51
|
Zhao JJ, Li SY, Xia F, Hu YL, Nian Y, Xu G. Isoprenylated Flavonoids as Ca v3.1 Low Voltage-Gated Ca 2+ Channel Inhibitors from Salvia digitaloides. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:671-678. [PMID: 33893991 PMCID: PMC8599534 DOI: 10.1007/s13659-021-00307-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Saldigones A-C (1, 3, 4), three new isoprenylated flavonoids with diverse flavanone, pterocarpan, and isoflavanone architectures, were characterized from the roots of Salvia digitaloides, together with a known isoprenylated flavanone (2). Notably, it's the first report of isoprenylated flavonoids from Salvia species. The structures of these isolates were elucidated by extensive spectroscopic analysis. All of the compounds were evaluated for their activities on Cav3.1 low voltage-gated Ca2+ channel (LVGCC), of which 2 strongly and dose-dependently inhibited Cav3.1 peak current.
Collapse
Affiliation(s)
- Jian-Jun Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Song-Yu Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Fan Xia
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
| | - Ya-Li Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China.
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China.
| |
Collapse
|
52
|
Gou Y, Mu X, Li Y, Tang M, Chen G, Xiao S. Three-liquid-phase extraction and re-partition as an integrated process for simultaneous extraction and separation of lithospermic acid B and tanshinone IIA. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
53
|
Su X, Wu Y, Wu M, Lu J, Jia S, He X, Liu S, Zhou Y, Xing H, Xue Y. Regioisomers Salviprolin A and B, Unprecedented Rosmarinic Acid Conjugated Dinorditerpenoids from Salvia przewalskii Maxim. Molecules 2021; 26:6955. [PMID: 34834049 PMCID: PMC8618536 DOI: 10.3390/molecules26226955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Salvia przewalskii Maxim is a perennial plant from the genus Salvia (family Lamiaceae). The roots of S. przewalskii were long used as a traditional herb to treat blood circulation related illnesses in China. As part of our continuing interest in polycyclic natural products from medicinal plants, two unprecedented adducts comprised of a dinor-diterpenoid and a 9'-nor-rosmarinic acid derivative, linked by a 1,4-benzodioxane motif (1 and 2), were isolated from the roots of S. przewalskii. Their structures were established by extensive spectroscopic approaches including 1D, 2D NMR, and HRFABMS. Their cytotoxic activities against five human tumor cell lines were evaluated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yongbo Xue
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (X.S.); (Y.W.); (M.W.); (J.L.); (S.J.); (X.H.); (S.L.); (Y.Z.); (H.X.)
| |
Collapse
|
54
|
Cytokinin-Based Tissue Cultures for Stable Medicinal Plant Production: Regeneration and Phytochemical Profiling of Salvia bulleyana Shoots. Biomolecules 2021; 11:biom11101513. [PMID: 34680145 PMCID: PMC8533636 DOI: 10.3390/biom11101513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Salvia bulleyana is a rare Chinese medicinal plant that due to the presence of polyphenols lowers the risk of some chronic diseases especially those related to the cardiovascular system. The present study examines the organogenic competence of various combinations and concentrations of plant growth regulators to develop an efficient protocol for in vitro regeneration of S. bulleyana via leaf explants, maintaining the high production of active constituents. The purpose of the study was also to assess the possibilities of using a cytokinin-based regeneration to effectively produce therapeutic compounds. The adventitious shoot formation was observed through direct organogenesis on media with purine derivatives (meta-topolin, mT and benzylaminopurine, BAP), and through indirect organogenesis on media with urea derivatives (tidiazuron, TDZ and forchlorfenuron, CPPU). The highest regeneration frequency (95%) with 5.2 shoots per explant was obtained on leaves cultured on Murashige and Skoog (MS) medium containing 0.1 mg/L naphthalene-1-acetic acid (NAA) and 2 mg/L BAP. Following inter simple sequence repeat (ISSR) marker-based profiling, the obtained organogenic shoot lines revealed a similar banding pattern to the mother line, with total variability of 4.2–13.7%, indicating high level of genetic stability. The similar genetic profile of the studied lines translated into similar growth parameters. Moreover, HPLC analysis revealed no qualitative differences in the profile of bioactive metabolites; also, the total polyphenol content was similar for different lines, with the exception of the shoots obtained in the presence of CPPU that produced higher level of bioactive compounds. This is the first report of an effective and rapid in vitro organogenesis protocol for S. bulleyana, which can be efficiently employed for obtaining stable cultures rich in bioactive metabolites.
Collapse
|
55
|
Rizi MR, Azizi A, Sayyari M, Mirzaie-Asl A, Conti L. Increased phenylpropanoids production in UV-B irradiated Salvia verticillata as a consequence of altered genes expression in young leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:174-184. [PMID: 34365288 DOI: 10.1016/j.plaphy.2021.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 05/04/2023]
Abstract
Ultraviolet-B (UV-B) radiation as an environmental potential elicitor induces the synthesis of plant secondary metabolites. The effects of UV-B radiation on photosynthetic pigments and dry weight, biochemical and molecular features of old and young leaves of Salvia verticillata were investigated. Plants were exposed to 10.97 kJ m-2 day-1 of biologically effective UV-B radiation for up to 10 days. The sampling process was performed in four steps: 1, 5, 10, and 13 days (recovery time) after the start of irradiation. As a result of plant investment in primary and secondary metabolism, the production of phenolic compounds increased, while chlorophyll levels and leaf dry weight (%) declined. Under long-term UV-B exposure, young leaves exhibited the most significant reduction in chlorophyll a and b content and leaf dry weight. The highest level of total phenol (1.34-fold) and flavonoid concentration (2-fold) relative to the control was observed on the 5th day and recovery time, respectively. Young leaves demonstrated the highest amount of phenolic acids in recovery time. Young leaves on the 5th day of the experiment exerted the highest level of antioxidant activity when compared to the control. A positive correlation was observed between antioxidant activity and the amount of phenolic compounds. Regarding the expression of phenylpropanoid pathway genes, UV-B enhanced the expression of phenylalanine ammonia-lyase, tyrosine aminotransferase, and rosmarinic acid synthase with the highest level in young leaves on the 10th day. Overall, young leaves of S. verticillata indicated higher sensitivity to UV-B radiation and developed more tangible reactions to such radiation.
Collapse
Affiliation(s)
| | - Ali Azizi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Mohammad Sayyari
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | | | - Lucio Conti
- Department of Biosciences, Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
56
|
Zhang D, Wang Y, Li G, Zhang B. Tanshinone IIA alleviates vitiligo by suppressing AKT mediated CD8 + T cells activation in a mouse model. Dermatol Ther 2021; 34:e15086. [PMID: 34350676 DOI: 10.1111/dth.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
Tanshinone IIA has been reported to exhibit anti-inflammatory effects, while it is not clear whether Tanshinone IIA has protective role in vitiligo. Premelanosome (PMEL) CD8+ T cells were adoptive transferred into Krt14- Kitl* mice with Kit ligand (KITL) over-expressed, to construct the vitiligo model. Pdk1fl/fl and Stat3fl/fl mice were crossed with Cd8cre mice to establish Pdk1TKO and Stat3TKO mice. Tanshinone IIA (200 μg) was intravenous injected to treat vitiligo in mice every 3 days. The accumulation of macrophages and CD8+ T cells in the ear skin was assayed by flow cytometry. Bone marrow-derived macrophages (BMDMs) were induced and stimulated with lipopolysaccharides (LPS) and IL-4. It was found that Tanshinone IIA alleviated the development of vitiligo, impaired PMEL CD8+ T cells accumulation in the ear skin, and inhibited LPS-induced TNF-α, IL-6, and IL-1β expression and secretion in BMDMs, which could also inhibit IL-4-induced Arg-1 and Mrc-1 expression in BMDMs. In addition, Tanshinone IIA could inhibit the proliferation and cytotoxic function of CD8+ T cells indicated by the expression of Perforin, Granzymeb, and IFN-γ. Furthermore, Tanshinone IIA treated Pdk1TKO mice, not Stat3TKO mice, showed impaired PMEL CD8+ T cells accumulation in the ear skin. In summary, Tanshinone IIA alleviates vitiligo development with impaired CD8+ T cells accumulation and activation of Pdk1-Akt pathway.
Collapse
Affiliation(s)
| | - Yujie Wang
- Yidu Central Hospital of Weifang, Qingzhou, China
| | - Guangzhi Li
- Yidu Central Hospital of Weifang, Qingzhou, China
| | | |
Collapse
|
57
|
Li CQ, Lei HM, Hu QY, Li GH, Zhao PJ. Recent Advances in the Synthetic Biology of Natural Drugs. Front Bioeng Biotechnol 2021; 9:691152. [PMID: 34395399 PMCID: PMC8358299 DOI: 10.3389/fbioe.2021.691152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Natural drugs have been transformed and optimized during the long process of evolution. These compounds play a very important role in the protection of human health and treatment of human diseases. Sustainable approaches to the generation of raw materials for pharmaceutical products have been extensively investigated in drug research and development because chemical synthesis is costly and generates pollution. The present review provides an overview of the recent advances in the synthetic biology of natural drugs. Particular attention is paid to the investigations of drugs that may be mass-produced by the pharmaceutical industry after optimization of the corresponding synthetic systems. The present review describes the reconstruction and optimization of biosynthetic pathways for nine drugs, including seven drugs from plant sources and two drugs from microbial sources, suggesting a new strategy for the large-scale preparation of some rare natural plant metabolites and highly bioactive microbial compounds. Some of the suggested synthetic methods remain in a preliminary exploration stage; however, a number of these methods demonstrated considerable application potential. The authors also discuss the advantages and disadvantages of the application of synthetic biology and various expression systems for heterologous expression of natural drugs. Thus, the present review provides a useful perspective for researchers attempting to use synthetic biology to produce natural drugs.
