51
|
Pinkard BR, Austin C, Purohit AL, Li J, Novosselov IV. Destruction of PFAS in AFFF-impacted fire training pit water, with a continuous hydrothermal alkaline treatment reactor. CHEMOSPHERE 2023; 314:137681. [PMID: 36584826 DOI: 10.1016/j.chemosphere.2022.137681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
As regulations are being established to limit the levels of per- and polyfluoroalkyl substances (PFAS) in drinking water and wastewater, effective treatment technologies are needed to remove or destroy PFAS in contaminated liquid matrices. Many military installations and airports have fire training ponds (FTPs) where PFAS-containing firefighting foams are discharged during training drills. FTP water disposal is expensive and challenging due to the high PFAS levels. Hydrothermal alkaline treatment (HALT) has previously been shown to destroy a wide range of PFAS compounds with a high degree of destruction and defluorination. In this study, we investigate the performance of a continuous flow HALT reactor for destroying PFAS in contaminated FTP water samples. Processing with 5 M-NaOH and 1.6 min of continuous processing results in >99% total PFAS destruction, and 10 min processing time yields >99% destruction of every measured PFAS species. Operating with 0.1 M-NaOH or 1 M-NaOH shows little effect on the destruction of measured perfluorosulfonic acids, while all measured perfluorocarboxylic acids and fluorotelomer sulfonates are reduced to levels below the method detection limits. Continuous HALT processing with sufficient NaOH loading appears to destroy parent PFAS compounds significantly faster than batch HALT processing, a positive indicator for scaling up HALT technology for practical applications in environmental site remediation activities.
Collapse
Affiliation(s)
- Brian R Pinkard
- Aquagga, Inc., Tacoma, WA, 98402, USA; University of Washington, Mechanical Engineering Department, Seattle, WA, 98195, USA.
| | - Conrad Austin
- University of Washington, Mechanical Engineering Department, Seattle, WA, 98195, USA.
| | - Anmol L Purohit
- University of Washington, Mechanical Engineering Department, Seattle, WA, 98195, USA
| | - Jianna Li
- University of Washington, Mechanical Engineering Department, Seattle, WA, 98195, USA; Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Igor V Novosselov
- University of Washington, Mechanical Engineering Department, Seattle, WA, 98195, USA
| |
Collapse
|
52
|
Kavusi E, Shahi Khalaf Ansar B, Ebrahimi S, Sharma R, Ghoreishi SS, Nobaharan K, Abdoli S, Dehghanian Z, Asgari Lajayer B, Senapathi V, Price GW, Astatkie T. Critical review on phytoremediation of polyfluoroalkyl substances from environmental matrices: Need for global concern. ENVIRONMENTAL RESEARCH 2023; 217:114844. [PMID: 36403653 DOI: 10.1016/j.envres.2022.114844] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a class of emerging organic contaminants that are impervious to standard physicochemical treatments. The widespread use of PFAS poses serious environmental issues. PFAS pollution of soils and water has become a significant issue due to the harmful effects of these chemicals both on the environment and public health. Owing to their complex chemical structures and interaction with soil and water, PFAS are difficult to remove from the environment. Traditional soil remediation procedures have not been successful in reducing or removing them from the environment. Therefore, this review focuses on new phytoremediation techniques for PFAS contamination of soils and water. The bioaccumulation and dispersion of PFAS inside plant compartments has shown great potential for phytoremediation, which is a promising and unique technology that is realistic, cost-effective, and may be employed as a wide scale in situ remediation strategy.
Collapse
Affiliation(s)
- Elaheh Kavusi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Behnaz Shahi Khalaf Ansar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Samira Ebrahimi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ritika Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, India
| | - Seyede Shideh Ghoreishi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Sima Abdoli
- Department of Soil Science and Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | | | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
53
|
Zhang J, Gao L, Bergmann D, Bulatovic T, Surapaneni A, Gray S. Review of influence of critical operation conditions on by-product/intermediate formation during thermal destruction of PFAS in solid/biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158796. [PMID: 36115408 DOI: 10.1016/j.scitotenv.2022.158796] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a large group of synthetic organofluorine compounds. Over 4700 PFAS compounds have been produced and used in our daily life since the 1940s. PFAS have received considerable interest because of their toxicity, environmental persistence, bioaccumulation and wide existence in the environment. Various treatment methods have been developed to overcome these issues. Thermal treatment such as combustion and pyrolysis/gasification have been employed to treat PFAS contaminated solids and soils. However, short-chain PFAS and/or volatile organic fluorine is produced and emitted via exhaust gas during the thermal treatment. Combustion can achieve complete mineralisation of PFAS at large scale operation using temperatures >1000 °C. Pyrolysis has been used in treatment of biosolids and has demonstrated that it could remove PFAS completely from the generated biochar by evaporation and degradation. Although pyrolysis partially degrades PFAS to short-chain fluorine containing organics in the syngas, it could not efficiently mineralise PFAS. Combustion of PFAS containing syngas at 1000 °C can achieve complete mineralisation of PFAS. Furthermore, the by-product of mineralisation, HF, should also be monitored due to its low regulated atmospheric discharge values. Alkali scrubbing is normally required to lower the HF concentration in the exhaust gas to acceptable discharge concentrations.
Collapse
Affiliation(s)
- Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia.
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia; South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - David Bergmann
- South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - Tamara Bulatovic
- South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - Aravind Surapaneni
- South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - Stephen Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
| |
Collapse
|
54
|
Sun L, Zhang P, Liu F, Ju Q, Xu J. Molecular and genetic analyses revealed the phytotoxicity of perfluorobutane sulfonate. ENVIRONMENT INTERNATIONAL 2022; 170:107646. [PMID: 36410239 DOI: 10.1016/j.envint.2022.107646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/18/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Perfluorobutane sulfonate (PFBS) has oily and hydrophobic characteristics similar to those of perfluorooctane sulfonic acid (PFOS), which is an environmental organic pollutant and has gradually become the main substitute for PFOS in industry. Several studies have revealed the potential toxicity of PFBS in animals. PFBS can be taken up and accumulate in plants; however, whether and how PFBS affects plant growth remain largely unclear. A low concentration of PFBS did not affect plant growth, indicating that it had higher environmental safety than other perfluorinated compounds; however, a high concentration of PFBS (>1 mM) markedly inhibited primary root growth in Arabidopsis thaliana. Subsequently, we investigated the molecular mechanisms underlying plant growth mediated by high concentrations of PFBS. First, a genome-wide transcriptomic analysis revealed that PFBS altered the expression of genes associated with phytohormone signaling pathways. Combining physio-biochemical and genetic analyses, we next demonstrated that PFBS reduced the contents of indole-3-acetic acid (IAA) and abscisic acid (ABA), and disrupted the two signaling pathways in plants, finally inhibiting root growth. Moreover, a high concentration of PFBS also inhibited photosynthesis by comprehensively repressing the expression of genes related to the Calvin cycle and the photosynthetic apparatus. Such an understanding is helpful for elucidating the phytotoxicity of PFBS and provides a new strategy for toxicology research on organic pollutants in plants.
Collapse
Affiliation(s)
- Liangliang Sun
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Fei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Qiong Ju
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
55
|
Jenness GR, Koval AM, Etz BD, Shukla MK. Atomistic insights into the hydrodefluorination of PFAS using silylium catalysts. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2085-2099. [PMID: 36165287 DOI: 10.1039/d2em00291d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fluorochemicals are a persistent environmental contaminant that require specialized techniques for degradation and capture. In particular, recent attention on per- and poly-fluoroalkyl substances (PFAS) has led to numerous explorations of different techniques for degrading the super-strong C-F bonds found in these fluorochemicals. In this study, we investigated the hydrodefluorination mechanism using silylium-carborane salts for the degradation of PFAS at the density functional theory (DFT) level. We find that the degradation process involves both a cationic silylium (Et3Si+) and a hydridic silylium (Et3SiH) to facilitate the defluorination and hydride-addition events. Additionally, the role of carborane ([HCB11H5F6]-) is to force unoccupied anti-bonding orbitals to be partially occupied, weakening the C-F bond. We also show that changing the substituents on carborane from fluorine to other halogens weakens the C-F bond even further, with iodic carborane ([HCB11H5I6]-) having the greatest weakening effect. Moreover, our calculations reveal why the C-F bonds are resistant to degradation, and how the silylium-carborane chemistry is able to chemically transform these bonds into C-H bonds. We believe that our results are further applicable to other halocarbons, and can be used to treat either our existing stocks of these chemicals or to treat concentrated solutions following filtration and capture.
Collapse
Affiliation(s)
- Glen R Jenness
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg 39180, Mississippi, USA.
| | - Ashlyn M Koval
- Oak Ridge Institute for Science and Education (ORISE), 1299 Bethel Valley Rd, Oak Ridge 37830, Tennessee, USA
| | - Brian D Etz
- Oak Ridge Institute for Science and Education (ORISE), 1299 Bethel Valley Rd, Oak Ridge 37830, Tennessee, USA
| | - Manoj K Shukla
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg 39180, Mississippi, USA.
