51
|
Liu C, Li H, Li P, Liu C, Bai Y, Pang J, Wang J, Tian W. A dual drug-based hyperbranched polymer with methotrexate and chlorambucil moieties for synergistic cancer chemotherapy. Polym Chem 2020; 11:5810-5818. [DOI: 10.1039/d0py00862a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dual drug-based hyperbranched polymer micelles simultaneously containing methotrexate and chlorambucil were constructed for synergistic cancer chemotherapy.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an
| | - Huixin Li
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an
| | - Pengxiang Li
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an
| | - Caiping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Jun Pang
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an
| | - Jingxia Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
52
|
Zhi K, Wang J. Retracted Article: A self-assembled supramolecular natural product gel from liquidambaric acid in traditional Chinese medicine with inherent anti-inflammatory activity for drug delivery. J Mater Chem B 2020; 8:715-726. [DOI: 10.1039/c9tb02416f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A supramolecular self-assembled natural product gel from liquidambaric acid in traditional Chinese medicine with inherent anti-inflammatory activity for drug delivery was constructed.
Collapse
Affiliation(s)
- Kangkang Zhi
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Jiacheng Wang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
53
|
Nguyen A, Ando H, Böttger R, DurgaRao Viswanadham KK, Rouhollahi E, Ishida T, Li SD. Utilization of click chemistry to study the effect of poly(ethylene)glycol molecular weight on the self-assembly of PEGylated gambogic acid nanoparticles for the treatment of rheumatoid arthritis. Biomater Sci 2020; 8:4626-4637. [DOI: 10.1039/d0bm00711k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click chemistry was used to study the effect of varied PEG molecular weights on the self-assembly of PEG-gambogic acid (GA) conjugates into nanoparticles.
Collapse
Affiliation(s)
- Anne Nguyen
- Faculty of Pharmaceutical Sciences
- University of British Columbia
- Vancouver
- Canada
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics
- Subdivision of Biopharmaceutical Sciences
- Institute of Health Biosciences
- The University of Tokushima
- Tokushima
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences
- University of British Columbia
- Vancouver
- Canada
| | | | - Elham Rouhollahi
- Faculty of Pharmaceutical Sciences
- University of British Columbia
- Vancouver
- Canada
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics
- Subdivision of Biopharmaceutical Sciences
- Institute of Health Biosciences
- The University of Tokushima
- Tokushima
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
54
|
Xue X, Lindstrom A, Qu H, Li Y. Recent advances on small-molecule nanomedicines for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1607. [PMID: 31840421 DOI: 10.1002/wnan.1607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/15/2023]
Abstract
Nanomedicines have made important contributions in the development of cancer therapies due to their tumor selectivity, multifunctionality, and synergistic effect between the payloads. In addition to the required pharmaceutical ingredients, nanomedicines are generally composed of nonpharmaceutical excipients. These excipients generally form a large proportion of the nanomedicine, and they may have potential toxicity and greatly increase the cost for drug development. Small molecule nanomedicines (SMNs) minimize or abandon the excipients and are directly assembled from pharmaceutical ingredients, which can largely improve the drug delivery efficiency and biosafety while also relieving the financial burden of drug development. In this review, we summarize recently developed SMNs that are composed of a single drug, physical mixtures of multiple drugs, drug-drug covalent conjugates, dyes with drugs, photosensitizers with drugs, photosensitizers with peptides, and drugs with peptides. This review focuses on the SMN's applications in cancer treatments, their limitations, and the future development outlook of SMNs. We hope that our insights on SMNs may be helpful to the future of drug development and make nanomedicine more powerful in the battle with cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Xiangdong Xue
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Aaron Lindstrom
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Haijing Qu
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| |
Collapse
|
55
|
Xi J, Liu H. Recent Advances in the Design of Self‐Delivery Amphiphilic Drugs and Vaccines. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jingchao Xi
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
- Department of Oncology Wayne State University Detroit MI 48201 United States
- Tumor Biology and Microenvironment Program Barbara Ann Karmanos Cancer Institute Detroit MI 48201 United States
| |
Collapse
|
56
|
Wang D, Zhang X, Li H, Luan Y, Wei G, Wang J. Anticancer Properties of Lipidated Peptide Drug Supramolecular Self-Assemblies with Enhanced Stability. ACS APPLIED BIO MATERIALS 2019; 2:5995-6003. [PMID: 35021520 DOI: 10.1021/acsabm.9b00913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dong Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xuecheng Zhang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hui Li
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuxia Luan
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Guangcheng Wei
- Department of Pharmacy Science, Binzhou Medical University, Yantai 264000, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
57
|
Li S, Xie A, Li H, Zou X, Zhang Q. A self-assembled, ROS-responsive Janus-prodrug for targeted therapy of inflammatory bowel disease. J Control Release 2019; 316:66-78. [PMID: 31682913 DOI: 10.1016/j.jconrel.2019.10.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 02/09/2023]
Abstract
A self-assembled and oxidation-degradable Janus-prodrug, termed as Bud-ATK-Tem (B-ATK-T), was fabricated by ROS-responsive aromatized thioketal (ATK) linked anti-inflammatory drug budesonide (Bud) and antioxidant tempol (Tem). Benefiting from the hydrophobic interactions and π-π stacking interactions of ATK, prodrug B-ATK-T could self-assemble into nanoparticles (NP) in water containing lecithin and DSPE-PEG2K. The morphology of B-ATK-T NP (approximate 100-120nm) was confirmed to be regular spherical by transmission electron microscope. B-ATK-T NP was endowed high drug loading content with 41.23% for Bud and 15.55% for Tem. The rapid drug release from B-ATK-T NP proceeded in an extensive reactive oxygen species (ROS)-dependent manner. More than 98% of Bud and Tem in B-ATK-T NP could release in the mimic inflammation microenvironment or phorbol-12-myristate-13-acetate (PMA)-stimulated macrophages within short time. The release of drugs in a simultaneous and proportional manner ensures that B-ATK-T NP can increase the combined efficacy of anti-inflammation and anti-oxidation. It is worth noting that B-ATK-T NP could be passively accumulated and dramatically increasing the maximum drugs concentration in the inflamed colon of mice with inflammatory bowel disease (IBD) by oral route, and avoiding potential systemic side effects. B-ATK-T NP could not only relieve colitis via inhibiting the expression of oxidative and proinflammatory mediators more than combination of free drugs, but also significantly reduce colitis-caused death. Taken together, the self-assembled, Janus-prodrug B-ATK-T NP is a promising candidate therapies for IBD, even for other inflammatory diseases.
Collapse
Affiliation(s)
- Shanshan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Aiqing Xie
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Hui Li
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Qixiong Zhang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
58
|
Zhou Z, Piao Y, Hao L, Wang G, Zhou Z, Shen Y. Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery. NANOSCALE 2019; 11:15907-15916. [PMID: 31414111 DOI: 10.1039/c9nr03872h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Small molecular prodrugs that self-assemble into nanoparticles have many advantages over commonly studied nanomedicines based upon nanoscale carriers such as liposomes, micelles and polymeric nanoparticles. These carrier-free nanodrugs exhibit favorable nanoproperties without the help of a nanocarrier, and they have many unique merits, such as a simple synthetic procedure, well-defined structure and high drug loading capacity. To date, most of these carrier-free nanodrugs have been spherical and very few nonspherical nanodrugs have been synthesized and studied. Herein, we report a camptothecin (CPT) prodrug that self-assembles into nanofibers. These carrier-free CPT nanofibers have a width of approximately one hundred nanometers and a length of several micrometers. The cellular uptake and tumor penetration behaviour of these nanofibers were observed by time-lapse video microscopy. These nanofibers can rapidly enter cancer cells by penetrating the cell membrane, gradually dissolve intracellularly and efficiently release the active drug. Coating the surface of these nanofibers with a pH-responsive PEG layer improves the stability of these nanofibers and shields their positive charge to minimize nonspecific interactions. These pH-responsive nanofibers are sheddable in the acidic tumor microenvironment and deliver carried cargoes deep into tumors. Our findings demonstrate that small molecular CPT prodrugs that form nanofibers are efficient for cancer drug delivery.
