51
|
Li Z, Li Z, Hu J, Feng X, Zhang M, Duan G, Zhang R, Li Y. Self-Assembly of Poly(Janus particle)s into Unimolecular and Oligomeric Spherical Micelles. ACS Macro Lett 2021; 10:1563-1569. [PMID: 35549135 DOI: 10.1021/acsmacrolett.1c00620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Using shape-persistent Janus particles to construct poly(Janus particle)s and studying their self-assembly behaviors are of great interest, but remain largely unexplored. In this work, we reported a type of amphiphiles constructed by the ring-opening metathesis polymerization of nonspherical molecular Janus particles (APOSS-BPOSS), called poly(Janus particle)s (poly(APOSS-BPOSS)n, n = 12, 17, 22, and 35, and Mn = 35-100 kg/mol). Unlike traditional bottlebrush polymers consisting of flexible side chains, these poly(Janus particles) consist of rigid hydrophilic and hydrophobic polyhedral oligomeric silsesquioxane (POSS) cages as side chains. Interestingly, instead of maintaining an expected extended chain conformation, they could also collapse and then self-assemble to form unconventional unimolecular or oligomeric spherical micelles in solutions with a feature size smaller than 7 nm. More importantly, unlike traditional amphiphilic polymer brushes that could form unimolecular micelles at a relatively high degree of polymerization by self-assembly, these poly(Janus particles)s could accomplish self-assembly at a quite low degree of polymerization because of their unique chemical structure and molecular topology. The formation of unimolecular and oligomeric micelles was also further confirmed by dissipative particle dynamics simulations. This study of introducing the POSS-based poly(Janus particle)s as a class of shape amphiphiles will provide a model system for generating unimolecular and oligomeric micellar nanostructures through solution self-assembly.
Collapse
Affiliation(s)
- Zhan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zongxin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xingwei Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Minghua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruimeng Zhang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
52
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
53
|
Feng Q, Xu J, Liu X, Wang H, Xiong J, Xiao K. Targeted delivery by pH-responsive mPEG-S-PBLG micelles significantly enhances the anti-tumor efficacy of doxorubicin with reduced cardiotoxicity. Drug Deliv 2021; 28:2495-2509. [PMID: 34842005 PMCID: PMC8635546 DOI: 10.1080/10717544.2021.2008052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stimuli-responsive nanotherapeutics hold great promise in precision oncology. In this study, a facile strategy was used to develop a new class of pH-responsive micelles, which contain methoxy polyethylene glycol (mPEG) and poly(carbobenzoxy-l-glutamic acid, BLG) as amphiphilic copolymer, and β-thiopropionate as acid-labile linkage. The mPEG-S-PBLG copolymer was synthesized through one-step ring-opening polymerization (ROP) and thiol-ene click reaction, and was able to efficiently encapsulate doxorubicin (DOX) to form micelles. The physicochemical characteristics, cellular uptake, tumor targeting, and anti-tumor efficacy of DOX-loaded micelles were investigated. DOX-loaded micelles were stable under physiological conditions and disintegrated under acidic conditions. DOX-loaded micelles can be internalized into cancer cells and release drugs in response to low pH in endosomes/lysosomes, resulting in cell death. Furthermore, the micellar formulation significantly prolonged the blood circulation, reduced the cardiac distribution, and selectively delivered more drugs to tumor tissue. Finally, compared with free DOX, DOX-loaded micelles significantly improved the anti-tumor efficacy and reduced systemic and cardiac toxicity in two different tumor xenograft models. These results suggest that mPEG-S-PBLG micelles have translational potential in the precise delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Qiyi Feng
- Precision Medicine Research Center & Sichuan Provincial Key Laboratory of Precision Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, China
| | - Junhuai Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Xinyi Liu
- Precision Medicine Research Center & Sichuan Provincial Key Laboratory of Precision Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Junjie Xiong
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Xiao
- Precision Medicine Research Center & Sichuan Provincial Key Laboratory of Precision Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
54
|
Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. Polymers (Basel) 2021; 13:4199. [PMID: 34883702 PMCID: PMC8659862 DOI: 10.3390/polym13234199] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE), in which novel engineering and biological approaches are introduced to accelerate the development of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and cell sources have been employed for CTE to either recapitulate microenvironmental cues during a new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical and biomechanical properties of the original tissue. Towards modifying current cartilage treatments, advanced hydrogels have been designed and synthesized in recent years to improve network crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed. Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of prevalent challenges and future outlooks for self-healing hydrogels in CTE applications.
Collapse
Affiliation(s)
- Mahshid Hafezi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mohadeseh Zare
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK;
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Staffordshire ST5 5BG, UK
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST4 7QB, UK
| |
Collapse
|
55
|
El-Aassar MR, Ibrahim OM, Al-Oanzi ZH. Biotechnological Applications of Polymeric Nanofiber Platforms Loaded with Diverse Bioactive Materials. Polymers (Basel) 2021; 13:3734. [PMID: 34771291 PMCID: PMC8586957 DOI: 10.3390/polym13213734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023] Open
Abstract
This review article highlights the critical research and formative works relating to nanofiber composites loaded with bioactive materials for diverse applications, and discusses the recent research on the use of electrospun nanofiber incorporating bioactive compounds such as essential oils, herbal bioactive components, plant extracts, and metallic nanoparticles. Inevitably, with the common advantages of bioactive components and polymer nanofibers, electrospun nanofibers containing bioactive components have attracted intense interests for their applications in biomedicine and cancer treatment. Many studies have only concentrated on the production and performance of electrospun nanofiber loaded with bioactive components; in this regard, the features of different types of electrospun nanofiber incorporating a wide variety of bioactive compounds and their developing trends are summarized and assessed in the present article, as is the feasible use of nanofiber technology to produce products on an industrial scale in different applications.
Collapse
Affiliation(s)
- M. R. El-Aassar
- Department of Chemistry, College of Science, Jouf University, Sakaka 75471, Saudi Arabia
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Omar M. Ibrahim
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Ziad H. Al-Oanzi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Saudi Arabia
| |
Collapse
|
56
|
Holt SE, Arroyo J, Poux E, Fricks A, Agurcia I, Heintschel M, Rakoski A, Alge DL. Supramolecular Click Product Interactions Induce Dynamic Stiffening of Extracellular Matrix-Mimetic Hydrogels. Biomacromolecules 2021; 22:3040-3048. [PMID: 34129338 DOI: 10.1021/acs.biomac.1c00485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Progressive stiffening of the extracellular matrix (ECM) is observed in tissue development as well as in pathologies such as cancer, cardiovascular disease, and fibrotic disease. However, methods to recapitulate this phenomenon in vitro face critical limitations. Here, we present a poly(ethylene glycol)-based peptide-functionalized ECM-mimetic hydrogel platform capable of facile, user-controlled dynamic stiffening. This platform leverages supramolecular interactions between inverse-electron demand Diels-Alder tetrazine-norbornene click products (TNCP) to create pendant moieties that undergo non-covalent crosslinking, stiffening a pre-existing network formed via thiol-ene click chemistry over the course of 6 h. Pendant TNCP moieties have a concentration-dependent effect on gel stiffness while still being cytocompatible and permissive of cell-mediated gel degradation. The robustness of this approach as well as its simplicity and ease of translation give it broad potential utility.