| |
Collapse
|
56
|
Sörengård M, Travar I, Kleja D, Ahrens L. Fly ash-based waste for ex-situ landfill stabilization of per- and polyfluoroalkyl substance (PFAS)-contaminated soil. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
57
|
Masud MAA, Kim DG, Shin WS. Degradation of phenol using Fe(II)-activated CaO 2: effect of ball-milled activated carbon (AC BM) addition. ENVIRONMENTAL RESEARCH 2022; 214:113882. [PMID: 35931187 DOI: 10.1016/j.envres.2022.113882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
In-situ chemical oxidation (ISCO) based on peroxide activation is one of the most promising technologies for removing organic contaminants from natural groundwater (NGW). However, use of the most common form of hydrogen peroxide (H2O2) is limited owing to its significantly rapid reaction rate and heat generation. Therefore, in the present study, the activation of calcium peroxide (CaO2), a slow H2O2 releasing agent, by Fe(II) was proposed (CaO2/Fe(II)), and the phenol degradation mechanisms and feasibility of NGW remediation were investigated. The optimum molar ratio of [phenol]/[CaO2]/[Fe(II)] (phenol = 0.5 mM) was 1/10/10, resulting in 87.0-92.5% phenol removal within 120 min under a broad initial pH range of 3-9. HCO3-, PO43-, and humic acid significantly inhibited degradation, whereas the effects of Cl-, NO3-, and SO42- were negligible. Reactive oxygen species (ROS) were identified based on the results of phenol degradation in the presence of scavengers and electron spin resonance (ESR) spectroscopy, which demonstrated that 1O2 played the dominant role, supported by •OH, in CaO2/Fe(II). Phenol removal in NGW (67.81%) was less than that in distilled and deionized water (DIW, 92.5%) at a [phenol]/[CaO2]/[Fe(II)] ratio of 1/10/10. However, phenol removal was significantly improved (∼100%) by increasing the CaO2 and Fe(II) doses to 1/20/20-40. Furthermore, when 125-250 mg L-1 of ball-milled activated carbon (ACBM) was added (CaO2/Fe(II)-ACBM), phenol removal was enhanced from 67.81% to 90.94-100% in the NGW. CaO2/Fe(II)-ACBM exhibited higher total organic carbon (TOC) removal than CaO2/Fe(II). In addition, no notable by-products were detected using CaO2/Fe(II)-ACBM, whereas the polymerisation products of hydroxylated and/or ring-cleaved compounds, that is, aconitic acid, gallocatechin, and 10-hydroxyaloin, were found in the reaction with CaO2/Fe(II). These results strongly suggest that CaO2/Fe(II)-ACBM is highly promising for groundwater remediation, minimizing degradation byproducts and the adverse effects caused by the NGW components.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Do Gun Kim
- Department of Environmental Engineering, Sunchon National University, Suncheon, Jeollanam-do, 57922, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
58
|
Sörengård M, Bergström S, McCleaf P, Wiberg K, Ahrens L. Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119981. [PMID: 35988673 DOI: 10.1016/j.envpol.2022.119981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Use of per- and polyfluoroalkyl substance (PFAS)-containing aqueous film-forming foams (AFFF) at firefighting training sites (FFTS) has been linked to PFAS contamination of drinking water. This study investigated PFAS transport and distribution in an urban groundwater aquifer used for drinking water production that has been affected by PFAS-containing AFFF. Soil, sediment, surface water and drinking water were sampled. In soil (n = 12) at a FFTS with high perfluorooctane sulfonate (PFOS) content (87% of ∑PFAS), the ∑PFAS concentration (n = 26) ranged from below detection limit to 560 ng g-1 dry weight. In groundwater (n = 28), the ∑PFAS concentration near a military airbase FFTS reached 1000 ng L-1. Principal component analysis (PCA) identified the military FFTS as the main source of PFAS contamination in drinking water wellfields >10 km down-gradient. Groundwater samples taken close to the military FFTS site showed no ∑PFAS concentration change between 2013 and 2021, while a location further down-gradient showed a transitory 99.6% decrease. Correlation analysis on PFAS composition profile indicated that this decrease was likely caused by dilution from an adjacent conflating aquifer. ∑PFAS concentration reached 15 ng L-1 (PFOS 47% and PFHxS 41% of ∑PFAS) in surface river water (n = 6) and ranged between 1 ng L-1 and 8 ng L-1 (PFHxS 73% and PFBS 17% of ∑PFAS) in drinking water (n = 4). Drinking water had lower PFAS concentrations than the wellfields due to PFAS removal at the water treatment plant. This demonstrates the importance of monitoring PFAS concentrations throughout a groundwater aquifer, to better understand variations in transport from contamination sources and resulting impacts on PFAS concentrations in drinking water extraction areas.
Collapse
Affiliation(s)
- Mattias Sörengård
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Sofia Bergström
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Philip McCleaf
- Uppsala Water and Waste Ltd., P.O. Box 1444, SE-751 44, Uppsala, Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
59
|
Mayakaduwage S, Ekanayake A, Kurwadkar S, Rajapaksha AU, Vithanage M. Phytoremediation prospects of per- and polyfluoroalkyl substances: A review. ENVIRONMENTAL RESEARCH 2022; 212:113311. [PMID: 35460639 DOI: 10.1016/j.envres.2022.113311] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Extensive use of per- and polyfluoroalkyl substances (PFASs) in various industrial activities and daily-life products has made them ubiquitous contaminants in soil and water. PFAS-contaminated soil acts as a long-term source of pollution to the adjacent surface water bodies, groundwater, soil microorganisms, and soil invertebrates. While several remediation strategies exist to eliminate PFASs from the soil, strong ionic interactions between charged groups on PFAS with soil constituents rendered these PFAS remediation technologies ineffective. Pilot and field-scale data from recent studies have shown a great potential of PFAS to bio-accumulate and distribute within plant compartments suggesting that phytoremediation could be a potential remediation technology to clean up PFAS contaminated soils. Even though several studies have been performed on the uptake and translocation of PFAS by different plant species, most of these studies are limited to agricultural crops and fruit species. In this review, the role of both aquatic and terrestrial plants in the phytoremediation of PFAS was discussed highlighting different mechanisms underlying the uptake of PFASs in the soil-plant and water-plant systems. This review further summarized a wide range of factors that influence the bioaccumulation and translocation of PFASs within plant compartments including both structural properties of PFASs and physiological properties of plant species. Even though phytoremediation appears to be a promising remediation technique, some limitations that reduced the feasibility of phytoremediation in the practical application have been emphasized in previous studies. Additional research directions are suggested, including advanced genetic engineering techniques and endophyte-assisted phytoremediation to upgrade the phytoremediation potential of plants for the successful removal of PFASs.
Collapse
Affiliation(s)
- Sonia Mayakaduwage
- School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| | - Anusha Ekanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
60
|
Bastow TP, Douglas GB, Davis GB. Volatilization Potential of Per- and Poly-fluoroalkyl Substances from Airfield Pavements and during Recycling of Asphalt. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2202-2208. [PMID: 35781701 PMCID: PMC9540562 DOI: 10.1002/etc.5425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 05/28/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) in water are typically present in their ionic (nonvolatile) forms; however, these can transition to their nonionic (volatile) forms when in contact with organic solvents and organic matrices. In particular, when PFAS are dissolved in organic solvents such as residues left from firefighting foams, fuels, and bitumen present in asphalt, the equilibrium between ionic and nonionic forms can trend toward more volatile nonionic forms of PFAS. We assessed the volatility of common PFAS based on calculated and available experimental data across ambient temperature ranges experienced by airfield pavements and at elevated temperatures associated with reworking asphalts for reuse. Volatilities are shown to be comparable to hydrocarbons in the semivolatile range, suggesting that volatilization is a viable loss mechanism for some PFAS that are nonvolatile in water. The present study points to future investigative needs for this unexplored mass loss mechanism and potential exposure pathway. Environ Toxicol Chem 2022;41:2202-2208. © 2022 Commonwealth of Australia. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Greg B. Davis
- CSIRO Land and WaterFloreatWestern AustraliaAustralia
| |
Collapse
|
61
|
Cai L, Hu J, Li J, Cao X, Lyu Y, Sun W. Occurrence, source apportionment, and pollution assessment of per- and polyfluoroalkyl substances in a river across rural and urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155505. [PMID: 35487461 DOI: 10.1016/j.scitotenv.2022.155505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Forty-three novel and legacy per- and polyfluoroalkyl substances (PFASs) in water and sediments from the Chaobai River (Beijing) were quantified. The total PFASs concentrations varied from 0.04 to 31.3 ng/L in water with significant spatial but insignificant seasonal variations, and changed from 0.03 to 4.29 ng/g in sediment with insignificant spatial but significant seasonal variations. The PFASs concentrations in water from the upstream across the rural area reflected the background level due to the extremely low concentration and very few detected PFASs. The consumer products and metal plating/textile were the predominant pollution sources of PFASs in winter and summer, respectively, for both water and sediment samples. Integrating the determined baseline value, the distribution of PFASs concentrations, and the ecological risks of PFASs, three criteria were proposed, which divide the PFASs concentrations in water into four pollution levels, i.e., insignificant, low, medium, and high. According to the suggested criteria, 96.4% of the PFASs levels in upstream was insignificant pollution, which decreased to 50.4% in downstream and 50.8% in reservoirs. The PFASs in China's and world's surface waters demonstrated similar pollution patterns, with PFOA, PFOS, and PFHxA being the top 3 polluted PFASs. This study makes a small step forward the development of water quality standard for PFASs, which is of great importance for pollution control and risk management of PFASs.
Collapse
Affiliation(s)
- Leilei Cai
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jingrun Hu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Jie Li
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yitao Lyu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
62
|
Battye NJ, Patch DJ, Roberts DMD, O'Connor NM, Turner LP, Kueper BH, Hulley ME, Weber KP. Use of a horizontal ball mill to remediate per- and polyfluoroalkyl substances in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155506. [PMID: 35483472 DOI: 10.1016/j.scitotenv.2022.155506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
There is a need for destructive technologies for per- and polyfluoroalkyl substances (PFAS) in soil. While planetary ball mill have been shown successful degradation of PFAS, there are issues surrounding scale up (maximum size is typically 0.5 L cylinders). While having lower energy outputs, horizontal ball mills, for which scale up is not a limiting factor, already exist at commercial/industrial sizes from the mining, metallurgic and agricultural industries, which could be re-purposed. This study evaluated the effectiveness of horizontal ball mills in degrading perfluorooctanesulfonate (PFOS), 6:2 fluorotelomer sulfonate (6:2 FTSA), and aqueous film forming foam (AFFF) spiked on nepheline syenite sand. Horizontal ball milling was also applied to two different soil types (sand dominant and clay dominant) collected from a firefighting training area (FFTA). Liquid chromatography tandem mass spectrometry was used to track 21 target PFAS throughout the milling process. High-resolution accurate mass spectrometry was also used to identify the presence and degradation of 19 non-target fluorotelomer substances, including 6:2 fluorotelomer sulfonamido betaine (FtSaB), 7:3 fluorotelomer betaine (FtB), and 6:2 fluorotelomer thioether amido sulfonate (FtTAoS). In the presence of potassium hydroxide (KOH), used as a co-milling reagent, PFOS, 6:2 FTSA, and the non-target fluorotelomer substances in the AFFF were found to undergo upwards of 81%, 97%, and 100% degradation, respectively. Despite the inherent added complexity associated with field soils, better PFAS degradation was observed on the FFTA soils over the spiked NSS, and more specifically, on the FFTA clay over the FFTA sand. These results held through scale-up, going from the 1 L to the 25 L cylinders. The results of this study support further scale-up in preparation for on-site pilot tests.
Collapse
Affiliation(s)
- Nicholas J Battye
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - David J Patch
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Dylan M D Roberts
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Natalia M O'Connor
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Lauren P Turner
- Department of Civil Engineering, Queen's University, Kingston, ON, Canada
| | - Bernard H Kueper
- Department of Civil Engineering, Queen's University, Kingston, ON, Canada
| | - Michael E Hulley
- Environmental Sciences Group, Department of Civil Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Kela P Weber
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada; Department of Civil Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
63
|
Kewalramani JA, Wang B, Marsh RW, Meegoda JN, Rodriguez Freire L. Coupled high and low-frequency ultrasound remediation of PFAS-contaminated soils. ULTRASONICS SONOCHEMISTRY 2022; 88:106063. [PMID: 35738199 PMCID: PMC9218828 DOI: 10.1016/j.ultsonch.2022.106063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 05/14/2023]
Abstract
Solids such as soils and sediments contaminated with per- and polyfluorinated alkyl substances (PFAS) from exposure to impacted media, e.g., landfill leachate or biosolids, direct contaminated discharge, and contaminant transport from atmospheric deposition, have caused significant environmental pollution. Such solids can act as secondary sources of PFAS for groundwater and surface water contamination. There are currently no proven technologies that can degrade PFAS in soil and sediments in a cost-effective, environmentally-friendly, and energy-efficient manner. This study examines the use of coupled high and low-frequency ultrasound in desorbing and degrading PFAS in soil, thereby achieving concurrent treatment and destruction of PFAS in soil. Two common PFAS, namely perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were used to evaluate treatment performance in soils with both low and high organic matter contents. The test results showed that the ultrasound treatment could significantly reduce PFAS concentrations in artificially contaminated soil; however, no significant degradation was achieved. Ultrasound treatment did improve desorption of PFAS from solid particles, particularly from the highly absorbent organic soil; 68.8 ± 1.8% of PFOA and 45.4 ± 4.1% of PFOS were leached from the soil after ultrasound treatment compared to only 28 ± 0.2% of PFOA and 1 ± 3.1% of PFOSafter desorption in water. This work shows that sonication treatment is an effective technology for the removal of PFAS from solids, however, the presence of solids in the solid-liquid slurry can negatively impact ultrasonic cavitation, inhibiting the sonolytic degradation of desorbed PFAS.
