, Diot P, Page CP, Heuzé-Vourc'h N. Insights on animal models to investigate inhalation therapy: Relevance for biotherapeutics. Int J Pharm 2017; 536:116-126. [PMID: 29180257 DOI: 10.1016/j.ijpharm.2017.11.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Acute and chronic respiratory diseases account for major causes of illness and deaths worldwide. Recent developments of biotherapeutics opened a new era in the treatment and management of patients with respiratory diseases. When considering the delivery of therapeutics, the inhaled route offers great promises with a direct, non-invasive access to the diseased organ and has already proven efficient for several molecules. To assist in the future development of inhaled biotherapeutics, experimental models are crucial to assess lung deposition, pharmacokinetics, pharmacodynamics and safety. This review describes the animal models used in pulmonary research for aerosol drug delivery, highlighting their advantages and limitations for inhaled biologics. Overall, non-clinical species must be selected with relevant scientific arguments while taking into account their complexities and interspecies differences, to help in the development of inhaled medicines and ensure their successful transposition in the clinics.
Collapse
Affiliation(s)
- A Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France; CHRU de Tours, Service de Médecine Intensive - Réanimation, F-37000, Tours, France
| | - T Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France
| | - L A Dailey
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 06122, Halle (Saale), Germany
| | - L Vecellio
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Aerodrug, Université François Rabelais - Faculté de Médecine, Tours, France
| | - M de Monte
- Plateforme Scientifique et Technique (PST) Animaleries, Université F. Rabelais, F-37000, Tours, France
| | - M Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France
| | - P Diot
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France; CHRU de Tours, Service de Pneumologie, F-37000, Tours, France
| | - C P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - N Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France.
| |
Collapse
|
72
|
Arnoult C, Brachet G, Cadena Castaneda D, Azzopardi N, Passot C, Desvignes C, Paintaud G, Heuzé-Vourc'h N, Watier H, Gouilleux-Gruart V. Crucial Role for Immune Complexes but Not FcRn in Immunization against Anti-TNF-α Antibodies after a Single Injection in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 199:418-424. [PMID: 28584008 DOI: 10.4049/jimmunol.1601246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/06/2017] [Indexed: 01/08/2023]
Abstract
The immunogenicity of infliximab and adalimumab is a major concern because patients may develop Abs also called antidrug Abs (ADA), directed against these anti-TNF-α Abs after just a few weeks of treatment. These ADAs can lead to a decrease in biologic concentration, which is associated with lower treatment efficacy. Our aim was to study the involvement of immune complexes and neonatal Fc receptor (FcRn) in the emergence of ADAs in the case of anti-TNF-α Abs. Wild type and FcRn knockout mice were injected once with either infliximab or adalimumab, alone or preincubated with TNF-α. Adalimumab cross-reacts with murine TNF-α whereas infliximab is species specific. When injected alone, only adalimumab elicited a humoral response. By preforming immune complexes with TNF-α, an anti-infliximab response was elicited. Surprisingly, both wild type and FcRn knockout mice were able to mount an immune response against anti-TNF-α Abs, suggesting that immune complexes are a major determinant of this immunization.