Collapse
Affiliation(s)
- Samantha E Holt
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Julio Arroyo
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Emily Poux
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Austen Fricks
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Isabelle Agurcia
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Marissa Heintschel
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Amanda Rakoski
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, United States.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas77843-3003, United States
| |
Collapse
|
57
|
Echeverria Molina MI, Malollari KG, Komvopoulos K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front Bioeng Biotechnol 2021; 9:617141. [PMID: 34195178 PMCID: PMC8236583 DOI: 10.3389/fbioe.2021.617141] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous surgical procedures are daily performed worldwide to replace and repair damaged tissue. Tissue engineering is the field devoted to the regeneration of damaged tissue through the incorporation of cells in biocompatible and biodegradable porous constructs, known as scaffolds. The scaffolds act as host biomaterials of the incubating cells, guiding their attachment, growth, differentiation, proliferation, phenotype, and migration for the development of new tissue. Furthermore, cellular behavior and fate are bound to the biodegradation of the scaffold during tissue generation. This article provides a critical appraisal of how key biomaterial scaffold parameters, such as structure architecture, biochemistry, mechanical behavior, and biodegradability, impart the needed morphological, structural, and biochemical cues for eliciting cell behavior in various tissue engineering applications. Particular emphasis is given on specific scaffold attributes pertaining to skin and brain tissue generation, where further progress is needed (skin) or the research is at a relatively primitive stage (brain), and the enumeration of some of the most important challenges regarding scaffold constructs for tissue engineering.
Collapse
Affiliation(s)
- Maria I Echeverria Molina
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Katerina G Malollari
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Kyriakos Komvopoulos
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
58
|
Tao Y, Qu D, Tian C, Huang Y, Xue L, Ju C, Hao M, Zhang C. Modular synthesis of amphiphilic chitosan derivatives based on copper-free click reaction for drug delivery. Int J Pharm 2021; 605:120798. [PMID: 34126177 DOI: 10.1016/j.ijpharm.2021.120798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
Amphiphilic chitosan derivatives have attracted wide attention as drug carriers due to their physicochemical properties. However, obtaining a desired amphiphilic chitosan derivative by tuning the various functional groups was complex and time-consuming. Therefore, a facile and common synthesis strategy would be promising. In this study, a modular strategy based on strain-promoted azide-alkyne cycloaddition (SPAAC) click reaction was designed and applied in synthesizing deoxycholic acid- or octanoic acid-modified N-azido propionyl-N,O-sulfate chitosan through tuning the hydrophobic groups. Additionally, chitosan derivatives with the same substitute groups were prepared via amide coupling as controls. We demonstrated that these derivates via the two strategies showed no obvious difference in physicochemical properties, drug loading ability and biosafety, indicating the feasibility of modular strategy. Notably, the modular strategy exhibited advantages including high reactivity, flexibility and reproducibility. We believe that this modular strategy could provide varied chitosan derivatives in an easy and high-efficiency way for improving multifunctional drug carriers.
Collapse
Affiliation(s)
- Yu Tao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ding Qu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Chunli Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yingshuang Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Caoyun Ju
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Meixi Hao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
59
|
Li X, Xu Q, Johnson M, Wang X, Lyu J, Li Y, McMahon S, Greiser U, A S, Wang W. A chondroitin sulfate based injectable hydrogel for delivery of stem cells in cartilage regeneration. Biomater Sci 2021; 9:4139-4148. [PMID: 33955435 DOI: 10.1039/d1bm00482d] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chondroitin sulfate (CS), as a popular material for cartilage tissue engineering scaffolds, has been extensively studied and reported for its safety and excellent biocompatibility. However, the rapid degradation of pure CS scaffolds has brought a challenge to regenerate neo-tissue similar to natural articular cartilage effectively. Meanwhile, the poly(ethene glycol) (PEG) -based biopolymer is frequently applied as a structural constituent material because of its remarkable mechanical properties, long-lasting in vivo stability, and hypo-immunity. Here, we report that the combination of CS and hyperbranched multifunctional PEG copolymer (HB-PEG) could synergistically promote cartilage repair. The thiol functionalised CS (CS-SH)/HB-PEG hydrogel scaffolds were fabricated via thiol-ene reaction, which exhibits rapid gelation, excellent mechanical properties and prolonged degradation properties. We found that rat adipose-derived mesenchymal stem cells presented great cell viability and improved chondrogenesis in CS-SH/HB-PEG hydrogels. Moreover, the injectable hydrogel scaffolds reduced stem cell inflammatory response, consistent with the well-documented anti-inflammatory activities of CS.
Collapse
Affiliation(s)
- Xiaolin Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Xi Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland. and Ashland Specialties Ireland Ltd, National Science Park, Building V, Dublin Road, Petitswood, Mullingar, Co. Westmeath, Ireland
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Yinghao Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Sean McMahon
- Ashland Specialties Ireland Ltd, National Science Park, Building V, Dublin Road, Petitswood, Mullingar, Co. Westmeath, Ireland
| | - Udo Greiser
- Ashland Specialties Ireland Ltd, National Science Park, Building V, Dublin Road, Petitswood, Mullingar, Co. Westmeath, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
60
|
Tabassum N, Ahmed S, Ali MA. Chitooligosaccharides and their structural-functional effect on hydrogels: A review. Carbohydr Polym 2021; 261:117882. [DOI: 10.1016/j.carbpol.2021.117882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
|
61
|
Zhan Y, Fu W, Xing Y, Ma X, Chen C. Advances in versatile anti-swelling polymer hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112208. [PMID: 34225860 DOI: 10.1016/j.msec.2021.112208] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
Swelling is ubiquitous for traditional as-prepared hydrogels, but is unfavorable in many situations, especially biomedical applications, such as tissue engineering, internal wound closure, soft actuating and bioelectronics, and so forth. As the swelling of a hydrogel usually leads to a volume expansion, which not only deteriorates the mechanical property of the hydrogel but can bring about undesirable oppression on the surrounding tissues when applied in vivo. In contrast, anti-swelling hydrogels hardly alter their volume when applied in aqueous environment, therefore reserving the original mechanical performance and size-stability and facilitating their potential application. In the past decade, with the development of advanced hydrogels, quite a number of anti-swelling hydrogels with versatile functions have been developed by researchers to meet the practical applications well, through integrating anti-swelling property with certain performance or functionality, such as high strength, self-healing, injectability, adhesiveness, antiseptics, etc. However, there has not been a general summary with regard to these hydrogels. To promote the construction of anti-swelling hydrogels with desirable functionalities in the future, this review generalizes and analyzes the tactics employed so far in the design and manufacture of anti-swelling hydrogels, starting from the viewpoint of classical swelling theories. The review will provide a relatively comprehensive understanding of anti-swelling hydrogels and clues to researchers interested in this kind of materials to develop more advanced ones suitable for practical application.
