51
|
Wang Q, Zhang M, Li R. The COVID-19 pandemic reshapes the plastic pollution research - A comparative analysis of plastic pollution research before and during the pandemic. ENVIRONMENTAL RESEARCH 2022; 208:112634. [PMID: 34973197 PMCID: PMC8715631 DOI: 10.1016/j.envres.2021.112634] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/15/2021] [Accepted: 12/25/2021] [Indexed: 05/05/2023]
Abstract
The outbreak of the COVID-19 pandemic has exacerbated plastic pollution worldwide. So has the COVID-19 pandemic changed the research on plastic pollution? This work aims to explore the impact of the pandemic on plastic pollution research by comprehensively assessing the current status and prospects of plastic pollution research before and during the COVID-19 pandemic. A collection of publications on the topic of plastic pollution in the Web of Science database concludes that the COVID-19 pandemic has reshaped the plastic pollution research: (i) The COVID-19 pandemic has changed the trend of plastic pollution publication output. Since the COVID-19 pandemic, the number of publications on the topic of plastic pollution has shown a significant increase trend; (ii) The COVID-19 pandemic has reversed the global research landscape of research on the plastic pollution. Since the outbreak of the pandemic, more and more countries have begun to pay attention to plastic pollution. Before the pandemic, developed countries were global leaders in plastic pollution research. However, during the pandemic, developing countries began to have a significant share in the quality, quantity and international cooperation of publications; (iii) The COVID-19 pandemic has redefined the major hotspots of plastic pollution research. The focus of research has changed significantly since the pandemic. Solving plastic pollution has become a major research content. During the epidemic, in-depth research on microplastics was conducted. The results of mining the publications on plastic pollution show that there is currently no effective solution to plastic pollution caused by the COVID-19. However, given the seriousness of controlling plastic pollution, it is very necessary to continue to carry out more research.
Collapse
Affiliation(s)
- Qiang Wang
- School of Economics and Management, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China; School of Economics and Management, Tiangong University, Tianjin, 300387, People's Republic of China; Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Min Zhang
- School of Economics and Management, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China; Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Rongrong Li
- School of Economics and Management, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China; School of Economics and Management, Tiangong University, Tianjin, 300387, People's Republic of China; Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| |
Collapse
|
52
|
Chen D, Tang L, Wang Y, Tan Y, Fu Y, Cai W, Yu Z, Sun S, Zheng J, Cui J, Wang G, Liu Y, Zhou H. Speaking-Induced Charge-Laden Face Masks with Durable Protectiveness and Wearing Breathability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17774-17782. [PMID: 35362941 PMCID: PMC8982734 DOI: 10.1021/acsami.2c01077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/22/2022] [Indexed: 05/17/2023]
Abstract
Face masks, which serve as personal protection equipment, have become ubiquitous for combating the ongoing COVID-19. However, conventional electrostatic-based mask filters are disposable and short-term effective with high breathing resistance, causing respiratory ailments and massive consumption (129 billion monthly), intensifying global environmental pollution. In an effort to address these challenges, the introduction of a piezoelectric polymer was adopted to realize the charge-laden melt-blown via the melt-blowing method. The charge-laden melt-blown could be applied to manufacture face masks and to generate charges triggered by mechanical and acoustic energy originated from daily speaking. Through an efficient and scalable industrial melt-blown process, our charge-laden mask is capable of overcoming the inevitable electrostatic attenuation, even in a high-humidity atmosphere by long-wearing (prolonging from 4 to 72 h) and three-cycle common decontamination methods. Combined with outstanding protective properties (PM2.5 filtration efficiency >99.9%), breathability (differential pressure <17 Pa/cm2), and mechanical strength, the resultant charge-laden mask could enable the decreased replacement of masks, thereby lowering to 94.4% of output masks worldwide (∼122 billion monthly) without substituting the existing structure or assembling process.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory of Materials Processing and Die
& Mould Technology, School of Materials Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074,
China
| | - Lianwei Tang
- State Key Laboratory of Materials Processing and Die
& Mould Technology, School of Materials Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074,
China