Collapse
Affiliation(s)
| | | | | | | | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
58
|
Zheng W, Wang J, Wu J, Wang T, Huang Y, Liang X, Cao L. Exploration of the Modulatory Property Mechanism of ELeng Capsule in the Treatment of Endometriosis Using Transcriptomics Combined With Systems Network Pharmacology. Front Pharmacol 2021; 12:674874. [PMID: 34220510 PMCID: PMC8249582 DOI: 10.3389/fphar.2021.674874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 01/27/2023] Open
Abstract
Endometriosis is a common gynecological disease and causes severe chronic pelvic pain and infertility. Growing evidence showed that traditional Chinese medicine (TCM) plays an active role in the treatment of endometriosis. ELeng Capsule (ELC) is a Chinese medicine formula used for the treatment of endometriosis for several years. However, the mechanisms of ELC have not been fully characterized. In this study, network pharmacology and mRNA transcriptome analysis were used to study various therapeutic targets in ELC. As a result, 40 compounds are identified, and 75 targets overlapped with endometriosis-related proteins. The mechanism of ELC for the treatment of endometriosis is based on the function modules of inducing apoptosis, inhibiting angiogenesis, and regulating immunity mainly through signaling molecules and interaction (neuroactive ligand-receptor interaction), immune system-associated pathways (toll-like receptor signaling pathway), vascular endothelial growth factor (VEGF) signaling, and MAPK signaling pathway based on network pharmacology. In addition, based on RNA-sequence analysis, we found that the mechanism of ELC was predominantly associated with the regulation of the function modules of actin and cytoskeleton, epithelial-mesenchymal transition (EMT), focal adhesion, and immunity-associated pathways. In conclusion, ELC exerted beneficial effects on endometriosis, and the potential mechanism could be realized through functional modules, such as inducing apoptosis and regulating angiogenesis, cytoskeleton, and EMT. This work not only provides insights into the therapeutic mechanism of TCM for treating endometriosis but also offers an efficient way for drug discovery and development from herbal medicine.
Collapse
Affiliation(s)
- Weilin Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yangxue Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixing Cao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
59
|
Nascimento LS, Nogueira-Souza PD, Rocha-Junior JRS, Monteiro-Machado M, Strauch MA, Prado SAL, Melo PA, Veiga-Junior VF. Phytochemical composition, antisnake venom and antibacterial activities of ethanolic extract of Aegiphila integrifolia (Jacq) Moldenke leaves. Toxicon 2021; 198:121-131. [PMID: 33984369 DOI: 10.1016/j.toxicon.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Snakebites are considered a major neglected tropical disease, resulting in around 100,000 deaths per year. The recommended treatment by the WHO is serotherapy, which has limited effectiveness against the toxins involved in local tissue damage. In some countries, patients use plants from folk medicines as antivenoms. Aegiphila species are common plants from the Brazilian Amazon and are used to treat snakebites. In this study, leaves from Aegiphila integrifolia (Jacq) Moldenke were collected from Roraima state, Brazil and its ethanolic extract was evaluated through in vitro and in vivo experiments to verify their antiophidic activity against Bothrops atrox crude venom. The isolated compounds from A. integrifolia were analyzed and the chemical structures were elucidated on the basis of infrared, ultraviolet, mass, 1H and 1³C NMR spectrometry data. Among the described compounds, lupeol (7), betulinic acid (1), β-sitosterol (6), stigmasterol (5), mannitol (4), and the flavonoids, pectolinarigenin (2) and hispidulin (3), were identified. The ethanolic extract and flavonoids (2 and 3) partially inhibited the proteolytic, phospholipase A2 and hyaluronidase activities of B. atrox venom, and the skin hemorrhage induced by this venom in mice. Antimicrobial activity against different bacteria was evaluated and the extract partially inhibited bacterial growth. Thus, taken together, A. integrifolia ethanolic extract has promising use as an antiophidic and antimicrobial.
Collapse
Affiliation(s)
- Leandro S Nascimento
- Chemical Engineering Section, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Pâmella D Nogueira-Souza
- Federal University of Rio de Janeiro, Pharmacology and Medicinal Chemistry Program, Rio de Janeiro, RJ, Brazil
| | - José R S Rocha-Junior
- Federal University of Rio de Janeiro, Pharmacology and Medicinal Chemistry Program, Rio de Janeiro, RJ, Brazil
| | - Marcos Monteiro-Machado
- Federal University of Rio de Janeiro, Pharmacology and Medicinal Chemistry Program, Rio de Janeiro, RJ, Brazil
| | | | - Simone A L Prado
- Federal University of Roraima, Department of Chemistry, Boa Vista, RR, Brazil
| | - Paulo A Melo
- Federal University of Rio de Janeiro, Pharmacology and Medicinal Chemistry Program, Rio de Janeiro, RJ, Brazil
| | - Valdir F Veiga-Junior
- Chemical Engineering Section, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
60
|
Hu X, Jiao F, Zhang L, Jiang Y. Dihydrotanshinone Inhibits Hepatocellular Carcinoma by Suppressing the JAK2/STAT3 Pathway. Front Pharmacol 2021; 12:654986. [PMID: 33995073 PMCID: PMC8117156 DOI: 10.3389/fphar.2021.654986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Liver cancer is the sixth most commonly diagnosed cancer and the fourth leading cause of cancer death. Most (75–85%) primary liver cancers occurring worldwide are hepatocellular carcinoma (HCC). The development of resistance and other drug related side effects are the prime reasons for the failure of treatment. Therefore, developing high-efficacy and low-toxicity natural anticancer agents is greatly needed in the treatment of HCC. Dihydrotanshinone (DHTS) is widely used for promoting blood circulation and antitumor. The aim of the present study was to investigate the effect and mechanism of DHTS-induced apoptosis of HCC, both in vitro and in vivo. We found that DHTS inhibited the growth of several HCC cells (HCCLM3, SMMC7721, Hep3B and HepG2). DHTS induced the apoptosis of SMMC7721 cells. Immunofluorescence results have showed that DHTS decreased STAT3 nuclear translocation. Moreover, Western blot results have demonstrated that DHTS suppressed the activation of JAK2/STAT3 signaling pathway. In addition, xenograft results have showed that DHTS suppressed tumor growth of SMMC7721 cells in vivo by inhibiting the p-STAT3. Thus, we demonstrated that DHTS could inhibit HCC by suppressing the JAK2/STAT3 pathway. DHTS has potential to be a chemotherapeutic agent in HCC and merits further clinical investigation.
Collapse
Affiliation(s)
- Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangzhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lan Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
61
|
Kum KY, Kirchhof R, Luick R, Heinrich M. Danshen ( Salvia miltiorrhiza) on the Global Market: What Are the Implications for Products' Quality? Front Pharmacol 2021; 12:621169. [PMID: 33981218 PMCID: PMC8107819 DOI: 10.3389/fphar.2021.621169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Danshen (Radix et rhizoma Salviae miltiorrhizae; Salvia miltiorrhiza Bunge, Lamiaceae) is commonly used in Asia, including China, Japan, and Korea with markets in America and Europe growing substantially. It is included in multiple pharmacopeias and salvianolic acid B and tanshinone IIA are used as quality markers. However, on the markets, substitutes and different processing methods often are a concern. a concern regarding patients’ safety and expected outcomes. Aims: This study aims at understanding the quality of Danshen-derived products on the market, and the relationship between the chemistry, biological activity and the processing and storage methods. Methods: For heavy metal analysis, inductively coupled plasma optical emission spectrometry was used. High performance thin-layer chromatography and proton nuclear magnetic resonance coupled with principal component analysis were used to understand the variation of metabolite composition. MTT assay and LPS induced NO production assay were used to evaluate the cytotoxicity effect and anti-inflammatory activity, respectively. Result and Discussion: Six out of sixty samples exceed the limits of cadmium according to the Chinese or United States Pharmacopoeia. Arsenic, lead and copper contents are all below pharmacopoeial thresholds. With more complex processing procedure, the risk of heavy metal contamination increases, especially with arsenic and cadmium. The metabolite compositions show a variability linked to processing and storage methods. Authenticated samples and Vietnamese primary samples contain higher salvianolic acid B, and their chemical compositions are more consistent compared to Chinese online store samples. Overall, a significant chemical variation can be observed in Danshen products directly linked to processing and storage method. In the MTT assay, fourteen samples show cytotoxicity while seven samples increase the proliferation of RAW264.7. In the LPS induced NO production of RAW 264.7, only seven samples show significant inhibitory effects. Conclusion: This is the first interdisciplinary investigation focusing on understanding the current market and the quality of Danshen. The quality of Danshen products on the high street are inferior to the authenticated samples. The results of the bioassays selected is not useful to differentiate the quality and composition according to the current definition in the pharmacopoeias. Overall, this approach highlights the tremendous variability of the products linked to processing and the need for more systematic and stringent quality assurance.