Collapse
Affiliation(s)
- Zhuha Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road 3, 310016, Hangzhou, Zhejiang, China.
| | | | | | | | | | | |
Collapse
|
59
|
Gao YE, Bai S, Ma X, Zhang X, Hou M, Shi X, Huang X, Chen J, Wen F, Xue P, Kang Y, Xu Z. Codelivery of doxorubicin and camptothecin by dual-responsive unimolecular micelle-based β-cyclodextrin for enhanced chemotherapy. Colloids Surf B Biointerfaces 2019; 183:110428. [PMID: 31415956 DOI: 10.1016/j.colsurfb.2019.110428] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2023]
Abstract
Tumor microenvironment (TME)-induced drug delivery technology is a promising strategy for improving low drug accumulation efficiency, short blood circulation and weak therapeutic effect. In this work, a dual-responsive (reduction- and pH-responsive) polyprodrug nanoreactor based on β-cyclodextrin (β-CD) was constructed for combinational chemotherapy. Specifically, the dual-responsive star polymeric prodrug was synthesized by atom transfer radical polymerization (ATRP) based on a starburst initiator of β-CD-Br. The obtained polyprodrug contained a hydrophilic chain of poly-(ethylene glycol) methyl ether methacrylate (POEGMA) and a hydrophobic part of camptothecin (CPT) prodrug and poly[2-(diisopropylamino)ethyl methacrylate] (PDPA), denoted as β-CD-PDPA-POEGMA-PCPT (CCDO for short). The obtained CCDO could form stable unimolecular micelles, which could be efficiently internalized by cancer cells. To enhance the curative effect, the anticancer agent doxorubicin (DOX) could be encapsulated into the hydrophobic cavity of the CCDO by hydrophobic-hydrophobic interaction. In vitro drug release studies showed that the obtained CCDO/DOX micelles controlled the release of active CPT and DOX occurring in a reductive environment and at low pH. In vitro cytotoxicity results suggested that the anticancer efficacy of dual-responsive CCDO/DOX micelles was superior to that of CCDO micelles. In addition, in vivo results verified good blood compatibility of the unimolecular micelles. This integrated dual-responsive drug delivery system may solve the low drug loading and poor controlled release problems found in traditional polymer-based drug carriers, providing an innovative and promising route for cancer therapy.
Collapse
Affiliation(s)
- Yong-E Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Shuang Bai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Xiaoqian Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Xiaoli Zhang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, PR China
| | - Meili Hou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Xiaoxiao Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Xiaohua Huang
- Guangan Changming Research Institute for Advanced Industrial Technology, Guangan 638500, PR China
| | - Jiucun Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, PR China.
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China; Guangan Changming Research Institute for Advanced Industrial Technology, Guangan 638500, PR China.
| |
Collapse
|
60
|
Hydrophobic drug self-delivery systems as a versatile nanoplatform for cancer therapy: A review. Colloids Surf B Biointerfaces 2019; 180:202-211. [DOI: 10.1016/j.colsurfb.2019.04.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
|
61
|
Chakroun RW, Wang F, Lin R, Wang Y, Su H, Pompa D, Cui H. Fine-Tuning the Linear Release Rate of Paclitaxel-Bearing Supramolecular Filament Hydrogels through Molecular Engineering. ACS NANO 2019; 13:7780-7790. [PMID: 31117370 DOI: 10.1021/acsnano.9b01689] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One key design feature in the development of any local drug delivery system is the controlled release of therapeutic agents over a certain period of time. In this context, we report the characteristic feature of a supramolecular filament hydrogel system that enables a linear and sustainable drug release over the period of several months. Through covalent linkage with a short peptide sequence, we are able to convert an anticancer drug, paclitaxel (PTX), to a class of prodrug hydrogelators with varying critical gelation concentrations. These self-assembling PTX prodrugs associate into filamentous nanostructures in aqueous conditions and consequently percolate into a supramolecular filament network in the presence of appropriate counterions. The intriguing linear drug release profile is rooted in the supramolecular nature of the self-assembling filaments which maintain a constant monomer concentration at the gelation conditions. We found that molecular engineering of the prodrug design, such as varying the number of oppositely charged amino acids or through the incorporation of hydrophobic segments, allows for the fine-tuning of the PTX linear release rate. In cell studies, these PTX prodrugs can exert effective cytotoxicity against glioblastoma cell lines and also primary brain cancer cells derived from patients and show enhanced tumor penetration in a cancer spheroid model. We believe this drug-bearing hydrogel platform offers an exciting opportunity for the local treatment of human diseases.
Collapse
Affiliation(s)
- Rami W Chakroun
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Yin Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Danielle Pompa
- Department of Biomedical Engineering , University of Utah , 201 Presidents Circle , Salt Lake City , Utah 84112 , United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
- Center for Nanomedicine, The Wilmer Eye Institute , Johns Hopkins University School of Medicine , 400 North Broadway , Baltimore , Maryland 21231 , United States
| |
Collapse
|
62
|
Abstract
As unique molecules with both therapeutic and diagnostic properties, porphyrin derivatives have been extensively employed for cancer treatment. Porphyrins not only show powerful phototherapeutic effects (photodynamic and photothermal therapies), but also exhibit excellent imaging capacities, such as near-infrared fluorescent imaging (NIRFI), magnetic resonance imaging (MRI), photoacoustic imaging (PAI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT). In order to take advantage of their robust phototherapeutic effects and excellent imaging capacities, porphyrins can be used to create nanomedicines with effective therapeutic and precise diagnostic properties for cancer treatment. In this Review, we summarize porphyrin-based nanomedicines which have been developed recently, including porphyrin-based liposomes, micelles, polymeric nanoparticles, peptide nanoparticles, and small-molecule nanoassemblies, and their applications on cancer therapy and diagnosis. The outlook and limitation of porphyrin-based nanomedicines are also reviewed.