| | - Yunming Wang
- State Key Laboratory of Materials Processing and Die
& Mould Technology, School of Materials Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074,
China
| | - Yongyao Tan
- Department of Ophthalmology, Tongji Hospital, Tongji
Medical College, Huazhong University of Science and Technology,
Wuhan 430074, China
| | - Yue Fu
- State Key Laboratory of Materials Processing and Die
& Mould Technology, School of Materials Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074,
China
| | - Weihao Cai
- State Key Laboratory of Materials Processing and Die
& Mould Technology, School of Materials Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074,
China
| | - Zhaohan Yu
- State Key Laboratory of Materials Processing and Die
& Mould Technology, School of Materials Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074,
China
| | - Shuang Sun
- State Key Laboratory of Materials Processing and Die
& Mould Technology, School of Materials Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074,
China
| | - Jiaqi Zheng
- State Key Laboratory of Materials Processing and Die
& Mould Technology, School of Materials Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074,
China
| | - Jingqiang Cui
- Henan Key Laboratory of Medical Polymer
Materials Technology and Application, TuoRen Medical Device Research & Development
Institute Co., Ltd., Health Technology Industry Park Changyuan County,
Changyuan, Henan 453000, China
| | - Guosheng Wang
- Henan Key Laboratory of Medical Polymer
Materials Technology and Application, TuoRen Medical Device Research & Development
Institute Co., Ltd., Health Technology Industry Park Changyuan County,
Changyuan, Henan 453000, China
| | - Yang Liu
- State Key Laboratory of Materials Processing and Die
& Mould Technology, School of Materials Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074,
China
| | - Huamin Zhou
- State Key Laboratory of Materials Processing and Die
& Mould Technology, School of Materials Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074,
China
| |
Collapse
|
53
|
Du H, Huang S, Wang J. Environmental risks of polymer materials from disposable face masks linked to the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152980. [PMID: 35007580 PMCID: PMC8741336 DOI: 10.1016/j.scitotenv.2022.152980] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 04/14/2023]
Abstract
The indispensable role of plastic products in our daily life is highlighted by the COVID-19 pandemic again. Disposable face masks, made of polymer materials, as effective and cheap personal protective equipment (PPE), have been extensively used by the public to slow down the viral transmission. The repercussions of this have generated million tons of plastic waste being littered into the environment because of the improper disposal and mismanagement amid. And plastic waste can release microplastics (MPs) with the help of physical, chemical and biological processes, which is placing a huge MPs contamination burden on the ecosystem. In this work, the knowledge regarding to the combined effects of MPs and pollutants from the release of face masks and the impacts of wasted face masks and MPs on the environment (terrestrial and aquatic ecosystem) was systematically discussed. In view of these, some green technologies were put forward to reduce the amounts of discarded face masks in the environment, therefore minimizing MPs pollution at its source. Moreover, some recommendations for future research directions were proposed based on the remaining knowledge gaps. In a word, MPs pollution linked to face masks should be a focus worldwide.
Collapse
Affiliation(s)
- Hao Du
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Shushi Huang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
54
|
Ribeiro VV, De-la-Torre GE, Castro ÍB. COVID-19-related personal protective equipment (PPE) contamination in the highly urbanized southeast Brazilian coast. MARINE POLLUTION BULLETIN 2022; 177:113522. [PMID: 35299146 PMCID: PMC8907012 DOI: 10.1016/j.marpolbul.2022.113522] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 05/05/2023]
Abstract
This study aimed to report personal protective equipment (PPE) contamination in Santos beaches (Brazil) using standardized procedures for the first time while comparing two periods to understand the progression of PPE contamination. The occurrence of PPE items was ubiquitous in all sampled sites, although the densities were relatively low compared to those in other parts of the world. Unlike previous studies, reusable face masks were the most common type of PPE. PPE density in the studied areas was similar in both sampling seasons, probably because of the influence of tourism, urbanization, and local hydrodynamic aspects. PPE items can release microfibers into the aquatic environment and pose entanglement hazards to marine biota. A wider monitoring of PPE pollution, accompanied by surveys on PPE usage and behavior, as well as chemical characterization of the discarded PPE items, is needed to fully understand this unprecedented form of plastic pollution.