Collapse
Affiliation(s)
- Yiwei Zhan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China.
| | - Yacheng Xing
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China.
| |
Collapse
|
62
|
López S, Gracia I, García MT, Rodríguez JF, Ramos MJ. Synthesis and Operating Optimization of the PEG Conjugate via CuAAC in scCO 2. ACS OMEGA 2021; 6:6163-6171. [PMID: 33718707 PMCID: PMC7948234 DOI: 10.1021/acsomega.0c05466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
A new sustainable green protocol for obtaining polyethylene glycol (PEG) conjugates, with a prototype molecule, which in this work was coumarin, by means of click chemistry is presented. The organic solvents commonly used for this type of reaction were replaced by supercritical carbon dioxide (scCO2). The synthesis and characterization of PEG-coumarin were successfully reported using FTIR, 1H NMR, and MALDI TOF. Subsequently, a preliminary study was carried out using the response surface methodology to examine the variables that most affect the use of scCO2 as a reaction medium. The main effects caused by these variables, individually and their binary interaction, have been estimated. The response surface methodology has been used in this work to screen variables using a factorial design 23. The p-values of temperature and pressure were 0.006 and 0.0117, being therefore the most significant variables of the response surface methodology study. Subsequently, a more intensive study has been carried out on the variables that have shown the greatest significant effect on reaction performance where an 82.32% synthesis success was achieved, which broadens the scope of the use of scCO2 as a reaction medium. The conjugated coumarin with mPEG-alkyne and coumarin were evaluated for their in vitro antioxidant activities by the DPPH radical scavenging assay and were found to exhibit substantial activities. The click product showed comparable or even better efficacy than the initial coumarin.
Collapse
|
63
|
Chen Y, Zhang L, Yang Y, Pang B, Xu W, Duan G, Jiang S, Zhang K. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005569. [PMID: 33538067 PMCID: PMC11468492 DOI: 10.1002/adma.202005569] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/25/2020] [Indexed: 05/26/2023]
Abstract
The rapid development of modern industry and excessive consumption of petroleum-based polymers have triggered a double crisis presenting a shortage of nonrenewable resources and environmental pollution. However, this has provided an opportunity to stimulate researchers to harness native biobased materials for novel advanced materials and applications. Nanocellulose-based aerogels, using abundant and sustainable cellulose as raw material, present a third-generation of aerogels that combine traditional aerogels with high porosity and large specific surface area, as well as the excellent properties of cellulose itself. Currently, nanocellulose aerogels provide a highly attention-catching platform for a wide range of functional applications in various fields, e.g., adsorption, separation, energy storage, thermal insulation, electromagnetic interference shielding, and biomedical applications. Here, the preparation methods, modification strategies, composite fabrications, and further applications of nanocellulose aerogels are summarized, with additional discussions regarding the prospects and potential challenges in future development.
Collapse
Affiliation(s)
- Yiming Chen
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjing210037China
| | - Lin Zhang
- MIT Media LabMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Yang Yang
- Department of Wood Technology and Wood‐Based CompositesUniversity of GöttingenBüsgenweg 4Göttingen37077Germany
| | - Bo Pang
- Department of Wood Technology and Wood‐Based CompositesUniversity of GöttingenBüsgenweg 4Göttingen37077Germany
| | - Wenhui Xu
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangJiangxi330004China
| | - Gaigai Duan
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjing210037China
| | - Shaohua Jiang
- Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjing210037China
| | - Kai Zhang
- Department of Wood Technology and Wood‐Based CompositesUniversity of GöttingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
64
|
Lv X, Wang S, Dong Y, Zhang Y, Wang X, Yan G, Wang J, Tang R. Dynamic methotrexate nano-prodrugs with detachable PEGylation for highly selective synergistic chemotherapy. Colloids Surf B Biointerfaces 2021; 201:111619. [PMID: 33607325 DOI: 10.1016/j.colsurfb.2021.111619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023]
Abstract
To promote the highly selective synergistic chemotherapy, the pH-ultra-sensitive dynamic methotrexate nano-prodrugs with detachable PEGylation were successfully prepared via facile method, and the synergistic nanodrugs could be further constructed through encapsulating Doxorubicin (DOX) following the self-assembly process. The nano-prodrugs exhibited the low critical micelle concentration (CMC), negative zeta potential and stability for 5 days in PBS and FBS at physiological pH (7.4) for stable blood circulation, DePEGylation and dynamic size change at tumoral extracellular pH (6.8) for improved tumor accumulation and cellular internalization, and efficiently synergistic drug release at tumoral intracellular pH (5.0) for enhanced tumor apoptosis and cytotoxicity. Moreover, in vivo experiment suggested that the synergistic nanodrugs could significantly improve tumor accumulation and restrain tumor growth while decreasing adverse effects. Therefore, the dynamic methotrexate nano-prodrugs with detachable PEGylation are easy to clinically transform for highly selective synergistic chemotherapy.
Collapse
Affiliation(s)
- Xiaodong Lv
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China
| | - Shi Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China
| | - Yuhang Dong
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China
| | - Yafang Zhang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China
| | - Guoqing Yan
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China.
| | - Jun Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China.