Collapse
Affiliation(s)
- Jitendra A Kewalramani
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Boran Wang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Richard W Marsh
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Jay N Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA.
| | - Lucia Rodriguez Freire
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| |
Collapse
|
64
|
Patch D, O'Connor N, Koch I, Cresswell T, Hughes C, Davies JB, Scott J, O'Carroll D, Weber K. Elucidating degradation mechanisms for a range of per- and polyfluoroalkyl substances (PFAS) via controlled irradiation studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154941. [PMID: 35367256 DOI: 10.1016/j.scitotenv.2022.154941] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a challenging class of environmental pollutants due to a lack of available destructive remediation technologies. Understanding the fundamental mechanisms for degradation of PFAS is key for the development of field scalable and in-situ destructive based remediation technologies. This study aimed to elucidate and refine the current understanding of PFAS degradation mechanisms in water through a series of controlled gamma irradiation studies. Gamma irradiation of PFAS was performed using a cobalt-60 source in a batch irradiation up to 80 kGy at the Australian Nuclear Science and Technology Organisation. Perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), 6:2 fluorotelomer sulfonate (6:2 FTS), and a suite of thirteen different PFAS (including C4-C12 PFCAs, C4, C6, C8 PFSAs, and FOSA) were irradiated to investigate degradation, influence of pH, chain length, and transformation. High resolution mass spectrometry was used to identify more than 80 fluorinated transformation products throughout the degradation experiments. These included the -F/+H, -F/+OH, -F/CH2OH exchanged PFAS and n - 1 PFCA, amongst others. Given the reactive species present (hydroxyl radicals (·OH), hydrogen radicals (·H) and aqueous electrons (e-aq)), and the degradation products formed it was shown that aqueous electrons were the key reactive species responsible for initial PFAS degradation. Most importantly, based on degradation product formation, we found that the initial -F/+H does not have to occur at the α-fluoride (nearest the functional head group), rather occurring throughout the chain length leading to more complex degradation pathways than previously postulated. While our results support some of the reaction steps postulated in the literature, we have developed a unified 16 step and 3 pathway schematic of degradation supported by experimental observations.
Collapse
Affiliation(s)
- David Patch
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Natalia O'Connor
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Iris Koch
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Tom Cresswell
- Australian Nuclear Science and Technology Organisation, Australia
| | - Cath Hughes
- Australian Nuclear Science and Technology Organisation, Australia
| | - Justin B Davies
- Australian Nuclear Science and Technology Organisation, Australia
| | - Jennifer Scott
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Denis O'Carroll
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kela Weber
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
65
|
Zhao Z, Li J, Zhang X, Wang L, Wang J, Lin T. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: current understandings and challenges to overcome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49513-49533. [PMID: 35593984 DOI: 10.1007/s11356-022-20755-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been frequently detected in groundwater globally. With the phase-out of perfluorooctane sulfonate (PFOS) and perfluorooctanate (PFOA) due to their risk to the ecosystem and human population, various novel PFASs have been used as replacements and detected in groundwater. In order to summarize the current understanding and knowledge gaps on PFASs in groundwater, we reviewed the studies about environmental occurrence, transport, and risk of legacy and novel PFASs in groundwater published from 1999 to 2021. Our review suggests that PFOS and PFOA could still be detected in groundwater due to the long residence time and the retention in the soil-groundwater system. Firefighting training sites, industrial parks, and landfills were commonly hotspots of PFASs in groundwater. More novel PFASs have been detected via nontarget analysis using high-resolution mass spectrometry. Some novel PFASs had concentrations comparable to that of PFOS and PFOA. Both legacy and novel PFASs can pose a risk to human population who rely on contaminated groundwater as drinking water. Transport of PFASs to groundwater is influenced by various factors, i.e., the compound structure, the hydrochemical condition, and terrain. The exchange of PFASs between groundwater and surface water needs to be better characterized. Field monitoring, isotope tracing, nontarget screening, and modeling are useful approaches and should be integrated to get a comprehensive understanding of PFASs sources and behaviors in groundwater.
Collapse
Affiliation(s)
- Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Jie Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Leien Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jamin Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
66
|
Das S, Ronen A. A Review on Removal and Destruction of Per- and Polyfluoroalkyl Substances (PFAS) by Novel Membranes. MEMBRANES 2022; 12:662. [PMID: 35877866 PMCID: PMC9325267 DOI: 10.3390/membranes12070662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) are anthropogenic chemicals consisting of thousands of individual species. PFAS consists of a fully or partly fluorinated carbon-fluorine bond, which is hard to break and requires a high amount of energy (536 kJ/mole). Resulting from their unique hydrophobic/oleophobic nature and their chemical and mechanical stability, they are highly resistant to thermal, chemical, and biological degradation. PFAS have been used extensively worldwide since the 1940s in various products such as non-stick household items, food-packaging, cosmetics, electronics, and firefighting foams. Exposure to PFAS may lead to health issues such as hormonal imbalances, a compromised immune system, cancer, fertility disorders, and adverse effects on fetal growth and learning ability in children. To date, very few novel membrane approaches have been reported effective in removing and destroying PFAS. Therefore, this article provides a critical review of PFAS treatment and removal approaches by membrane separation systems. We discuss recently reported novel and effective membrane techniques for PFAS separation and include a detailed discussion of parameters affecting PFAS membrane separation and destruction. Moreover, an estimation of cost analysis is also included for each treatment technology. Additionally, since the PFAS treatment technology is still growing, we have incorporated several future directions for efficient PFAS treatment.
Collapse
Affiliation(s)
| | - Avner Ronen
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel;
| |
Collapse
|
67
|
Pang H, Dorian B, Gao L, Xie Z, Cran M, Muthukumaran S, Sidiroglou F, Gray S, Zhang J. Remediation of poly-and perfluoroalkyl substances (PFAS) contaminated soil using gas fractionation enhanced technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154310. [PMID: 35257781 DOI: 10.1016/j.scitotenv.2022.154310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
This study investigated a gas fractionation enhanced soil washing method for poly-and perfluoroalkyl substances (PFAS) removal from contaminated soil. With the assistance of gas fractionation, PFAS removal was increased by a factor of 9, compared to the conventional soil washing method. Pre-extraction (pre-treatment) of the soil with water before gas fractionation enhanced PFAS removal from soil. The optimum extraction time varied based on the soil particle size, since it will change the swelling time of the soil. The influence of various operational conditions such as water to soil mass ratio (W:S ratio), gas type in fractionation, gas flowrate, fractionation time and soil pre-treatment condition have been studied to identify the critical influencing factors. Among various W:S ratios (2, 4, 5, 6, 8, and 10) studied, higher W:S ratio resulted in better PFAS removals, but PFAS removal began to plateau as the W:S ratio increased. PFAS removal could be improved by repeated treatment with low water consumption. Air, oxygen, and ozone generated by air and oxygen were used, in which ozone generated by oxygen achieved the highest PFAS removals of 55.9%. Among different fractionation times (10 min, 20 min and 30 min), a fractionation time of 20 min achieved better total PFAS removal for studied soil, because PFOS was the dominant species in the total PFAS. However, the removal of some PFAS species, such as PFHxS, would be increased with extended fractionation time. With constant fractionation time (10 min), PFAS removal performance improved with the increasing gas flowrate.
Collapse
Affiliation(s)
- Hongjiao Pang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3000, Australia
| | | | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia; South East Water Corporation, PO Box 2268, Seaford, Victoria 3198, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South MDC, VIC 3169, Australia
| | - Marlene Cran
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia
| | - Shobha Muthukumaran
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia
| | - Fotios Sidiroglou
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia
| | - Stephen Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia
| | - Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia.
| |
Collapse
|
68
|
Loganathan N, Wilson AK. Adsorption, Structure, and Dynamics of Short- and Long-Chain PFAS Molecules in Kaolinite: Molecular-Level Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8043-8052. [PMID: 35543620 DOI: 10.1021/acs.est.2c01054] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ubiquitous presence of poly- and perfluoroalkyl substances (PFAS) in different natural settings poses a serious threat to environmental and human health. Soils and sediments represent one of the important exposure pathways of PFAS for humans and animals. With increasing bioaccumulation and mobility, it is extremely important to understand the interactions of PFAS molecules with the dominant constituents of soils such as clay minerals. This study reports for the first time the fundamental molecular-level insights into the adsorption, interfacial structure, and dynamics of short- and long-chain PFAS molecules at the water-saturated mesopores of kaolinite clay using classical molecular dynamics (MD) simulations. At environmental conditions, all the PFAS molecules are exclusively adsorbed near the hydroxyl surface of the kaolinite, irrespective of the terminal functional groups and metal cations. The interfacial adsorption structures and coordination environments of PFAS are strongly dependent on the nature of the functional groups and their hydrophobic chain length. The formation of large, aggregated clusters of long-chain PFAS at the hydroxyl surface of kaolinite is responsible for their restricted dynamics in comparison to short-chain PFAS molecules. Such comprehensive knowledge of PFAS at the clay mineral interface is critical to developing novel site-specific degradation and mitigation strategies.
Collapse
Affiliation(s)
- Narasimhan Loganathan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
69
|
The Phytomanagement of PFAS-Contaminated Land. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116817. [PMID: 35682401 PMCID: PMC9180636 DOI: 10.3390/ijerph19116817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022]
Abstract
Globally, several hundred thousand hectares of both agricultural and urban land have become contaminated with per- and polyfluoroalkyl substances (PFAS). PFAS compounds are resistant to degradation and are mobile in soil compared to other common contaminants. Many compounds have KD values (matrix/solution concentration quotients) of <10. PFAS compounds endanger the health of humans and ecosystems by leaching into groundwater, exposure via dust, and, to a lesser extent, through plant uptake. This review aims to determine the feasibility of phytomanagement, the use of plants, and the use of soil conditioners to minimize environmental risk whilst also providing an economic return in the management of PFAS-contaminated land. For most sites, PFAS combinations render phytoextraction, the use of plants to remove PFAS from soil, inviable. In contrast, low Bioaccumulation Coefficients (BAC; plant and soil concentration quotients) timber species or native vegetation may be usefully employed for phytomanagement to limit human/food chain exposure to PFAS. Even with a low BAC, PFAS uptake by crop plants may still exceed food safety standards, and therefore, edible crop plants should be avoided. Despite this limitation, phytomanagement may be the only economically viable option to manage most of this land. Plant species and soil amendments should be chosen with the goal of reducing water flux through the soil, as well as increasing the hydrophobic components in soil that may bind the C-F-dominated tails of PFAS compounds. Soil conditioners such as biochar, with significant hydrophobic components, may mitigate the leaching of PFAS into receiving waters. Future work should focus on the interactions of PFAS with soil microbiota; secondary metabolites such as glomalin may immobilize PFAS in soil.