Collapse
Affiliation(s)
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | |
Collapse
|
55
|
Ribeiro VV, De-la-Torre GE, Castro ÍB. COVID-19-related personal protective equipment (PPE) contamination in the highly urbanized southeast Brazilian coast. MARINE POLLUTION BULLETIN 2022; 177:113522. [PMID: 35299146 DOI: 10.1016/2fj.marpolbul.2022.113522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 05/24/2023]
Abstract
This study aimed to report personal protective equipment (PPE) contamination in Santos beaches (Brazil) using standardized procedures for the first time while comparing two periods to understand the progression of PPE contamination. The occurrence of PPE items was ubiquitous in all sampled sites, although the densities were relatively low compared to those in other parts of the world. Unlike previous studies, reusable face masks were the most common type of PPE. PPE density in the studied areas was similar in both sampling seasons, probably because of the influence of tourism, urbanization, and local hydrodynamic aspects. PPE items can release microfibers into the aquatic environment and pose entanglement hazards to marine biota. A wider monitoring of PPE pollution, accompanied by surveys on PPE usage and behavior, as well as chemical characterization of the discarded PPE items, is needed to fully understand this unprecedented form of plastic pollution.
Collapse
Affiliation(s)
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | |
Collapse
|
56
|
Roosen M, Harinck L, Ügdüler S, De Somer T, Hucks AG, Belé TGA, Buettner A, Ragaert K, Van Geem KM, Dumoulin A, De Meester S. Deodorization of post-consumer plastic waste fractions: A comparison of different washing media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152467. [PMID: 34952061 DOI: 10.1016/j.scitotenv.2021.152467] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
An important impediment to the acceptance of recyclates into a broader market is their unwanted odor after reprocessing. Different types of washing procedures are already in place, but fundamental insights into the deodorization efficiencies of different washing media are still relatively scarce. Therefore, in this study, the deodorization efficiencies of different types of plastics after washing with different media were determined via gas chromatography and mass spectrometry analysis. A total of 169 compounds subdivided into various chemical classes, such as alkanes, terpenes, and oxygenated compounds, were detected across all packaging types. Around 60 compounds were detected on plastic bottles, and around 40 were detected on trays and films. Owing to the differences in physicochemical properties of odor compounds, different deodorization efficiencies were obtained with different washing media. Water and caustic soda were significantly more efficient for poly(ethylene terephthalate) bottles with deodorization efficiencies up to 80%, whereas for polyethylene (PE) and polypropylene bottles, the washing media were relatively inefficient (around 30-40%). Adding a detergent or an organic solvent could increase deodorization efficiencies by up to 70-90% for these packaging types. A similar trend was observed for PE films having deodorization efficiencies in the range of 40-50% when washing with water or caustic soda and around 70-80% when a detergent was added. Polystyrene trays were most effectively deodorized with a detergent, achieving efficiencies up to 67%. Hence, this study shows that optimal washing processes should be tailored to specific packaging types to further improve deodorization and to eventually be able to meet ambitious European recycling targets.