Collapse
Affiliation(s)
- Xiangdong Xue
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Aaron Lindstrom
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| |
Collapse
|
63
|
Zhao N, Coyne J, Xu M, Zhang X, Suzuki A, Shi P, Lai J, Fong GH, Xiong N, Wang Y. Assembly of Bifunctional Aptamer-Fibrinogen Macromer for VEGF Delivery and Skin Wound Healing. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:1006-1015. [PMID: 31558852 PMCID: PMC6761992 DOI: 10.1021/acs.chemmater.8b04486] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Macromolecular assembly has been studied for various applications. However, while macromolecules can recognize one another for assembly, their assembled structures usually lack the function of specific molecular recognition. We hypothesized that bifunctional aptamer-protein macromers would possess dual functions of molecular assembly and recognition. The data show that hybrid aptamer-fibrinogen macromers can assemble to form hydrogels. Moreover, the assembled hydrogels can recognize vascular endothelial growth factor (VEGF) for sustained release. When the VEGF-loaded hydrogels are implanted in vivo, they can promote angiogenesis and skin wound healing. Thus, this work has successfully demonstrated a promising macromolecular system for broad applications such as drug delivery and regenerative medicine.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - James Coyne
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ming Xu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaolong Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Akiho Suzuki
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Peng Shi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jinping Lai
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Na Xiong
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Correspondence can be addressed to Dr. Yong Wang (; Phone: 814-865-6867)
| |
Collapse
|
64
|
Liu C, Zhang S, Li J, Wei J, Müllen K, Yin M. A Water‐Soluble, NIR‐Absorbing Quaterrylenediimide Chromophore for Photoacoustic Imaging and Efficient Photothermal Cancer Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810541] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Shaobo Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Jianhao Li
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Jie Wei
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research; Institute of Physical ChemistryJohannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Meizhen Yin
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
65
|
Liu C, Zhang S, Li J, Wei J, Müllen K, Yin M. A Water‐Soluble, NIR‐Absorbing Quaterrylenediimide Chromophore for Photoacoustic Imaging and Efficient Photothermal Cancer Therapy. Angew Chem Int Ed Engl 2019; 58:1638-1642. [DOI: 10.1002/anie.201810541] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Chang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Shaobo Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Jianhao Li
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Jie Wei
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research; Institute of Physical ChemistryJohannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Meizhen Yin
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBAIC-SM, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
66
|
Gao C, Bhattarai P, Chen M, Zhang N, Hameed S, Yue X, Dai Z. Amphiphilic Drug Conjugates as Nanomedicines for Combined Cancer Therapy. Bioconjug Chem 2018; 29:3967-3981. [DOI: 10.1021/acs.bioconjchem.8b00692] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chuang Gao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Min Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Nisi Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin 150080, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
67
|
Glutathione-responsive self-delivery nanoparticles assembled by curcumin dimer for enhanced intracellular drug delivery. Int J Pharm 2018; 549:230-238. [DOI: 10.1016/j.ijpharm.2018.07.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022]
|
68
|
Hou S, Chen S, Dong Y, Gao S, Zhu B, Lu Q. Biodegradable Cyclomatrix Polyphosphazene Nanoparticles: A Novel pH-Responsive Drug Self-Framed Delivery System. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25983-25993. [PMID: 30014692 DOI: 10.1021/acsami.8b06114] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Traditional drug delivery systems suffer from low drug-loading and relatively weak therapeutic efficacy, therefore, development of new drug delivery systems with high-efficiency has become more urgent. In this report, a novel-innovative drug delivery strategy, namely drug self-framed delivery system (DSFDS), is prepared via using anticancer drugs as polymer frame without using any carriers. The drug molecules (exemplified by doxorubicin) containing more than two nucleophilic functional groups (diols/diamines) directly reacted with hexachlorocyclotriphosphazene via mild precipitation polycondensation under ambient conditions, forming biocompatible drug self-framed delivery nanoparticles. Because of the covalent bonding of the drug molecules, DSFD nanoparticles (DSFDs) with super high drug-loading were stable in the circulation during delivery. However, sustained release of drug in the acidic environment within cells endowed DSFDs with long-term anticancer therapeutic efficacy. This strategy is applicable for diverse hydrophilic and hydrophobic drugs and may be a new platform for designing high drug-loading and release-controllable drug delivery systems.
Collapse
Affiliation(s)
- Shenglei Hou
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Yuan Dong
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Su Gao
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Bangshang Zhu
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qinghua Lu
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
69
|
Monroe M, Flexner C, Cui H. Harnessing nanostructured systems for improved treatment and prevention of HIV disease. Bioeng Transl Med 2018; 3:102-123. [PMID: 30065966 PMCID: PMC6063869 DOI: 10.1002/btm2.10096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy effectively controls human immunodeficiency virus (HIV) viral replication, delaying the progression to acquired immune deficiency syndrome and improving and extending quality of life of patients. However, the inability of antiretroviral therapeutics to target latent virus and their poor penetration of viral reserve tissues result in the need for continued treatment for the life of the patient. Side effects from long-term antiretroviral use and the development of drug resistance due to patient noncompliance are also continuing problems. Nanostructured systems of antiretroviral therapeutics have the potential to improve targeted delivery to viral reservoirs, reduce drug toxicity, and increase dosing intervals, thereby improving treatment outcomes and enhancing patient adherence. Despite these advantages, very few nanostructured antiretroviral delivery systems have made it to clinical trials due to challenges in preclinical and clinical development. In this context, we review the current challenges in HIV disease management, and the recent progress in leveraging the unique performance of nanostructured systems in therapeutic delivery for improved treatment and prevention of this incurable human disease.
Collapse
Affiliation(s)
- Maya Monroe
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218
| | - Charles Flexner
- Div. of Clinical Pharmacology and Infectious Diseases Johns Hopkins University School of Medicine and Bloomberg School of Public Health Baltimore MD 21205
| | - Honggang Cui
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Dept. of Oncology, Sidney Kimmel Comprehensive Cancer Center The Johns Hopkins University School of Medicine Baltimore MD 21205.,Center for Nanomedicine The Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore MD 21231
| |
Collapse
|
70
|
He S, Li C, Zhang Q, Ding J, Liang XJ, Chen X, Xiao H, Chen X, Zhou D, Huang Y. Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. ACS NANO 2018; 12:7272-7281. [PMID: 29906087 DOI: 10.1021/acsnano.8b03476] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drug, targeting ligand, and imaging agent are the three essential components in a nanoparticle-based drug delivery system. However, tremendous batch-to-batch variation of composition and drug content typically accompany the current approaches of building these components together. Herein, we report the design of photoactivatable platinum(IV) (Pt(IV)) amphiphiles containing one or two hydrophilic lactose targeting ligands per hydrophobic Pt(IV) prodrug for an all-in-one precise nanomedicine. Self-assembly of these Pt(IV) amphiphiles results in either micelle or vesicle formation with a fixed Pt/targeting moiety ratio and a constantly high content of Pt. The micelles and vesicles are capable of hepatoma cell-targeting, fluorescence/Pt-based CT imaging and have shown effective anticancer efficacy under laser irradiation in vitro and in vivo. This photoactivatable, active self-targeting, and multimodal theranostic amphiphile strategy shows great potential in constructing precise nanomedicine.
Collapse
Affiliation(s)
- Shasha He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Chan Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Haihua Xiao
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|
71
|
Zhou Y, Lei L, Zhang Z, Zhang R, Song Q, Li X. Cation instructed steroidal prodrug supramolecular hydrogel. J Colloid Interface Sci 2018; 528:10-17. [PMID: 29803956 DOI: 10.1016/j.jcis.2018.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/12/2018] [Accepted: 05/19/2018] [Indexed: 12/18/2022]
Abstract
In the present study, we propose an ionic coordination strategy for the design of a steroidal prodrug supramolecular hydrogel. The hydrogel composed of nanofibril networks formed spontaneously by the introduction of divalent cations (e.g., Mg2+, Ca2+, Zn2+ and Fe2+) and NH4+ to a succinated dexamethasone (Dex-SA) aqueous solution at room temperature. The formation of the nanofibril structure was dominantly driven by the ionic coordination with the assistance of a delicate balance of multiple noncovalent interactions. A rheological analysis indicated that the formed Ca2+/Dex-SA supramolecular hydrogel exhibits dominant elastic and thixotropic properties. The formed Ca2+/Dex-SA supramolecular hydrogel allowed the gradual release of Dex and Dex-SA in vitro, and the drug release behaviour can be finely tuned by changing the Ca2+ concentration. Storage stability studies showed that Dex-SA in hydrogel underwent an apparent chemical decomposition at 4 °C and 37 °C. In contrast, the Dex-SA xerogel was quite stable without any obvious chemical decomposition of Dex-SA in storage at -20 °C for 35 days, and it was able to turn into a hydrogel again within one minute after rehydration. The formed Ca2+/Dex-SA supramolecular hydrogel caused negligible cytotoxicity against HCEC and L-929 cells at drug concentrations up to 2 mM, as indicated by the in vitro cytotoxicity tests. Additionally, the proposed Ca2+/Dex-SA supramolecular hydrogel displayed a comparable anti-inflammatory efficacy with Dexp via the downregulation of NO, TNF-α and IL-6 expression in lipopolysaccharide (LPS)-activated RAW264.7 macrophage. Overall, the cation instructed steroidal prodrug supramolecular hydrogel might be a promising ophthalmic drug delivery system for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Yanfang Zhou
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Lei Lei
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Zhaoliang Zhang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Renshu Zhang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Qianqian Song
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China.