Collapse
|
70
|
Berg C, Crone B, Gullett B, Higuchi M, Krause MJ, Lemieux PM, Martin T, Shields EP, Struble E, Thoma E, Whitehill A. Developing innovative treatment technologies for PFAS-containing wastes. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:540-555. [PMID: 34905459 PMCID: PMC9316338 DOI: 10.1080/10962247.2021.2000903] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 05/27/2023]
Abstract
The release of persistent per- and polyfluoroalkyl substances (PFAS) into the environment is a major concern for the United States Environmental Protection Agency (U.S. EPA). To complement its ongoing research efforts addressing PFAS contamination, the U.S. EPA's Office of Research and Development (ORD) commissioned the PFAS Innovative Treatment Team (PITT) to provide new perspectives on treatment and disposal of high priority PFAS-containing wastes. During its six-month tenure, the team was charged with identifying and developing promising solutions to destroy PFAS. The PITT examined emerging technologies for PFAS waste treatment and selected four technologies for further investigation. These technologies included mechanochemical treatment, electrochemical oxidation, gasification and pyrolysis, and supercritical water oxidation. This paper highlights these four technologies and discusses their prospects and the development needed before potentially becoming available solutions to address PFAS-contaminated waste.Implications: This paper examines four novel, non-combustion technologies or applications for the treatment of persistent per- and polyfluoroalkyl substances (PFAS) wastes. These technologies are introduced to the reader along with their current state of development and areas for further development. This information will be useful for developers, policy makers, and facility managers that are facing increasing issues with disposal of PFAS wastes.
Collapse
Affiliation(s)
- Chelsea Berg
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Brian Crone
- Office of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio, USA
| | - Brian Gullett
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Mark Higuchi
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Max J. Krause
- Office of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio, USA
| | - Paul M. Lemieux
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Todd Martin
- Office of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio, USA
| | - Erin P. Shields
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Ed Struble
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Eben Thoma
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Andrew Whitehill
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
71
|
Hao S, Choi YJ, Deeb RA, Strathmann TJ, Higgins CP. Application of Hydrothermal Alkaline Treatment for Destruction of Per- and Polyfluoroalkyl Substances in Contaminated Groundwater and Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6647-6657. [PMID: 35522245 DOI: 10.1021/acs.est.2c00654] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrothermal alkaline treatment (HALT) can effectively degrade per- and polyfluoroalkyl substances (PFASs) present in aqueous film-forming foam (AFFF). However, information is lacking regarding the treatment of PFASs in actual groundwater and soil from AFFF-impacted sites, especially for complex soil matrices. Given the lack of studies on direct soil treatment for PFAS destruction, we herein applied HALT to two groundwater samples and three soil samples from AFFF-impacted sites and characterized the destruction of PFASs using high-resolution mass spectrometry. Results showed that the 148 PFASs identified in all collected field samples, including 10 cationic, 98 anionic, and 40 zwitterionic PFASs, were mostly degraded to nondetectable levels within 90 min when treated with 5 M NaOH at 350 °C. The near-complete defluorination, as evidenced by fluoride release measurements, confirmed the complete destruction of PFASs. While many structures, including perfluoroalkyl carboxylic acids and polyfluorinated substances, were readily degraded, perfluoroalkyl sulfonates (PFSAs, CnF2n+1-SO3-), most notably with short chain lengths (n = 3-5), were more recalcitrant. Rates of PFSA destruction in groundwater samples were similar to those measured in laboratory water solutions, but reactions in soil were slow, presumably due to base-neutralizing properties of the soil. Further, the degradation of PFASs in groundwaters and soils was found to be a function of reaction temperature, NaOH concentration, and reaction time. These findings have important implications for the remediation of AFFF-impacted sites.
Collapse
Affiliation(s)
- Shilai Hao
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Youn Jeong Choi
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rula A Deeb
- Geosyntec Consultants, Oakland, California 94607, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
72
|
Smith SJ, Wiberg K, McCleaf P, Ahrens L. Pilot-Scale Continuous Foam Fractionation for the Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Landfill Leachate. ACS ES&T WATER 2022; 2:841-851. [PMID: 35603039 PMCID: PMC9112282 DOI: 10.1021/acsestwater.2c00032] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/28/2022] [Accepted: 04/22/2022] [Indexed: 05/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are of concern for their ubiquity in the environment combined with their persistent, bioaccumulative, and toxic properties. Landfill leachate is often contaminated with these chemicals, and therefore, the development of cost-efficient water treatment technologies is urgently needed. The present study investigated the applicability of a pilot-scale foam fractionation setup for the removal of PFAS from natural landfill leachate in a novel continuous operating mode. A benchmark batch test was also performed to compare treatment efficiency. The ΣPFAS removal efficiency plateaued around 60% and was shown to decrease for the investigated process variables air flow rate (Q air), collected foam fraction (%foam) and contact time in the column (t c). For individual long-chain PFAS, removal efficiencies above 90% were obtained, whereas the removal for certain short-chain PFAS was low (<30%). Differences in treatment efficiency between enriching mode versus stripping mode as well as between continuous versus batch mode were negligible. Taken together, these findings suggest that continuous foam fractionation is a highly applicable treatment technology for PFAS contaminated water. Coupling the proposed cost- and energy-efficient foam fractionation pretreatment to an energy-intensive degradative technology for the concentrated foam establishes a promising strategy for on-site PFAS remediation.
Collapse
Affiliation(s)
- Sanne J. Smith
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750
07 Uppsala, Sweden
| | - Karin Wiberg
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750
07 Uppsala, Sweden
| | - Philip McCleaf
- Uppsala
Water and Waste AB, P.O.
Box 1444, SE-751 44 Uppsala, Sweden
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750
07 Uppsala, Sweden
| |
Collapse
|
73
|
Pellizzaro A, Dal Ferro N, Fant M, Zerlottin M, Borin M. Emerged macrophytes to the rescue: Perfluoroalkyl acid removal from wastewater and spiked solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114703. [PMID: 35168130 DOI: 10.1016/j.jenvman.2022.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the potential for three emergent aquatic macrophytes to remove perfluoroalkyl acids (PFAAs) from contaminated waters in constructed wetland systems. Three plants (Iris pseudacorus L., Phragmites australis (Cav.) Trin. Ex Steud., and Typha latifolia L.) were exposed to an effluent from a tannery wastewater treatment plant (WWTP) that contained residual PFAAs, and to three spiked solutions with increasing concentrations of 11 perfluorocarboxylic acids (PFCAs) and three perfluorosulfonic acids (PFSAs) (500, 2500, and 5000 ng L-1, each). Thirty-six lightweight expanded clay aggregate- and vegetation-filled tanks (0.35 × 0.56 × 0.31 m) were exposed to the tested solutions at the Acque del Chiampo SpA WWTP in Arzignano (NE Italy). Throughout the experiment, PFAA concentrations and physicochemical water parameters were monitored via measures of the clay material, plastic tank inner surfaces, and below- and above-ground biomasses (after harvest). Vegetation growth was shown to be unaffected by increased PFAA levels in the spiked solutions. Alternatively, total biomass was significantly reduced when WWTP water was used, although we attribute this finding to the relatively high salinity that mainly restricted Typha and Iris development. The tested macrophytes were found to remove a significant PFAA mass from the contaminated waters (36% to ca. 80%, on average) when Phragmites was subjected to the highest PFAA concentrations. Such large accumulations were primarily associated with long C-chain PFAA stabilization in belowground biomass (26%, on average). Most PFAA translocations were observed in Typha, which accumulated mostly short perfluorinated C-chain PFBA, PFPeA, and PFHxA in the aboveground biomass (16%, on average). Despite some growth limitations, Iris was still the most efficient macrophyte for translocating PFBS under WWTP.
Collapse
Affiliation(s)
- Alessandro Pellizzaro
- Acque Del Chiampo S.p.A, Servizio Idrico Integrato, Via Ferraretta 20, 36071, Arzignano, Italy
| | - Nicola Dal Ferro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy.
| | - Massimo Fant
- Acque Del Chiampo S.p.A, Servizio Idrico Integrato, Via Ferraretta 20, 36071, Arzignano, Italy
| | - Mirco Zerlottin
- Acque Del Chiampo S.p.A, Servizio Idrico Integrato, Via Ferraretta 20, 36071, Arzignano, Italy
| | - Maurizio Borin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
74
|
Mohamed BA, Li LY, Hamid H, Jeronimo M. Sludge-based activated carbon and its application in the removal of perfluoroalkyl substances: A feasible approach towards a circular economy. CHEMOSPHERE 2022; 294:133707. [PMID: 35066079 DOI: 10.1016/j.chemosphere.2022.133707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
This study explores the recovery of resources and energy from sewage sludge through the production of sludge-based activated carbon (SBAC) considering circular economy principles. The SBAC production costs were estimated under three scenarios considering various sludge dewatering/drying schemes to determine the production feasibility and its role in the circular economy. SBAC was tested in the removal of a mixture of nine commonly detected poly- and perfluoroalkyl substances (PFASs) in environmentally relevant concentrations of ∽50 μg/L in comparison to commercially available activated carbon (AC) using 5 mg of sorbent and 5 mL of a nine-PFAS mixture in deionised water. SBAC can be produced at approximately 1.2 US $/kg, which is substantially lower than the average production cost of commercial AC of >3 US $/kg. A net revenue ranging from 2 to 7 US $/kg SBAC was estimated by recycling the produced non-condensable gases and bio-oil to produce energy and selling the SBAC. Batch adsorption tests showed that the PFASs removal of SBAC was superior to that of granular AC and similar to that of powdered AC, reaching >91% to below the detection limit. The kinetics tests revealed that adsorption by SBAC and AC occurred within 15 min. The overall results demonstrate the potential of SBAC as an effective sorbent for PFASs, achieving waste-to-resources circular economy via resource and energy recovery from sewage sludge, eliminating sludge disposal and contaminant-leaching to the environment, and in enhancing the quality of wastewater effluent before discharge.
