51
|
Kamble SH, Berthold EC, King TI, Raju Kanumuri SR, Popa R, Herting JR, León F, Sharma A, McMahon LR, Avery BA, McCurdy CR. Pharmacokinetics of Eleven Kratom Alkaloids Following an Oral Dose of Either Traditional or Commercial Kratom Products in Rats. JOURNAL OF NATURAL PRODUCTS 2021; 84:1104-1112. [PMID: 33620222 PMCID: PMC8694001 DOI: 10.1021/acs.jnatprod.0c01163] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Kratom, Mitragyna speciosa Korth., is being widely consumed in the United States for pain management and the reduction of opioid withdrawal symptoms. The central nervous system (CNS) active alkaloids of kratom, including mitragynine, 7-hydroxymitragynine, and numerous additional compounds, are believed to derive their effects through opioid receptor activity. There is no literature describing the systemic exposure of many of these alkaloids after the consumption of kratom. Therefore, we have developed and validated a bioanalytical method for the simultaneous quantitation of 11 kratom alkaloids (mitragynine, 7-hydroxymitragynine, corynantheidine, speciogynine, speciociliatine, paynantheine, corynoxine, corynoxine-B, mitraphylline, ajmalicine, and isospeciofoline) in rat plasma. The validated method was used to analyze oral pharmacokinetic study samples of lyophilized kratom tea (LKT) and a marketed product, OPMS liquid shot, in rats. Among the 11 alkaloids, only mitragynine, 7-hydroxymitragynine, speciociliatine, and corynantheidine showed systemic exposure 8 h postdose, and the dose-normalized systemic exposure of these four alkaloids was higher (1.6-2.4-fold) following the administration of the commercial OPMS liquid. Paynantheine and speciogynine levels were quantifiable up to 1 h postdose, whereas none of the other alkaloids were detected. In summary, the method was successfully applied to quantify the exposure of individual kratom alkaloids after an oral dose of traditional or commercial products. This information will contribute to understanding the role of each alkaloid in the overall pharmacology of kratom and elucidating the pharmacokinetic differences between traditional and commercial kratom products.
Collapse
Affiliation(s)
- Shyam H Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Tamara I King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Siva Rama Raju Kanumuri
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Raluca Popa
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Julius R Herting
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Bonnie A Avery
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
52
|
Domnic G, Narayanan S, Mohana-Kumaran N, Singh D. Kratom (Mitragyna speciosa Korth.) an overlooked medicinal plant in Malaysia. JOURNAL OF SUBSTANCE USE 2021. [DOI: 10.1080/14659891.2021.1885515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gregory Domnic
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Suresh Narayanan
- School of Social Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
53
|
Sharma A, McCurdy CR. Assessing the therapeutic potential and toxicity of Mitragyna speciosa in opioid use disorder. Expert Opin Drug Metab Toxicol 2020; 17:255-257. [PMID: 33213215 DOI: 10.1080/17425255.2021.1853706] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
54
|
Japarin RA, Yusoff NH, Hassan Z, Müller CP, Harun N. Cross-reinstatement of mitragynine and morphine place preference in rats. Behav Brain Res 2020; 399:113021. [PMID: 33227244 DOI: 10.1016/j.bbr.2020.113021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023]
Abstract
Kratom is a medicinal plant that exhibits promising results as an opiate substitute. However, there is little information regarding the abuse profile of its main psychoactive constituent, mitragynine (MG), particularly in relapse to drug abuse. Using the place conditioning procedure as a model of relapse, this study aims to evaluate the ability of MG to induce conditioned place preference (CPP) reinstatement in rats. To evaluate the cross-reinstatement effects, MG and morphine were injected to rats that previously extinguished a morphine- or MG-induced CPP. Following a CPP acquisition induced by either MG (10 and 30 mg/kg, i.p.) or morphine (10 mg/kg, i.p.), rats were subjected to repeated CPP extinction sessions. A low dose priming injection of MG or morphine produced a reinstatement of the previously extinguished CPP. In the second experiment of this study, a priming injection of morphine (1, 3 and 10 mg/kg, i.p.) dose-dependently reinstated an MG-induced CPP. Likewise, a priming injection of MG (3, 10 and 30 mg/kg, i.p.) was able to dose-dependently reinstate a morphine-induced CPP. The present study demonstrates a cross-reinstatement effect between MG and morphine, thereby suggesting a similar interaction in their rewarding motivational properties. The findings from this study also suggesting that a priming exposure to kratom and an opioid may cause relapse for a previously abused drug.