| |
Collapse
|
72
|
Krishnan V, Sarode A, Bhatt R, Oliveira JD, Brown TD, Jiang YP, Reddy Junutula J, Mitragotri S. Surface-Functionalized Carrier-Free Drug Nanorods for Leukemia. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Vinu Krishnan
- Department of Chemical Engineering; Engineering II Building; University of California; Santa Barbara CA 93106 USA
- Center for Bioengineering; University of California; Santa Barbara CA 93106 USA
- John A. Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
| | - Apoorva Sarode
- Department of Chemical Engineering; Engineering II Building; University of California; Santa Barbara CA 93106 USA
- Center for Bioengineering; University of California; Santa Barbara CA 93106 USA
- John A. Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
| | - Rohit Bhatt
- Center for Bioengineering; University of California; Santa Barbara CA 93106 USA
| | - Joshua D. Oliveira
- Department of Chemical Engineering; Engineering II Building; University of California; Santa Barbara CA 93106 USA
- Center for Bioengineering; University of California; Santa Barbara CA 93106 USA
| | - Tyler D. Brown
- Center for Bioengineering; University of California; Santa Barbara CA 93106 USA
- John A. Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Biomolecular Science and Engineering; University of California; Santa Barbara CA 93106 USA
| | - Y. P. Jiang
- Cellerant Therapeutics Inc.; 1561 Industrial Road San Carlos CA 94070 USA
| | | | - Samir Mitragotri
- Department of Chemical Engineering; Engineering II Building; University of California; Santa Barbara CA 93106 USA
- Center for Bioengineering; University of California; Santa Barbara CA 93106 USA
- John A. Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
| |
Collapse
|
73
|
Qin SY, Cheng YJ, Jiang ZW, Ma YH, Zhang AQ. Morphology control of self-deliverable nanodrug with enhanced anticancer efficiency. Colloids Surf B Biointerfaces 2018. [DOI: 10.1016/j.colsurfb.2018.02.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
74
|
Vrettos EI, Mező G, Tzakos AG. On the design principles of peptide-drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J Org Chem 2018; 14:930-954. [PMID: 29765474 PMCID: PMC5942387 DOI: 10.3762/bjoc.14.80] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer is the second leading cause of death affecting nearly one in two people, and the appearance of new cases is projected to rise by >70% by 2030. To effectively combat the menace of cancer, a variety of strategies have been exploited. Among them, the development of peptide–drug conjugates (PDCs) is considered as an inextricable part of this armamentarium and is continuously explored as a viable approach to target malignant tumors. The general architecture of PDCs consists of three building blocks: the tumor-homing peptide, the cytotoxic agent and the biodegradable connecting linker. The aim of the current review is to provide a spherical perspective on the basic principles governing PDCs, as also the methodology to construct them. We aim to offer basic and integral knowledge on the rational design towards the construction of PDCs through analyzing each building block, as also to highlight the overall progress of this rapidly growing field. Therefore, we focus on several intriguing examples from the recent literature, including important PDCs that have progressed to phase III clinical trials. Last, we address possible difficulties that may emerge during the synthesis of PDCs, as also report ways to overcome them.
Collapse
Affiliation(s)
- Eirinaios I Vrettos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, GR-45110, Greece
| | - Gábor Mező
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány P. stny. 1/A, H-1117 Budapest, Hungary.,MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány P. stny. 1/A, H-1117 Budapest, Hungary
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, GR-45110, Greece
| |
Collapse
|
75
|
Xue X, Huang Y, Wang X, Wang Z, Carney RP, Li X, Yuan Y, He Y, Lin TY, Li Y. Self-indicating, fully active pharmaceutical ingredients nanoparticles (FAPIN) for multimodal imaging guided trimodality cancer therapy. Biomaterials 2018; 161:203-215. [PMID: 29421556 PMCID: PMC5846343 DOI: 10.1016/j.biomaterials.2018.01.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/14/2018] [Accepted: 01/26/2018] [Indexed: 02/07/2023]
Abstract
Conventional drug delivery systems contain substantial amounts of excipients such as polymers and lipids, typically with low drug loading capacity and lack of intrinsic traceability and multifunctionality. Here, we report fully active pharmaceutical ingredient nanoparticles (FAPIN) which were self-assembled by minimal materials, but seamlessly orchestrated versatile theranostic functionalities including: i) self-delivery: no additional carriers were required, all components in the formulation are active pharmaceutical ingredients; ii) self-indicating: no additional imaging tags were needed. The nanoparticle itself was composed of 100% imaging agents, so that the stability, drug release, subcellular dispositions, biodistribution and therapeutic efficacy of FAPINs can be readily visualized by ample imaging capacities, including energy transfer relay dominated, dual-color fluorogenic property, near-infrared fluorescence imaging and magnetic resonance imaging; and iii) highly effective trimodality cancer therapy, encompassing photodynamic-, photothermal- and chemo-therapies. FAPINs were fabricated with very simple material (a photosensitizer-drug conjugate), unusually achieved ∼10 times better in vitro antitumor activity than their free counterparts, and were remarkably efficacious in patient-derived xenograft (PDX) glioblastoma multiforme animal models. Only two doses of FAPINs enabled complete ablation of highly-malignant PDX tumors in 50% of the mice.