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, PR China.
| |
Collapse
|
65
|
Biazar E, Kamalvand M, Avani F. Recent advances in surface modification of biopolymeric nanofibrous scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1857383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farzaneh Avani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
66
|
Fang Y, Bao K, Zhang P, Sheng H, Yun Y, Hu SX, Astruc D, Zhu M. Insight into the Mechanism of the CuAAC Reaction by Capturing the Crucial Au4Cu4–π-Alkyne Intermediate. J Am Chem Soc 2021; 143:1768-1772. [DOI: 10.1021/jacs.0c12498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yaping Fang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Kang Bao
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Peng Zhang
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongting Sheng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Yapei Yun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Didier Astruc
- Université de Bordeaux, ISM, UMR CNRS
No. 5255, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
67
|
Li K, Fong D, Meichsner E, Adronov A. A Survey of Strain-Promoted Azide-Alkyne Cycloaddition in Polymer Chemistry. Chemistry 2021; 27:5057-5073. [PMID: 33017499 DOI: 10.1002/chem.202003386] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Indexed: 02/06/2023]
Abstract
Highly efficient reactions that enable the assembly of molecules into complex structures have driven extensive progress in synthetic chemistry. In particular, reactions that occur under mild conditions and in benign solvents, while producing no by-products and rapidly reach completion are attracting significant attention. Amongst these, the strain-promoted azide-alkyne cycloaddition, involving various cyclooctyne derivatives reacting with azide-bearing molecules, has gained extensive popularity in organic synthesis and bioorthogonal chemistry. This reaction has also recently gained momentum in polymer chemistry, where it has been used to decorate, link, crosslink, and even prepare polymer chains. This survey highlights key achievements in the use of this reaction to produce a variety of polymeric constructs for disparate applications.
Collapse
Affiliation(s)
- Kelvin Li
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Darryl Fong
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Eric Meichsner
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Alex Adronov
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
68
|
Rudzińska M, Daglioglu C, Savvateeva LV, Kaci FN, Antoine R, Zamyatnin AA. Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:9-20. [PMID: 33442233 PMCID: PMC7797289 DOI: 10.2147/dddt.s285852] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
In cancer treatments, many natural and synthetic products have been examined; among them, protease inhibitors are promising candidates for anti-cancer agents. Since dysregulated proteolytic activities can contribute to tumor development and metastasis, antagonization of proteases with tailored inhibitors is an encouraging approach. Although adverse effects of early designs of these inhibitors disappeared after the introduction of next-generation agents, most of the proposed inhibitors did not pass the early stages of clinical trials due to their nonspecific toxicity and lack of pharmacological effects. Therefore, new applications that modulate proteases more specifically and serve their programmed way of administration are highly appreciated. In this context, nanosized drug delivery systems have attracted much attention because preliminary studies have demonstrated that the therapeutic capacity of inhibitors has been improved significantly with encapsulated formulation as compared to their free forms. Here, we address this issue and discuss the current application and future clinical prospects of this potential combination towards targeted protease-based cancer therapy.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Cenk Daglioglu
- Biotechnology and Bioengineering Application and Research Center, Integrated Research Centers, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Fatma Necmiye Kaci
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Yakutiye, Erzurum 25050, Turkey
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, Lyon F-69622, France
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Department of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
69
|
Clamor C, Cattoz BN, Wright PM, O'Reilly RK, Dove AP. Controlling the crystallinity and solubility of functional PCL with efficient post-polymerisation modification. Polym Chem 2021. [DOI: 10.1039/d0py01535k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Varying the size of an alkyl side-chain group, installed by thiol–ene addition of alkylthiols to poly(ε-allyl caprolactone), the semi-crystallinity and lipophilicity of functional PCLs could be modulated to achieve divergent physico-chemical properties.
Collapse
Affiliation(s)
- Cinzia Clamor
- School of Chemistry
- University of Birmingham
- Birmingham B15 2TT
- UK
| | | | | | | | - Andrew P. Dove
- School of Chemistry
- University of Birmingham
- Birmingham B15 2TT
- UK
| |
Collapse
|
70
|
Yang P, Zhu F, Zhang Z, Cheng Y, Wang Z, Li Y. Stimuli-responsive polydopamine-based smart materials. Chem Soc Rev 2021; 50:8319-8343. [DOI: 10.1039/d1cs00374g] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides in-depth insight into the structural engineering of PDA-based materials to enhance their responsive feature and the use of them in construction of PDA-based stimuli-responsive smart materials.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Fang Zhu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200241
- P. R. China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| | - Yiwen Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
71
|
Zhang X, Li Z, Yang P, Duan G, Liu X, Gu Z, Li Y. Polyphenol scaffolds in tissue engineering. MATERIALS HORIZONS 2021; 8:145-167. [PMID: 34821294 DOI: 10.1039/d0mh01317j] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyphenols are a class of ubiquitous compounds distributed in nature, with fascinating inherent biocompatible, bioadhesive, antioxidant, and antibacterial properties. The unique polyphenolic structures based on catechol or pyrogallol moieties allow for strong non-covalent interactions (e.g., multiple hydrogen bonding, electrostatic, and cation-π interactions) as well as covalent interactions (e.g., Michael addition/Schiff-base reaction, radical coupling reaction, and dynamic coordination interactions with boronate or metal ions). This review article provides an overview of the polyphenol-based scaffolds including the hydrogels, films, and nanofibers that have emerged from chemical and functional signatures during the past years. A full description of the structure-function relationships in terms of their utilization in wound healing, bone regeneration, and electroactive tissue engineering is also carefully discussed, which may pave the path towards the rational design and facile preparation of next-generation polyphenol scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | |
Collapse
|
72
|
Zhou Z, Dong Z, Wang L, Song R, Mei N, Chen T, Luo L, Ding Q, Wang X, Tang S. Cellulose membrane modified with LED209 as an antibacterial and anti-adhesion material. Carbohydr Polym 2021; 252:117138. [DOI: 10.1016/j.carbpol.2020.117138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 02/02/2023]
|
73
|
Bunton CM, Bassampour ZM, Boothby JM, Smith AN, Rose JV, Nguyen DM, Ware TH, Csaky KG, Lippert AR, Tsarevsky NV, Son DY. Degradable Silyl Ether–Containing Networks from Trifunctional Thiols and Acrylates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Caleb M. Bunton
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Zahra M. Bassampour
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Jennifer M. Boothby
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Ashanti N. Smith
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Joseph V. Rose
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Daphne M. Nguyen
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Taylor H. Ware
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Karl G. Csaky
- Retina Foundation of the Southwest, Dallas, Texas 75231, United States
| | - Alexander R. Lippert
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Nicolay V. Tsarevsky
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - David Y. Son
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| |
Collapse
|
74
|
Ciolacu DE, Nicu R, Ciolacu F. Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5270. [PMID: 33233413 PMCID: PMC7700533 DOI: 10.3390/ma13225270] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Hydrogels, three-dimensional (3D) polymer networks, present unique properties, like biocompatibility, biodegradability, tunable mechanical properties, sensitivity to various stimuli, the capacity to encapsulate different therapeutic agents, and the ability of controlled release of the drugs. All these characteristics make hydrogels important candidates for diverse biomedical applications, one of them being drug delivery. The recent achievements of hydrogels as safe transport systems, with desired therapeutic effects and with minimum side effects, brought outstanding improvements in this area. Moreover, results from the utilization of hydrogels as target therapy strategies obtained in clinical trials are very encouraging for future applications. In this regard, the review summarizes the general concepts related to the types of hydrogel delivery systems, their properties, the main release mechanisms, and the administration pathways at different levels (oral, dermal, ocular, nasal, gastrointestinal tract, vaginal, and cancer therapy). After a general presentation, the review is focused on recent advances in the design, preparation and applications of innovative cellulose-based hydrogels in controlled drug delivery.
