51
|
Álvarez-López V, Prieto-Fernández A, Janssen J, Herzig R, Vangronsveld J, Kidd PS. Inoculation methods using Rhodococcus erythropolis strain P30 affects bacterial assisted phytoextraction capacity of Nicotiana tabacum. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:406-15. [PMID: 26552496 DOI: 10.1080/15226514.2015.1109600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study different bacterial inoculation methods were tested for tobacco plants growing in a mine-soil contaminated with Pb, Zn, and Cd. The inoculation methods evaluated were: seed inoculation, soil inoculation, dual soil inoculation event, and seed+soil inoculation. Each inoculum was added at two bacterial densities (10(6) CFUs mL(-1) and 10(8) CFUs mL(-1)). The objectives were to evaluate whether or not the mode of inoculation or the number of applied microorganisms influences plant response. The most pronounced bacterial-induced effect was found for biomass production, and the soil inoculation treatment (using 10(6) CFUs mL(-1)) led to the highest increase in shoot dry weight yield (up to 45%). Bacterial-induced effects on shoot metal concentrations were less pronounced; although a positive effect was found on shoot Pb concentration when using 10(8) CFUs mL(-1) in the soil inoculation (29% increase) and in the seed+soil inoculation (34% increase). Also shoot Zn concentration increased by 24% after seed inoculation with 10(6) CFUs mL(-1). The best effects on the total metal yield were not correlated with an increasing number of inoculated bacteria. In fact the best results were found after a single soil inoculation using the lower cellular density of 10(6) CFUs mL(-1).
Collapse
Affiliation(s)
- V Álvarez-López
- a Instituto de Investigaciones Agrobiológicas de Galicia, CSIC , Santiago de Compostela , Spain
| | - A Prieto-Fernández
- a Instituto de Investigaciones Agrobiológicas de Galicia, CSIC , Santiago de Compostela , Spain
| | - J Janssen
- b Hasselt University, Centre for Environmental Sciences , Diepenbeek , Belgium
| | - R Herzig
- c Phytotech Foundation and AGB , Bern , Switzerland
| | - J Vangronsveld
- b Hasselt University, Centre for Environmental Sciences , Diepenbeek , Belgium
| | - P S Kidd
- a Instituto de Investigaciones Agrobiológicas de Galicia, CSIC , Santiago de Compostela , Spain
| |
Collapse
|
52
|
Revealing crosstalk of plant and fungi in the symbiotic roots of sewage-cleaning Eichhornia crassipes using direct de novo metatranscriptomic analysis. Sci Rep 2015; 5:15407. [PMID: 26472343 PMCID: PMC4607945 DOI: 10.1038/srep15407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023] Open
Abstract
Cultivation and environmental changes can induce development of novel phenotypes in plants. For example, the root morphology of cultivated purple root Eichhornia crassipes differs remarkably from normal Eichhornia crassipes and also shows an enhanced ability to absorb heavy metal from groundwater. However, the changes in gene expression associated with these processes are unknown because of the lack of information on its large and unsequenced genome and its complex plant-rhizosphere symbiotic system. To investigate these gene expression changes, we applied a new strategy, direct de novo metatranscriptome analysis. Using this approach, we assembled the metatranscriptome of the entire rhizosphere and identified species-specific differentially expressed genes (DEGs) via hyper-accurate algorithms, showing a polarized plant/fungus distribution: the plant genes were responsible for morphological changes to the root system, offering a greater volume and surface area that hosts more fungi; while genes associated with heavy metal response in the fungus Fusarium were upregulated more than 3600-fold. These results suggested a distinct and synergistic functional response by the plant and fungal transcriptomes, indicating significant plant/fungal crosstalk during environmental changes. This study demonstrates that the metatranscriptomic approach adopted here offers a cost-efficient strategy to study symbiosis systems without the need for a priori genomic knowledge.