Collapse
Affiliation(s)
- Ka Yui Kum
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| | - Rainer Kirchhof
- University of Applied Sciences, Hochschule Rottenburg, Rottenburg am Neckar, Germany
| | - Rainer Luick
- University of Applied Sciences, Hochschule Rottenburg, Rottenburg am Neckar, Germany
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
62
|
Fernando MP, Alberto HL, María Guadalupe VD, Agustina CM, Fernando NG, Eva AH, Hermelinda SC, María Eva GT. Neo-clerodane diterpenic influence in the antinociceptive and anti-inflammatory properties of Salvia circinnata Cav. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113550. [PMID: 33152437 DOI: 10.1016/j.jep.2020.113550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mexico is considered an ancestral center of diversity of Salvia species, however many of them lack scientific information. Salvia circinnata Cav. (syn. Salvia amarissima Ortega) is an endemic species used in traditional medicine to treat disorders attributed to a cold state like anxiety in the central nervous system, as well as gastrointestinal ailments and pain relief. AIM OF THE STUDY To give preclinical evidence about the pharmacological properties of this species by investigating its antinociceptive and anti-inflammatory effects, the chemical nature of at least one metabolite, and a possible mechanism of action and adverse effects, using different experimental models of pain. MATERIAL AND METHODS Different crude extracts of Salvia circinnata Cav. aerial parts were prepared using increasing polarity and evaluated in the formalin test in mice. This screening allowed to select and evaluate an ethyl acetate extract (EtOAc), as the most bioactive extract, and a metabolite. Antinociceptive and anti-inflammatory activities were confirmed using the plantar test and carrageenan-induced edema. The antinociceptive effects of the extracts were compared to that observed with morphine (1 mg/kg), tramadol (20 mg/kg) or indomethacin (20 mg/kg) as reference drugs. Participation of opioids and TRPV1 receptors was investigated, as well as acute toxicity and adverse effects of sedation and gastric damage. RESULTS EtOAc (0.1-10 mg/kg) of S. circinnata Cav. showed a dose-dependent and significant antinociceptive activity, associated in part with the presence of a neo-clerodane glycoside amarisolide A (0.01-1 mg/kg), in the neurogenic and inflammatory phases of the formalin test. Central action of both treatments was corroborated in the plantar test, whereas anti-inflammatory effects were confirmed with the extract (1 and 10 mg/kg) and amarisolide A (1 mg/kg) in the carrageenan-induced edema test. An opioid mechanism in both treatments, and the TRPV1 receptor modulation in the extract were involved. No acute toxicity and adverse effects were noticed with the extract and pure compound in comparison to the reference drugs. CONCLUSION These results provide preclinical evidence of the ethnopharmacological antinociceptive S. circinnata Cav. properties, in which the neo-clerodane diterpene glycoside amarisolide A was partially responsible involving the participation of the opioid receptors, while TRPV1 receptor modulation was implicated in the anti-inflammatory activity may be because of the presence of other constituents. This information supports the use of this species in folk medicine for pain therapy.
Collapse
Affiliation(s)
- Moreno-Pérez Fernando
- Laboratorio de Neurofarmacología de Productos Naturales de La Dirección de Investigaciones en Neurociencias Del Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, Mexico.
| | - Hernandez-Leon Alberto
- Laboratorio de Neurofarmacología de Productos Naturales de La Dirección de Investigaciones en Neurociencias Del Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, Mexico.
| | - Valle-Dorado María Guadalupe
- Laboratorio de Neurofarmacología de Productos Naturales de La Dirección de Investigaciones en Neurociencias Del Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, Mexico.
| | - Cano-Martínez Agustina
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | | | - Aguirre-Hernández Eva
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales. Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, 04510, CDMX, Mexico.
| | - Salgado-Ceballos Hermelinda
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Mexico.
| | - González-Trujano María Eva
- Laboratorio de Neurofarmacología de Productos Naturales de La Dirección de Investigaciones en Neurociencias Del Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, Mexico.
| |
Collapse
|
63
|
Liu G, Zhang Q, Zhang J, Zhang N. Preventive but nontherapeutic effect of danshensu on hypoxic pulmonary hypertension. J Int Med Res 2021; 48:300060520914218. [PMID: 32419546 PMCID: PMC7235679 DOI: 10.1177/0300060520914218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Danshensu is a traditional Chinese medicine that is used for treatment of cardiovascular diseases. We previously demonstrated its preventive effect against early-stage hypoxic pulmonary hypertension (HPH) in a rat model. To determine whether danshensu treatment might be useful for patients with chronic HPH, we examined its therapeutic effect in rats with prolonged HPH. METHODS Adult Sprague-Dawley rats received danshensu (80, 160, and 320 mg/kg) during or after hypoxia exposure to assess preventive and therapeutic effects, respectively. Right ventricle systolic pressure (RVSP), right ventricle hypertrophy index (RVHI), and mean left carotid artery pressure (mCAP) were measured in each group. Western blotting was used to assess transforming growth factor (TGF)-β expression levels in rats and cultured cells exposed to hypoxia. RESULTS Preventive danshensu treatment significantly reduced the elevation of RVSP and RVHI in rats exposed to hypoxia, whereas therapeutic danshensu treatment did not; mCAP did not change in any treatment group. The increased expression levels of TGF-β induced by hypoxia were inhibited by preventive danshensu treatment, but not by therapeutic danshensu treatment. CONCLUSIONS Although danshensu treatment could prevent HPH, it had no obvious therapeutic effect after development of HPH. Therefore, danshensu might be suitable for clinical treatment of early-stage HPH.
Collapse
Affiliation(s)
- Guang Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Qianqian Zhang
- Department of Gynecology, Hebei Medical University Second Affiliated Hospital, Shijiazhuang, P.R. China
| | - Jinli Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Ning Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
64
|
Polyoxygenated sesquiterpenoids from Salvia castanea and their potential anti-Alzheime's disease bioactivities. Fitoterapia 2021; 151:104867. [PMID: 33621655 DOI: 10.1016/j.fitote.2021.104867] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/04/2021] [Accepted: 02/13/2021] [Indexed: 11/20/2022]
Abstract
Salvia castanea (Family Labiatae), a perennial fragrant herb with castaneous flowers, is mainly distributed in areas with an altitude of 2500-3750 m. The roots of this plant were used as a tea drink by local residents to strengthen physical health. The aim of present study was to acquire secondary metabolites of the ethanol extract obtained from the whole plant of S. castanea and to evaluate their potential anti-Alzheimer's disease. Six new sesquiterpene lactones, salcastanins A-F (1-6), together with three known guaiane-type sesquiterpenoids nubiol (7), nubdienolide (8), and nubenolide (9), were separated from the whole plant of S. castanea. The structures of these compounds were determined by HRESIMS and NMR experiments. The absolute configurations of 1-6 were ascertained by electronic circular dichroism (ECD) experiments. The humanized Caenorhabditis elegans AD pathological model was used to evaluate anti-Alzheimer's disease (AD) activities of 1-9. The results showed the compounds 1-3 and 7 significantly delayed AD-like symptoms of worm paralysis phenotype, which could be used as novel anti-AD candidates.
Collapse
|
65
|
Wang Y, Hu R, Guo Y, Qin W, Zhang X, Hua L, Yang Y. Preparation, evaluation, and in vitro release of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules. Technol Health Care 2021; 29:687-695. [PMID: 33386833 DOI: 10.3233/thc-202529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE In this study we explore the method to prepare tanshinone self-microemulsifying sustained-release microcapsules using tanshinone self-microemulsion as the core material, and chitosan and alginate as capsule materials. METHODS The optimal preparation technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules was determined by using the orthogonal design experiment and single-factor analysis. The drug loading and entrapment rate were used as evaluation indexes to assess the quality of the drug, and the in vitro release rate was used to evaluate the drug release performance. RESULTS The best technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules is as follows: the concentration of alginate is 1.5%, the ratio of tanshinone self-microemulsion volume to alginate volume to chitosan mass is 1:1:0.5 (ml: ml: g), and the best concentration of calcium chloride is 2.0%. To prepare the microcapsules using this technology, the drug loading will be 0.046%, the entrapment rate will be 80.23%, and the 24-hour in vitro cumulative release rate will be 97.4%. CONCLUSION The release of the microcapsules conforms to the Higuchi equation and the first-order drug release model and has a good sustained-release performance.