Collapse
Affiliation(s)
| | - Raluca Nicu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Florin Ciolacu
- Natural and Synthetic Polymers Department, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| |
Collapse
|
75
|
Ma Y, Yin Y, Ni L, Miao H, Wang Y, Pan C, Tian X, Pan J, You T, Li B, Pan G. Thermo-responsive imprinted hydrogel with switchable sialic acid recognition for selective cancer cell isolation from blood. Bioact Mater 2020; 6:1308-1317. [PMID: 33251380 PMCID: PMC7662873 DOI: 10.1016/j.bioactmat.2020.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
In this work, a sialic acid (SA)-imprinted thermo-responsive hydrogel layer was prepared for selective capture and release of cancer cells. The SA-imprinting process was performed at 37 °C using thermo-responsive functional monomer, thus generating switchable SA-recognition sites with potent SA binding at 37 °C and weak binding at a lower temperature (e.g., 25 °C). Since SA is often overexpressed at the glycan terminals of cell membrane proteins or lipids, the SA-imprinted hydrogel layer could be used for selective cancer cell recognition. Our results confirmed that the hydrogel layer could efficiently capture cancer cells from not only the culture medium but also the real blood samples. In addition, the captured cells could be non-invasively released by lowing the temperature. Considering the non-invasive processing mode, considerable capture efficiency, good cell selectivity, as well as the more stable and durable SA-imprinted sites compared to natural antibodies or receptors, this thermo-responsive hydrogel layer could be used as a promising and general platform for cell-based cancer diagnosis. Thermo-responsive sialic acid (SA)-imprinted hydrogel layer was prepared. The hydrogel layer could efficiently and selective capture cancer cells at 37 °C. The captured cancer cells could be released at a lower temperature (e.g., 25 °C). The hydrogel layer could be used for capture and release cancer cells from blood.
Collapse
Affiliation(s)
- Yue Ma
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,Jiangsu Agrochem Laboratory, Changzhou, Jiangsu 213022, PR China
| | - Yimei Yin
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Li Ni
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Haohan Miao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yingjia Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Cheng Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaohua Tian
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
76
|
Arsenie L, Pinese C, Bethry A, Valot L, Verdie P, Nottelet B, Subra G, Darcos V, Garric X. Star-poly(lactide)-peptide hybrid networks as bioactive materials. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
77
|
Corrigan N, Ciftci M, Jung K, Boyer C. Gesteuerte Reaktionsorthogonalität in der Polymer‐ und Materialwissenschaft. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Mustafa Ciftci
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
- Department of Chemistry Faculty of Engineering and Natural Science Bursa Technical University Bursa 16310 Turkey
| | - Kenward Jung
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| |
Collapse
|
78
|
Tabernero A, Cardea S. Microbial Exopolysaccharides as Drug Carriers. Polymers (Basel) 2020; 12:E2142. [PMID: 32961830 PMCID: PMC7570138 DOI: 10.3390/polym12092142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Microbial exopolysaccharides are peculiar polymers that are produced by living organisms and protect them against environmental factors. These polymers are industrially recovered from the medium culture after performing a fermentative process. These materials are biocompatible and biodegradable, possessing specific and beneficial properties for biomedical drug delivery systems. They can have antitumor activity, they can produce hydrogels with different characteristics due to their molecular structure and functional groups, and they can even produce nanoparticles via a self-assembly phenomenon. This review studies the potential use of exopolysaccharides as carriers for drug delivery systems, covering their versatility and their vast possibilities to produce particles, fibers, scaffolds, hydrogels, and aerogels with different strategies and methodologies. Moreover, the main properties of exopolysaccharides are explained, providing information to achieve an adequate carrier selection depending on the final application.
Collapse
Affiliation(s)
- Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza los Caídos s/n, 37008 Salamanca, Spain;
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
79
|
Corrigan N, Ciftci M, Jung K, Boyer C. Mediating Reaction Orthogonality in Polymer and Materials Science. Angew Chem Int Ed Engl 2020; 60:1748-1781. [DOI: 10.1002/anie.201912001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Mustafa Ciftci
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
- Department of Chemistry Faculty of Engineering and Natural Science Bursa Technical University Bursa 16310 Turkey
| | - Kenward Jung
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| |
Collapse
|
80
|
Ghane N, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Das O, Ramakrishna S. Regeneration of the peripheral nerve via multifunctional electrospun scaffolds. J Biomed Mater Res A 2020; 109:437-452. [PMID: 32856425 DOI: 10.1002/jbm.a.37092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Over the last two decades, electrospun scaffolds have proved to be advantageous in the field of nerve tissue regeneration by connecting the cavity among the proximal and distal nerve stumps growth cones and leading to functional recovery after injury. Multifunctional nanofibrous structure of these scaffolds provides enormous potential by combining the advantages of nano-scale topography, and biological science. In these structures, selecting the appropriate materials, designing an optimized structure, modifying the surface to enhance biological functions and neurotrophic factors loading, and native cell-like stem cells should be considered as the essential factors. In this systematic review paper, the fabrication methods for the preparation of aligned nanofibrous scaffolds in yarn or conduit architecture are reviewed. Subsequently, the utilized polymeric materials, including natural, synthetic and blend are presented. Finally, their surface modification techniques, as well as, the recent advances and outcomes of the scaffolds, both in vitro and in vivo, are reviewed and discussed.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | | | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Oisik Das
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, Singapore, Singapore
| |
Collapse
|
81
|
Politi S, Carotenuto F, Rinaldi A, Di Nardo P, Manzari V, Albertini MC, Araneo R, Ramakrishna S, Teodori L. Smart ECM-Based Electrospun Biomaterials for Skeletal Muscle Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1781. [PMID: 32916791 PMCID: PMC7558997 DOI: 10.3390/nano10091781] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022]
Abstract
The development of smart and intelligent regenerative biomaterials for skeletal muscle tissue engineering is an ongoing challenge, owing to the requirement of achieving biomimetic systems able to communicate biological signals and thus promote optimal tissue regeneration. Electrospinning is a well-known technique to produce fibers that mimic the three dimensional microstructural arrangements, down to nanoscale and the properties of the extracellular matrix fibers. Natural and synthetic polymers are used in the electrospinning process; moreover, a blend of them provides composite materials that have demonstrated the potential advantage of supporting cell function and adhesion. Recently, the decellularized extracellular matrix (dECM), which is the noncellular component of tissue that retains relevant biological cues for cells, has been evaluated as a starting biomaterial to realize composite electrospun constructs. The properties of the electrospun systems can be further improved with innovative procedures of functionalization with biomolecules. Among the various approaches, great attention is devoted to the "click" concept in constructing a bioactive system, due to the modularity, orthogonality, and simplicity features of the "click" reactions. In this paper, we first provide an overview of current approaches that can be used to obtain biofunctional composite electrospun biomaterials. Finally, we propose a design of composite electrospun biomaterials suitable for skeletal muscle tissue regeneration.