Collapse
Affiliation(s)
- Badr A Mohamed
- Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, Giza 12613, Egypt
| | - Loretta Y Li
- Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - Hanna Hamid
- Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew Jeronimo
- Laboratory Program Manager, School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, BC, V6T 1Z9, Canada
| |
Collapse
|
75
|
Weber NH, Delva CS, Stockenhuber SP, Grimison CC, Lucas JA, Mackie JC, Stockenhuber M, Kennedy EM. Modeling and Experimental Study on the Thermal Decomposition of Perfluorooctanesulfonic Acid (PFOS) in an α-Alumina Reactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan H. Weber
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Cameron S. Delva
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Sebastian P. Stockenhuber
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | - John A. Lucas
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - John C. Mackie
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Michael Stockenhuber
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Eric M. Kennedy
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
76
|
Kazwini T, Yadav S, Ibrar I, Al-Juboori RA, Singh L, Ganbat N, Karbassiyazdi E, Samal AK, Subbiah S, Altaee A. Updated review on emerging technologies for PFAS contaminated water treatment. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
77
|
Cleaning up Forever Chemicals in Construction: Informing Industry Change. SUSTAINABILITY 2022. [DOI: 10.3390/su14052854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Per- and polyfluorinated alkyl substance (PFAS) contamination has been found in the construction spoil of many major projects, and there is growing concern about the health and environmental implications of these “forever” chemicals. In a context where construction and tunneling have experienced substantial growth, Australia and other countries are still developing their PFAS management. This study used convergent interviews to surface the key common issues that are associated with the management of PFAS contamination in the construction industry. The construction industry appears stuck in their ways and extremely financially driven. Regulation is not working because of poor enforcement and policing from the Environmental Protection Agency (EPA). The EPA could look to employ individuals with more construction industry experience in order to become a strong regulator in the industry, as well as to streamlining decision-making processes, while maintaining quality. To speed up changes in the management of PFASs within the construction industry, large organizations could be targeted by the relevant sustainability rating scheme, and there could be further use of the alliance models to research, develop, and implement PFAS treatment methods.
Collapse
|
78
|
Sharma A, Vázquez LAB, Hernández EOM, Becerril MYM, Oza G, Ahmed SSSJ, Ramalingam S, Iqbal HMN. Green remediation potential of immobilized oxidoreductases to treat halo-organic pollutants persist in wastewater and soil matrices - A way forward. CHEMOSPHERE 2022; 290:133305. [PMID: 34929272 DOI: 10.1016/j.chemosphere.2021.133305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 02/08/2023]
Abstract
The alarming presence of hazardous halo-organic pollutants in wastewater and soils generated by industrial growth, pharmaceutical and agricultural activities is a major environmental concern that has drawn the attention of scientists. Unfortunately, the application of conventional technologies within hazardous materials remediation processes has radically failed due to their high cost and ineffectiveness. Consequently, the design of innovative and sustainable techniques to remove halo-organic contaminants from wastewater and soils is crucial. Altogether, these aspects have led to the search for safe and efficient alternatives for the treatment of contaminated matrices. In fact, over the last decades, the efficacy of immobilized oxidoreductases has been explored to achieve the removal of halo-organic pollutants from diverse tainted media. Several reports have indicated that these enzymatic constructs possess unique properties, such as high removal rates, improved stability, and excellent reusability, making them promising candidates for green remediation processes. Hence, in this current review, we present an insight of green remediation approaches based on the use of immobilized constructs of phenoloxidases (e.g., laccase and tyrosinase) and peroxidases (e.g., horseradish peroxidase, chloroperoxidase, and manganese peroxidase) for sustainable decontamination of wastewater and soil matrices from halo-organic pollutants, including 2,4-dichlorophenol, 4-chlorophenol, diclofenac, 2-chlorophenol, 2,4,6-trichlorophenol, among others.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, 76130, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, 76130, Mexico
| | | | | | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Querétaro S/n, Sanfandila. Pedro Escobedo, Querétaro, 76703, Mexico
| | - Shiek S S J Ahmed
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
79
|
Khan AH, López-Maldonado EA, Khan NA, Villarreal-Gómez LJ, Munshi FM, Alsabhan AH, Perveen K. Current solid waste management strategies and energy recovery in developing countries - State of art review. CHEMOSPHERE 2022; 291:133088. [PMID: 34856242 DOI: 10.1016/j.chemosphere.2021.133088] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Solid waste generation has rapidly increased due to the worldwide population, urbanization, and industrialization. Solid waste management (SWM) is a significant challenge for a society that arises local issues with global consequences. Thus, solid waste management strategies to recycle waste products are promising practices that positively impact sustainable goals. Several developed countries possess excellent solid waste management strategies to recycle waste products. Developing countries face many challenges, such as municipal solid waste (MSW) sorting and handling due to high population density and economic instability. This mismanagement could further expedite harmful environmental and socioeconomic concerns. This review discusses the current solid waste management and energy recovery production in developing countries; with statistics, this review provides a comprehensive revision on energy recovery technologies such as the thermochemical and biochemical conversion of waste with economic considerations. Furthermore, the paper discusses the challenges of SWM in developing countries, including several immediate actions and future policy recommendations for improving the current status of SWM via harnessing technology. This review has the potential of helping municipalities, government authorities, researchers, and stakeholders working on MSW management to make effective decisions for improved SWM for achieving sustainable development.
Collapse
Affiliation(s)
- Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan 45142, Saudi Arabia; School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau, Pinang, Malaysia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP, 22390, Tijuana, Baja California, Mexico
| | - Nadeem A Khan
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Luis Jesús Villarreal-Gómez
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP, 22390, Tijuana, Baja California, Mexico; Facultad de Ciencias de La Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd Universitario 1000, Unidad Valle de Las Palmas, 22260, Tijuana, Baja California, Mexico
| | - Faris M Munshi
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Abdullah H Alsabhan
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
80
|
Kurwadkar S, Dane J, Kanel SR, Nadagouda MN, Cawdrey RW, Ambade B, Struckhoff GC, Wilkin R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151003. [PMID: 34695467 PMCID: PMC10184764 DOI: 10.1016/j.scitotenv.2021.151003] [Citation(s) in RCA: 224] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 05/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a family of fluorinated organic compounds of anthropogenic origin. Due to their unique chemical properties, widespread production, environmental distribution, long-term persistence, bioaccumulative potential, and associated risks for human health, PFAS have been classified as persistent organic pollutants of significant concern. Scientific evidence from the last several decades suggests that their widespread occurrence in the environment correlates with adverse effects on human health and ecology. The presence of PFAS in the aquatic environment demonstrates a close link between the anthroposphere and the hydrological cycle, and concentrations of PFAS in surface and groundwater range in value along the ng L-1-μg L-1 scale. Here, we critically reviewed the research published in the last decade on the global occurrence and distribution of PFAS in the aquatic environment. Ours is the first paper to critically evaluate the occurrence of PFAS at the continental scale and the evolving global regulatory responses to manage and mitigate the adverse human health risks posed by PFAS. The review reports that PFAS are widespread despite being phased out-they have been detected in different continents irrespective of the level of industrial development. Their occurrence far from the potential sources suggests that long-range atmospheric transport is an important pathway of PFAS distribution. Recently, several studies have investigated the health impacts of PFAS exposure-they have been detected in biota, drinking water, food, air, and human serum. In response to the emerging information about PFAS toxicity, several countries have provided administrative guidelines for PFAS in water, including Canada, the United Kingdom, Sweden, Norway, Germany, and Australia. In the US, additional regulatory measures are under consideration. Further, many PFAS have now been listed as persistent organic pollutants. This comprehensive review provides crucial baseline information on the global occurrence, distribution, and regulatory framework of PFAS.
Collapse
Affiliation(s)
- Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA; Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
| | - Jason Dane
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Sushil R Kanel
- Department of Chemistry, Wright State University, 3640 Colonel Glen Highway, Dayton, OH 45435, USA; Pegasus Technical Services, Inc., 46 E. Hollister Street, Cincinnati, OH 45219, USA
| | - Mallikarjuna N Nadagouda
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Ryan W Cawdrey
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Balram Ambade
- Department of Chemistry, National Institute of Technology, Jamshedpur 831014, Jharkhand, India
| | - Garrett C Struckhoff
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Richard Wilkin
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
| |
Collapse
|
81
|
Degradation of representative perfluorinated and hydrocarbon surfactants by electron beam irradiation. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
Helmer RW, Reeves DM, Cassidy DP. Per- and Polyfluorinated Alkyl Substances (PFAS) cycling within Michigan: Contaminated sites, landfills and wastewater treatment plants. WATER RESEARCH 2022; 210:117983. [PMID: 34954365 DOI: 10.1016/j.watres.2021.117983] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Concentrations of Per- and Polyfluorinated Alkyl Substances (PFAS) from public and private sources in Michigan compiled for wastewater treatment plants (WWTPs) (influent, effluent, biosolids), contaminated sites, and landfill leachates reveal complex cycling within the natural and engineered environment. Analysis of 171 contaminated sites in Michigan by source release indicate four dominant PFAS sources - landfills, aqueous film-forming foams (AFFF), metal platers, and automotive/metal stamping - account for 75% of the contamination. Diverse chemical signatures were observed for leachates collected from 19 landfills (mostly type II municipal) with the dominant PFAS ranging from perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) to shorter-chained compounds, perfluorohexanoic acid (PFHxA), perfluorobutanoic acid (PFBA), and perfluorobutanesulfonic acid (PFBS). Analysis of PFAS carbon chain length as a function of landfill age shows the transition of C8s in leachate from older landfills to C4s and C6s in younger landfills, consistent with the phasing out and replacement of C8s. PFAS mass flux in leachate for landfills studied range between 5 - 2,000 g/yr and are highest for active landfills, which generate greater leachate volumes and contain fresh PFAS wastes. Detailed study of 10 WWTPs with industrial pretreatment programs indicate numerous chemical transformations across the plants that yield effluent PFAS concentrations as much as 19 times greater than influent, attributed to transformations of unmeasured precursors in the influent to measured, stable PFAS in the effluent. PFOA, PFHxA, perfluoropentanoic acid (PFPeA), PFBA, and PFBS show the greatest increases across the plant ranging from 20% to nearly 2,000%. PFOS concentrations decreased across 6 WWTPs, consistent with a strong tendency to adsorb onto biosolids. Estimated mass of discharge of (mostly unregulated) PFAS from WWTPs to receiving waters range from 40 g/yr to 128 kg/yr.