Collapse
Affiliation(s)
- Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China.,Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rong Hu
- Chongqing Centre for Drug Evaluation and Certification, Chongqing, China.,Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Weihan Qin
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Lei Hua
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| |
Collapse
|
66
|
Grzegorczyk-Karolak I, Krzemińska M, Kiss AK, Olszewska MA, Owczarek A. Phytochemical Profile and Antioxidant Activity of Aerial and Underground Parts of Salvia bulleyana Diels. Plants. Metabolites 2020; 10:metabo10120497. [PMID: 33287467 PMCID: PMC7761800 DOI: 10.3390/metabo10120497] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 01/02/2023] Open
Abstract
Plants have been used for medical purposes since ancient times. However, a detailed analysis of their biological properties and their associated active compounds is needed to justify their therapeutic use in modern medicine. The aim of the study was to identify and quantify the phenolics present in hydromethanolic extracts of the roots and shoots of the Chinese Salvia species, Salvia bulleyana. The qualitative and quantitative analyses were carried out by ultrahigh-performance liquid chromatography with electrospray ionization mass spectrometry detection (UHPLC-PDA-ESI-MS), and high-performance liquid chromatography with photodiode array (HPLC-PDA) detection. The extracts of S. bulleyana were also screened for their antioxidant activity using ferric ion (Fe3+) reducing antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH), diammonium 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) cation (ABTS), superoxide radical anion (O2•–), and inhibition of lipid peroxidation assays. The S. bulleyana extracts were found to contain 38 substances, of which 36 were phenols, with a total level of 14.4 mg/g DW (dry weight) in shoots, and 23.1 mg/g DW in roots. Twenty-eight phenols were polyphenolic acids or their derivatives, the most abundant in shoots being rosmarinic acid, and in roots, salvianolic acid K followed by rosmarinic acid. The other major phenolic acids were caffeic acid, caffeoyl-threonic acids, isomers of lithospermic acid, salvianolic acid F, salvianolic acid B, and yunnaneic acid E. In addition to polyphenolic acids, nine flavonoids were detected in the shoot extract. While both extracts showed significant antioxidant activity, the shoot extract, containing both polyphenolic acids and flavonoids, demonstrated a slightly greater antioxidant potential in some of the anti-radical tests than the roots. However, the root extract proved to be slightly more effective in the lipid peroxidation inhibition test. Thus, S. bulleyana was demonstrated as a promising source of antioxidants, and worthy of further more detailed studies.
Collapse
Affiliation(s)
- Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
- Correspondence:
| | - Marta Krzemińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Anna K. Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Monika A. Olszewska
- Department of Pharmacognosy, Medical University of Lodz, 90-151 Lodz, Poland; (M.A.O.); (A.O.)
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Medical University of Lodz, 90-151 Lodz, Poland; (M.A.O.); (A.O.)
| |
Collapse
|
67
|
Gong X, Yang M, He CN, Bi YQ, Zhang CH, Li MH, Xiao PG. Plant Pharmacophylogeny: Review and Future Directions. Chin J Integr Med 2020; 28:567-574. [PMID: 33170942 DOI: 10.1007/s11655-020-3270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 11/28/2022]
Abstract
Medicinal plants have provided numerous medicinal active ingredients for thousands of years and these ingredients have been used in Chinese medicine (CM) and traditional pharmacologies worldwide. Recently, the exploitation and utilisation of medicinal plant resources has increased significantly. The results of the studies have led to the identification of many active components, such as steroidal alkaloids, saponins, terpenoids, and glycosides, in various medicinal plants with different evolutionary levels. Moreover, research on the chemical classification, molecular phylogeny, and pharmacological activity of medicinal plants is increasing in popularity. Pharmacophylogeny is an interdisciplinary topic that studies the correlation between plant phylogeny, chemical composition, and curative effects (pharmacological activity and the traditional curative effect) of medicinal plants. In addition, it provides the basic tools to enable research and development of CM resources. This literature review, based on the genetic relationship between phytogroup and species, highlights the formation process, research content, applications, and future directions of pharmacophylogeny.
Collapse
Affiliation(s)
- Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, 014040, China
| | - Min Yang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, 014040, China
| | - Chun-Nian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Ya-Qiong Bi
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, 010020, China
| | - Chun-Hong Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, 014040, China
| | - Min-Hui Li
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, 014040, China. .,Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, 010020, China. .,Guangxi Botanical Garden of Medicinal Plants, Nanning, 530000, China. .,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, 014040, China.
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
68
|
Li W, Liu C, Liu J, Bai Z, Liang Z. Transcriptomic analysis reveals the GRAS family genes respond to gibberellin in Salvia miltiorrhiza hairy roots. BMC Genomics 2020; 21:727. [PMID: 33106159 PMCID: PMC7590604 DOI: 10.1186/s12864-020-07119-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants with high medicinal value. Gibberellins are growth-promoting phytohormones that regulate numerous growth and developmental processes in plants. However, their role on the secondary metabolism regulation has not been investigated. RESULTS In this study, we found that gibberellic acid (GA) can promote hairy roots growth and increase the contents of tanshinones and phenolic acids. Transcriptomic sequencing revealed that many genes involved in the secondary metabolism pathway were the GA-responsive. After further analysis of GA signaling pathway genes, which their expression profiles have significantly changed, it was found that the GRAS transcription factor family had a significant response to GA. We identified 35 SmGRAS genes in S. miltiorrhiza, which can be divided into 10 subfamilies. Thereafter, members of the same subfamily showed similar conserved motifs and gene structures, suggesting possible conserved functions. CONCLUSIONS Most SmGRAS genes were significantly responsive to GA, indicating that they may play an important role in the GA signaling pathway, also participating in the GA regulation of root growth and secondary metabolism in S. miltiorrhiza.
Collapse
Affiliation(s)
- Wenrui Li
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China.,School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chuangfeng Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jingling Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Zhenqing Bai
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Zongsuo Liang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China. .,College of Life Sciences and Medicine, The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
69
|
Stankovic JSK, Selakovic D, Mihailovic V, Rosic G. Antioxidant Supplementation in the Treatment of Neurotoxicity Induced by Platinum-Based Chemotherapeutics-A Review. Int J Mol Sci 2020; 21:E7753. [PMID: 33092125 PMCID: PMC7589133 DOI: 10.3390/ijms21207753] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer represents one of the most pernicious public health problems with a high mortality rate among patients worldwide. Chemotherapy is one of the major therapeutic approaches for the treatment of various malignancies. Platinum-based drugs (cisplatin, oxaliplatin, carboplatin, etc.) are highly effective chemotherapeutic drugs used for the treatment of several types of malignancies, but their application and dosage are limited by their toxic effects on various systems, including neurotoxicity. Simultaneously, researchers have tried to improve the survival rate and quality of life of cancer patients and decrease the toxicity of platinum-containing drugs by combining them with non-chemotherapy-based drugs, dietary supplements and/or antioxidants. Additionally, recent studies have shown that the root cause for the many side effects of platinum chemotherapeutics involves the production of reactive oxygen species (ROS) in naive cells. Therefore, suppression of ROS generation and their inactivation with antioxidants represents an appropriate approach for platinum drug-induced toxicities. The aim of this paper is to present an updated review of the protective effects of different antioxidant agents (vitamins, dietary antioxidants and supplements, medicaments, medicinal plants and their bioactive compounds) against the neurotoxicity induced by platinum-based chemotherapeutics. This review highlights the high potential of plant antioxidants as adjuvant strategies in chemotherapy with platinum drugs.
Collapse
Affiliation(s)
- Jelena S. Katanic Stankovic
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia;
| | - Dragica Selakovic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Vladimir Mihailovic
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| |
Collapse
|
70
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
71
|
Wu YH, Wu YR, Li B, Yan ZY. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia 2020; 145:104633. [DOI: 10.1016/j.fitote.2020.104633] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
|
72
|
Qiu JM, Qin CF, Wu SG, Ji TY, Tang GT, Lei XY, Cao X, Xie ZZ. A novel salvianolic acid A analog with resveratrol structure and its antioxidant activities in vitro and in vivo. Drug Dev Res 2020; 82:108-114. [PMID: 32780460 DOI: 10.1002/ddr.21734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
E-DRS is a novel salvianolic acid A (SAA) analog, which was synthesized from resveratrol (RES) and methyldopate. Its structure is similar to that of SAA, but the 3',4'-dihydroxy-trans-stilbene group and the ester structure in SAA were replaced by the RES structure and an amine group, respectively. E-DRS scavenged free oxygen radicals effectively, including superoxide anion (ascorbic acid > E-DRS > SAA ≥ rutin > RES) and DPPH radical (rutin > E-DRS ≥ ascorbic acid > SAA > RES), and exhibited powerful total antioxidant capacity (ascorbic acid > E-DRS > SAA ≥ rutin > RES) in vitro. Furthermore, oral administration of E-DRS dose-dependently and significantly decreased CCl4 -induced oxidative stress in mice as indicated by the decreased content of hepatic malondialdehyde (MDA). In addition, oral administration of E-DRS also increased the content of nonenzymatic antioxidant glutathione (GSH) and the activity of antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) in the liver of mice. All these results demonstrated that E-DRS had good antioxidant activities both in vitro and in vivo, and could be a potential antioxidant agent after further optimization and evaluation.