Collapse
Affiliation(s)
- Sara Politi
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
| | - Felicia Carotenuto
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Antonio Rinaldi
- Department of Sustainability (SSPT), ENEA, 00123 Rome, Italy;
| | - Paolo Di Nardo
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
- L.L. Levshin Institute of Cluster Oncology, I. M. Sechenov First Medical University, Moscow 119991, Russia
| | - Vittorio Manzari
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome Italy; (P.D.N.); (V.M.)
| | | | - Rodolfo Araneo
- Department of Astronautics Electrical and Energy Engineering (DIAEE), University of Rome “La Sapienza”, 00184 Rome, Italy;
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore;
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (F.C.)
- Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
82
|
Li Z, Li H, Zhang J, Liu X, Gu Z, Li Y. Ultrasmall Nanoparticle ROS Scavengers Based on Polyhedral Oligomeric Silsesquioxanes. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2486-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
83
|
Liu X, George MN, Li L, Gamble D, Miller AL, Gaihre B, Waletzki BE, Lu L. Injectable Electrical Conductive and Phosphate Releasing Gel with Two-Dimensional Black Phosphorus and Carbon Nanotubes for Bone Tissue Engineering. ACS Biomater Sci Eng 2020; 6:4653-4665. [PMID: 33455193 PMCID: PMC9009275 DOI: 10.1021/acsbiomaterials.0c00612] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Injectable hydrogels have unique advantages for the repair of irregular tissue defects. In this study, we report a novel injectable carbon nanotube (CNT) and black phosphorus (BP) gel with enhanced mechanical strength, electrical conductivity, and continuous phosphate ion release for tissue engineering. The gel utilized biodegradable oligo(poly(ethylene glycol) fumarate) (OPF) polymer as the cross-linking matrix, with the addition of cross-linkable CNT-poly(ethylene glycol)-acrylate (CNTpega) to grant mechanical support and electric conductivity. Two-dimensional (2D) black phosphorus nanosheets were also infused to aid in tissue regeneration through the steady release of phosphate that results from environmental oxidation of phosphorus in situ. This newly developed BP-CNTpega-gel was found to enhance the adhesion, proliferation, and osteogenic differentiation of MC3T3 preosteoblast cells. With electric stimulation, the osteogenesis of preosteoblast cells was further enhanced with elevated expression of several key osteogenic pathway genes. As monitored with X-ray imaging, the BP-CNTpega-gel demonstrated excellent in situ gelation and cross-linking to fill femur defects, vertebral body cavities, and posterolateral spinal fusion sites in the rabbit. Together, these results indicate that this newly developed injectable BP-CNTpega-gel owns promising potential for future bone and broad types of tissue engineering applications.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N. George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Linli Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Darian Gamble
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian E. Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
84
|
Muhoza B, Xia S, Wang X, Zhang X. The protection effect of trehalose on the multinuclear microcapsules based on gelatin and high methyl pectin coacervate during freeze-drying. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105807] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
85
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
86
|
Liu X, Gaihre B, George MN, Miller AL, Xu H, Waletzki BE, Lu L. 3D bioprinting of oligo(poly[ethylene glycol] fumarate) for bone and nerve tissue engineering. J Biomed Mater Res A 2020; 109:6-17. [PMID: 32418273 DOI: 10.1002/jbm.a.37002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/09/2020] [Accepted: 04/19/2020] [Indexed: 01/02/2023]
Abstract
3D bioprinting is a promising new tissue restoration technique that enables the precise deposition of cells and growth factors in order to more closely mimic the structure and function of native organs. In this study, we report the development of a new bioink using oligo(poly[ethylene glycol] fumarate) (OPF), a photo-crosslinkable, and biodegradable polymer, for 3D bioprinting. In addition to OPF, a small portion of gelatin was also incorporated into the bioink to make it bio-printable. After immersion in the cell medium, gelatin was eluted away to create a bioprinted scaffold of pure OPF. Excellent cell viability, spreading, and long-term proliferation of encapsulated cells was observed using both bone and nerve cells as examples. These results demonstrate that OPF bioink has great potential in future 3D bioprinting applications that aim to replicate complex, layered tissues, and/or organs.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew N George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - A Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Haocheng Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Brian E Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
87
|
Li X, A S, Xu Q, Alshehri F, Zeng M, Zhou D, Li J, Zhou G, Wang W. Cartilage-Derived Progenitor Cell-Laden Injectable Hydrogel—An Approach for Cartilage Tissue Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:4756-4765. [DOI: 10.1021/acsabm.0c00294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaolin Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Fatma Alshehri
- Princess Nourah Bint Abdulrahman University (PNU), Riyadh 11671, Saudi Arabia
| | - Ming Zeng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology (SCET), Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Health Science Center, Shenzhen University, Nanhai Ave 3688, Shenzhen 518060, China
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
88
|
Light Processable Starch Hydrogels. Polymers (Basel) 2020; 12:polym12061359. [PMID: 32560332 PMCID: PMC7362200 DOI: 10.3390/polym12061359] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 01/08/2023] Open
Abstract
Light processable hydrogels were successfully fabricated by utilizing maize starch as raw material. To render light processability, starch was gelatinized and methacrylated by simple reaction with methacrylic anhydride. The methacrylated starch was then evaluated for its photocuring reactivity and 3D printability by digital light processing (DLP). Hydrogels with good mechanical properties and biocompatibility were obtained by direct curing from aqueous solution containing lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as photo-initiator. The properties of the hydrogels were tunable by simply changing the concentration of starch in water. Photo-rheology showed that the formulations with 10 or 15 wt% starch started curing immediately and reached G' plateau after only 60 s, while it took 90 s for the 5 wt% formulation. The properties of the photocured hydrogels were further characterized by rheology, compressive tests, and swelling experiments. Increasing the starch content from 10 to 15 wt% increased the compressive stiffness from 13 to 20 kPa. This covers the stiffness of different body tissues giving promise for the use of the hydrogels in tissue engineering applications. Good cell viability with human fibroblast cells was confirmed for all three starch hydrogel formulations indicating no negative effects from the methacrylation or photo-crosslinking reaction. Finally, the light processability of methacrylated starch by digital light processing (DLP) 3D printing directly from aqueous solution was successfully demonstrated. Altogether the results are promising for future application of the hydrogels in tissue engineering and as cell carriers.