Collapse
Affiliation(s)
- Christophe Arnoult
- Université François Rabelais de Tours, CNRS, UMR 7292, F-37032 Tours, France
| | - Guillaume Brachet
- Université François Rabelais de Tours, CNRS, UMR 7292, F-37032 Tours, France.,Laboratoire d'Immunologie, Centre Hospitalier Régional Universitaire de Tours, F-37032 Tours, France
| | | | - Nicolas Azzopardi
- Université François Rabelais de Tours, CNRS, UMR 7292, F-37032 Tours, France
| | - Christophe Passot
- Université François Rabelais de Tours, CNRS, UMR 7292, F-37032 Tours, France.,Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Régional Universitaire de Tours, F-37032 Tours, France; and
| | - Celine Desvignes
- Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Régional Universitaire de Tours, F-37032 Tours, France; and
| | - Gilles Paintaud
- Université François Rabelais de Tours, CNRS, UMR 7292, F-37032 Tours, France.,Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Régional Universitaire de Tours, F-37032 Tours, France; and
| | - Nathalie Heuzé-Vourc'h
- Université François Rabelais de Tours, Centre d'Etude des Pathologies Respiratoires, INSERM, UMR 1100, F-37032 Tours, France
| | - Hervé Watier
- Université François Rabelais de Tours, CNRS, UMR 7292, F-37032 Tours, France.,Laboratoire d'Immunologie, Centre Hospitalier Régional Universitaire de Tours, F-37032 Tours, France
| | - Valérie Gouilleux-Gruart
- Université François Rabelais de Tours, CNRS, UMR 7292, F-37032 Tours, France; .,Laboratoire d'Immunologie, Centre Hospitalier Régional Universitaire de Tours, F-37032 Tours, France
| |
Collapse
|
73
|
PEGylation prolongs the pulmonary retention of an anti-IL-17A Fab’ antibody fragment after pulmonary delivery in three different species. Int J Pharm 2017; 521:120-129. [DOI: 10.1016/j.ijpharm.2017.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/04/2023]
|
74
|
Bodier-Montagutelli E, Respaud R, Watier H, Guillon-Munos A. MAbDelivery: Administration routes for antibody therapy Third LabEx MAbImprove industrial workshop, July 2, 2015 Tours, France. MAbs 2017; 9:579-585. [PMID: 28346048 PMCID: PMC5419087 DOI: 10.1080/19420862.2017.1298899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 10/19/2022] Open
Abstract
The annual "LabEx MAbImprove Industrial Workshops" are primarily intended to provide a comprehensive view about topics of interest for the pharmaceutical industry to scientists involved in research on therapeutic antibodies. The third workshop in this series, held July 2, 2015 in Tours, was dedicated to the optimization of delivery, namely all processes leading monoclonal antibodies to reach their target site. The commonly used intravenous (IV) route, although advantageous in terms of pharmacokinetics and pharmacodynamics, presents some disadvantages in terms of patients' convenience, therapeutic target access or treatment cost. Such problems led pharmaceutical companies to consider more straightforward and patient-friendly administration routes, bringing the need for specific formulations adapted to the specific inherent physicochemical challenges. In this context, the workshop provided an overview of these advances and opened discussion on new administration routes and formulation development. In the first session, the opportunities and challenges of 3 main routes of administration (IV, subcutaneous (SC), and pulmonary) were discussed, integrating protein stability issues. The next session was dedicated to medical devices intended for SC and pulmonary administration. The last session focused on specific formulations for monoclonal antibodies, particularly to successfully protect antibodies upon aerosolization, to develop highly concentrated formulations for SC administration, and to use formulation as a mean to overcome the barriers to oral protein delivery. As in the previous editions, this workshop gathered people from the academic and industrial spheres and allowed rich debates and discussions.
Collapse
Affiliation(s)
- Elsa Bodier-Montagutelli
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, UMR, Tours, France
- Service de Pharmacie, CHRU de Tours, Tours, France
| | - Renaud Respaud
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, UMR, Tours, France
- Service de Pharmacie, CHRU de Tours, Tours, France
| | - Hervé Watier
- Université François Rabelais, UMR 1100, Tours, France
- Service d'Immunologie, CHRU de Tours, Tours, France
- CNRS, Génétique, Immunothérapie, Chimie et Cancer, UMR, Tours, France
| | - Audrey Guillon-Munos
- Université François Rabelais, UMR 1100, Tours, France
- Groupe IMT, Tours, France
- Bio Institute, Tours, France
| |
Collapse
|
75
|
Jakobsson JKF, Hedlund J, Kumlin J, Wollmer P, Löndahl J. A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath. Sci Rep 2016; 6:36147. [PMID: 27819335 PMCID: PMC5098138 DOI: 10.1038/srep36147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/11/2016] [Indexed: 11/30/2022] Open
Abstract
Assessment of respiratory tract deposition of nanoparticles is a key link to understanding their health impacts. An instrument was developed to measure respiratory tract deposition of nanoparticles in a single breath. Monodisperse nanoparticles are generated, inhaled and sampled from a determined volumetric lung depth after a controlled residence time in the lung. The instrument was characterized for sensitivity to inter-subject variability, particle size (22, 50, 75 and 100 nm) and breath-holding time (3–20 s) in a group of seven healthy subjects. The measured particle recovery had an inter-subject variability 26–50 times larger than the measurement uncertainty and the results for various particle sizes and breath-holding times were in accordance with the theory for Brownian diffusion and values calculated from the Multiple-Path Particle Dosimetry model. The recovery was found to be determined by residence time and particle size, while respiratory flow-rate had minor importance in the studied range 1–10 L/s. The instrument will be used to investigate deposition of nanoparticles in patients with respiratory disease. The fast and precise measurement allows for both diagnostic applications, where the disease may be identified based on particle recovery, and for studies with controlled delivery of aerosol-based nanomedicine to specific regions of the lungs.