Collapse
|
53
|
Kolbas A, Kidd P, Guinberteau J, Jaunatre R, Herzig R, Mench M. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5370-5382. [PMID: 25561255 DOI: 10.1007/s11356-014-4006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Endophytic bacteria from roots and crude seed extracts of a Cu-tolerant population of Agrostis capillaris were inoculated to a sunflower metal-tolerant mutant line, and their influence on Cu tolerance and phytoextraction was assessed using a Cu-contaminated soil series. Ten endophytic bacterial strains isolated from surface-sterilized A. capillaris roots were mixed to prepare the root endophyte inoculant (RE). In parallel, surface-sterilized seeds of A. capillaris were crushed in MgSO4 to prepare a crude seed extract containing seed endophytes (SE). An aliquot of this seed extract was filtered at 0.2 μm to obtain a bacterial cell-free seed extract (SEF). After surface sterilization, germinated sunflower seeds were separately treated with one of five modalities: no treatment (C), immersion in MgSO4 (CMg) or SEF solutions and inoculation with RE or SE. All plants were cultivated on a Cu-contaminated soil series (13-1020 mg Cu kg(-1)). Cultivable RE strains were mostly members of the Pseudomonas genera, and one strain was closely related to Labrys sp. The cultivable SE strains belonged mainly to the Bacillus genera and some members of the Rhodococcus genera. The treatment effects depended on the soil Cu concentration. Both SE and SEF plants had a higher Cu tolerance in the 13-517 mg Cu kg(-1) soil range as reflected by increased shoot and root DW yields compared to control plants. This was accompanied by a slight decrease in shoot Cu concentration and increase in root Cu concentration. Shoot and root DW yields were more promoted by SE than SEF in the 13-114 mg Cu kg(-1) soil range, which could reflect the influence of seed-located bacterial endophytes. At intermediate soil Cu (416-818 mg Cu kg(-1) soil), the RE and CMg plants had lower shoot Cu concentrations than the control, SE and SEF plants. At high total soil Cu (617-1020 mg Cu kg(-1)), root DW yield of RE plants slightly increased and their root Cu concentration rose by up to 1.9-fold. In terms of phytoextraction efficiency, shoot Cu removal was increased for sunflower plants inoculated with crude and bacterial cell-free seed extracts by 1.3- to 2.2-fold in the 13-416 mg Cu kg(-1) soil range. Such increase was mainly driven by an enhanced shoot DW yield. The number and distribution of endophytic bacteria in the harvested sunflower tissues must be further examined.
Collapse
Affiliation(s)
- Aliaksandr Kolbas
- UMR BIOGECO INRA 1202, Ecology of Communities, University of Bordeaux, Bât B2, allée Geoffroy St-Hilaire, CS50023, 33615, Pessac cedex, France,
| | | | | | | | | | | |
Collapse
|
54
|
Guo L, Cutright TJ. Remediation of AMD Contaminated Soil by Two Types of Reeds. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:391-403. [PMID: 25409253 DOI: 10.1080/15226514.2014.910170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Acid mine drainage (AMD) adversely impacts many regions in the world. The interactions among citric acid (CA), rhizosphere bacteria and metal uptake in different types of Phragmites australis cultured in spiked AMD contaminated soil were investigated. Compared with non-contaminated reeds cultured under the same conditions, wild reeds harvested from a contaminated site accumulated more metals into tissues. Rhizosphere iron oxidizing bacteria (Fe(II)OB) enhanced the development of Fe plaque but had no significant impact on the formation of Mn and Al plaque on the root surface of either reeds. Plaque may restrain the accumulation of Fe and Mn into tissues of reeds. CA inhibited the growth of Fe(II)OB, reduced the formation of metal plaque and significantly elevated metal accumulations into both underground and aboveground biomass of reeds. The concentrations of Fe, Al and Mn were higher in belowground organs than aboveground tissues. The roots contained 0.28±0.01 mg/g Mn, 3.09±0.51 mg/g Al, 94.47±5.75 mg/g Fe, while the stems accumulated 0.19±0.01 mg/g Mn, 1.34±0.02 mg/g Al, 10.32±0.60 mg/g Fe in wild reeds cultured in soil added with 33,616 ppm CA. Further field investigations may be required to study the effect of CA to enhance phytoremediation of metals from real AMD contaminated sites.
Collapse
Affiliation(s)
- Lin Guo
- a Department of Civil Engineering , The University of Akron , Akron , Ohio , USA
| | | |
Collapse
|
55
|
Ma Y, Oliveira RS, Wu L, Luo Y, Rajkumar M, Rocha I, Freitas H. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:931-44. [PMID: 26167758 DOI: 10.1080/15287394.2015.1051205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils.