Collapse
Affiliation(s)
- Ross W Helmer
- Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI, 49008-5241, USA; Water Resources Division, Michigan Department of Environment, Great Lakes, and Energy, 525W. Allegan St, Lansing, MI, 48933, USA
| | - Donald M Reeves
- Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI, 49008-5241, USA.
| | - Daniel P Cassidy
- Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI, 49008-5241, USA
| |
Collapse
|
83
|
O’Rourke E, Hynes J, Losada S, Barber JL, Pereira MG, Kean EF, Hailer F, Chadwick EA. Anthropogenic Drivers of Variation in Concentrations of Perfluoroalkyl Substances in Otters ( Lutra lutra) from England and Wales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1675-1687. [PMID: 35014794 PMCID: PMC8812117 DOI: 10.1021/acs.est.1c05410] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous environmental contaminants that have been linked to adverse health effects in wildlife and humans. Here, we report the presence of PFASs in Eurasian otters (Lutra lutra) in England and Wales and their association with anthropogenic sources. The following 15 compounds were analyzed: 10 perfluoroalkyl carboxylic acids (PFCAs), 4 perfluoroalkyl sulfonic acids (PFSAs), and perfluorooctane sulfonamide, in livers of 50 otters which died between 2007 and 2009. PFASs were detected in all otters analyzed, with 12/15 compounds detected in ≥80% of otters. Perfluorooctane sulfonate (PFOS) accounted for 75% of the ΣPFAS profile, with a maximum concentration of 6800 μg/kg wet weight (ww). Long-chain (≥C8) PFCAs accounted for 99.9% of the ΣPFCA profile, with perfluorodecanoic acid and perfluorononanoic acid having the highest maxima (369 μg/kg ww and 170 μg/kg ww, respectively). Perfluorooctanoic acid (PFOA) concentrations were negatively associated with the distance from a factory that used PFOA in polytetrafluoroethylene manufacture. Most PFAS concentrations in otters were positively associated with load entering wastewater treatment works (WWTW) and with arable land, suggesting that WWTW effluent and sewage sludge-amended soils are significant pathways of PFASs into freshwaters. Our results reveal the widespread pollution of British freshwaters with PFASs and demonstrate the utility of otters as effective sentinels for spatial variation in PFAS concentrations.
Collapse
Affiliation(s)
- Emily O’Rourke
- School
of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, U.K.
| | - Juliet Hynes
- School
of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, U.K.
| | - Sara Losada
- Centre
for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road,
Suffolk, Lowestoft NR33 0HT, U.K.
| | - Jonathan L. Barber
- Centre
for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road,
Suffolk, Lowestoft NR33 0HT, U.K.
| | - M. Glória Pereira
- U.K.
Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue,
Bailrigg, Lancaster LA1 4AP, U.K.
| | - Eleanor F. Kean
- School
of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, U.K.
| | - Frank Hailer
- School
of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, U.K.
| | | |
Collapse
|
84
|
Tang KHD, Kristanti RA. Bioremediation of perfluorochemicals: current state and the way forward. Bioprocess Biosyst Eng 2022; 45:1093-1109. [PMID: 35098376 DOI: 10.1007/s00449-022-02694-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
Abstract
Perfluorochemicals are widely found in the environment due to their versatile uses and persistent nature. Perfluorochemicals have also been detected in human and animals due to direct or indirect exposures, giving rise to health concerns. This review aims to examine the bioremediation of perfluorochemicals with plants, bacteria and fungi, including their efficiency and limitations. It also aims to propose the future prospects of bioremediation of perfluorochemicals. This review retrieved peer-reviewed journal articles published between 2010 and 2021 from journal databases consisting of Web of Science, Scopus and ScienceDirect. This review shows that multiple Pseudomonas species could degrade perfluorochemicals particularly perfluoroalkyl acids under aerobic condition. Acidimicrobium sp. degraded perfluoroalkyl acids anaerobically in the presence of electron donors. A mixed Pseudomonas culture was more effective than pure cultures. Multiple plants were found to bioconcentrate perfluorochemicals and many demonstrated the ability to hyperaccumulate perfluoroalkyl acids, particularly Festuca rubra, Salix nigra and Betula nigra. Fungal species, particularly Pseudeurotium sp. and Geomyces sp., have the potential to degrade perfluorooctanoic acid or perfluorooctane sulphonic acid. Perfluorochemicals bioremediation could be advanced with identification of more candidate species for bioremediation, optimization of bioremediation conditions, mixed culturing, experiments with environmental media and studies on the biochemical pathways of biotransformation. This review provides comprehensive insight into the efficiency of different bacterial, plant and fungal species in perfluorochemicals bioremediation under different conditions, their limitations and improvement.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Environmental Science Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, 2000 Jintong Road, Tangjiawan, Zhuhai, 519087, GD, China.
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, 14430, Indonesia
| |
Collapse
|
85
|
PFAS Molecules: A Major Concern for the Human Health and the Environment. TOXICS 2022; 10:toxics10020044. [PMID: 35202231 PMCID: PMC8878656 DOI: 10.3390/toxics10020044] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of over 4700 heterogeneous compounds with amphipathic properties and exceptional stability to chemical and thermal degradation. The unique properties of PFAS compounds has been exploited for almost 60 years and has largely contributed to their wide applicability over a vast range of industrial, professional and non-professional uses. However, increasing evidence indicate that these compounds represent also a serious concern for both wildlife and human health as a result of their ubiquitous distribution, their extreme persistence and their bioaccumulative potential. In light of the adverse effects that have been already documented in biota and human populations or that might occur in absence of prompt interventions, the competent authorities in matter of health and environment protection, the industries as well as scientists are cooperating to identify the most appropriate regulatory measures, substitution plans and remediation technologies to mitigate PFAS impacts. In this review, starting from PFAS chemistry, uses and environmental fate, we summarize the current knowledge on PFAS occurrence in different environmental media and their effects on living organisms, with a particular emphasis on humans. Also, we describe present and provisional legislative measures in the European Union framework strategy to regulate PFAS manufacture, import and use as well as some of the most promising treatment technologies designed to remediate PFAS contamination in different environmental compartments.
Collapse
|
86
|
Tan X, Sawczyk M, Chang Y, Wang Y, Usman A, Fu C, Král P, Peng H, Zhang C, Whittaker AK. Revealing the Molecular-Level Interactions between Cationic Fluorinated Polymer Sorbents and the Major PFAS Pollutant PFOA. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michał Sawczyk
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yiqing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adil Usman
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
87
|
McDonough JT, Anderson RH, Lang JR, Liles D, Matteson K, Olechiw T. Field-Scale Demonstration of PFAS Leachability Following In Situ Soil Stabilization. ACS OMEGA 2022; 7:419-429. [PMID: 35036711 PMCID: PMC8756798 DOI: 10.1021/acsomega.1c04789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/09/2021] [Indexed: 05/06/2023]
Abstract
A field-scale validation is summarized comparing the efficacy of commercially available stabilization amendments with the objective of mitigating per- and polyfluoroalkyl substance (PFAS) leaching from aqueous film-forming foam (AFFF)-impacted source zones. The scope of this work included bench-scale testing to evaluate multiple amendments and application concentrations to mitigate PFAS leachability and the execution of field-scale soil mixing in an AFFF-impacted fire-training area with nearly 2.5 years of post-soil mixing monitoring to validate reductions in PFAS leachability. At the bench scale, several amendments were evaluated and the selection of two amendments for field-scale evaluation was informed: FLUORO-SORB Adsorbent (FS) and RemBind (RB). Five ∼28 m3 test pits (approximately 3 m wide by 3 m long by 3 m deep) were mixed at a site using conventional construction equipment. One control test pit (Test Pit 1) included Portland cement (PC) only (5% dry weight basis). The other four test pits (Test Pits 2 through 5) compared 5 and 10% ratios (dry weight basis) of FS and RB (also with PC). Five separate monitoring events included two to three sample cores collected from each test pit for United States Environmental Protection Agency (USEPA) Method 1315 leaching assessment. After 1 year, a mass balance for each test pit was attempted comparing the total PFAS soil mass before, during, and after leach testing. Bench-scale and field-scale data were in good agreement and demonstrated >99% decrease in total PFAS leachability (mass basis; >98% mole basis) as confirmed by the total oxidizable precursor assay, strongly supporting the chemical stabilization of PFAS.
Collapse
Affiliation(s)
- Jeffrey T. McDonough
- Arcadis, 630 Plaza Drive
Suite 200, Highlands Ranch, Colorado 80129, United
States
- . Phone: 267-615-1863
| | - Richard H. Anderson
- Air
Force Civil Engineer Center (AFCEC), San Antonio, Texas 78056, United States
| | - Johnsie R. Lang
- Arcadis, 630 Plaza Drive
Suite 200, Highlands Ranch, Colorado 80129, United
States
| | - David Liles
- Arcadis, 630 Plaza Drive
Suite 200, Highlands Ranch, Colorado 80129, United
States
| | - Kasey Matteson
- Arcadis, 630 Plaza Drive
Suite 200, Highlands Ranch, Colorado 80129, United
States
| | - Theresa Olechiw
- Arcadis, 630 Plaza Drive
Suite 200, Highlands Ranch, Colorado 80129, United
States
| |
Collapse
|
88
|
Li J, Sun J, Li P. Exposure routes, bioaccumulation and toxic effects of per- and polyfluoroalkyl substances (PFASs) on plants: A critical review. ENVIRONMENT INTERNATIONAL 2022; 158:106891. [PMID: 34592655 DOI: 10.1016/j.envint.2021.106891] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are artificial persistent organic pollutants ubiquitous in ecosystem, and their bioaccumulation and adverse outcomes in plants have attracted extensive concerns. Here, we review the toxic effects of PFASs encountered by various plants from physiological, biochemical and molecular perspectives. The exposure routes and bioaccumulation of PFASs in plants from contaminated sites are also summarized. The bioaccumulation of PFASs in plants from contaminated sites varied between ng/g and μg/g levels. The 50% inhibition concentration of PFASs for plant growth is often several orders of magnitude higher than the environmentally relevant concentrations (ERCs). ERCs of PFASs rarely lead to obvious phenotypic/physiological damages in plants, but markedly perturb some biological activities at biochemical and molecular scales. PFAS exposure induces the over-generated reactive oxygen species and further damages plant cell structure and organelle functions. A number of biochemical activities in plant cells are perturbed, such as photosynthesis, gene expression, protein synthesis, carbon and nitrogen metabolisms. To restore the desire states of cells exposed to PFASs, plants initiate several detoxifying mechanisms, including enzymatic antioxidants, non-enzymatic antioxidants, metallothionein genes and metabolic reprogramming. Future challenges and opportunities in PFAS phytotoxicity studies are also proposed in the review.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jing Sun
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Pengyang Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
89
|
Zhang Z, Sarkar D, Biswas JK, Datta R. Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review. BIORESOURCE TECHNOLOGY 2022; 344:126223. [PMID: 34756980 DOI: 10.1016/j.biortech.2021.126223] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals widely manufactured for industrial and commercial applications in the past decades due to their remarkable stability as well as hydrophobic and lipophobic nature. PFAS species have been recognized as emerging environmental contaminants of concern due to their toxicity and environmental persistence, thereby attracting intensive research seeking effective technologies for their removal from the environment. The objective of this review is to provide a thorough analysis of the biodegradation of PFAS in multiple environmental matrices and offer a future outlook. By discussing targeted PFAS species, degradation intermediates, degradation efficiencies, and microbial species, a comprehensive summary of the known microbial species and their degradation pathways are presented. The biodegradation pathways for different types of PFAS species are summarized in two major categories, biodegradation with and without the cleavage of C-F bond. Existing uncertainties and future research directions for PFAS biodegradation are provided.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
90
|
Long M, Elias WC, Heck KN, Luo YH, Lai YS, Jin Y, Gu H, Donoso J, Senftle TP, Zhou C, Wong MS, Rittmann BE. Hydrodefluorination of Perfluorooctanoic Acid in the H 2-Based Membrane Catalyst-Film Reactor with Platinum Group Metal Nanoparticles: Pathways and Optimal Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16699-16707. [PMID: 34874150 DOI: 10.1021/acs.est.1c06528] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PFAAs (perfluorinated alkyl acids) have become a concern because of their widespread pollution and persistence. A previous study introduced a novel approach for removing and hydrodefluorinating perfluorooctanoic acid (PFOA) using palladium nanoparticles (Pd0NPs) in situ synthesized on H2-gas-transfer membranes. This work focuses on the products, pathways, and optimal catalyst conditions. Kinetic tests tracking PFOA removal, F- release, and hydrodefluorination intermediates documented that PFOA was hydrodefluorinated by a mixture of parallel and stepwise reactions on the Pd0NP surfaces. Slow desorption of defluorination products lowered the catalyst's activity for hydrodefluorination. Of the platinum group metals studied, Pd was overall superior to Pt, Rh, and Ru for hydrodefluorinating PFOA. pH had a strong influence on performance: PFOA was more strongly adsorbed at higher pH, but lower pH promoted defluorination. A membrane catalyst-film reactor (MCfR), containing an optimum loading of 1.2 g/m2 Pd0 for a total Pd amount of 22 mg, removed 3 mg/L PFOA during continuous flow for 90 days, and the removal flux was as high as 4 mg PFOA/m2/d at a steady state. The EPA health advisory level (70 ng/L) also was achieved over the 90 days with the influent PFOA at an environmentally relevant concentration of 500 ng/L. The results document a sustainable catalytic method for the detoxification of PFOA-contaminated water.