Collapse
Affiliation(s)
- Jonas K F Jakobsson
- Div. of Ergonomics and Aerosol Technology (EAT), Dep. of Design Sciences, Lund University, SE-221 00, Lund, Sweden.,NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Johan Hedlund
- Div. of Ergonomics and Aerosol Technology (EAT), Dep. of Design Sciences, Lund University, SE-221 00, Lund, Sweden
| | - John Kumlin
- Div. of Ergonomics and Aerosol Technology (EAT), Dep. of Design Sciences, Lund University, SE-221 00, Lund, Sweden
| | - Per Wollmer
- Dept. of Translational Medicine, Lund University, SE-221 00, Malmö, Sweden
| | - Jakob Löndahl
- Div. of Ergonomics and Aerosol Technology (EAT), Dep. of Design Sciences, Lund University, SE-221 00, Lund, Sweden.,NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| |
Collapse
|
76
|
Heidl S, Ellinger I, Niederberger V, Waltl EE, Fuchs R. Localization of the human neonatal Fc receptor (FcRn) in human nasal epithelium. PROTOPLASMA 2016; 253:1557-1564. [PMID: 26634928 DOI: 10.1007/s00709-015-0918-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
The airway epithelium is a central player in the defense against pathogens including efficient mucociliary clearance and secretion of immunoglobulins, mainly polymeric IgA, but also IgG. Pulmonary administration of therapeutic antibodies on one hand, and intranasal immunization on the other, are powerful tools to treat airway infections. In either case, the airway epithelium is the primary site of antibody transfer. In various epithelia, bi-polar transcytosis of IgG and IgG immune complexes is mediated by the human neonatal Fc receptor, FcRn, but FcRn expression in the nasal epithelium had not been demonstrated, so far. We prepared affinity-purified antibodies against FcRn α-chain and confirmed their specificity by Western blotting and immunofluorescence microscopy. These antibodies were used to study the localization of FcRn α-chain in fixed nasal tissue. We here demonstrate for the first time that ciliated epithelial cells, basal cells, gland cells, and endothelial cells in the underlying connective tissue express the receptor. A predominant basolateral steady state distribution of the receptor was observed in ciliated epithelial as well as in gland cells. Co-localization of FcRn α-chain with IgG or with early sorting endosomes (EEA1-positive) but not with late endosomes/lysosomes (LAMP-2-positive) in ciliated cells was observed. This is indicative for the presence of the receptor in the recycling/transcytotic pathway but not in compartments involved in lysosomal degradation supporting the role of FcRn in IgG transcytosis in the nasal epithelium.