Collapse
Affiliation(s)
- Ying Ma
- a Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing , China
| | | | | | | | | | | | | |
Collapse
|
56
|
Visioli G, Vamerali T, Mattarozzi M, Dramis L, Sanangelantoni AM. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens. FRONTIERS IN PLANT SCIENCE 2015; 6:638. [PMID: 26322074 PMCID: PMC4536374 DOI: 10.3389/fpls.2015.00638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/31/2015] [Indexed: 05/04/2023]
Abstract
This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM) and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffective in enhancing Ni translocation and growth of N. caerulescens in serpentine soil, except for specific strains Ncr-1 and Ncr-8, belonging to the Arthrobacter and Microbacterium genera, which showed the highest indole acetic acid production and 1-aminocyclopropane-1-carboxylic acid-deaminase activity. Ncr-1 and Ncr-8 co-inoculation was even more efficient in promoting plant growth, soil Ni removal, and translocation of Ni, together with that of Fe, Co, and Cu. Bacteria of both strains densely colonized the root surfaces and intercellular spaces of leaf epidermal tissue. These two bacterial strains also turned out to stimulate root length, shoot biomass, and Ni uptake in Arabidopsis thaliana grown in MS agar medium supplemented with Ni. It is concluded that adaptation of N. caerulescens in highly Ni-contaminated serpentine soil can be enhanced by an integrated community of bacterial endophytes rather than by single strains; of the former, Arthrobacter and Microbacterium may be useful candidates for future phytoremediation trials in multiple metal-contaminated sites, with possible extension to non-hyperaccumulator plants.
Collapse
Affiliation(s)
- Giovanna Visioli
- Department of Life Sciences, University of ParmaParma, Italy
- *Correspondence: Giovanna Visioli, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy,
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaPadova, Italy
| | | | - Lucia Dramis
- Department of Life Sciences, University of ParmaParma, Italy
| | | |
Collapse
|
57
|
Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA. Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:490-9. [PMID: 25464287 DOI: 10.1016/j.jhazmat.2014.09.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/18/2014] [Accepted: 09/29/2014] [Indexed: 05/25/2023]
Abstract
The growth and metal-extraction efficiency of plants exposed to toxic metals has been reported to be enhanced by inoculating plants with certain bacteria but the mechanisms behind this process remain unclear. We report results from glasshouse experiments on Brassica juncea plants exposed to 400mgZnkg(-1) that investigated the abilities of Pseudomonas brassicacearum and Rhizobium leguminosarum to promote growth, coupled with synchrotron based μXANES analysis to probe Zn speciation in the plant roots. P. brassicacearum exhibited the poorest plant growth promoting ability, while R. leguminosarum alone and in combination with P. brassicacearum enhanced plant growth and Zn phytoextraction. Reduced growth in un-inoculated plants was attributed to accumulation of Zn oxalate and Zn sulfate in roots. In plants inoculated with P. brassicacearum the high concentration of Zn polygalacturonic acid in the root may be responsible for the stunted growth and reduced Zn phytoextraction. The improved growth and increased metal accumulation observed in plants inoculated with R. leguminosarum and in combination with P. brassicacearum was attributed to the storage of Zn in the form of Zn phytate and Zn cysteine in the root. When combined with the observation that both bacteria do not statistically improve B. juncea growth in the absence of Zn, this work suggests that bacteria-induced metal chelation is the key mechanism of plant growth promoting bacteria in toxicity attenuation and microbial-assisted phytoremediation.
Collapse
Affiliation(s)
- Gbotemi A Adediran
- School of GeoSciences, The University of Edinburgh, Edinburgh EH9 3JW, UK.
| | - Bryne T Ngwenya
- School of GeoSciences, The University of Edinburgh, Edinburgh EH9 3JW, UK
| | | | - Kate V Heal
- School of GeoSciences, The University of Edinburgh, Edinburgh EH9 3JW, UK
| | - Barbra A Harvie
- School of GeoSciences, The University of Edinburgh, Edinburgh EH9 3JW, UK
| |
Collapse
|
58
|
Nicoară A, Neagoe A, Stancu P, de Giudici G, Langella F, Sprocati AR, Iordache V, Kothe E. Coupled pot and lysimeter experiments assessing plant performance in microbially assisted phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6905-6920. [PMID: 24407790 DOI: 10.1007/s11356-013-2489-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/20/2013] [Indexed: 06/03/2023]
Abstract
We performed an experiment at pot scale to assess the effect of plant growth-promoting bacteria (PGPB) on the development of five plant species grown on a tailing dam substrate. None of the species even germinated on inoculated unamended tailing material, prompting use of compost amendment. The effect of inoculation on the amended material was to increase soil respiration, and promote elements immobilisation at plant root surface. This was associated with a decrease in the concentrations of elements in the leaching water and an increase of plant biomass, statistically significant in the case of two species: Agrostis capillaris and Festuca rubra. The experiment was repeated at lysimeter scale with the species showing the best development at pot scale, A. capillaris, and the significant total biomass increase as a result of inoculation was confirmed. The patterns of element distribution in plants also changed (the concentrations of metals in the roots of A. capillaris and F. rubra significantly decreased in inoculated treatments, while phosphorus concentration significantly increased in roots of A. capillaris in inoculated treatment at lysimeter scale). Measured variables for plant oxidative stress did not change after inoculations. There were differences of A. capillaris plant-soil system response between experimental scales as a result of different substrate column structure and plant age at the sampling moment. Soil respiration was significantly larger at lysimeter scale than at pot scale. Leachate concentrations of As, Mn and Ni had significantly larger concentrations at lysimeter scale than at pot scale, while Zn concentrations were significantly smaller. Concentrations of several metals were significantly smaller in A. capillaris at lysimeter scale than at pot scale. From an applied perspective, a system A. capillaris-compost-PGPB selected from the rhizosphere of the tailing dam native plants can be an option for the phytostabilisation of tailing dams. Results should be confirmed by investigation at field plot scale.