Collapse
Affiliation(s)
- Xiangdong Xue
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Yee Huang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA; Institute of Aminal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Xinshuai Wang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Zhongling Wang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Randy P Carney
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Ye Yuan
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Yixuan He
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Tzu-Yin Lin
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
76
|
Sahoo JK, VandenBerg MA, Webber MJ. Injectable network biomaterials via molecular or colloidal self-assembly. Adv Drug Deliv Rev 2018; 127:185-207. [PMID: 29128515 DOI: 10.1016/j.addr.2017.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/16/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Self-assembly is a powerful tool to create functional materials. A specific application for which self-assembled materials are ideally suited is in creating injectable biomaterials. Contrasting with traditional biomaterials that are implanted through surgical means, injecting biomaterials through the skin offers numerous advantages, expanding the scope and impact for biomaterials in medicine. In particular, self-assembled biomaterials prepared from molecular or colloidal interactions have been frequently explored. The strategies to create these materials are varied, taking advantage of engineered oligopeptides, proteins, and nanoparticles as well as affinity-mediated crosslinking of synthetic precursors. Self-assembled materials typically facilitate injectability through two different mechanisms: i) in situ self-assembly, whereby materials would be administered in a monomeric or oligomeric form and self-assemble in response to some physiologic stimulus, or ii) self-assembled materials that, by virtue of their dynamic, non-covalent interactions, shear-thin to facilitate flow within a syringe and subsequently self-heal into its reassembled material form at the injection site. Indeed, many classes of materials are capable of being injected using a combination of these two mechanisms. Particular utility has been noted for self-assembled biomaterials in the context of tissue engineering, regenerative medicine, drug delivery, and immunoengineering. Given the controlled and multifunctional nature of many self-assembled materials demonstrated to date, we project a future where injectable self-assembled biomaterials afford improved practice in advancing healthcare.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Michael A VandenBerg
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA; Warren Family Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA; Center for Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
77
|
Gao Y, Dong CM. Triple redox/temperature responsive diselenide-containing homopolypeptide micelles and supramolecular hydrogels thereof. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.28984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanfeng Gao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging; Shanghai Jiao Tong University; Shanghai 200240 People's Republic of China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging; Shanghai Jiao Tong University; Shanghai 200240 People's Republic of China
| |
Collapse
|
78
|
Liu R, Zhang J, Zhang D, Wang K, Luan Y. Self-assembling nanoparticles based on cytarabine prodrug for enhanced leukemia treatment. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
79
|
Liang S, Han L, Mu W, Jiang D, Hou T, Yin X, Pang X, Yang R, Liu Y, Zhang N. Carboplatin-loaded SMNDs to reduce GSH-mediated platinum resistance for prostate cancer therapy. J Mater Chem B 2018; 6:7004-7014. [DOI: 10.1039/c8tb01721b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutathione (GSH)-mediated drug resistance can strongly weaken the therapeutic efficiency of platinum(ii).
Collapse
|
80
|
Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 2017. [PMID: 28958854 DOI: 10.1016/jjc0nrel.2017.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Paclitaxel (PTX) is one of the most successful drugs ever used in cancer chemotherapy, acting against a variety of cancer types. Formulating PTX with Cremophor EL and ethanol (Taxol®) realized its clinical potential, but the formulation falls short of expectations due to side effects such as peripheral neuropathy, hypotension, and hypersensitivity. Abraxane®, the albumin bound PTX, represents a superior replacement of Taxol® that mitigates the side effects associated with Cremophor EL. While Abraxane® is now considered a gold standard in chemotherapy, its 21% response rate leaves much room for further improvement. The quest for safer and more effective cancer treatments has led to the development of a plethora of innovative PTX formulations, many of which are currently undergoing clinical trials. In this context, we review recent development of PTX drug delivery systems and analyze the design principles underpinning each delivery strategy. We chose several representative examples to highlight the opportunities and challenges of polymeric systems, lipid-based formulations, as well as prodrug strategies.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michael Porter
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Alexandros Konstantopoulos
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States; Institute for NanoBiotechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
81
|
Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 2017; 267:100-118. [PMID: 28958854 PMCID: PMC5723209 DOI: 10.1016/j.jconrel.2017.09.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Paclitaxel (PTX) is one of the most successful drugs ever used in cancer chemotherapy, acting against a variety of cancer types. Formulating PTX with Cremophor EL and ethanol (Taxol®) realized its clinical potential, but the formulation falls short of expectations due to side effects such as peripheral neuropathy, hypotension, and hypersensitivity. Abraxane®, the albumin bound PTX, represents a superior replacement of Taxol® that mitigates the side effects associated with Cremophor EL. While Abraxane® is now considered a gold standard in chemotherapy, its 21% response rate leaves much room for further improvement. The quest for safer and more effective cancer treatments has led to the development of a plethora of innovative PTX formulations, many of which are currently undergoing clinical trials. In this context, we review recent development of PTX drug delivery systems and analyze the design principles underpinning each delivery strategy. We chose several representative examples to highlight the opportunities and challenges of polymeric systems, lipid-based formulations, as well as prodrug strategies.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michael Porter
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Alexandros Konstantopoulos
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States; Institute for NanoBiotechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
82
|
He W, Hu X, Jiang W, Liu R, Zhang D, Zhang J, Li Z, Luan Y. Rational Design of a New Self-Codelivery System from Redox-Sensitive Camptothecin-Cytarabine Conjugate Assembly for Effectively Synergistic Anticancer Therapy. Adv Healthc Mater 2017; 6. [PMID: 29076266 DOI: 10.1002/adhm.201700829] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Herein, two careful selected anticancer drugs camptothecin (CPT) and cytarabine (Ara-C) with different biological action mechanisms and different water solubility are conjugated together through a glutathione (GSH) cleavable disulfide bond to construct a redox-sensitive drug-drug conjugate, which can self-assemble into nanoparticles, thus notably improving the water solubility of CPT and the cell membrane permeability of Ara-C. Compared with free drugs, the self-assembled CPT-ss-Ara nanoparticles can concentrate in tumor tissues through the enhanced permeability and retention (EPR) effect, then they can be rapidly internalized by tumor cells and degrade into free drugs for killing the tumor cells when exposed to the reductive environment (GSH) of tumor cells, thereby reducing the injury to normal cells. Meanwhile, the CPT-ss-Ara nanoparticles can effectively protect CPT and Ara-C molecules from biological inactivation before their arrival in tumor microenvironment since free CPT and Ara-C are easy to partly lose their therapy efficacy due to their structure degradation in blood circulation. The in vitro and in vivo anticancer experimental results indicate that simultaneous release of free CPT and Ara-C can realize synergistic chemotherapy effects, thus markedly improve their anticancer activity. Therefore, our designed carrier-free, redox-sensitive CPT-ss-Ara nanoparticles might have promising clinical application to combat cancers.
Collapse
Affiliation(s)
- Wenxiu He
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Xu Hu
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Wei Jiang
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Ruiling Liu
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Di Zhang
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Jing Zhang
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| | - Zhonghao Li
- Key Lab of Colloid & Interface Chemistry (Ministry of Education); Shandong University; 250100 Jinan P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science; Key Laboratory of Chemical Biology (Ministry of Education); Shandong University; 44 West Wenhua Road Jinan Shandong Province 250012 P. R. China
| |
Collapse
|
83
|
Kang M, Cui H, Loverde SM. Coarse-grained molecular dynamics studies of the structure and stability of peptide-based drug amphiphile filaments. SOFT MATTER 2017; 13:7721-7730. [PMID: 28905963 PMCID: PMC5665727 DOI: 10.1039/c7sm00943g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Peptide-based supramolecular filaments, in particular filaments self-assembled by drug amphiphiles (DAs), possess great potential in the field of drug delivery. These filaments possess one hundred percent drug loading, with a release mechanism that can be tuned based on the dissociation of the supramolecular filaments and the degradation of the DAs [Cheetham et al., J. Am. Chem. Soc., 2013, 135(8), 2907]. Recently, much attention has been drawn to the competing intermolecular interactions that drive the self-assembly of peptide-based amphiphiles into supramolecular filaments. Recently, we reported on long-time atomistic molecular dynamics simulations to characterize the structure and growth of chiral filaments by the self-assembly of a DA containing the aromatic anti-cancer drug camptothecin [Kang et al., Macromolecules, 2016, 49(3), 994]. We found that the π-π stacking of the aromatic drug governs the early stages of the self-assembly process, while also contributing towards the chirality of the self-assembled filament. Based on these all-atomistic simulations, we now build a chemically accurate coarse-grained model that can capture the structure and stability of these supramolecular filaments at long time-scales (microseconds). These coarse-grained models successfully recapitulate the growth of the molecular clusters (and their elongation trends) compared with previously reported atomistic simulations. Furthermore, the interfacial structure and the helicity of the filaments are conserved. Next, we focus on characterization of the disassembly process of a 0.675 μm DA filament at microsecond time-scales. These results provide very useful tools for the rational design of functional supramolecular filaments, in particular supramolecular filaments for drug delivery applications.