Collapse
Affiliation(s)
- Sara Heidl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Isabella Ellinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Eva E Waltl
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Renate Fuchs
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
77
|
Le Noci V, Sommariva M, Tortoreto M, Zaffaroni N, Campiglio M, Tagliabue E, Balsari A, Sfondrini L. Reprogramming the lung microenvironment by inhaled immunotherapy fosters immune destruction of tumor. Oncoimmunology 2016; 5:e1234571. [PMID: 27999750 DOI: 10.1080/2162402x.2016.1234571] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022] Open
Abstract
Due to their constant exposure to inhaled antigens, lungs represent a particularly immunosuppressive environment that limits excessive immune responses; however, cancer cells can exploit this unique environment for their growth. We previously described the ability of aerosolized CpG-ODN combined with Poly(I:C) (TLR9 and TLR3 agonists, respectively) to promote antitumor immunity in a B16 melanoma lung metastasis model. Here, we explored the possibility of improving the therapeutic efficacy of TLR9/TLR3 agonist combinations by including in the inhalant either an antibody directed to both Ly6G and Ly6C markers to locally deplete myeloid-derived suppressive cells (MDSCs) or IFNα to directly activate the natural killer (NK) and macrophage innate immune cells in the lung. Addition of nebulized anti-MDSC antibody RB6-8C5 to aerosolized CpG-ODN/Poly(I:C) resulted in reduced mRNA levels of immunsuppressive molecules (IL10, Arg-1, and Nos2), increased activation of resident NK cells and improved treatment outcome, with a significant reduction in established B16 melanoma lung metastases compared to treatment with CpG-ODN/Poly(I:C) alone. Likewise, addition of aerosolized IFNα led to increased mRNA levels of proinflammatory cytokines (IL15 and IFNγ) in the lung and recruitment of highly activated NK cells, with no evident signs of toxicity and with a significantly improved antitumor effect as compared with aerosolized CpG-ODN/Poly(I:C). Combining both IFNα and RB6-8C5 with CpG-ODN/Poly(I:C) did not produce an additive effect compared to IFNα + CpG-ODN/Poly(I:C) or RB6-8C5 + CpG-ODN/Poly(I:C). Our results indicate that the inhalation therapy is a feasible and non-invasive strategy to deliver immunodulatory molecules, including antibodies and cytokines that reprogram the lung tumor microenvironment to foster immune destruction of tumors.
Collapse
Affiliation(s)
- Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy; Molecular Targeting Unit, Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy; Molecular Targeting Unit, Milan, Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan, Italy
| | | | | | - Andrea Balsari
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy; Molecular Targeting Unit, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano , Milan, Italy
| |
Collapse
|
78
|
Matera MG, Page C, Rogliani P, Calzetta L, Cazzola M. Therapeutic Monoclonal Antibodies for the Treatment of Chronic Obstructive Pulmonary Disease. Drugs 2016; 76:1257-1270. [DOI: 10.1007/s40265-016-0625-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
79
|
Desoubeaux G, Reichert JM, Sleeman M, Reckamp KL, Ryffel B, Adamczewski JP, Sweeney TD, Vanbever R, Diot P, Owen CA, Page C, Lerondel S, Le Pape A, Heuze-Vourc'h N. Therapeutic monoclonal antibodies for respiratory diseases: Current challenges and perspectives, March 31 - April 1, 2016, Tours, France. MAbs 2016; 8:999-1009. [PMID: 27266390 PMCID: PMC4968091 DOI: 10.1080/19420862.2016.1196521] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Monoclonal antibody (mAb) therapeutics have tremendous potential to benefit patients with lung diseases, for which there remains substantial unmet medical need. To capture the current state of mAb research and development in the area of respiratory diseases, the Research Center of Respiratory Diseases (CEPR-INSERM U1100), the Laboratory of Excellence “MAbImprove,” the GDR 3260 “Antibodies and therapeutic targeting,” and the Grant Research program ARD2020 “Biotherapeutics” invited speakers from industry, academic and government organizations to present their recent research results at the Therapeutic Monoclonal Antibodies for Respiratory Diseases: Current challenges and perspectives congress held March 31 – April 1, 2016 in Tours, France.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- a Université François-Rabelais , Tours , France.,b INSERM, Center d'Etude des Pathologies Respiratoires , Tours , France.,c Centre Hospitalo-Universitaire de Tours , Tours , France
| | - Janice M Reichert
- d The Antibody Society , Framingham , MA , USA.,e Reichert Biotechnology Consulting LLC , Framingham MA , USA