Collapse
Affiliation(s)
- Andrei Nicoară
- Research Centre for Ecological Services (CESEC), Spl. Independentei 91-92, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. FRONTIERS IN PLANT SCIENCE 2014; 5:757. [PMID: 25601876 PMCID: PMC4283507 DOI: 10.3389/fpls.2014.00757] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/09/2014] [Indexed: 05/20/2023]
Abstract
The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria-plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- *Correspondence: Ying Ma, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal e-mail:
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil NaduThiruvarur, India
| | - Inês Rocha
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Rui S. Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
- Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of PortoVila Nova de Gaia, Portugal
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| |
Collapse
|
60
|
Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:321-33. [PMID: 24912234 DOI: 10.1080/15226514.2013.773283] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microbe-enhanced phytoremediation has been considered as a promising measure for the remediation of metal-contaminated soils. In this study, two bacterial strains JYX7 and JYX10 were isolated from rhizosphere soils of Polygonum pubescens grown in metal-polluted soil and identified as of Enterobacter sp. and Klebsiella sp. based on 16S rDNA sequences, respectively. JYX7 and JYX10 showed high Cd, Pb and Zn tolerance and increased water-soluble Cd, Pb and Zn concentrations in culture solution and metal-added soils. Two isolates produced plant growth-promoting substances such as indole acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic deaminase, and solubilized inorganic phosphate. Based upon their ability in metal tolerance and solubilization, two isolates were further studied for their effects on growth and accumulation of Cd, Pb, and Zn in Brassica napus (rape) by pot experiments. Rapes inoculated with JYX7 and JYX10 had significantly higher dry weights, concentrations and uptakes of Cd, Pb, Zn in both above-ground and root tissues than those without inoculation grown in soils amended with Cd (25 mg kg(-1)), Pb (200 mg kg(-1)) or Zn (200 mg kg(-1)). The present results demonstrated that JYX7 and JYX10 are valuable microorganism, which can improve the efficiency of phytoremediation in soils polluted by Cd, Pb, and Zn.
Collapse
|
61
|
Marques APGC, Moreira H, Franco AR, Rangel AOSS, Castro PML. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies. CHEMOSPHERE 2013; 92:74-83. [PMID: 23582407 DOI: 10.1016/j.chemosphere.2013.02.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/01/2013] [Accepted: 02/17/2013] [Indexed: 06/02/2023]
Abstract
Plant growth promoting bacteria (PGPR) may help reducing the toxicity of heavy metals to plants in polluted environments. In this work the effects of inoculating metal resistant and plant growth promoting bacterial strains on the growth of Helianthus annuus grown in Zn and Cd spiked soils were assessed. The PGPR strains Ralstonia eutropha (B1) and Chrysiobacterium humi (B2) reduced losses of weight in metal exposed plants and induced changes in metal bioaccumulation and bioconcentration - with strain B2 decreasing up to 67% Zn accumulation and by 20% Zn bioconcentration factor (BCF) in the shoots, up to 64% Zn uptake and 38% Zn BCF in the roots, and up to 27% Cd uptake and 27% Cd BCF in plant roots. The impact of inoculation on the bacterial communities in the rhizosphere of the plant was also assessed. Bacterial community diversity decreased with increasing levels of metal contamination in the soil, but in rhizosphere soil of plants inoculated with the PGPR strains, a higher bacterial diversity was kept throughout the experimental period. Inoculation of sunflower, particularly with C. humi (B2), appears to be an effective way of enhancing the short term stabilization potential of the plant in metal contaminated land, lowering losses in plant biomass and decreasing aboveground tissue contamination.