Collapse
Affiliation(s)
- Martijn Roosen
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Lies Harinck
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Sibel Ügdüler
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium; Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
| | - Tobias De Somer
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium; Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
| | - Amaury-Gauvain Hucks
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Tiago G A Belé
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Henkestraße 9, 91054 Erlangen, Germany
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Henkestraße 9, 91054 Erlangen, Germany; Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany
| | - Kim Ragaert
- Center for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 130, B-9052 Zwijnaarde, Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
| | - Ann Dumoulin
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Steven De Meester
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium.
| |
Collapse
|
57
|
Quattrosoldi S, Guidotti G, Soccio M, Siracusa V, Lotti N. Bio-based and one-day compostable poly(diethylene 2,5-furanoate) for sustainable flexible food packaging: Effect of ether-oxygen atom insertion on the final properties. CHEMOSPHERE 2022; 291:132996. [PMID: 34808204 DOI: 10.1016/j.chemosphere.2021.132996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
In the present work, the effect of ether oxygen atom introduction in a furan ring-containing polymer has been evaluated. Solvent-free polycondensation process permitted the preparation of high molecular weight poly(diethylene 2,5-furandicarboxylate) (PDEF), by reacting the dimethyl ester of 2,5-furandicarboxylic acid with diethylene glycol. After molecular and thermal characterization, PDEF mechanical response and gas barrier properties to O2 and CO2, measured at different temperatures and humidity, were studied and compared with those of poly(butylene 2,5-furandicarboxylate) (PBF) and poly(pentamethylene 2,5-furanoate) (PPeF) previously determined. Both PDEF and PPeF films were amorphous, differently from PBF one. Glass transition temperature of PDEF (24 °C) is between those of PBF (39 °C) and PPeF (13 °C). As concerns mechanical response, PDEF is more flexible (elastic modulus [E] = 673 MPa) than PBF (E = 1290 MPa) but stiffer than PPeF (E = 9 MPa). Moreover, PDEF is the most thermally stable (temperature of maximum degradation rate being 418 for PDEF, 407 for PBF and 414 °C for PPeF) and hydrophilic (water contact angle being 74° for PDEF, 90° for PBF and 93° for PPeF), with gas barrier performances very similar to those of PPeF (O2 and CO2 transmission rate being 0.0022 and 0.0018 for PDEF and, 0.0016 and 0.0014 cm3 cm/m2 d atm for PPeF). Lab scale composting experiments indicated that PDEF and PPeF were compostable, the former degrading faster, in just one day. The results obtained are explained on the basis of the high electronegativity of ether oxygen atom with respect to the carbon one, and the consequent increase of dipoles along the macromolecule.
Collapse
Affiliation(s)
- Silvia Quattrosoldi
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna, Italy.
| | - Valentina Siracusa
- Chemical Science Department, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna, Italy; Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, Bologna, Italy
| |
Collapse
|
58
|
Soong YHV, Sobkowicz MJ, Xie D. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes. Bioengineering (Basel) 2022; 9:98. [PMID: 35324787 PMCID: PMC8945055 DOI: 10.3390/bioengineering9030098] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Polyethylene terephthalate (PET) is one of the most commonly used polyester plastics worldwide but is extremely difficult to be hydrolyzed in a natural environment. PET plastic is an inexpensive, lightweight, and durable material, which can readily be molded into an assortment of products that are used in a broad range of applications. Most PET is used for single-use packaging materials, such as disposable consumer items and packaging. Although PET plastics are a valuable resource in many aspects, the proliferation of plastic products in the last several decades have resulted in a negative environmental footprint. The long-term risk of released PET waste in the environment poses a serious threat to ecosystems, food safety, and even human health in modern society. Recycling is one of the most important actions currently available to reduce these impacts. Current clean-up strategies have attempted to alleviate the adverse impacts of PET pollution but are unable to compete with the increasing quantities of PET waste exposed to the environment. In this review paper, current PET recycling methods to improve life cycle and waste management are discussed, which can be further implemented to reduce plastics pollution and its impacts on health and environment. Compared with conventional mechanical and chemical recycling processes, the biotechnological recycling of PET involves enzymatic degradation of the waste PET and the followed bioconversion of degraded PET monomers into value-added chemicals. This approach creates a circular PET economy by recycling waste PET or upcycling it into more valuable products with minimal environmental footprint.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Margaret J. Sobkowicz