| | | | - Karen L Reckamp
- g City of Hope, Comprehensive Cancer Center , Duarte , CA , USA
| | - Bernhard Ryffel
- h Université d'Orléans , Orléans , France.,i University of Cape Town, Institute of Infectious Disease and Molecular Medicine (IDM) , Cape Town , South Africa
| | | | | | - Rita Vanbever
- l Université Catholique de Louvain, Louvain Drug Research Institute , Brussels , Belgium
| | - Patrice Diot
- a Université François-Rabelais , Tours , France.,b INSERM, Center d'Etude des Pathologies Respiratoires , Tours , France.,c Centre Hospitalo-Universitaire de Tours , Tours , France
| | - Caroline A Owen
- m Harvard Medical School, Brigham and Women's Hospital , Boston , MA , USA.,n Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Clive Page
- o King's College, Sackler Institute of Pulmonary Pharmacology , London , UK
| | | | - Alain Le Pape
- a Université François-Rabelais , Tours , France.,b INSERM, Center d'Etude des Pathologies Respiratoires , Tours , France.,p PHENOMIN-TAAM CNRS, CIPA , Orléans , France
| | - Nathalie Heuze-Vourc'h
- a Université François-Rabelais , Tours , France.,b INSERM, Center d'Etude des Pathologies Respiratoires , Tours , France
| |
Collapse
|
80
|
Respaud R, Marchand D, Pelat T, Tchou-Wong KM, Roy CJ, Parent C, Cabrera M, Guillemain J, Mac Loughlin R, Levacher E, Fontayne A, Douziech-Eyrolles L, Junqua-Moullet A, Guilleminault L, Thullier P, Guillot-Combe E, Vecellio L, Heuzé-Vourc'h N. Development of a drug delivery system for efficient alveolar delivery of a neutralizing monoclonal antibody to treat pulmonary intoxication to ricin. J Control Release 2016; 234:21-32. [PMID: 27173943 DOI: 10.1016/j.jconrel.2016.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/13/2022]
Abstract
The high toxicity of ricin and its ease of production have made it a major bioterrorism threat worldwide. There is however no efficient and approved treatment for poisoning by ricin inhalation, although there have been major improvements in diagnosis and therapeutic strategies. We describe the development of an anti-ricin neutralizing monoclonal antibody (IgG 43RCA-G1) and a device for its rapid and effective delivery into the lungs for an application in humans. The antibody is a full-length IgG and binds to the ricin A-chain subunit with a high affinity (KD=53pM). Local administration of the antibody into the respiratory tract of mice 6h after pulmonary ricin intoxication allowed the rescue of 100% of intoxicated animals. Specific operational constraints and aerosolization stresses, resulting in protein aggregation and loss of activity, were overcome by formulating the drug as a dry-powder that is solubilized extemporaneously in a stabilizing solution to be nebulized. Inhalation studies in mice showed that this formulation of IgG 43RCA-G1 did not induce pulmonary inflammation. A mesh nebulizer was customized to improve IgG 43RCA-G1 deposition into the alveolar region of human lungs, where ricin aerosol particles mostly accumulate. The drug delivery system also comprises a semi-automatic reconstitution system to facilitate its use and a specific holding chamber to maximize aerosol delivery deep into the lung. In vivo studies in monkeys showed that drug delivery with the device resulted in a high concentration of IgG 43RCA-G1 in the airways for at least 6h after local deposition, which is consistent with the therapeutic window and limited passage into the bloodstream.
Collapse
Affiliation(s)
- Renaud Respaud
- Université François-Rabelais de Tours, UMR 1100, CHRU de Tours, Service de Pharmacie, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France
| | - Denis Marchand
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France; Aerodrug, F-37032 Tours, France
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines; Brétigny sur Orge, France; BIOTEM, Parc d'activité Bièvre Dauphine, Apprieu, France
| | - Kam-Meng Tchou-Wong
- NYU School of Medicine, Department of Environmental Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| | - Chad J Roy
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA; Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Christelle Parent
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France
| | - Maria Cabrera
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France
| | - Joël Guillemain
- SESAME, Expertise en toxicologie, Chambray-les-tours, France
| | | | | | | | | | | | - Laurent Guilleminault
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines; Brétigny sur Orge, France
| | - Emmanuelle Guillot-Combe
- DGA, Direction de la Stratégie (DS), Mission pour la recherche et l'Innovation scientifique (MRIS), France
| | - Laurent Vecellio
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France; Aerodrug, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France.