Collapse
Affiliation(s)
- Jin-Mei Qiu
- Hunan Provincial Key Laboratory of Tumour Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| | - Chang-Feng Qin
- Hunan Provincial Key Laboratory of Tumour Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| | - Shen-Gen Wu
- Hunan Provincial Key Laboratory of Tumour Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| | - Tong-Ying Ji
- Hunan Provincial Key Laboratory of Tumour Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| | - Guo-Tao Tang
- Hunan Provincial Key Laboratory of Tumour Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| | - Xiao-Yong Lei
- Hunan Provincial Key Laboratory of Tumour Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| | - Xuan Cao
- Hunan Provincial Key Laboratory of Tumour Microenvironment Responsive Drug Research, University of South China, Hengyang, China
| | - Zhi-Zhong Xie
- Hunan Provincial Key Laboratory of Tumour Microenvironment Responsive Drug Research, University of South China, Hengyang, China.,Hunan Provincial Cooperative Innovation Centre for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
73
|
Khalil M, Khalifeh H, Baldini F, Serale N, Parodi A, Voci A, Vergani L, Daher A. Antitumor Activity of Ethanolic Extract from Thymbra Spicata L. aerial Parts: Effects on Cell Viability and Proliferation, Apoptosis Induction, STAT3, and NF-kB Signaling. Nutr Cancer 2020; 73:1193-1206. [PMID: 32696667 DOI: 10.1080/01635581.2020.1792517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Thyme-like plants including Thymbra spicata L. are widely used as food and folk medicinal remedies in the Mediterranean area. This study aimed to explore the in vitro antitumor potential of polyphenol-enriched extracts from aerial parts of T. spicata. The ethanolic extract significantly inhibited proliferation of different human tumor cell lines, without significant effects on non-neoplastic cells. A deeper investigation of the molecular mechanism sustaining the in vitro antitumor activity of the extract was carried on the human breast cancer cells MCF-7 in comparison with the normal breast cells MCF-10A. The effects on MCF-7 cells were associated with the following: (i) production of reactive oxygen species (ROS) and release of nitric oxide; (ii) apoptosis induction; and (iii) reduction in STAT3 and NF-kB phosphorylation. The ethanolic extract from T. spicata leaves might represent a novel therapeutic tool in combination with conventional chemotherapy to reduce the adverse side effects and drug resistance.
Collapse
Affiliation(s)
- Mohamad Khalil
- Laboratory Rammal Rammal (ATAC), Faculty of Sciences, Lebanese University, Beirut, Lebanon.,Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Hala Khalifeh
- Laboratory Rammal Rammal (ATAC), Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Francesca Baldini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Nadia Serale
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Alessia Parodi
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Ahmad Daher
- Laboratory Rammal Rammal (ATAC), Faculty of Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
74
|
Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 2020; 127:110136. [PMID: 32335299 DOI: 10.1016/j.biopha.2020.110136] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious central nervous system disorder caused by trauma that has gradually become a major challenge in clinical medical research. As an important branch of worldwide medical research, traditional Chinese medicine (TCM) is rapidly moving towards a path of reform and innovation. Therefore, this paper systematically reviews research related to existing TCM treatments for SCI, with the aims of identifying deficits and shortcomings within the field, and proposing feasible alternative prospects. METHODS All data and conclusions in this paper were obtained from articles published by peers in relevant fields. PubMed, SciFinder, Google Scholar, Web of Science, and CNKI databases were searched for relevant articles. Results regarding TCM for SCI were identified and retrieved, then manually classified and selected for inclusion in this review. RESULTS The literature search identified a total of 652 articles regarding TCM for SCI. Twenty-eight treatments (16 active ingredients, nine herbs, and three compound prescriptions) were selected from these articles; the treatments have been used for the prevention and treatment of SCI. In general, these treatments involved antioxidative, anti-inflammatory, neuroprotective, and/or antiapoptotic effects of TCM compounds. CONCLUSIONS This paper showed that TCM treatments can serve as promising auxiliary therapies for functional recovery of patients with SCI. These findings will contribute to the development of diversified treatments for SCI.
Collapse
Affiliation(s)
- Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Sheng Li
- Lanzhou First People's Hospital, Lanzhou, Gansu 730000, China
| | - Zhaoyang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Xuegong Fan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
75
|
Hydroglycerolic Solvent and Ultrasonication Pretreatment: A Green Blend for High-Efficiency Extraction of Salvia fruticosa Polyphenols. SUSTAINABILITY 2020. [DOI: 10.3390/su12124840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Salvia fruticosa Miller, also known as Cretan or Greek sage, is a medicinal plant with significant biological properties, which are largely ascribed to its polyphenolic composition, but there is to-date a scarcity of green and sustainable processes for efficient polyphenol extraction from this plant. The objective of this study was the implementation of an extraction process that would combine a green solvent based on glycerol, a biodiesel industry by-product, and ultrasonication pretreatment. Ultrasonication for 40 min followed by stirred-tank extraction was shown to provide significantly higher total polyphenol yield than mere stirred-tank extraction, while kinetics indicated 50 °C as the most favorable temperature, with the yield being 92 mg gallic acid equivalents (GAE) per g dry mass. Comparison of this method with a previously developed one that used methyl β-cyclodextrin revealed that the extracts obtained had similar antioxidant activity, and yield in major polyphenols including luteolin 7-O-glucuronide and rosmarinic acid was virtually equal. The current process is proposed as a sustainable and effective methodology for the generation of polyphenol-enriched extracts from S. fruticosa, which could be used as effective food antioxidants/antimicrobials and/or cosmetic constituents.
Collapse
|
76
|
Stefanescu R, Stanciu GD, Luca A, Paduraru L, Tamba BI. Secondary Metabolites from Plants Possessing Inhibitory Properties against Beta-Amyloid Aggregation as Revealed by Thioflavin-T Assay and Correlations with Investigations on Transgenic Mouse Models of Alzheimer's Disease. Biomolecules 2020; 10:E870. [PMID: 32517180 PMCID: PMC7355648 DOI: 10.3390/biom10060870] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder for which there is a continuous search of drugs able to reduce or stop the cognitive decline. Beta-amyloid peptides are composed of 40 and 42 amino acids and are considered a major cause of neuronal toxicity. They are prone to aggregation, yielding oligomers and fibrils through the inter-molecular binding between the amino acid sequences (17-42) of multiple amyloid-beta molecules. Additionally, amyloid deposition causes cerebral amyloid angiopathy. The present study aims to identify, in the existing literature, natural plant derived products possessing inhibitory properties against aggregation. The studies searched proved the anti-aggregating effects by the thioflavin T assay and through behavioral, biochemical, and histological analysis carried out upon administration of natural chemical compounds to transgenic mouse models of Alzheimer's disease. According to our present study results, fifteen secondary metabolites from plants were identified which presented both evidence coming from the thioflavin T assay and transgenic mouse models developing Alzheimer's disease and six additional metabolites were mentioned due to their inhibitory effects against fibrillogenesis. Among them, epigallocatechin-3-gallate, luteolin, myricetin, and silibinin were proven to lower the aggregation to less than 40%.
Collapse
Affiliation(s)
- Raluca Stefanescu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.S.); (A.L.); (B.-I.T.)
| | - Gabriela Dumitriṭa Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.S.); (A.L.); (B.-I.T.)
| | - Andrei Luca
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.S.); (A.L.); (B.-I.T.)
- Department of Pneumology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Luminita Paduraru
- Division Neonatology, Department Mother & Child Care, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Bogdan-Ionel Tamba
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.S.); (A.L.); (B.-I.T.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
77
|
High-Performance Green Extraction of Polyphenolic Antioxidants from Salvia fruticosa Using Cyclodextrins: Optimization, Kinetics, and Composition. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
S. fruticosa, collectively known as Cretan sage, is a medicinal plant to which a number of bioactivities have been attributed. In spite of its importance in nutrition and pharmacy, reports on the extraction of major polyphenols using sustainable processes are particularly limited. In this study, three common cyclodextrins, namely, methyl β-cyclodextrin (m-β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD), and β-cyclodextrin (β-CD), were tested as green boosters of aqueous extraction of polyphenols from aerial parts of S. fruticosa. To examine simultaneously important extraction parameters, including the concentration of cyclodextrins (CCD), pH, and liquid-to-solid ratio (RL/S), a Box–Behnken design was chosen, with three central points. Temperature effects on the extraction yield were also considered, by carrying out kinetics. The results showed that m-β-CD was the most effective extraction booster, providing total polyphenols yields that amounted to 98.39 mg gallic acid equivalents g−1 dry mass. The kinetic assay demonstrated that extraction was highly effective at 80 °C, increasing significantly polyphenol yield, as well as the ferric-reducing power and antiradical activity of the extracts. It was also proven that extraction with m-β-CD was the least energy-demanding process. Liquid chromatography-tandem mass spectrometry examination revealed that m-β-CD might possess higher affinity for luteolin 7-O-glucuronide extraction, but β-CD for rosmarinic acid extraction.