Collapse
Affiliation(s)
- Rima Atria Japarin
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Nurul Hasnida Yusoff
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
55
|
Singh D, Narayanan S, Abdullah MFIL, Vicknasingam B. Effects of kratom ( Mitragyna speciosa Korth.) in reducing risk-behaviors among a small sample of HIV positive opiate users in Malaysia. J Ethn Subst Abuse 2020; 21:1-11. [PMID: 33190622 DOI: 10.1080/15332640.2020.1845899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Out-of-treatment HIV positive opiate users often engage in risky injecting and sexual behaviors. We sought the self-reported experiences on whether or not kratom (Mitragyna speciosa Korth.) use was associated with a reduction in HIV risk behaviors among them. A convenience sample consisting of thirty-two HIV positive opiate users participated in the study. Of this, three-fifths (n = 20/32) used kratom to suppress opiate withdrawal, increase energy, as a heroin substitute, to reduce heroin dependence and self-treat psychological problems. More than one-third (38%) in the sample claimed that kratom use reduced their risky injecting and sexual behaviors. Given the small sample size, the perceived association between kratom use and the reduction in HIV risk behaviors could not be established more convincingly. However, the findings provide the basis for a broader-based study to evaluate the potential of kratom in curtailing HIV risk behaviors among HIV positive opiate users.
Collapse
Affiliation(s)
- Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Suresh Narayanan
- School of Social Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | | | | |
Collapse
|
56
|
Wilson LL, Harris HM, Eans SO, Brice-Tutt AC, Cirino TJ, Stacy HM, Simons CA, León F, Sharma A, Boyer EW, Avery BA, McLaughlin JP, McCurdy CR. Lyophilized Kratom Tea as a Therapeutic Option for Opioid Dependence. Drug Alcohol Depend 2020; 216:108310. [PMID: 33017752 DOI: 10.1016/j.drugalcdep.2020.108310] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Made as a tea, the Thai traditional drug "kratom" reportedly possesses pharmacological actions that include both a coca-like stimulant effect and opium-like depressant effect. Kratom has been used as a substitute for opium in physically-dependent subjects. The objective of this study was to evaluate the antinociception, somatic and physical dependence produced by kratom tea, and then assess if the tea ameliorated withdrawal in opioid physically-dependent subjects. METHODS Lyophilized kratom tea (LKT) was evaluated in C57BL/6J and opioid receptor knockout mice after oral administration. Antinociceptive activity was measured in the 55 °C warm-water tail-withdrawal assay. Potential locomotor impairment, respiratory depression and locomotor hyperlocomotion, and place preference induced by oral LKT were assessed in the rotarod, Comprehensive Lab Animal Monitoring System, and conditioned place preference assays, respectively. Naloxone-precipitated withdrawal was used to determine potential physical dependence in mice repeatedly treated with saline or escalating doses of morphine or LKT, and LKT amelioration of morphine withdrawal. Data were analyzed using one- and two-way ANOVA. RESULTS Oral administration of LKT resulted in dose-dependent antinociception (≥1 g/kg, p.o.) absent in mice lacking the mu-opioid receptor (MOR) and reduced in mice lacking the kappa-opioid receptor. These doses of LKT did not alter coordinated locomotion or induce conditioned place preference, and only briefly reduced respiration. Repeated administration of LKT did not produce physical dependence, but significantly decreased naloxone-precipitated withdrawal in morphine dependent mice. CONCLUSIONS The present study confirms the MOR agonist activity and therapeutic effect of LKT for the treatment of pain and opioid physical dependence.
Collapse
Affiliation(s)
- Lisa L Wilson
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Hannah M Harris
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Ariana C Brice-Tutt
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Thomas J Cirino
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Heather M Stacy
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Chloe A Simons
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States
| | - Francisco León
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, United States
| | - Edward W Boyer
- Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bonnie A Avery
- Department of Pharmaceutics, University of Florida, Gainesville, FL, United States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States.