| |
Collapse
|
81
|
Jeannot V, Mazzaferro S, Lavaud J, Vanwonterghem L, Henry M, Arboléas M, Vollaire J, Josserand V, Coll JL, Lecommandoux S, Schatz C, Hurbin A. Targeting CD44 receptor-positive lung tumors using polysaccharide-based nanocarriers: Influence of nanoparticle size and administration route. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:921-932. [DOI: 10.1016/j.nano.2015.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 01/25/2023]
|
82
|
Fellner RC, Terryah ST, Tarran R. Inhaled protein/peptide-based therapies for respiratory disease. Mol Cell Pediatr 2016; 3:16. [PMID: 27098663 PMCID: PMC4839019 DOI: 10.1186/s40348-016-0044-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022] Open
Abstract
Asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) are all chronic pulmonary diseases, albeit with different etiologies, that are characterized by airflow limitation, chronic inflammation, and abnormal mucus production/rheology. Small synthetic molecule-based therapies are commonly prescribed for all three diseases. However, there has been increased interest in “biologicals” to treat these diseases. Biologicals typically constitute protein- or peptide-based therapies and are often more potent than small molecule-based drugs. In this review, we shall describe the pros and cons of several different biological-based therapies for respiratory disease, including dornase alfa, a recombinant DNAase that reduces mucus viscosity and short palate lung and nasal epithelial clone 1 (SPLUNC1)-derived peptides that treat Na+ hyperabsorption and rebalance CF airway surface liquid homeostasis.
Collapse
Affiliation(s)
- Robert C Fellner
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, 7102 Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC, 27599-7248, USA
| | - Shawn T Terryah
- Spyryx Biosciences, 801-9 Capitola Drive, Durham, NC, 27713, USA
| | - Robert Tarran
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, 7102 Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC, 27599-7248, USA. .,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
83
|
Foss S, Grevys A, Sand KMK, Bern M, Blundell P, Michaelsen TE, Pleass RJ, Sandlie I, Andersen JT. Enhanced FcRn-dependent transepithelial delivery of IgG by Fc-engineering and polymerization. J Control Release 2015; 223:42-52. [PMID: 26718855 DOI: 10.1016/j.jconrel.2015.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 01/28/2023]
Abstract
Monoclonal IgG antibodies (Abs) are used extensively in the clinic to treat cancer and autoimmune diseases. In addition, therapeutic proteins are genetically fused to the constant Fc part of IgG. In both cases, the Fc secures a long serum half-life and favourable pharmacokinetics due to its pH-dependent interaction with the neonatal Fc receptor (FcRn). FcRn also mediates transport of intact IgG across polarized epithelial barriers, a pathway that is attractive for delivery of Fc-containing therapeutics. So far, no study has thoroughly compared side-by-side how IgG and different Fc-fusion formats are transported across human polarizing epithelial cells. Here, we used an in vitro cellular transport assay based on the human polarizing epithelial cell line (T84) in which both IgG1 and Fc-fusions were transported in an FcRn-dependent manner. Furthermore, we found that the efficacy of transport was dependent on the format. We demonstrate that transepithelial delivery could be enhanced by Fc-engineering for improved FcRn binding as well as by Fc-polymerization. In both cases, transport was driven by pH-dependent binding kinetics and the pH at the luminal side. Hence, efficient transcellular delivery of IgG-based drugs across human epithelial cells requires optimal pH-dependent FcRn binding that can be manipulated by avidity and Fc-engineering, factors that should inspire the design of future therapeutics targeted for transmucosal delivery.