Collapse
|
78
|
Pineda-Ramírez N, Calzada F, Alquisiras-Burgos I, Medina-Campos ON, Pedraza-Chaverri J, Ortiz-Plata A, Pinzón Estrada E, Torres I, Aguilera P. Antioxidant Properties and Protective Effects of Some Species of the Annonaceae, Lamiaceae, and Geraniaceae Families against Neuronal Damage Induced by Excitotoxicity and Cerebral Ischemia. Antioxidants (Basel) 2020; 9:E253. [PMID: 32244955 PMCID: PMC7139819 DOI: 10.3390/antiox9030253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
This study aimed to compare the antioxidant activities of extracts obtained from three plant families and evaluate their therapeutic effect on strokes. Ethanol extracts were obtained from either the leaf or the aerial parts of plants of the families Annonaceae (Annona cherimola, A. diversifolia, A. muricata, A. purpurea, and A. reticulata), Lamiaceae (Salvia amaríssima and S. polystachya), and Geraniaceae (Geranium niveum and G. mexicanum). Extracts were analyzed in terms of hydroxyl radical (OH•), peroxyl radical (ROO•), and superoxide anion (O2•-). The efficiency of the extracts to prevent neuronal death induced by excitotoxicity was tested with the tetrazolium assay, the O2•- scavenging capacity was evaluated with the dihydroethidium dye, and the protective effect of the extracts with the highest antioxidant activity was tested on a stroke experimental model. The extracts' IC50 values (μg/mL) of scavenging varied from 98.9 to 155.04, 4.5 to 102.4, and 20.2 to 118.97 for OH•, ROO•, and O2•-, respectively. In the excitotoxicity model, Annonaceae extracts were highly cytotoxic while Lamiaceae and Geraniaceae reduced intracellular O2•- production and protect neurons against oxidative stress. Salvia polystachya reduced cerebral damage, as well as improved survival and behavior after ischemia. Our results encouraged the use of plant extracts as natural antioxidants to minimize neuronal injury following stroke.
Collapse
Affiliation(s)
- Narayana Pineda-Ramírez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, México CDMX 14269, Mexico; (N.P.-R.); (I.A.-B.)
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, 2 piso CORSE, Centro Médico Nacional Siglo XXI, IMSS, México CDMX 06725, Mexico;
| | - Iván Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, México CDMX 14269, Mexico; (N.P.-R.); (I.A.-B.)
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México CDMX 04510, Mexico; (O.N.M.-C.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México CDMX 04510, Mexico; (O.N.M.-C.); (J.P.-C.)
| | - Alma Ortiz-Plata
- Laboratorio de Neuropatología Experimental. Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, México CDMX 14269, Mexico;
| | - Enrique Pinzón Estrada
- Unidad del Bioterio, Facultad de Medicina, Universidad Nacional Autónoma de México, México CDMX 04510, Mexico; (E.P.E.); (I.T.)
| | - Ismael Torres
- Unidad del Bioterio, Facultad de Medicina, Universidad Nacional Autónoma de México, México CDMX 04510, Mexico; (E.P.E.); (I.T.)
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, México CDMX 14269, Mexico; (N.P.-R.); (I.A.-B.)
| |
Collapse
|
79
|
Zheng W, Wu J, Gu J, Weng H, Wang J, Wang T, Liang X, Cao L. Modular Characteristics and Mechanism of Action of Herbs for Endometriosis Treatment in Chinese Medicine: A Data Mining and Network Pharmacology-Based Identification. Front Pharmacol 2020; 11:147. [PMID: 32210799 PMCID: PMC7069061 DOI: 10.3389/fphar.2020.00147] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a common benign disease in women of reproductive age. It has been defined as a disorder characterized by inflammation, compromised immunity, hormone dependence, and neuroangiogenesis. Unfortunately, the mechanisms of endometriosis have not yet been fully elucidated, and available treatment methods are currently limited. The discovery of new therapeutic drugs and improvements in existing treatment schemes remain the focus of research initiatives. Chinese medicine can improve the symptoms associated with endometriosis. Many Chinese herbal medicines could exert antiendometriosis effects via comprehensive interactions with multiple targets. However, these interactions have not been defined. This study used association rule mining and systems pharmacology to discover a method by which potential antiendometriosis herbs can be investigated. We analyzed various combinations and mechanisms of action of medicinal herbs to establish molecular networks showing interactions with multiple targets. The results showed that endometriosis treatment in Chinese medicine is mainly based on methods of supplementation with blood-activating herbs and strengthening qi. Furthermore, we used network pharmacology to analyze the main herbs that facilitate the decoding of multiscale mechanisms of the herbal compounds. We found that Chinese medicine could affect the development of endometriosis by regulating inflammation, immunity, angiogenesis, and other clusters of processes identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The antiendometriosis effect of Chinese medicine occurs mainly through nervous system–associated pathways, such as the serotonergic synapse, the neurotrophin signaling pathway, and dopaminergic synapse, among others, to reduce pain. Chinese medicine could also regulate VEGF signaling, toll-like reporter signaling, NF-κB signaling, MAPK signaling, PI3K-Akt signaling, and the HIF-1 signaling pathway, among others. Synergies often exist in herb pairs and herbal prescriptions. In conclusion, we identified some important targets, target pairs, and regulatory networks, using bioinformatics and data mining. The combination of data mining and network pharmacology may offer an efficient method for drug discovery and development from herbal medicines.
Collapse
Affiliation(s)
- Weilin Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangyong Gu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Heng Weng
- Department of Big Medical Data, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of Gynecology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixing Cao
- Team of Application of Chinese Medicine in Perioperative Period, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
80
|
Wang H, Liu Z, Guan L, Li J, Chen S, Yu W, Lai M. LYW-6, a novel cryptotanshinone derived STAT3 targeting inhibitor, suppresses colorectal cancer growth and metastasis. Pharmacol Res 2020; 153:104661. [PMID: 31982491 DOI: 10.1016/j.phrs.2020.104661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/15/2019] [Accepted: 01/22/2020] [Indexed: 01/02/2023]
Abstract
The constitutive activation of signal transducer and activator of transcription 3(STAT3) is associated with aggressive development and metastasis in colorectal cancer (CRC), but STAT3-targeting drugs remain elusive in clinic. Here, structure-based strategy was used to remodel the natural compound cryptotanshinone into a more effective STAT3 inhibitor LYW-6. Using the Biolayer Interferometry assay, we observed that LYW-6 exhibited specific interactions with STAT3(KD = 6.6 ± 0.7 μM). Western blot analysis and electrophoretic mobility shift assays (EMSA) showed that LYW-6 inhibited the phosphorylation of STAT3 tyrosine 705 (Tyr-705) and had slight effects on STAT1 and STAT5 phosphorylation. Western blot analysis on the upstream kinases of STAT3 confirmed that the inhibitory mechanism on p-STAT3 was independent of upstream kinases. Further investigation demonstrated that LYW-6 downregulated the expression of downstream oncogenes to inhibit cell viability, cell cycle development, and potently increased cell apoptosis in human CRC cells. The invasion and metastasis linked signaling was also blocked by LYW-6 treatment. LYW-6 was found to reduce the metastasis foci in lung on tail-lung metastasis models. In addition, it was observed that LYW-6 markedly diminished STAT3 phosphorylation in tumor tissue and significantly inhibited tumor growth on xenograft models. Tumor development on chemically-induced colorectal cancer model also significantly inhibited by LYW-6 treatment. These findings provided adequate evidence that STAT3 inhibitor LYW-6 might be a potential candidate agent for CRC treatment.
Collapse
Affiliation(s)
- Huan Wang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, China
| | - Zhe Liu
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, China
| | - Lingnan Guan
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, China
| | - Jiankang Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, China
| | - Siyi Chen
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, China.
| | - Maode Lai
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, China; Department of Pathology, School of Medicine, Zhejiang University, China.
| |
Collapse
|
81
|
Zhou P, Hua F, Wang X, Huang JL. Therapeutic potential of IKK-β inhibitors from natural phenolics for inflammation in cardiovascular diseases. Inflammopharmacology 2020; 28:19-37. [PMID: 31894515 DOI: 10.1007/s10787-019-00680-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVDs) is a chronic disease with the highest morbidity and mortality in the world. Previous studies have suggested that preventing inflammation serves an efficient role in protection against cardiovascular diseases. Modulation of IKK-β activity can be used to treat and control CVDs associated with chronic inflammation, which targets the phosphorylation of IκB following the release of the RelA complex, and then translocates to the nucleus, eventually triggering the transcription of several genes that induce chemokines, cytokines, and adhesion molecules. Most importantly, the IκB kinase (IKK) complex is involved in transcriptional activation by phosphorylating the inhibitory molecule IkBα, enabling activation of NF-κB. Phenolic compounds possess cardioprotective potential that may be related to modulating inflammatory responses involved in CVDs. The SystemsDock analysis was used to explore whether 38 active compounds inhibit IKK-β activity based on literature. Docking results showed that the top docking score of three chemical compounds were icariin, salvianolic acid B, and plantainoside D in all compounds. Icariin, salvianolic acid B, and plantainoside D are the most promising IKKβ inhibitors. These phytochemicals could be helpful to find the lead compounds on designing and developing novel cardioprotective agents.