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| |
Collapse
|
59
|
Yang M, Chen L, Msigwa G, Tang KHD, Yap PS. Implications of COVID-19 on global environmental pollution and carbon emissions with strategies for sustainability in the COVID-19 era. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151657. [PMID: 34793787 PMCID: PMC8592643 DOI: 10.1016/j.scitotenv.2021.151657] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 05/19/2023]
Abstract
The impacts of COVID-19 on global environmental pollution since its onset in December 2019 require special attention. The rapid spread of COVID-19 globally has led countries to lock down cities, restrict traffic travel and impose strict safety measures, all of which have implications on the environment. This review aims to systematically and comprehensively present and analyze the positive and negative impacts of COVID-19 on global environmental pollution and carbon emissions. It also aims to propose strategies to prolong the beneficial, while minimize the adverse environmental impacts of COVID-19. It systematically and comprehensively reviewed more than 100 peer-reviewed papers and publications related to the impacts of COVID-19 on air, water and soil pollution, carbon emissions as well as the sustainable strategies forward. It revealed that PM2.5, PM10, NO2, and CO levels reduced in most regions globally but SO2 and O3 levels increased or did not show significant changes. Surface water, coastal water and groundwater quality improved globally during COVID-19 lockdown except few reservoirs and coastal areas. Soil contamination worsened mainly due to waste from the use of personal protective equipment particularly masks and the packaging, besides household waste. Carbon emissions were reduced primarily due to travel restrictions and less usage of utilities though emissions from certain ships did not change significantly to maintain supply of the essentials. Sustainable strategies post-COVID-19 include the development and adoption of nanomaterial adsorption and microbial remediation technologies, integrated waste management measures, "sterilization wave" technology and energy-efficient technologies. This review provides important insight and novel coverage of the environmental implications of COVID-19 in more than 25 countries across different global regions to permit formulation of specific pollution control and sustainability strategies in the COVID-19 and post-COVID-19 eras for better environmental quality and human health.
Collapse
Affiliation(s)
- Mingyu Yang
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lin Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Goodluck Msigwa
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Kuok Ho Daniel Tang
- Environmental Science Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
60
|
Wen R, Yang L, Wu S, Zhou D, Jiang B. Tuning surface sites to boost photocatalytic degradation of phenol and ciprofloxacin. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
61
|
Mittal M, Mittal D, Aggarwal NK. Plastic accumulation during COVID-19: call for another pandemic; bioplastic a step towards this challenge? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11039-11053. [PMID: 35022970 PMCID: PMC8754557 DOI: 10.1007/s11356-021-17792-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/23/2021] [Indexed: 04/16/2023]
Abstract
Plastic pollution has become a serious transboundary challenge to nature and human health, with estimation of reports published - predicting a twofold increase in plastic waste by 2030. However, due to the COVID-19 pandemic, the excessive use of single-use plastics (including face masks, gloves and personal protective equipment) would possibly exacerbate such forecasts. The transition towards eco-friendly alternatives like bio-based plastics and new emerging sustainable technologies would be vital to deal with future pandemics, even though the use or consumption of plastics has greatly enhanced our quality of life; it is however critical to move towards bioplastics. We cannot deny the fact that bioplastics have some challenges and shortcomings, but still, it is an ideal option for opt. The circular economy is the need of the hour for waste management. Along with all these practices, individual accountability, corporate intervention and government policy are also needed to prevent us from moving from one crisis to the next. Only through cumulative efforts, we will be able to cope up with this problem. This article collected scattered information and data about accumulation of plastic during COVID-19 worldwide. Additionally, this paper illustrates the substitution of petroleum-based plastics with bio-based plastics. Different aspects are discussed, ranging from advantages to challenges in the way of bioplastics.