Collapse
Affiliation(s)
- Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
| | - Welman C Elias
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Kimberly N Heck
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - YenJung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Yan Jin
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Juan Donoso
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Thomas P Senftle
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
| |
Collapse
|
91
|
Arslan M, Gamal El-Din M. Removal of per- and poly-fluoroalkyl substances (PFASs) by wetlands: Prospects on plants, microbes and the interplay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149570. [PMID: 34399352 DOI: 10.1016/j.scitotenv.2021.149570] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) represent a large family of synthetic organofluorine aliphatic compounds. They have been extensively produced since 1940s due to enormous applications as a surface-active agent, and water and oil repellent characteristics. PFASs are made to be non-biodegradable, therefore, many of them have been found in the environment albeit strict regulations have been in place since 2002. PFASs are extremely toxic compounds that can impart harm in both fauna and flora. Recent investigations have shown that wetlands might be useful for their removal from the environment as a passive and nature-based solution. To this end, understanding the role of plants, microbes, and their combined plant-microbe interplay is crucial because it could help design a sophisticated passive treatment wetland system. This review focuses on how these components (plants, microbe, substrate) can influence PFASs removal in wetlands under natural and controlled conditions. The information on underlying removal mechanisms is mostly retrieved from laboratory-based studies; however, pilot- and field-scale data are also presented to provide insights on their real-time performance. Briefly, a traditional wetland system works on the principles of phytouptake, bioaccumulation, and sorption, which are mainly due to the fact that PFASs are synthetic compounds that have very low reactivity in the environment. Nevertheless, recent investigations have also shown that Feammox process in wetlands can mineralize the PFASs; thus, opens new opportunities for PFASs degradation in terms of effective plant-microbe interplay in the wetlands. The choice of plants and bacterial species is however crucial, and the system efficiency relies on species-specific, sediment-specific and pollutant-specific principles. More research is encouraged to identify genetic elements and molecular mechanisms that can help us harness effective plant-microbe interplay in wetlands for the successful removal of PFASs from the environment.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
92
|
Dhore R, Murthy GS. Per/polyfluoroalkyl substances production, applications and environmental impacts. BIORESOURCE TECHNOLOGY 2021; 341:125808. [PMID: 34455249 DOI: 10.1016/j.biortech.2021.125808] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
The per/polyfluoroalkyl substances (PFAS) are growing contaminants which are extremely difficult to get degraded naturally. PFAS have been produced for nearly a century using electrochemical flourination and more relomerization processes. High chemical resistance, hydrophobicity, lipophobicity, heat resistace, extremly low friction coefficient make this class of chemicals invaluable for many applications. These same properties useful unfortunately make them 'forever chemicals' once released into the envrironment. This review focuses on the production and applications of PFAs, determining the concentration of PFAs in environmental and biological matrices and their efficient degradation. Various methods of detection of PFAS have been developed but insitu methods of detction are still in the early stages of development. Current chemical and biological remediation technologies are expensive/not effective and thus new remediation technolgies must be developed. It is imperative to focus on methods for detection of the short chain PFAS with their projected increased use.
Collapse
Affiliation(s)
- Raveena Dhore
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology-Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh 453552, India
| | - Ganti S Murthy
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology-Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh 453552, India.
| |
Collapse
|
93
|
Høisæter Å, Arp HPH, Slinde G, Knutsen H, Hale SE, Breedveld GD, Hansen MC. Excavated vs novel in situ soil washing as a remediation strategy for sandy soils impacted with per- and polyfluoroalkyl substances from aqueous film forming foams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148763. [PMID: 34323778 DOI: 10.1016/j.scitotenv.2021.148763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
In situ soil washing at the field scale has not yet been investigated as a remediation strategy for soils impacted by per- and polyfluoroalkyl substances (PFAS). This remediation strategy is a promising low-cost alternative to other costlier remediation options like excavating, transporting and landfilling large amounts of PFAS contaminated soil. However, it is unclear if it is effective at the field scale, where large areas of heterogenous soil can be challenging to saturate with infiltration water and then pump to a treatment facility. To address this for the first time, herein we established three different trials involving in situ washing of an undisturbed, 3 m deep, sandy vadose zone soil contaminated with aqueous film forming foam (AFFF). The trials were performed at a site with an established pump and treat system for treating PFAS contaminated groundwater. In situ soil washing was compared to the more conventional practice of washing excavated soil on top of an impermeable bottom lining where the PFAS contaminated water was collected and monitored in a drainage system before treatment. The measured amount of perfluorooctane sulfonate (PFOS) removed was compared with expectations based on a non-calibrated, 1-D first order rate saturated soil model using only the local soil-to-water distribution coefficient as well as the volume and irrigation rate of wash water as input. This model predicted results within a factor of 2. The suspected reasons for small discrepancies between model predictions and excavated vs in situ washing was a combination of the heterogeneity of PFOS distribution in the soil as well as preferential flow paths during soil washing that prevented full saturation. This analysis showed that in situ soil washing was more efficient and less costly than washing excavated sandy soil, particularly if a pump-and-treat system is already in place.
Collapse
Affiliation(s)
- Åse Høisæter
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, NO-0806 Oslo, Norway; Department of Geosciences, University of Oslo, NO-0316 Oslo, Norway.
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, NO-0806 Oslo, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Gøril Slinde
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, NO-0806 Oslo, Norway
| | - Heidi Knutsen
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, NO-0806 Oslo, Norway
| | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, NO-0806 Oslo, Norway
| | - Gijs D Breedveld
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, NO-0806 Oslo, Norway; Department of Geosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Mona C Hansen
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, NO-0806 Oslo, Norway
| |
Collapse
|
94
|
Long M, Donoso J, Bhati M, Elias WC, Heck KN, Luo YH, Lai YS, Gu H, Senftle TP, Zhou C, Wong MS, Rittmann BE. Adsorption and Reductive Defluorination of Perfluorooctanoic Acid over Palladium Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14836-14843. [PMID: 34496574 DOI: 10.1021/acs.est.1c03134] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) comprise a group of widespread and recalcitrant contaminants that are attracting increasing concern due to their persistence and adverse health effects. This study evaluated removal of one of the most prevalent PFAS, perfluorooctanoic acid (PFOA), in H2-based membrane catalyst-film reactors (H2-MCfRs) coated with palladium nanoparticles (Pd0NPs). Batch tests documented that Pd0NPs catalyzed hydrodefluorination of PFOA to partially fluorinated and nonfluorinated octanoic acids; the first-order rate constant for PFOA removal was 0.030 h-1, and a maximum defluorination rate was 16 μM/h in our bench-scale MCfR. Continuous-flow tests achieved stable long-term depletion of PFOA to below the EPA health advisory level (70 ng/L) for up to 70 days without catalyst loss or deactivation. Two distinct mechanisms for Pd0-based PFOA removal were identified based on insights from experimental results and density functional theory (DFT) calculations: (1) nonreactive chemisorption of PFOA in a perpendicular orientation on empty metallic surface sites and (2) reactive defluorination promoted by physiosorption of PFOA in a parallel orientation above surface sites populated with activated hydrogen atoms (Hads*). Pd0-based catalytic reduction chemistry and continuous-flow treatment may be broadly applicable to the ambient-temperature destruction of other PFAS compounds.
Collapse
Affiliation(s)
- Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| | - Juan Donoso
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Manav Bhati
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Welman C Elias
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Kimberly N Heck
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - YenJung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Thomas P Senftle
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| |
Collapse
|
95
|
Mei W, Sun H, Song M, Jiang L, Li Y, Lu W, Ying GG, Luo C, Zhang G. Per- and polyfluoroalkyl substances (PFASs) in the soil-plant system: Sorption, root uptake, and translocation. ENVIRONMENT INTERNATIONAL 2021; 156:106642. [PMID: 34004449 DOI: 10.1016/j.envint.2021.106642] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in the environment but pose potential risks to ecosystems and human health. The soil-plant system plays an important role in the bioaccumulation of PFASs. Because most PFASs in the natural environment are anionic and amphiphilic (both lipophilic and hydrophilic), their sorption and accumulation behaviors differ from those of neutral organic and common ionic compounds. In this review, we discuss processes affecting the availability of PFASs in soil after analyzing the potential mechanisms underlying the sorption and uptake of PFASs in the soil-plant system. We also summarize the current knowledge on root uptake and translocation of PFASs in plants. We found that the root concentration factor of PFASs for plants grown in soil was not significantly correlated with hydrophobicity, whereas the translocation factor was significantly and negatively correlated with PFAS hydrophobicity regardless of whether plants were grown hydroponically or in soil. Further research on the cationic, neutral, and zwitterionic forms of diverse PFASs is urgently needed to comprehensively understand the environmental fates of PFASs in the soil-plant system. Additional research directions are suggested, including the development of more accurate models and techniques to evaluate the bioavailability of PFASs, the effects of root exudates and rhizosphere microbiota on the bioavailability and plant uptake of PFASs, and the roles of different plant organelles, lipids, and proteins in the accumulation of PFASs by plants.