Collapse
Affiliation(s)
- Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.
| | - Fang Hua
- Pharmacy School, Anhui Xinhua University, Hefei, 230088, People's Republic of China.,Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xiang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China
| | - Jin-Ling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.
| |
Collapse
|
82
|
Wang J, Qi F, Wang Z, Zhang Z, Pan N, Huai L, Qu S, Zhao L. A review of traditional Chinese medicine for treatment of glioblastoma. Biosci Trends 2019; 13:476-487. [PMID: 31866614 DOI: 10.5582/bst.2019.01323] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignant intracranial tumor. Due to its high morbidity, high mortality, high recurrence rate, and low cure rate, it has brought great difficulty for treatment. Although the current treatment is multimodal, including surgical resection, radiotherapy, and chemotherapy, it does not significantly improve survival time. The dismal prognosis and inevitable recurrence as well as resistance to chemoradiotherapy may be related to its highly cellular heterogeneity and multiple subclonal populations. Traditional Chinese medicine has its own unique advantages in the prevention and treatment of it. A comprehensive literature search of anti-glioblastoma active ingredients and derivatives from traditional Chinese medicine was carried out in literature published in PubMed, Scopus, Web of Science Cochrane library, CNKI, Wanfang, and VIP database. Hence, this article systematically reviews experimental research progress of some traditional Chinese medicine in treatment of glioblastoma from two aspects: strengthening vital qi and eliminating pathogenic qi. Among, strengthening vital qi medicine includes panax ginseng, licorice, lycium barbarum, angelica sinensis; eliminating pathogenic medicine includes salvia miltiorrhiza bunge, scutellaria baicalensis, coptis rhizoma, thunder god vine, and sophora flavescens. We found that the same active ingredient can act on different signaling pathways, such as ginsenoside Rg3 inhibited proliferation and induced apoptosis via the AKT, MEK signal pathway. Hence, this multi-target, multi-level pathway may bring on a new dawn for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Jinjing Wang
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affili-ated to Shandong University, Ji'nan, China
| | - Zhixue Wang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affili-ated to Shandong University, Ji'nan, China
| | - Zhikun Zhang
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Ni Pan
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Lei Huai
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Shuyu Qu
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Lin Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affili-ated to Shandong University, Ji'nan, China
| |
Collapse
|
83
|
Xiong G, Deng Y, Cao Z, Liao X, Zhang J, Lu H. The hepatoprotective effects of Salvia plebeia R. Br. extract in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2019; 95:399-410. [PMID: 31654769 DOI: 10.1016/j.fsi.2019.10.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Salvia plebeia R. Br. is a traditional Chinese medicinal herb that has been widely used for the treatment of many inflammatory diseases such as hepatitis. However, the underlying molecular mechanism about the hepatoprotective effects of S. plebeia remains largely unknown. Here, we investigated the antioxidant activities and anti-inflammatory effects of ethanol extracts of S. plebeia (SPEE) in the zebrafish model. Firstly, we determined the chemical compositions of SPEE and identified three major constituents by using GC-MS analysis. After that, SPEE exhibited significantly antioxidant properties in the LPS-induced zebrafish embryos, and the enzyme activities of ROS, CAT and SOD were obviously inhibited in a dose-dependent manner. Secondly, SPEE greatly reduced fat vacuoles (HE staining), lipid accumulation (Oil O staining) and hepatocyte fibrosis (Gemori staining) in the thioacetamide (TAA)-induced hepatocyte injury of adult zebrafish. Meanwhile, the NO contents and lipid metabolism-related genes were substantially down-regulated after SPEE exposure. Thirdly, we used RNA-Seq analysis to identify the differentially expressed genes (DEGs) after SPEE exposure in adult zebrafish liver. The results showed that 1289 DEGs including 558 up-regulated and 731 down-regulated were identified between the TAA + SPEE and TAA groups. KEGG pathway and GO functional analysis revealed that steroid biosynthesis, oxidation-reduction and innate immunity were significantly enriched. Mechanistically, SPEE can considerably reduce the cell apoptosis of hepatocytes and promote the translocation of Nrf2 protein from the nucleus to the cytoplasm in TAA-induced zebrafish. Moreover, SPEE can modulate various inflammatory cytokines and immune genes both in the control and H2O2-stimulated conditions. The pro-inflammatory cytokines such as IL-1β and TNF-α was markedly up-regulated but the anti-inflammatory cytokines such as TGF-β was greatly down-regulated after SPEE treatment. In addition, some key genes in the TLR signaling were also activated in the H2O2-stimulated conditions. In summary, our results suggested that SPEE had an important role in the antioxidant and anti-inflammatory effects in zebrafish in the near future. Some of the components identified in this study may be served as potential sources of new hepatoprotective compounds for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Yunyun Deng
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Zigang Cao
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Xinjun Liao
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China.
| | - Huiqiang Lu
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China.
| |
Collapse
|
84
|
Jiang Y, Hu F, Li Q, Shen C, Yang J, Li M. Tanshinone IIA ameliorates the bleomycin-induced endothelial-to-mesenchymal transition via the Akt/mTOR/p70S6K pathway in a murine model of systemic sclerosis. Int Immunopharmacol 2019; 77:105968. [PMID: 31704290 DOI: 10.1016/j.intimp.2019.105968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/07/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune inflammatory and vascular disorder leading to progressive tissue fibrosis. Tanshinone IIA (Tan IIA) is a phytochemical extracted from the Chinese herb Salvia miltiorrhiza that exhibits diverse activities. In this study, we attempted to evaluate the potential impact of Tan IIA on the skin fibrosis-related endothelial-to-mesenchymal transition (EndoMT) and investigate the underlying molecular mechanisms. EndoMT-related indexes including morphological characteristics, functional changes, histological parameters, expression levels of extracellular matrix associated genes, and changes in the expression of related biomarkers in dermal fibrosis were assessed. Tan IIA had a strong anti-fibrotic effect through amelioration of skin thickness and collagen deposition. Moreover, Tan IIA partially reversed bleomycin-induced EndoMT both in vivo and in vitro. Additionally, Tan IIA mitigated the diminution of tube formation in endothelial cells induced by bleomycin. Furthermore, mechanistically, the activation of the Akt/mTOR/p70S6K pathway was found to be involved in bleomycin-treated SSc mouse model, which was alleviated by Tan IIA. In summary, these data suggest that Tan IIA alleviates SSc-related dermal fibrosis and EndoMT and that the Akt/mTOR/p70S6K signaling pathway is involved in this regulation, thus supporting the potential of Tan IIA as a disease-modifying candidate agent for treating the vascular damage of SSc.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Feifei Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Qiao Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Shen
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ming Li
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
85
|
Lin YS, Shen YC, Wu CY, Tsai YY, Yang YH, Lin YY, Kuan FC, Lu CN, Chang GH, Tsai MS, Hsu CM, Yeh RA, Yang PR, Lee IY, Shu LH, Cheng YC, Liu HT, Wu YH, Wu YH, Chang DC. Danshen Improves Survival of Patients With Breast Cancer and Dihydroisotanshinone I Induces Ferroptosis and Apoptosis of Breast Cancer Cells. Front Pharmacol 2019; 10:1226. [PMID: 31736748 PMCID: PMC6836808 DOI: 10.3389/fphar.2019.01226] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Danshen (salvia miltiorrhiza Bunge) is widely used in traditional Chinese medicine. However, it is definite clinical effort and mechanism on breast cancer is unclear. In our study, we used the real-world database to investigate in vivo protective effort of danshen in the breast cancer patients through using population-based data from the Taiwan National Health Insurance Research Database (NHIRD). In vitro, human breast cancer cells (MCF-7 cells and MDA-MB-231 cells) were used to investigate the effect and the underlying mechanism through XTT assay, flow cytometry, glutathione peroxidase (GPX) activity assay, GSH (reduced glutathione)/GSSG (oxidized glutathione), malondialdehyde (MDA), and western blot analysis. The in vivo effect was investigated through a xenograft nude mouse model. We found that dihydroisotanshinone I (DT), a pure compound present in danshen, can inhibit the growth of breast carcinoma cells, including MCF-7 cells and MDA-MB-231 cells. Moreover, DT induced apoptosis and ferroptosis in these breast cancer cells. DT also repressed the protein expression of GPX4 (Glutathione peroxidase 4). For in vivo study, DT treatment also significantly inhibited the final tumor volume without adverse effects in a xenograft nude mouse model. In conclusion, danshen has protective efforts in breast cancer patients, which could be attributed to DT through inducing apoptosis and ferroptosis of breast cancer cells.