Collapse
|
89
|
Taghipour YD, Hokmabad VR, Del Bakhshayesh AR, Asadi N, Salehi R, Nasrabadi HT. The Application of Hydrogels Based on Natural Polymers for Tissue Engineering. Curr Med Chem 2020; 27:2658-2680. [DOI: 10.2174/0929867326666190711103956] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022]
Abstract
:Hydrogels are known as polymer-based networks with the ability to absorb water and other body fluids. Because of this, the hydrogels are used to preserve drugs, proteins, nutrients or cells. Hydrogels possess great biocompatibility, and properties like soft tissue, and networks full of water, which allows oxygen, nutrients, and metabolites to pass. Therefore, hydrogels are extensively employed as scaffolds in tissue engineering. Specifically, hydrogels made of natural polymers are efficient structures for tissue regeneration, because they mimic natural environment which improves the expression of cellular behavior.:Producing natural polymer-based hydrogels from collagen, hyaluronic acid (HA), fibrin, alginate, and chitosan is a significant tactic for tissue engineering because it is useful to recognize the interaction between scaffold with a tissue or cell, their cellular reactions, and potential for tissue regeneration. The present review article is focused on injectable hydrogels scaffolds made of biocompatible natural polymers with particular features, the methods that can be employed to engineer injectable hydrogels and their latest applications in tissue regeneration.
Collapse
Affiliation(s)
- Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
90
|
Li Z, Hu J, Yang L, Zhang X, Liu X, Wang Z, Li Y. Integrated POSS-dendrimer nanohybrid materials: current status and future perspective. NANOSCALE 2020; 12:11395-11415. [PMID: 32432308 DOI: 10.1039/d0nr02394a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyhedral oligomeric silsesquioxane (POSS)-dendrimer hybrid materials have attracted great interest in the past ten years. The integration of inorganic POSS and organic dendrimer blocks in a single-phase material offers numerous possibilities to access desirable mechanical, optical, and biomedical properties for various applications. In this review article, we describe several kinds of POSS-dendrimer hybrid materials (POSS as the core, surface functionality, repeating unit of dendrimers and the POSS-dendron conjugates) with an emphasis on their synthetic strategies, tunable macroscopic properties, and potential applications. Moreover, the current trends, challenges and future directions of POSS-dendrimer hybrid materials are elaborated.
Collapse
Affiliation(s)
- Zhan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Zhao Wang
- Pritzker School of Engineering, University of Chicago, Chicago, IL 60637, USA.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
91
|
Abstract
The modification of implant devices with biocompatible coatings has become necessary as a consequence of premature loosening of prosthesis. This is caused mainly by chronic inflammation or allergies that are triggered by implant wear, production of abrasion particles, and/or release of metallic ions from the implantable device surface. Specific to the implant tissue destination, it could require coatings with specific features in order to provide optimal osseointegration. Pulsed laser deposition (PLD) became a well-known physical vapor deposition technology that has been successfully applied to a large variety of biocompatible inorganic coatings for biomedical prosthetic applications. Matrix assisted pulsed laser evaporation (MAPLE) is a PLD-derived technology used for depositions of thin organic material coatings. In an attempt to surpass solvent related difficulties, when different solvents are used for blending various organic materials, combinatorial MAPLE was proposed to grow thin hybrid coatings, assembled in a gradient of composition. We review herein the evolution of the laser technological process and capabilities of growing thin bio-coatings with emphasis on blended or multilayered biomimetic combinations. These can be used either as implant surfaces with enhanced bioactivity for accelerating orthopedic integration and tissue regeneration or combinatorial bio-platforms for cancer research.
Collapse
|
92
|
Axente E, Sima F. Biomimetic Nanostructures with Compositional Gradient Grown by Combinatorial Matrix-Assisted Pulsed Laser Evaporation for Tissue Engineering. Curr Med Chem 2020; 27:903-918. [PMID: 31526343 DOI: 10.2174/0929867326666190916145455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/15/2019] [Accepted: 09/07/2019] [Indexed: 01/16/2023]
Abstract
There is permanent progress with the fabrication of smart bioactive surfaces that could govern tissue regeneration. Thin coatings of two or more materials with compositional gradient allow the construction of arrays with different chemical and physical features on a solid substrate. With such intelligent bio-platforms, cells can be exposed to a tissue-like biomimetic micro-environment with precise characteristics that directs cells fate towards specific phenotypes. We have introduced combinatorial matrix-assisted pulsed laser evaporation (C-MAPLE) as an alternative approach for the fabrication in a single-step process of either organic or inorganic thin and nanostructured coatings with variable composition. A continuous reciprocal gradient of two biomolecules can be achieved by C-MAPLE with discrete areas exhibiting physicochemical specificity that modulates intracellular signaling events. Herein, we present a review of the current combinatorial laser strategies and methods for fabricating thin organic and inorganic films with compositional gradient with emphasis on the surface influence on cell responsiveness. In particular, the specific biological potential of surface functionalization with thin coatings of biopolymers, proteins and drugs will be discussed. Laser deposition combinatorial processes are considered an emerging unconventional technology that can be widely applied to produce composite multilayers and micro-patterns for faster cell colonization and tissue engineering.