Collapse
Affiliation(s)
- Ana P G C Marques
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| | | | | | | | | |
Collapse
|
62
|
Ostash B, Gren T, Hrubskyy Y, Tistechok S, Beshley S, Baranov V, Fedorenko V. Cultivable actinomycetes from rhizosphere of birch (Betula pendula) growing on a coal mine dump in Silets, Ukraine. J Basic Microbiol 2013; 54:851-7. [DOI: 10.1002/jobm.201200551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/07/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Bohdan Ostash
- Department of Genetics and Biotechnology; Ivan Franko National University of Lviv; Lviv Ukraine
| | - Tetiana Gren
- Department of Genetics and Biotechnology; Ivan Franko National University of Lviv; Lviv Ukraine
| | - Yaroslav Hrubskyy
- Department of Genetics and Biotechnology; Ivan Franko National University of Lviv; Lviv Ukraine
| | - Stepan Tistechok
- Department of Genetics and Biotechnology; Ivan Franko National University of Lviv; Lviv Ukraine
| | - Stepan Beshley
- Institute of Ecology of Carpathians; National Academy of Sciences; Lviv Ukraine
| | - Volodymyr Baranov
- Department of Physiology and Ecology of Plants; Ivan Franko National University of Lviv; Lviv Ukraine
| | - Victor Fedorenko
- Department of Genetics and Biotechnology; Ivan Franko National University of Lviv; Lviv Ukraine
| |
Collapse
|
63
|
Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. SOIL BIOLOGY & BIOCHEMISTRY 2013; 60:182-194. [PMID: 23645938 PMCID: PMC3618436 DOI: 10.1016/j.soilbio.2013.01.012] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 01/04/2013] [Accepted: 01/13/2013] [Indexed: 05/04/2023]
Abstract
Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.
Collapse
Affiliation(s)
- Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria
| | - Melanie Kuffner
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria
| | - Petra Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), CSIC, Apdo. 122, 15780 Santiago de Compostela, Spain
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, B-3590 Diepenbeek, Belgium
| | - Walter W. Wenzel
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, A-3430 Tulln, Austria
| | - Katharina Fallmann
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, A-3430 Tulln, Austria
| | - Markus Puschenreiter
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, A-3430 Tulln, Austria
| |
Collapse
|
64
|
Babu AG, Kim JD, Oh BT. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. JOURNAL OF HAZARDOUS MATERIALS 2013; 250-251:477-83. [PMID: 23500429 DOI: 10.1016/j.jhazmat.2013.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/22/2013] [Accepted: 02/12/2013] [Indexed: 05/08/2023]
Abstract
Phytoremediation shows potential for remediating mine tailing sites contaminated with heavy metals. Our aim was to isolate, characterize, and assess the potential of endophytic bacteria to enhance growth and metal accumulation by the hyperaccumulator Alnus firma. A bacterial strain isolated from roots of Pinus sylvestris had the capacity to remove heavy metals from mine tailing and was identified as Bacillus thuringiensis GDB-1 based on 16S ribosomal DNA sequencing. GDB-1 exhibited plant growth-promoting traits, including 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, indole acetic acid (IAA) and siderophore production, and P solubilization. The efficiency of GDB-1 to remove heavy metals was influenced by pH and initial metal concentration. Removal capacity (mg/l) was 77% for Pb (100), 64% for Zn (50), 34% for As (50), 9% for Cd (10), 8% for Cu (10), and 8% for Ni (10) during the active growth cycle in heavy metal-amended, mine tailing extract medium. Inoculating soil with GDB-1 significantly increased biomass, chlorophyll content, nodule number, and heavy metal (As, Cu, Pb, Ni, and Zn) accumulation in A. firma seedlings. Results indicate that inoculating the native plant A. firma with B. thuringiensis GDB-1 improves its efficiency for phytoremediation of soil containing mine tailings contaminated with heavy metals.