Collapse
Affiliation(s)
- Stian Foss
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Algirdas Grevys
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Kine Marita Knudsen Sand
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Malin Bern
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Pat Blundell
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Terje E Michaelsen
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway; Department of Chemical Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Richard J Pleass
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Inger Sandlie
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway
| | - Jan Terje Andersen
- Centre for Immune Regulation (CIR), Department of Biosciences, University of Oslo, N-0316, Oslo, Norway; Department of Immunology and CIR, Oslo University Hospital, Rikshospitalet, University of Oslo, N-0372, Oslo, Norway.
| |
Collapse
|
84
|
Cortez-Jugo C, Qi A, Rajapaksa A, Friend JR, Yeo LY. Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform. BIOMICROFLUIDICS 2015; 9:052603. [PMID: 25945147 PMCID: PMC4393410 DOI: 10.1063/1.4917181] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/27/2015] [Indexed: 05/06/2023]
Abstract
Nebulizers have considerable advantages over conventional inhalers for pulmonary drug administration, particularly because they do not require coordinated breath actuation to generate and deliver the aerosols. Nevertheless, besides being less amenable to miniaturization and hence portability, some nebulizers are prone to denature macromolecular drugs due to the large forces generated during aerosolization. Here, we demonstrate a novel portable acoustomicrofluidic device capable of nebulizing epidermal growth factor receptor (EGFR) monoclonal antibodies into a fine aerosol mist with a mass median aerodynamic diameter of approximately 1.1 μm, optimal for deep lung deposition via inhalation. The nebulized monoclonal antibodies were tested for their stability, immunoactivity, and pharmacological properties, which confirmed that nebulization did not cause significant degradation of the antibody. In particular, flow cytometry demonstrated that the antigen binding capability of the antibody is retained and able to reduce phosphorylation in cells overexpressing the EGFR, indicating that the aerosols generated by the device were loaded with stable and active monoclonal antibodies. The delivery of antibodies via inhalation, particularly for the treatment of lung cancer, is thus expected to enhance the efficacy of this protein therapeutic by increasing the local concentration where they are needed.
Collapse
Affiliation(s)
| | - Aisha Qi
- Micro/Nanophysics Research Laboratory, RMIT University , Melbourne, Victoria 3001, Australia
| | - Anushi Rajapaksa
- Murdoch Children's Research Institute , Parkville, Victoria 3052, Australia
| | - James R Friend
- Micro/Nanophysics Research Laboratory, RMIT University , Melbourne, Victoria 3001, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, RMIT University , Melbourne, Victoria 3001, Australia
| |
Collapse
|
85
|
Direct administration in the respiratory tract improves efficacy of broadly neutralizing anti-influenza virus monoclonal antibodies. Antimicrob Agents Chemother 2015; 59:4162-72. [PMID: 25941218 DOI: 10.1128/aac.00290-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of influenza virus strains resistant to approved neuraminidase inhibitors and the time constrains after infection when these drugs can be effective constitute major drawbacks for this class of drugs. This highlights a critical need to discover new therapeutic agents that can be used for the treatment of influenza virus-infected patients. The use of broadly neutralizing anti-influenza monoclonal antibodies (MAbs) has been sought as an alternative immunotherapy against influenza infection. Here, we tested in mice previously characterized broadly neutralizing anti-hemagglutinin (HA) stalk MAbs prophylactically and therapeutically using different routes of administration. The efficacy of treatment against an influenza H1N1 pandemic virus challenge was compared between two systemic routes of administration, intraperitoneal (i.p.) and intravenous (i.v.), and two local routes, intranasal (i.n.) and aerosol (a.e.). The dose of MAb required for prophylactic protection was reduced by 10-fold in animals treated locally (i.n. or a.e.) compared with those treated systemically (i.p. or i.v.). Improved therapeutic protection was observed in animals treated i.n. on day 5 postinfection (60% survival) compared with those treated via the i.p. route (20% survival). An increase in therapeutic efficacy against other influenza virus subtypes (H5N1) was also observed when a local route of administration was used. Our findings demonstrate that local administration significantly decreases the amount of broadly neutralizing monoclonal antibody required for protection against influenza, which highlights the potential use of MAbs as a therapeutic agent for influenza-associated disease.
Collapse
|
86
|
Respaud R, Vecellio L, Diot P, Heuzé-Vourc’h N. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin Drug Deliv 2015; 12:1027-39. [DOI: 10.1517/17425247.2015.999039] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|