Collapse
Affiliation(s)
- Weiping Mei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hao Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weisheng Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Guang-Guo Ying
- The Environmental Research Institute, South China Normal University, Guangzhou 510631, China
| | - Chunling Luo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
96
|
Pilli S, Pandey AK, Pandey V, Pandey K, Muddam T, Thirunagari BK, Thota ST, Varjani S, Tyagi RD. Detection and removal of poly and perfluoroalkyl polluting substances for sustainable environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113336. [PMID: 34325368 DOI: 10.1016/j.jenvman.2021.113336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
PFAs (poly and perfluoroalkyl compounds) are hazardous and bioaccumulative chemicals that do not readily biodegrade or neutralize under normal environmental conditions. They have various industrial, commercial, domestic and defence applications. According to the Organization for Economic Co-operation and Development, there are around 4700 PFAs registered to date. They are present in every stream of life, and they are often emerging and are even difficult to be detected by the standard chemical methods. This review aims to focus on the sources of various PFAs and the toxicities they impose on the environment and especially on humankind. Drinking water, food packaging, industrial areas and commercial household products are the primary PFAs sources. Some of the well-known treatment methods for remediation of PFAs presented in the literature are activated carbon, filtration, reverse osmosis, nano filtration, oxidation processes etc. The crucial stage of handling the PFAs occurs in determining and analysing the type of PFA and its remedy. This paper provides a state-of-the-art review of determination & tools, and techniques for remediation of PFAs in the environment. Improving new treatment methodologies that are economical and sustainable are essential for excluding the PFAs from the environment.
Collapse
Affiliation(s)
- Sridhar Pilli
- Department of Civil Engineering, National Institute of Technology Warangal, Fathimanagar, Telangana, 506004, India.
| | - Ashutosh Kumar Pandey
- Centre for Energy and Environmental Sustainability-India, Lucknow, 226 029, Uttar Pradesh, India
| | - Vivek Pandey
- Department of Geography, Allahabad Degree College (A.D.C.), Allahabad University, Prayagraj, 211003, Uttar Pradesh, India
| | - Kritika Pandey
- Department of Biotechnology, Dr. Ambedkar Institute of Technology for Handicapped, Kanpur, 208024, Uttar Pradesh, India
| | - Tulasiram Muddam
- Department of Civil Engineering, National Institute of Technology Warangal, Fathimanagar, Telangana, 506004, India
| | - Baby Keerthi Thirunagari
- Department of Civil Engineering, National Institute of Technology Warangal, Fathimanagar, Telangana, 506004, India
| | - Sai Teja Thota
- Department of Civil Engineering, National Institute of Technology Warangal, Fathimanagar, Telangana, 506004, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India.
| | - Rajeshwar Dayal Tyagi
- Chief Scientific Officer, BOSK Bioproducts, 399 Rue Jacquard, Suite 100, Quebec, Canada
| |
Collapse
|
97
|
Uriakhil MA, Sidnell T, De Castro Fernández A, Lee J, Ross I, Bussemaker M. Per- and poly-fluoroalkyl substance remediation from soil and sorbents: A review of adsorption behaviour and ultrasonic treatment. CHEMOSPHERE 2021; 282:131025. [PMID: 34118624 DOI: 10.1016/j.chemosphere.2021.131025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are xenobiotics, present at variable concentrations in soils and groundwater worldwide. Some of the current remediation techniques being researched or applied for PFAS-impacted soils involve solidification-stabilisation, soil washing, excavation and disposal to landfill, on site or in situ smouldering, thermal desorption, ball milling and incineration. Given the large volumes of soil requiring treatment, there is a need for a more environmentally friendly technique to remove and treat PFASs from soils. Sorbents such as granular/powdered activated carbon, ion exchange resins and silicas are used in water treatment to remove PFAS. In this work, PFAS adsorption mechanisms and the effect of pore size, pH and organic matter on adsorption efficacy are discussed. Then, adsorption of PFAS to soils and sorbents is considered when assessing the viability of remediation techniques. Sonication-aided treatment was predicted to be an effective removal technique for PFAS from a solid phase, and the effect of varying frequency, power and particle size on the effectiveness of the desorption process is discussed. Causes and mitigation strategies for possible cavitation-induced particle erosion during ultrasound washing are also identified. Following soil remediation, degrading the extracted PFAS using sonolysis in a water-organic solvent mixture is discussed. The implications for future soil remediation and sorbent regeneration based on the findings in this study are given.
Collapse
Affiliation(s)
- Mohammad Angaar Uriakhil
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK
| | - Tim Sidnell
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK
| | | | - Judy Lee
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK
| | - Ian Ross
- Tetra Tech, Quay West at MediaCityUK, Trafford Wharf Rd, Trafford Park, Manchester, England, M17 1HH, UK
| | - Madeleine Bussemaker
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK.
| |
Collapse
|
98
|
Imir OB, Kaminsky AZ, Zuo QY, Liu YJ, Singh R, Spinella MJ, Irudayaraj J, Hu WY, Prins GS, Madak Erdogan Z. Per- and Polyfluoroalkyl Substance Exposure Combined with High-Fat Diet Supports Prostate Cancer Progression. Nutrients 2021; 13:3902. [PMID: 34836157 PMCID: PMC8623692 DOI: 10.3390/nu13113902] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals utilized in various industrial settings and include products such as flame retardants, artificial film-forming foams, cosmetics, and non-stick cookware, among others. Epidemiological studies suggest a link between increased blood PFAS levels and prostate cancer incidence, but the mechanism through which PFAS impact cancer development is unclear. To investigate the link between PFAS and prostate cancer, we evaluated the impact of metabolic alterations resulting from a high-fat diet combined with PFAS exposure on prostate tumor progression. We evaluated in vivo prostate cancer xenograft models exposed to perfluorooctane sulfonate (PFOS), a type of PFAS compound, and different diets to study the effects of PFAS on prostate cancer progression and metabolic activity. Metabolomics and transcriptomics were used to understand the metabolic landscape shifts upon PFAS exposure. We evaluated metabolic changes in benign or tumor cells that lead to epigenomic reprogramming and altered signaling, which ultimately increase tumorigenic risk and tumor aggressiveness. Our studies are the first in the field to provide new and clinically relevant insights regarding novel metabolic and epigenetic states as well as to support the future development of effective preventative and therapeutic strategies for PFAS-induced prostate cancers. Our findings enhance understanding of how PFAS synergize with high-fat diets to contribute to prostate cancer development and establish an important basis to mitigate PFAS exposure.
Collapse
Affiliation(s)
- Ozan Berk Imir
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alanna Zoe Kaminsky
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (A.Z.K.); (Q.-Y.Z.); (Y.-J.L.)
| | - Qian-Ying Zuo
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (A.Z.K.); (Q.-Y.Z.); (Y.-J.L.)
| | - Yu-Jeh Liu
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (A.Z.K.); (Q.-Y.Z.); (Y.-J.L.)
| | - Ratnakar Singh
- Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (R.S.); (M.J.S.)
| | - Michael J. Spinella
- Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (R.S.); (M.J.S.)
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Departments of Urology, Pathology and Physiology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (W.-Y.H.); (G.S.P.)
| | - Wen-Yang Hu
- Departments of Urology, Pathology and Physiology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (W.-Y.H.); (G.S.P.)
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (W.-Y.H.); (G.S.P.)
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zeynep Madak Erdogan
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (A.Z.K.); (Q.-Y.Z.); (Y.-J.L.)
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
99
|
Podder A, Sadmani AHMA, Reinhart D, Chang NB, Goel R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126361. [PMID: 34157464 DOI: 10.1016/j.jhazmat.2021.126361] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 05/27/2023]
Abstract
Per and poly-fluoroalkyl substances (PFAS) have been recognized as contaminants of emerging concerns by the United States Environmental Protection Agency (US EPA) due to their environmental impact. Several advisory guidelines were proposed worldwide aimed at limiting their occurrences in the aquatic environments, especially for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). This review paper aims to provide a holistic review in the emerging area of PFAS research by summarizing the spatiotemporal variations in PFAS concentrations in surface water systems globally, highlighting the possible trends of occurrences of PFAS, and presenting potential human health impacts as a result of PFAS exposure through surface water matrices. From the data analysis in this study, occurrences of PFOA and PFOS in many surface water matrices were observed to be several folds higher than the US EPA health advisory level of 70 ng/L for lifetime exposure from drinking water. Direct discharge and atmospheric deposition were identified as primary sources of PFAS in surface water and cryosphere, respectively. While global efforts focused on limiting usages of long-chain PFAS such as PFOS and PFOA, the practices of using short-chain PFAS such as perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) and PFAS alternatives increased substantially. These compounds are also potentially associated with adverse impacts on human health, animals and biota.
Collapse
Affiliation(s)
- Aditi Podder
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States.
| | - A H M Anwar Sadmani
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States
| | - Debra Reinhart
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States
| | - Ni-Bin Chang
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
100
|
Bolan N, Sarkar B, Vithanage M, Singh G, Tsang DCW, Mukhopadhyay R, Ramadass K, Vinu A, Sun Y, Ramanayaka S, Hoang SA, Yan Y, Li Y, Rinklebe J, Li H, Kirkham MB. Distribution, behaviour, bioavailability and remediation of poly- and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil. ENVIRONMENT INTERNATIONAL 2021; 155:106600. [PMID: 33964642 DOI: 10.1016/j.envint.2021.106600] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 05/22/2023]
Abstract
Aqueous film-forming foam, used in firefighting, and biowastes, including biosolids, animal and poultry manures, and composts, provide a major source of poly- and perfluoroalkyl substances (PFAS) input to soil. Large amounts of biowastes are added to soil as a source of nutrients and carbon. They also are added as soil amendments to improve soil health and crop productivity. Plant uptake of PFAS through soil application of biowastes is a pathway for animal and human exposure to PFAS. The complexity of PFAS mixtures, and their chemical and thermal stability, make remediation of PFAS in both solid and aqueous matrices challenging. Remediation of PFAS in biowastes, as well as soils treated with these biowastes, can be achieved through preventing and decreasing the concentration of PFAS in biowaste sources (i.e., prevention through source control), mobilization of PFAS in contaminated soil and subsequent removal through leaching (i.e., soil washing) and plant uptake (i.e., phytoremediation), sorption of PFAS, thereby decreasing their mobility and bioavailability (i.e., immobilization), and complete removal through thermal and chemical oxidation (i.e., destruction). In this review, the distribution, bioavailability, and remediation of PFAS in soil receiving solid biowastes, which include biosolids, composts, and manure, are presented.
Collapse
Affiliation(s)
- Nanthi Bolan
- The Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia, The Cooperative Centre for High Performance Soils, Callaghan, NSW, Australia.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Gurwinder Singh
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia; The Cooperative Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, India
| | - Kavitha Ramadass
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia; The Cooperative Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Ajayan Vinu
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia; The Cooperative Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sammani Ramanayaka
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom; Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Son A Hoang
- The Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia, The Cooperative Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yubo Yan
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jörg Rinklebe
- University of Wuppertal, Faculty of Architecture und Civil Engineering, Institute of Soil Engineering, Waste- and Water Science, Laboratory of Soil- and Groundwater-Management, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Korea.
| | - Hui Li
- Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Korea
| | - M B Kirkham
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|