Collapse
Affiliation(s)
- Myungshim Kang
- Department of Chemistry, College of Staten Island, The City University of New York, NY 10314, USA.
| | | | | |
Collapse
|
84
|
Abstract
Covalent modification of therapeutic compounds is a clinically proven strategy to devise prodrugs with enhanced treatment efficacies. This prodrug strategy relies on the modified drugs that possess advantageous pharmacokinetic properties and administration routes over their parent drug. Self-assembling prodrugs represent an emerging class of therapeutic agents capable of spontaneously associating into well-defined supramolecular nanostructures in aqueous solutions. The self-assembly of prodrugs expands the functional space of conventional prodrug design, affording a possible pathway to more effective therapies as the assembled nanostructure possesses distinct physicochemical properties and interaction potentials that can be tailored to specific administration routes and disease treatment. In this review, we will discuss the various types of self-assembling prodrugs in development, providing an overview of the methods used to control their structure and function and, ultimately, our perspective on their current and future potential.
Collapse
Affiliation(s)
- Andrew G Cheetham
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
| | | | | | | |
Collapse
|
85
|
Shi X, Hou M, Bai S, Ma X, Gao YE, Xiao B, Xue P, Kang Y, Xu Z, Li CM. Acid-Activatable Theranostic Unimolecular Micelles Composed of Amphiphilic Star-like Polymeric Prodrug with High Drug Loading for Enhanced Cancer Therapy. Mol Pharm 2017; 14:4032-4041. [PMID: 28980818 DOI: 10.1021/acs.molpharmaceut.7b00704] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stimuli-responsive nanomedicine with theranostic functionalities with reduced side-effects has attracted growing attention, although there are some major obstacles to overcome before clinical applications. Herein, we present an acid-activatable theranostic unimolecular micelles based on amphiphilic star-like polymeric prodrug to systematically address typical existing issues. This smart polymeric prodrug has a preferable size of about 35 nm and strong micellar stability in aqueous solution, which is beneficial to long-term blood circulation and efficient extravasation from tumoral vessels. Remarkably, the polymeric prodrug has a high drug loading rate up to 53.1 wt%, which induces considerably higher cytotoxicity against tumor cells (HeLa cells and MCF-7 cells) than normal cells (HUVEC cells) suggesting a spontaneous tumor-specific targeting capability. Moreover, the polymeric prodrug can serve as a fluorescent nanoprobe activated by the acidic microenvironment in tumor cells, which can be used as a promising platform for tumor diagnosis. The superior antitumor effect in this in vitro study demonstrates the potential of this prodrug as a promising platform for drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Meili Hou
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Shuang Bai
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Xiaoqian Ma
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Yong-E Gao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Chang Ming Li
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| |
Collapse
|
86
|
Li Y, Lin J, Ma J, Song L, Lin H, Tang B, Chen D, Su G, Ye S, Zhu X, Luo F, Hou Z. Methotrexate-Camptothecin Prodrug Nanoassemblies as a Versatile Nanoplatform for Biomodal Imaging-Guided Self-Active Targeted and Synergistic Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34650-34665. [PMID: 28920426 DOI: 10.1021/acsami.7b10027] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
"All-in-one" carrier-free-based nano-multi-drug self-delivery system could combine triple advantages of small molecules, nanoscale characteristics, and synergistic combination therapy together. Researches have showed that dual-acting small-molecular methotrexate (MTX) could target and kill the folate-receptor-overexpressing cancer cells. Inspired by this mechanism, a novel collaborative early-phase tumor-selective targeting and late-phase synergistic anticancer approach was developed for the self-assembly of chemotherapeutic drug-drug conjugate, which showed various advantages of more simplicity, efficiency, and flexibility over the conventional approach based only on single or combination cancer chemotherapy. MTX and 10-hydroxyl camptothecin (CPT) were chosen to conjugate through ester linkage. Because of the amphiphilicity and ionicity, MTX-CPT conjugates as molecular building blocks could self-assemble into MTX-CPT nanoparticles (MTX-CPT NPs) in aqueous solution, thus notably improving the aqueous solubility of CPT and the membrane permeability of MTX. The MTX-CPT NPs with a precise drug-to-drug ratio showed pH-/esterase-responsive drug release, sequential function "Targeting-Anticancer" switch, and real-time monitoring fluorescence "Off-On" switch. By doping with a lipophilic near-infrared (NIR) cyanine dye (e.g., 1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide, DiR), the prepared DiR-loaded MTX-CPT NPs acted as an effective probe for in vivo NIR fluorescence (NIRF) and photoacoustic (PA) dual-modal imaging. Both in vitro and in vivo studies demonstrated that MTX-CPT NPs could specifically codeliver multidrug to different sites of action with distinct anticancer mechanisms to kill folate-receptor-overexpressing tumor cells in a synergistic way. This novel, simple, and highly convergent self-targeting nanomulti-drug codelivery system exhibited great potential in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bowen Tang
- College of Pharmacy, Western University of Health Science , Pomona, California 91766, United States
| | | | - Guanghao Su
- Children's Hospital of Soochow University , Suzhou 215025, PR China
| | | | | | | | | |
Collapse
|
87
|
Ma W, Su H, Cheetham AG, Zhang W, Wang Y, Kan Q, Cui H. Synergistic antitumor activity of a self-assembling camptothecin and capecitabine hybrid prodrug for improved efficacy. J Control Release 2017; 263:102-111. [PMID: 28082170 DOI: 10.1016/j.jconrel.2017.01.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/31/2016] [Accepted: 01/08/2017] [Indexed: 11/29/2022]
Abstract
The direct use of anticancer drugs to create their own nanostructures is an emerging concept in the field of drug delivery to obtain nanomedicines of high drug loading and high reproducibility, and the combination use of two or more drugs has been a proven clinical strategy to enhance therapeutic outcomes. We report here the synthesis, assembly and cytotoxicity evaluation of self-assembling hybrid prodrugs containing both camptothecin (CPT) and a capecitabine (Cap) analogue. CPT and Cap molecules were conjugated onto a short β-sheet-forming peptide (Sup35) to yield three different self-assembling prodrugs (dCPT-Sup35, CPT-Cap-Sup35 and dCap-Sup35). We found that the chemical structure of conjugated drugs could strongly influence their assembled morphology as well as their structural stability in aqueous solution. With a decrease in number of CPT units, the resulting nanostructures exhibited a morphological transformation from nanofibers (dCPT-Sup35) to filaments (CPT-Cap-Sup35) then to spherical particles (dCap-Sup35). Notably, the hybrid CPT-Cap prodrug showed a synergistic effect and significantly enhanced potency against three esophageal adenocarcinoma cell lines compared with the two homo-prodrugs (dCPT-Sup35 and dCap-Sup35) as well as free parent drugs (CPT, 5-Fu and CPT/5-FU mixture (1:1)). We believe this work represents a conceptual advancement in integrating two structurally distinct drugs of different action mechanisms into a single self-assembling hybrid prodrug to construct self-deliverable nanomedicines for more effective combination chemotherapy.