Collapse
Affiliation(s)
- Mahak Mittal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Divya Mittal
- Maharishi Markandeshwar (Deemed To Be University), Mullana, 133207, Haryana, India
| | - Neeraj K Aggarwal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
62
|
Dehal A, Vaidya AN, Kumar AR. Biomedical waste generation and management during COVID-19 pandemic in India: challenges and possible management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14830-14845. [PMID: 34622401 PMCID: PMC8496889 DOI: 10.1007/s11356-021-16736-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/22/2021] [Indexed: 04/12/2023]
Abstract
The COVID-19 pandemic has resulted in the massive generation of biomedical waste (BMW) and plastic waste (PW). This sudden spike in BMW and PW has created challenges to the existing waste management infrastructure, especially in developing countries. Safe disposal of PW and BMW is essential; otherwise, this virus will lead to a waste pandemic. This paper reviews the generation of BMW and PW before and during the COVID-19 pandemic, the regulatory framework for BMW management, policy interventions for COVID-19-based BMW (C-BMW), the capacity of BMW treatment and disposal facilities to cope with the challenges, possible management strategies, and perspectives in the Indian context. This study indicated that policy intervention helped minimize the general waste treated as C-BMW, especially during the second pandemic. Inadequacy of common BMW treatment facilities' (CBMWTFs) capacity to cope with the BMW daily generation was observed in some states resulting in compromised treatment conditions. Suggestions for better management of BMW and PW include decontamination of used personal protective equipment (PPEs) and recycling, alternate materials for PPEs, segregation strategies, and use of BMW for co-processing in cement kilns. All upcoming CBMWTFs should be equipped with higher capacity and efficient incinerators for the sound management of BMW. Post-pandemic monitoring of environmental compartments is imperative to assess the possible impacts of pandemic waste.
Collapse
Affiliation(s)
- Ashish Dehal
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Narayan Vaidya
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Asirvatham Ramesh Kumar
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
63
|
Digitization in the Design and Construction Industry—Remote Work in the Context of Sustainability: A Study from Poland. SUSTAINABILITY 2022. [DOI: 10.3390/su14031332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article presents the results of research on the digitization of services provided by the design industry in the context of the implementation of sustainable development goals, especially environmental sustainability. First, a literature review has been done. These research goals were established in the publication: investigating the impact of remote work on the implementation of sustainable development goals (in particular, environmental), examining the essence of better perception of remote work and digitization of the design process by employees of the design and construction industry, and examining barriers and factors favoring the digitization of the design and construction industry in Poland. Both a survey and interviews were carried out. To analyze data obtained from the interviews, the Colaizzi’s methodology was performed. The data obtained as a result of the survey were subjected to a statistical analysis using a cluster analysis (Ward’s method). Groups (clusters) of strong and weak barriers, supporting factors, and sustainability factors were defined. The COVID-19 pandemic has perpetuated the digitization trend in this industry. Employees and owners of project offices prefer remote work due to the flexibility of working time, time savings, work comfort, safety, and savings. Industry employees recognize the advantages and benefits of remote work in terms of environmental sustainability. The environmental impact in the form in the reduction of electricity consumption by large office buildings and reduction of the emission of harmful substances contained in car exhaust fumes are the most frequently mentioned environmental advantages. The biggest barriers are legal aspects, and sometimes difficult cooperation with a client. The research results presented in this publication, as well as the methodology adopted, are a contribution to the literature on the perception and comfort of remote work, the social effects of the COVID-19 pandemic, and environmental sustainability.