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
57
|
Maxwell EA, King TI, Kamble SH, Raju KSR, Berthold EC, León F, Avery BA, McMahon LR, McCurdy CR, Sharma A. Pharmacokinetics and Safety of Mitragynine in Beagle Dogs. PLANTA MEDICA 2020; 86:1278-1285. [PMID: 32693425 PMCID: PMC7907416 DOI: 10.1055/a-1212-5475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitragynine is the most abundant psychoactive alkaloid derived from the leaves of Mitragyna speciosa (kratom), a tropical plant indigenous to regions of Southeast Asia. Mitragynine displays a moderate affinity to opioid receptors, and kratom is often self-prescribed to treat pain and/or opioid addiction. The purpose of this study was to investigate the safety and pharmacokinetic properties of mitragynine in the dog. Single dose oral (5 mg/kg) and intravenous (0.1 mg/kg) pharmacokinetic studies of mitragynine were performed in female beagle dogs. The plasma concentrations of mitragynine were measured using ultra-performance liquid chromatography coupled with a tandem mass spectrometer, and the pharmacokinetic properties were analyzed using non-compartmental analysis. Following intravenous administration, mitragynine showed a large volume of distribution (Vd, 6.3 ± 0.6 L/kg) and high clearance (Cl, 1.8 ± 0.4 L/h/kg). Following oral mitragynine dosing, first peak plasma (Cmax, 278.0 ± 47.4 ng/mL) concentrations were observed within 0.5 h. A potent mu-opioid receptor agonist and active metabolite of mitragynine, 7-hydroxymitragynine, was also observed with a Cmax of 31.5 ± 3.3 ng/mL and a Tmax of 1.7 ± 0.6 h in orally dosed dogs while its plasma concentrations were below the lower limit of quantification (1 ng/mL) for the intravenous study. The absolute oral bioavailability of mitragynine was 69.6%. Administration of mitragynine was well tolerated, although mild sedation and anxiolytic effects were observed. These results provide the first detailed pharmacokinetic information for mitragynine in a non-rodent species (the dog) and therefore also provide significant information for allometric scaling and dose predictions when designing clinical studies.
Collapse
Affiliation(s)
- Elizabeth A. Maxwell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Tamara I. King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Shyam H. Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Kanumuri Siva Rama Raju
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Erin C. Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Bonnie A. Avery
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Lance R. McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christopher R. McCurdy
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
58
|
Müller E, Hillemacher T, Müller CP. Kratom instrumentalization for severe pain self-treatment resulting in addiction - A case report of acute and chronic subjective effects. Heliyon 2020; 6:e04507. [PMID: 32715144 PMCID: PMC7378692 DOI: 10.1016/j.heliyon.2020.e04507] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Kratom is a Southeast Asian plant, which is widely used in this region, and making an increasing appearance in Europe and the US. Case report We present the case of a 26-year-old man in Substitol-assisted treatment of excessive Kratom and Tilidin use expressing the wish for a drug-free management of a chronic pain condition. After an accidental calcaneus impression fracture, the patient was suffering from severe chronic pain and anxiety of further accidents. This was managed initially with Tilidin. Resulting from the wish to self-manage the pain condition in a way that permitted continuation of a job, the patient searched for a ‘natural’ treatment alternative obtained from an Internet vendor. He successfully instrumentalized Kratom for 3 years with daily consumption intermixed with occasional Tilidin for pain management. However, the dose of Kratom was increased considerably up to a level of effect reversal, when no analgesic and behaviorally activating effects occurred any more, but only intense drowsiness. The patient was treatment seeking and subsequently detoxified from Kratom and Tilidin. Pain management was shifted to retarded morphine. Conclusion Kratom instrumentalization for pain management might appear to be more problematic for addiction development than when its use is established for other consumption motives.
Collapse
Affiliation(s)
- Elisabeth Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Paracelsus Medical Private University, Prof.-Ernst-Nathan-Str. 1, 90419, Nürnberg, Germany
| | - Thomas Hillemacher
- Department of Psychiatry and Psychotherapy, University Clinic, Paracelsus Medical Private University, Prof.-Ernst-Nathan-Str. 1, 90419, Nürnberg, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW To inform readers about the increasingly popular Western dietary supplement, kratom (Mitragyna speciosa) and how the products are available in the Western world compared with traditional Southeast Asian use. Kratom has been traditionally used for increasing stamina of outdoor laborers (farmers), mood enhancement, pain, and opium addiction. Interestingly, kratom has been reported to have a paradoxical effect in that stimulant feelings, and sedative feelings can be obtained depending on the amount utilized. There are several biologically active alkaloids present in kratom. RECENT FINDINGS Recent studies have been focused on the interactions of mitragynine, the most abundant alkaloid, and opioid-like effects. This has been driven by the harm that kratom products have produced in the Western world, in stark contrast to the lack of harm in Southeast Asian traditional use over centuries. Many users in the Western world ingest kratom for mood enhancement and/or to ween themselves from prescription or illicit opioids. Highly concentrated products and recreational use and misuse have resulted in individuals pushing doses to levels that have not been imagined or ever studied in animal, let alone humans. SUMMARY Kratom, as a preparation and how it is utilized is different around the world.
Collapse
|