Collapse
Affiliation(s)
- Emanuel Axente
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics (INFLPR), 77125 Magurele, Romania
| | - Felix Sima
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics (INFLPR), 77125 Magurele, Romania
| |
Collapse
|
93
|
Wang J, Yu Y, Guo J, Lu W, Wei Q, Zhao Y. The Construction and Application of Three-Dimensional Biomaterials. ACTA ACUST UNITED AC 2020; 4:e1900238. [PMID: 32293130 DOI: 10.1002/adbi.201900238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely explored and applied in many areas, especially in the field of tissue engineering. The interface of biomaterials and cells has been deeply investigated. However, it has been demonstrated that conventional 2D biomaterials fail to maintain the 3D structures and phenotypes of cells, which is the result of their limited ability to mimic the latter's complex extracellular matrix. To overcome this challenge, cell cultivation dependent on 3D biomaterials has emerged as an alternative strategy to make the recovery of 3D structures and functions of cells possible. Thus, with the thriving development of 3D cell culture in tissue engineering, a holistic review of the construction and application of 3D biomaterials is desired. Here, recent developments in 3D biomaterials for tissue engineering are reviewed. An overview of various approaches to construct 3D biomaterials, such as electro-jetting/-spinning, micro-molding, microfluidics, and 3D bio-printing, is first presented. Their typical applications in constructing cell sheets, vascular structures, cell spheroids, and macroscopic cellular constructs are described as well. Following these two sections, the current status and challenges are analyzed, as well as the future outlook of 3D biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Jie Wang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wei Lu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
94
|
Nanoparticles Based on Novel Carbohydrate-Functionalized Polymers. Molecules 2020; 25:molecules25071744. [PMID: 32290160 PMCID: PMC7180923 DOI: 10.3390/molecules25071744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/05/2022] Open
Abstract
Polymeric nanoparticles can be used for drug delivery systems in healthcare. For this purpose poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) offer an excellent polymeric matrix. In this work, PLGA and PEG polymers were functionalized with coumarin and carbohydrate moieties such as thymidine, glucose, galactose, and mannose that have high biological specificities. Using a single oil in water emulsion methodology, functionalized PLGA nanoparticles were prepared having a smooth surface and sizes ranging between 114–289 nm, a low polydispersity index and a zeta potential from −28.2 to −56.0 mV. However, for the corresponding PEG derivatives the polymers obtained were produced in the form of films due to the small size of the hydrophobic core.
Collapse
|
95
|
Choi JH, Pande GK, Lee YR, Park JS. Electrospun ion gel nanofibers for high-performance electrochromic devices with outstanding electrochromic switching and long-term stability. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
96
|
Phan QT, Patil MP, Tu TT, Le CM, Kim GD, Lim KT. Polyampholyte-grafted single walled carbon nanotubes prepared via a green process for anticancer drug delivery application. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
97
|
Yan H, Chen X, Bao C, Yi J, Lei M, Ke C, Zhang W, Lin Q. Synthesis and assessment of CTAB and NPE modified organo-montmorillonite for the fabrication of organo-montmorillonite/alginate based hydrophobic pharmaceutical controlled-release formulation. Colloids Surf B Biointerfaces 2020; 191:110983. [PMID: 32208326 DOI: 10.1016/j.colsurfb.2020.110983] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
The research goal of the present study was to develop a carrier for loading and controlled -release of the hydrophobic drug with the combined use of organo-montmorillonite (OMMT) and alginate. The OMMT was synthesized through the intercalation modification of sodium montmorillonite (Na-MMT) with cationic cetyltrimethylammonium bromide (CTAB), nonionic nonylphenol polyoxyethylene ether (NPE) and the mixture of them via simple and convenient wet ball-milling method. Furthermore, the organo-montmorillonite/alginate (OMMT/Alg) composite hydrogel beads with slow and controlled release properties were constructed by using alginate as a coating material under the exogenous cross-linking of calcium ions. The physical and chemical properties of OMMT were comparatively evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analyzer (TGA), BET-specific surface area measurements, and drug adsorption experiments. Experimental results showed that the presence of CTAB was able to facilitate the intercalation of CTAB/NPE into Na-MMT through the cation exchange reaction. And the cationic CTAB and nonionic NPE were adsorbed or intercalated into the MMT lamellar structure through the wet ball-milling process, which could change the hydrophilic nature of Na-MMT and improve its affinity to the hydrophobic drug molecules. In addition, the OMMT/Alg composite hydrogel beads displayed superior sustained-release properties than Na-MMT/Alg, mainly ascribed to the good affinity of OMMT to hydrophobic drug that retarded the drug diffusion. In particular, CTA/NPE-MMT/Alg with the highest loading capacity (LC) and encapsulation efficiency (EE) revealed the optimal controlled performance for the release of hydrophobic ibuprofen. The release followed the Korsmeyer-Peppas model suggested non-Fickian diffusion release mechanism. Based on the high drug loading capacity and excellent controlled drug release properties, the CTA/NPE-MMT/Alg incorporating hydrophobic drugs into hydrophilic matrices could be a highly promising material for use in hydrophobic drug delivery.
Collapse
Affiliation(s)
- Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Chaoling Bao
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Jiling Yi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, PR China
| | - Mengyuan Lei
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Chaoran Ke
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Wei Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China.
| |
Collapse
|
98
|
Shi Y, Liu K, Zhang Z, Tao X, Chen HY, Kingshott P, Wang PY. Decoration of Material Surfaces with Complex Physicochemical Signals for Biointerface Applications. ACS Biomater Sci Eng 2020; 6:1836-1851. [DOI: 10.1021/acsbiomaterials.9b01806] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yue Shi
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Kun Liu
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Zhen Zhang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Xuelian Tao
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peng-Yuan Wang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
99
|
Wang D, Xu Y, Li Q, Turng LS. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B 2020; 8:1801-1822. [PMID: 32048689 PMCID: PMC7155776 DOI: 10.1039/c9tb01849b] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases, especially ones involving narrowed or blocked blood vessels with diameters smaller than 6 millimeters, are the leading cause of death globally. Vascular grafts have been used in bypass surgery to replace damaged native blood vessels for treating severe cardio- and peripheral vascular diseases. However, autologous replacement grafts are not often available due to prior harvesting or the patient's health. Furthermore, autologous harvesting causes secondary injury to the patient at the harvest site. Therefore, artificial blood vessels have been widely investigated in the last several decades. In this review, the progress and potential outlook of small-diameter blood vessels (SDBVs) engineered in vitro are highlighted and summarized, including material selection and development, fabrication techniques, surface modification, mechanical properties, and bioactive functionalities. Several kinds of natural and synthetic polymers for artificial SDBVs are presented here. Commonly used fabrication techniques, such as extrusion and expansion, electrospinning, thermally induced phase separation (TIPS), braiding, 3D printing, hydrogel tubing, gas foaming, and a combination of these methods, are analyzed and compared. Different surface modification methods, such as physical immobilization, surface adsorption, plasma treatment, and chemical immobilization, are investigated and are compared here as well. Mechanical requirements of SDBVs are also reviewed for long-term service. In vitro biological functions of artificial blood vessels, including oxygen consumption, nitric oxide (NO) production, shear stress response, leukocyte adhesion, and anticoagulation, are also discussed. Finally, we draw conclusions regarding current challenges and attempts to identify future directions for the optimal combination of materials, fabrication methods, surface modifications, and biofunctionalities. We hope that this review can assist with the design, fabrication, and application of SDBVs engineered in vitro and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA and School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yiyang Xu
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
100
|
Huang Y, Li H, He X, Yang X, Li L, Liu S, Zou Z, Wang K, Liu J. Near-infrared photothermal release of hydrogen sulfide from nanocomposite hydrogels for anti-inflammation applications. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|