Collapse
Affiliation(s)
- Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew G Cheetham
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Weifang Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
| | - Yuzhu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - QuanCheng Kan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China.
| | - Honggang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA.
| |
Collapse
|
88
|
Li Y, Wang Y, Ou SH, Lock LL, Xu X, Ghose S, Li ZJ, Cui H. Conformation Preservation of α-Helical Peptides within Supramolecular Filamentous Assemblies. Biomacromolecules 2017; 18:3611-3620. [DOI: 10.1021/acs.biomac.7b00992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Li
- Department
of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Yuzhu Wang
- Department
of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Shih-Hao Ou
- Department
of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lye Lin Lock
- Biologics
Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Xuankuo Xu
- Biologics
Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Sanchayita Ghose
- Biologics
Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Zheng Jian Li
- Biologics
Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Honggang Cui
- Department
of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department
of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
89
|
Du C, Qian J, Zhou L, Su Y, Zhang R, Dong CM. Biopolymer-Drug Conjugate Nanotheranostics for Multimodal Imaging-Guided Synergistic Cancer Photothermal-Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31576-31588. [PMID: 28838236 DOI: 10.1021/acsami.7b10163] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Some of the biomedical polymer-drug conjugates are being translated into clinical trials; however, they intrinsically lack photothermal and multi-imaging capabilities, hindering them from imaging-guided precision cancer therapy and complete tumor regression. We introduce a new concept of all-in-one biopolymer-drug conjugate nanotheranostics and prepare a kind of intracellular pH-sensitive polydopamine-doxorubicin (DOX) conjugate nanoparticles (PDCNs) under mild conditions. Significantly, this strategy integrates polymeric prodrug-induced chemotherapy (CT), near-infrared (NIR) light-mediated photothermal therapy (PT), and triple modalities including DOX self-fluorescence, photothermal, and photoacoustic (PA) imaging into one conjugate nanoparticle. The PDCNs present excellent photothermal property, dual stimuli-triggered drug release behavior, and about 12.4-fold blood circulation time compared to free DOX. Small animal fluorescent imaging technique confirms that PDCNs have preferential tumor accumulation effect in vivo, giving a 12.8-fold DOX higher than the control at 12 h postinjection. Upon NIR laser irradiation (5 min, 808 nm, and 2 W·cm-2), the PDCN-mediated photothermal effect can quickly elevate the tumor over 50 °C, exhibiting good photothermal and PA imaging functions, of which the PA amplitude is 3.6-fold greater than the control. In vitro and in vivo assays persuasively verify that intravenous photothermal-CT of PDCNs produces synergistic antitumor activity compared to single PT or CT, achieving complete tumor ablation during the evaluation period.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| | - Linzhu Zhou
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| | - Rong Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Fengxian Hospital, Southern Medical University , Shanghai 201400, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| |
Collapse
|
90
|
Su H, Wang Y, Anderson CF, Koo JM, Wang H, Cui H. Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1998-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
91
|
Liang Y, Li S, Wang X, He B, He B, Dai W, Zhang H, Wang X, Wang Y, Zhou D, Zhang Q. A Nanosystem of Amphiphilic Oligopeptide-Drug Conjugate Actualizing Both αvβ3 Targeting and Reduction-Triggered Release for Maytansinoid. Theranostics 2017; 7:3306-3318. [PMID: 28900511 PMCID: PMC5595133 DOI: 10.7150/thno.20242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
To design a prodrug-based self-assembling nanosystem with both ligand targeting and stimuli-responsive features, and elucidate the superiority of each targeting strategy and the synergistic effect between them, we synthesized four small molecule amphiphilic peptide-drug conjugates (APDCs) using maytansinoid (DM1) as a cytotoxic agent, cRGDfK as a homing peptide, and disulfide (SS) or thioether (SMCC) as linker. Owing to their amphiphilicity, the APDCs could self-assemble into nanoparticles (APDC@NPs) which were evaluated in vitro in three different cell lines and in vivo in tumor-bearing C57BL/6 mice. The RSSD@NPs showed the strongest interaction with αvβ3 integrin, highest cell uptake and intracellular free drug level, and best antitumor efficacy in vitro and in vivo, while it shared the same goodness with other test nanosystems in terms of high drug loading, EPR effect and free of potentially toxic polymers. Especially, the in vivo efficacy of RSSD@NPs was 2 fold of free DM1 which is too cytotoxic to be a drug, while the active targeted APDC@NPs demonstrated acceptable system, tissue and blood compatibility. In αvβ3-positive cells or tumors, the RGD targeting contributed much more than disulfide in anticancer effect. The maximum synergism of the two strategies reached to 22 fold in vitro and 3 fold in vivo. Generally, the active targeting, prodrug and nanosystem could significantly decrease the toxicity of free DM1 and improve its therapy outcome via combining active targeting, prodrug and nanopreparation, especially the dual targeting strategies and their synergism.
Collapse
|
92
|
Docetaxel prodrug self-assembled nanosystem: Synthesis, formulation and cytotoxicity. Bioorg Med Chem Lett 2017; 28:826-830. [PMID: 29395972 DOI: 10.1016/j.bmcl.2017.07.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/09/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022]
Abstract
Conventional drug delivery systems of docetaxel (DTX) are challenged with low drug loading efficiency and potential carriers-induced toxicity. In this work, a docetaxel prodrug self-assembled nanosystem was designed and synthesized by conjugating docetaxel with oleic acid (OA) exploring a thioether as the linker, which is redox-sensitive to the redox environment within tumor cells. Notably, the carrier-free nanomedicine which does not need any carrier has obviously high drug loading that reaches 58%. Moreover, the cytotoxicity of DTX-S-OA maintains an equal level with DTX. The novel prodrug conjugate therefore has a promising perspective as carrier-free nanomedicine for cancer therapy due to its high drug loading property, redox-sensitive release and long circulation mechanism.
Collapse
|
93
|
Cheetham AG, Lin YA, Lin R, Cui H. Molecular design and synthesis of self-assembling camptothecin drug amphiphiles. Acta Pharmacol Sin 2017; 38:874-884. [PMID: 28260797 PMCID: PMC5520181 DOI: 10.1038/aps.2016.151] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
The conjugation of small molecular hydrophobic anticancer drugs onto a short peptide with overall hydrophilicity to create self-assembling drug amphiphiles offers a new prodrug strategy, producing well-defined, discrete nanostructures with a high and quantitative drug loading. Here we show the detailed synthesis procedure and how the molecular structure can influence the synthesis of the self-assembling prodrugs and the physicochemical properties of their assemblies. A series of camptothecin-based drug amphiphiles were synthesized via combined solid- and solution-phase synthetic techniques, and the physicochemical properties of their self-assembled nanostructures were probed using a number of imaging and spectroscopic techniques. We found that the number of incorporated drug molecules strongly influences the rate at which the drug amphiphiles are formed, exerting a steric hindrance toward any additional drugs to be conjugated and necessitating extended reaction time. The choice of peptide sequence was found to affect the solubility of the conjugates and, by extension, the critical aggregation concentration and contour length of the filamentous nanostructures formed. In the design of self-assembling drug amphiphiles, the number of conjugated drug molecules and the choice of peptide sequence have significant effects on the nanostructures formed. These observations may allow the fine-tuning of the physicochemical properties for specific drug delivery applications, ie systemic vs local delivery.