Collapse
Affiliation(s)
- Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Yi-Chia Shen
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,School of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ying-Ying Tsai
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,School of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yin-Yin Lin
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Feng-Che Kuan
- Department of Hematology and Oncology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Nan Lu
- Division of Acupuncture and Chinese Traumatology, Department of TCM, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Geng-He Chang
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Center of Excellence for Chang Gung Research Datalink, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Shao Tsai
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Reming-Albert Yeh
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Pei-Rung Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ching Cheng
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Huei Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Heng Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - De-Ching Chang
- Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
86
|
Marrelli M, Grande F, Occhiuzzi MA, Maione F, Mascolo N, Conforti F. Cryptotanshinone and tanshinone IIA from Salvia milthorrhiza Bunge (Danshen) as a new class of potential pancreatic lipase inhibitors. Nat Prod Res 2019; 35:863-866. [PMID: 31104489 DOI: 10.1080/14786419.2019.1607337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Salvia miltiorrhiza Bunge extract was investigated for the first time for its inhibitory activity against pancreatic lipase (PL), an important enzyme involved in the digestion of dietary fats. It showed a concentration-dependent activity with an IC50 value of 3.54 ± 0.22 mg/mL. Two compounds, cryptotanshinone and tanshinone IIA (the major lipophilic constituents of S. miltiorrhiza), have been selected as potential ligands of PL. Cryptotanshinone showed a higher lipase inhibitory activity (IC50 = 6.86 ± 0.43 µM) compared to the parent tanshinone IIA. Molecular docking studies were undertaken to establish whether a direct interaction of the principal constituents of the S. miltiorrhiza extract with the human pancreatic lipase could be evoked. All these findings provided new insights into the understanding of the interactions between natural constituents of S. miltiorrhiza extract and PL, also suggesting that cryptotanshinone could be used as lead compound for the development of efficacious PL inhibitors.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Fedora Grande
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Francesco Maione
- Department of Pharmacy School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Nicola Mascolo
- Department of Pharmacy School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Filomena Conforti
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
87
|
In Vitro Anti-Inflammatory Effect of Salvia sagittata Ethanolic Extract on Primary Cultures of Porcine Aortic Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6829173. [PMID: 31210845 PMCID: PMC6532285 DOI: 10.1155/2019/6829173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 12/26/2022]
Abstract
The aim of the present research was to study the effects of an ethanolic extract of Salvia sagittata Ruiz & Pav (SSEE), an endemic Ecuadorian plant traditionally used to treat inflammation and different intestinal affections, on primary cultures of porcine aortic endothelial cells (pAECs). pAECs were cultured in the presence of different concentrations (1-200 μg/mL) of SSEE for 24 h, and cytotoxicity was evaluated by the MTT assay. SSEE did not negatively affect cellular viability at any concentration tested. Cell cycle was analyzed and no significant change was observed. Then, the anti-inflammatory effects of SSEE on pAECs were analyzed using a lipopolysaccharide (LPS) as the inflammatory stimulus. Different markers involved in the inflammatory process, such as cytokines and protective molecules, were evaluated by real-time quantitative PCR and Western blot. SSEE showed the ability to restore pAEC physiological conditions reducing interleukin-6 and increasing Heme Oxygenase-1 protein levels. The phytochemical composition of SSEE was also evaluated via HPLC-DAD and spectrophotometric assays. The presence of different phenolic acids and flavonoids was revealed, with rosmarinic acid as the most abundant component. SSEE possesses an interesting antioxidant activity, as assessed through both the Oxygen Radical Absorbance Capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. In conclusion, results suggest that SSEE is endowed with an in vitro anti-inflammatory effect. This represents the initial step in finding a possible scientific support for the traditional therapeutic use of this plant.
Collapse
|
88
|
Effect of Cryptotanshinone on Staphylococcus epidermidis Biofilm Formation Under In Vitro Conditions. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.83922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
89
|
Jiang Z, Gao W, Huang L. Tanshinones, Critical Pharmacological Components in Salvia miltiorrhiza. Front Pharmacol 2019; 10:202. [PMID: 30923500 PMCID: PMC6426754 DOI: 10.3389/fphar.2019.00202] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/18/2019] [Indexed: 01/21/2023] Open
Abstract
Salvia miltiorrhiza Bunge, a member of the Lamiaceae family, is valued in traditional Chinese Medicine. Its dried root (named Danshen) has been used for hundreds of years, primarily for the treatment of cardiovascular and cerebrovascular diseases. Tanshinones are the main active ingredients in S. miltiorrhiza and exhibit significant pharmacological activities, such as antioxidant activity, anti-inflammatory activity, cardiovascular effects, and antitumor activity. Danshen dripping pill of Tianshili is an effective drug widely used in the clinical treatment of cardiovascular diseases. With the increasing demand for clinical drugs, the traditional method for extracting and separating tanshinones from medicinal plants is insufficient. Therefore, in combination with synthetic biological methods and strategies, it is necessary to analyze the biosynthetic pathway of tanshinones and construct high-yield functional bacteria to obtain tanshinones. Moreover, the biosynthesis of tanshinones has been studied for more than two decades but remains to be completely elucidated. This review will systematically present the composition, extraction and separation, pharmacological activities and biosynthesis of tanshinones from S. miltiorrhiza, with the intent to provide references for studies on other terpenoid bioactive components of traditional Chinese medicines and to provide new research strategies for the sustainable development of traditional Chinese medicine resources.
Collapse
Affiliation(s)
- Zhouqian Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
90
|
Ni L, Zhang F, Han M, Zhang L, Luan S, Li W, Deng H, Lan Z, Wu Z, Luo X, Mleczko L. Qualitative analysis of the roots of Salvia miltiorrhiza and Salvia yunnanensis based on NIR, UHPLC and LC-MS-MS. J Pharm Biomed Anal 2019; 170:295-304. [PMID: 30951995 DOI: 10.1016/j.jpba.2019.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022]
Abstract
Near infrared spectroscopy (NIR) was applied to discriminate the roots of salvia miltiorhiza Bunge (Danshen for short) and Salvia yunnanensis C. H. Wright (Zidanshen for short) by means of principal component analysis (PCA), improved and simplified K nearest neighbors (IS-KNN). Furthermore, an ultra-high performance liquid chromatographic (UHPLC) coupled with photodiode-array detector was developed for building fingerprints of lipophilic components of Danshen and Zidanshen, respectively. Basing on NIR information, both PCA and IS-KNN method classified the two kinds of Chinese medical herbs with 100% accuracy. The chromatographic fingerprints of the lipophilic components of Danshen and Zidanshen have 10 and 12 common peaks, respectively. Liquid chromatography coupled with mass spectroscopy (LC-MS-MS) was applied to identify these peaks. Among these, three small peaks in the fingerprints of Zidanshen are not found in Danshen, one of which was identified as α-lapachone, and the other two compounds were not yet identified; a small peak after tanshinone IIA in the fingerprints of Danshen was not found in Zidanshen, which was identified as miltirone. The two herbs have 10 common lipophilic components. The similarity between the two reference chromatograms of Zidanshen and Danshen is 0.902, but the mean similaritie between Zidanshen (or Danshen) fingerprints and its own reference chromatogram is 0.973 (or 0.976). The contents of main lipophilic components are significantly lower in Zidanshen than in Danshen (P < 0.01 or P < 0.05). The results indicate that the two Chinese medical materials are not only different in NIR spectra, but also different in species and quantities of lipophilic components. NIR spectra analysis can identify Danshen and Zidanshen rapidly and accurately. UHPLC coupled with MS analysis demonstrates the detail differences between the two herbs both in species and contents of their lipophilic components.
Collapse
Affiliation(s)
- Lijun Ni
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fangfang Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingyue Han
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liguo Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shaorong Luan
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Wei Li
- Bayer Healthcare Co. Ltd., Shanghai, 200127, China
| | - Haixing Deng
- Dihon Pharmaceutical Group. Co., Ltd., Kunming, 650000, China
| | - Zhuhui Lan
- Bayer (China) Limited, Shanghai, 200127, China
| | | | | | | |
Collapse
|
91
|
Wang J, Xu J, Gong X, Yang M, Zhang C, Li M. Biosynthesis, Chemistry, and Pharmacology of Polyphenols from Chinese Salvia Species: A Review. Molecules 2019; 24:E155. [PMID: 30609767 PMCID: PMC6337547 DOI: 10.3390/molecules24010155] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 12/30/2022] Open
Abstract
Salvia species find widespread application in food and pharmaceutical products owing to their large polyphenol content. The main polyphenols in Chinese Salvia species are phenolic acids and flavonoids, which exhibit anti-oxygenation, anti-ischemia-reperfusion injury, anti-thrombosis, anti-tumour, and other therapeutic effects. However, there are few peer-reviewed studies on polyphenols in Chinese Salvia species, especially flavonoids. This review is a systematic, comprehensive collation of available information on the biosynthesis, chemistry, and pharmacology of Chinese Salvia species. We believe that our study makes a significant contribution to the literature because this review provides a detailed literary resource on the currently available information on various polyphenolic components of Chinese Salvia species, including their bioactivities and structures. In addition, the study provides information that would encourage further investigation of this plant material as a natural resource with potential for a broad range of applications in various industries, such as the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Jie Wang
- Inner Mongolia Research Center of Characteristic Medicinal Plants Cultivation and Protection Engineering Technology, Baotou Medical College, Baotou 014060, Inner Mongolia, China.
| | - Jianping Xu
- Inner Mongolia Research Center of Characteristic Medicinal Plants Cultivation and Protection Engineering Technology, Baotou Medical College, Baotou 014060, Inner Mongolia, China.
| | - Xue Gong
- Inner Mongolia Research Center of Characteristic Medicinal Plants Cultivation and Protection Engineering Technology, Baotou Medical College, Baotou 014060, Inner Mongolia, China.
| | - Min Yang
- Inner Mongolia Research Center of Characteristic Medicinal Plants Cultivation and Protection Engineering Technology, Baotou Medical College, Baotou 014060, Inner Mongolia, China.
| | - Chunhong Zhang
- Inner Mongolia Research Center of Characteristic Medicinal Plants Cultivation and Protection Engineering Technology, Baotou Medical College, Baotou 014060, Inner Mongolia, China.
| | - Minhui Li
- Inner Mongolia Research Center of Characteristic Medicinal Plants Cultivation and Protection Engineering Technology, Baotou Medical College, Baotou 014060, Inner Mongolia, China.
- Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, Inner Mongolia, China.
| |
Collapse
|