Collapse
Affiliation(s)
- A Giridhar Babu
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea
| | | | | |
Collapse
|
65
|
Lu M, Xu K, Chen J. Effect of pyrene and cadmium on microbial activity and community structure in soil. CHEMOSPHERE 2013; 91:491-497. [PMID: 23290945 DOI: 10.1016/j.chemosphere.2012.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/29/2012] [Accepted: 12/08/2012] [Indexed: 06/01/2023]
Abstract
In this study, a greenhouse experiment was conducted to investigate interactive effects of cadmium (Cd) × pyrene × plant treatments on soil microbial activity and community structure. The results demonstrated that the basal respiration, microbial biomass carbon and metabolic quotient in both unplanted and rhizosphere soil were significantly influenced by interaction of Cd and pyrene. The combined application of Cd and pyrene caused a significantly greater biocidal influence on the soil microorganisms than the single spiking of Cd or pyrene. The soil basal respiration increased with the spiking of 2.5 mg kg(-1) Cd in both unplanted and rhizosphere soil. The eco-physiological index of Cd-tolerant populations was significantly different among the unplanted soil, rhizoplane and rhizosphere soil of tall fescue, indicating a slightly uneven distribution of fast- and slow-growing tolerant bacteria. Obvious differences in microbial activity were observed among treatments due to different physicochemical characteristics of the rhizosphere soils depending on the plant species.
Collapse
Affiliation(s)
- Mang Lu
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, Jiangxi Province, China.
| | | | | |
Collapse
|
66
|
Ławniczak Ł, Marecik R, Chrzanowski Ł. Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 2013; 97:2327-39. [PMID: 23400445 PMCID: PMC3585901 DOI: 10.1007/s00253-013-4740-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 01/24/2013] [Indexed: 11/26/2022]
Abstract
The number of studies dedicated to evaluating the influence of biosurfactants on bioremediation efficiency is constantly growing. Although significant progress regarding the explanation of mechanisms behind biosurfactant-induced effects could be observed, there are still many factors which are not sufficiently elucidated. This corresponds to the fact that although positive influence of biosurfactants is often reported, there are also numerous cases where no or negative effect was observed. This review summarizes the recent finding in the field of biosurfactant-amended bioremediation, focusing mainly on a critical approach towards potential limitations and causes of failure while investigating the effects of biosurfactants on the efficiency of biodegradation and phytoextraction processes. It also provides a summary of successive steps, which should be taken into consideration when designing biosurfactant-related treatment processes.
Collapse
Affiliation(s)
- Łukasz Ławniczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Roman Marecik
- Department of Biotechnology and Food Microbiology, University of Life Sciences in Poznań, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
| |
Collapse
|
67
|
Graj W, Lisiecki P, Szulc A, Chrzanowski Ł, Wojtera-Kwiczor J. Bioaugmentation with Petroleum-Degrading Consortia Has a Selective Growth-Promoting Impact on Crop Plants Germinated in Diesel Oil-Contaminated Soil. WATER, AIR, AND SOIL POLLUTION 2013; 224:1676. [PMID: 24078757 PMCID: PMC3778838 DOI: 10.1007/s11270-013-1676-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/25/2013] [Indexed: 05/14/2023]
Abstract
Rhizoremediation is a complex type of green clean-up technology that involves both plants and the rhizosphere-associated microorganisms to decompose hazardous compounds. The success of the strategy strongly depends on plant tolerance towards the pollutant, as well as plant's interactions with the rhizospheric microbes. The microorganisms may be stimulated by the secreted root exudates, which results in an increased breakdown of contaminants in the rhizosphere. The main goal of this study was to establish a potential rhizoremediation combination for a diesel-polluted site. Inoculation of plant roots or seeds with indigenous rhizospheric populations is a common approach in the rhizoremediation. However, we introduced hydrocarbon-degrading consortia (M10, R3, and K52) that were previously isolated from crude oil-contaminated soil instead of indigenous microbes. Bioaugmentation with these petroleum degraders was applied to screen four high biomass crop species (Indian mustard, alfalfa, high erucic acid rapeseed, HEAR, and low erucic acid rapeseed, LEAR) for their tolerance towards diesel oil. At no pollution, a promoting effect of M10 bacteria could be observed on germination and root elongation of all plant species. Moreover, M10 consortiums increased the germination index at 6,000 mg diesel oil per kilogram dry soil in the case of Indian mustard, alfalfa, and HEAR. The latter species was found to increment its dry weight upon bioaugmentation with M10 bacteria and all diesel oil treatments (6,000 and 24,000 mg diesel oil per kilogram dry soil). The initial results indicate HEAR and the M10 bacterial consortium as a promising plant-microbe tandem for a long-term rhizoremediation process.
Collapse
Affiliation(s)
- Weronika Graj
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Piotr Lisiecki
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Alicja Szulc
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Joanna Wojtera-Kwiczor
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|