Collapse
Affiliation(s)
- Andrew G Cheetham
- Department of Chemical and Biomolecular Chemistry and Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
| | - Yi-an Lin
- Department of Chemical and Biomolecular Chemistry and Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Chemistry and Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Chemistry and Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
94
|
Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544801 DOI: 10.1002/wnan.1479] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
Malignant brain tumor, including the most common type glioblastoma, are histologically heterogeneous and invasive tumors known as the most devastating neoplasms with high morbidity and mortality. Despite multimodal treatment including surgery, radiotherapy, chemotherapy, and immunotherapy, the disease inevitably recurs and is fatal. This lack of curative options has motivated researchers to explore new treatment strategies and to develop new drug delivery systems (DDSs); however, the unique anatomical, physiological, and pathological features of brain tumors greatly limit the effectiveness of conventional chemotherapy. In this context, we review the recent progress in the development of nanoparticle-based DDSs aiming to address the key challenges in transporting sufficient amount of therapeutic agents into the brain tumor areas while minimizing the potential side effects. We first provide an overview of the standard treatments currently used in the clinic for the management of brain cancers, discussing the effectiveness and limitations of each therapy. We then provide an in-depth review of nanotherapeutic systems that are intended to bypass the blood-brain barrier, overcome multidrug resistance, infiltrate larger tumorous tissue areas, and/or release therapeutic agents in a controlled manner. WIREs Nanomed Nanobiotechnol 2018, 10:e1479. doi: 10.1002/wnan.1479 This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Rami Walid Chakroun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
95
|
Anderson C, Cui H. Protease-Sensitive Nanomaterials for Cancer Therapeutics and Imaging. Ind Eng Chem Res 2017; 56:5761-5777. [PMID: 28572701 PMCID: PMC5445504 DOI: 10.1021/acs.iecr.7b00990] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 01/17/2023]
Abstract
Many diseases can be characterized by the abnormal activity exhibited by various biomolecules, the targeting of which can provide therapeutic and diagnostic utility. Recent trends in medicine and nanotechnology have prompted the development of protease-sensitive nanomaterials systems for therapeutic, diagnostic, and theranostic applications. These systems can act specifically in response to the target enzyme and its associated disease conditions, thus enabling personalized treatment and improved prognosis. In this Review, we discuss recent advancements in the development of protease-responsive materials for imaging and drug delivery and analyze several representative systems to illustrate their key design principles.
Collapse
Affiliation(s)
- Caleb
F. Anderson
- Department
of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Honggang Cui
- Department
of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department
of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center
for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
96
|
Chen Z, Xing L, Fan Q, Cheetham AG, Lin R, Holt B, Chen L, Xiao Y, Cui H. Drug-Bearing Supramolecular Filament Hydrogels as Anti-Inflammatory Agents. Theranostics 2017; 7:2003-2014. [PMID: 28656057 PMCID: PMC5485419 DOI: 10.7150/thno.19404] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
We report here on the covalent conversion of the anti-inflammatory agent ketoprofen into self-assembling prodrugs that enable the effective purification of ketoprofen enantiomers, the improved selectivity and potency of ketoprofen, as well as the formation of one-component drug-bearing supramolecular hydrogels. We found that the ketoprofen hydrogelator could exhibit much-enhanced selectivity for cyclooxygenase 2 (COX-2) over COX-1, reduce the concentration of inflammatory cytokines (IL-1 and TNFα), and induce apoptosis in fibroblast-like synoviocytes while maintaining biocompatibility with healthy chondrocytes. In addition, these anti-inflammatory agent-containing hydrogels demonstrated the ability to retain the therapeutic within a joint cavity after intra-articular injection, exhibiting a slow, steady release into the plasma. We believe that upon further optimization these drug-based injectable supramolecular hydrogels could provide the basis for a local treatment strategy for rheumatoid arthritis and similar conditions.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Andrew G. Cheetham
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Barbara Holt
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Liwen Chen
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
97
|
Cai Y, Shen H, Zhan J, Lin M, Dai L, Ren C, Shi Y, Liu J, Gao J, Yang Z. Supramolecular “Trojan Horse” for Nuclear Delivery of Dual Anticancer Drugs. J Am Chem Soc 2017; 139:2876-2879. [DOI: 10.1021/jacs.6b12322] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yanbin Cai
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, College of Life Sciences, and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Haosheng Shen
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, College of Life Sciences, and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Jie Zhan
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, College of Life Sciences, and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Mingliang Lin
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, College of Life Sciences, and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Liuhan Dai
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, College of Life Sciences, and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Chunhua Ren
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Yang Shi
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, College of Life Sciences, and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Jianfeng Liu
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jie Gao
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, College of Life Sciences, and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Zhimou Yang
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, College of Life Sciences, and Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
98
|
Polymers in the Co-delivery of siRNA and Anticancer Drugs for the Treatment of Drug-resistant Cancers. Top Curr Chem (Cham) 2017; 375:24. [DOI: 10.1007/s41061-017-0113-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
|
99
|
Pashirova TN, Bogdanov AV, Musin LI, Voronina JK, Nizameev IR, Kadirov MK, Mironov VF, Zakharova LY, Latypov SK, Sinyashin OG. Nanoscale isoindigo-carriers: self-assembly and tunable properties. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:313-324. [PMID: 28243570 PMCID: PMC5301918 DOI: 10.3762/bjnano.8.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/09/2017] [Indexed: 05/11/2023]
Abstract
Over the last decade isoindigo derivatives have attracted much attention due to their high potential in pharmacy and in the chemistry of materials. In addition, isoindigo derivatives can be modified to form supramolecular structures with tunable morphologies for the use in drug delivery. Amphiphilic long-chain dialkylated isoindigos have the ability to form stable solid nanoparticles via a simple nanoprecipitation technique. Their self-assembly was investigated using tensiometry, dynamic light scattering, spectrophotometry, and fluorometry. The critical association concentrations and aggregate sizes were measured. The hydrophilic-lipophilic balance of alkylated isoindigo derivatives strongly influences aggregate morphology. In the case of short-chain dialkylated isoindigo derivatives, supramolecular polymers of 200 to 700 nm were formed. For long-chain dialkylated isoindigo derivatives, micellar aggregates of 100 to 200 nm were observed. Using micellar surfactant water-soluble forms of monosubstituted 1-hexadecylisoindigo as well as 1,1'-dimethylisoindigo were prepared for the first time. The formation of mixed micellar structures of different types in micellar anionic surfactant solutions (sodium dodecyl sulfate) was determined. These findings are of practical importance and are of potential interest for the design of drug delivery systems and new nanomaterials.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan, 420088, Russian Federation
| | - Andrei V Bogdanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan, 420088, Russian Federation
| | - Lenar I Musin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan, 420088, Russian Federation
| | - Julia K Voronina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan, 420088, Russian Federation
| | - Irek R Nizameev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan, 420088, Russian Federation
| | - Marsil K Kadirov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan, 420088, Russian Federation
| | - Vladimir F Mironov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan, 420088, Russian Federation
| | - Lucia Ya Zakharova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan, 420088, Russian Federation
| | - Shamil K Latypov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan, 420088, Russian Federation
| | - Oleg G Sinyashin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan, 420088, Russian Federation
| |
Collapse
|
100
|
Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev 2017; 110-111:112-126. [PMID: 27370248 PMCID: PMC5199637 DOI: 10.1016/j.addr.2016.06.015] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
Peptide-drug conjugates (PDCs) represent an important class of therapeutic agents that combine one or more drug molecules with a short peptide through a biodegradable linker. This prodrug strategy uniquely and specifically exploits the biological activities and self-assembling potential of small-molecule peptides to improve the treatment efficacy of medicinal compounds. We review here the recent progress in the design and synthesis of peptide-drug conjugates in the context of targeted drug delivery and cancer chemotherapy. We analyze carefully the key design features in choosing the peptide sequence and linker chemistry for the drug of interest, as well as the strategies to optimize the conjugate design. We highlight the recent progress in the design and synthesis of self-assembling peptide-drug amphiphiles to construct supramolecular nanomedicine and nanofiber hydrogels for both systemic and topical delivery of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Andrew G Cheetham
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Garren Angacian
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Lisi Xie
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| |
Collapse
|