Collapse
|
64
|
Wang Q, Guan C, Han J, Chai M, Li R. Microplastics in China Sea: Analysis, status, source, and fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149887. [PMID: 34487899 DOI: 10.1016/j.scitotenv.2021.149887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) in marine environments have raised increasing concerns worldwide in recent years. China is one of the largest plastic producers in the world. In this review, available information on MPs in China Sea was reviewed, including studies on seawater, sediment, and biota. The status and limits of sampling methods of MPs were summarized, such as sampling tools, sampling volume, and depth of sampling. The analytical methods of MPs were outlined, such as sieving, density separation, purification, filtration, and visual sorting. The characteristics of MPs, such as abundances, sizes, shapes, polymer types, sources, and fates were analyzed. The abundances of MPs in China Sea varied from 0.1 to 27,840.0 items m-3 in seawater, and from 13.0 to 14,712.0 items kg-1 d.w. in sediments. Furthermore, MPs were mainly featured with sizes ranging from 0.001 to 0.5 mm, with colors of transparent and black, and polymer types of polypropylene and polyethylene. To promote research on MPs in China Sea, the sampling and analytical methods were insufficiently standardized and should be improved. As for microplastic (MP) pollution in China Sea, laws and regulations have already been established to manage and control plastic waste. Furthermore, several suggestions to control plastic pollution were as follows: (1) control marine plastic pollution at the source; (2) strengthen technological innovations; (3) urge people to minimize disposable plastic products in their daily lives; (4) strengthen international cooperation in the treatment of marine plastic waste.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chunya Guan
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jie Han
- School of Science and Technology, The Open University of Hong Kong, Ho Man Tin, Kowloon, Hong Kong, China
| | - Minwei Chai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ruili Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
65
|
Chong JWR, Yew GY, Khoo KS, Ho SH, Show PL. Recent advances on food waste pretreatment technology via microalgae for source of polyhydroxyalkanoates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112782. [PMID: 34052610 DOI: 10.1016/j.jenvman.2021.112782] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyester which are biosynthesized from the intracellular cells of microalgae through the cultivation of organic food waste medium. Before cultivation process, food waste must undergo several pre-treatment techniques such as chemical, biological, physical or mechanical in order to solubilize complex food waste matter into simpler micro- and macronutrients in which allow bio-valorisation of microalgae and food waste compound during the cultivation process. This work reviews four microalgae genera namely Chlamydomonas, Chlorella, Spirulina, and Botryococcus, are selected as suitable species due to rapid growth rate, minimal nutrient requirement, greater adaptability and flexibility prior to lower the overall production cost and maximized the production of PHAs. This study also focuses on the different mode of cultivation for the accumulation of PHAs followed by cell wall destabilization, extraction, and purification. Nonetheless, this review provides future insights into enhancing the productivity of bioplastic derived from microalgae towards low-cost, large-scale, and higher productivity of PHAs.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
66
|
Kanari N, Menad NE, Filippov LO, Shallari S, Allain E, Patisson F, Yvon J. Some Aspects of the Thermochemical Route for the Valorization of Plastic Wastes, Part I: Reduction of Iron Oxides by Polyvinyl Chloride (PVC). MATERIALS 2021; 14:ma14154129. [PMID: 34361321 PMCID: PMC8348790 DOI: 10.3390/ma14154129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022]
Abstract
The mass production of synthetic plastics began in the last century and today they have become one of the most abundant man-made materials. The disposal or the beneficiation of end-of-life plastics represent a great challenge for society especially in the case of polyvinyl chloride (PVC). This study is focused on the use of PVC waste as a useful agent for the direct reduction of hematite (Fe2O3) after a thermal treatment at 300 °C for removing the chlorine contained in PVC. Thermal reduction tests were conducted from 600 °C to 1100 °C with (Fe2O3 + PVC + clay) pellet mixtures in which clay was used as plasticizing and binder agent of the pellets. The starting samples and treatment residues were analyzed by scanning electron microscopy through energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction (XRD) to monitor the chemical behavior and reactivity of the pellet constituents during their thermal treatment. The stepwise reduction of hematite up to metallic iron was achieved at temperatures approaching 1000 °C, confirming the capability of using PVC waste for the direct reduction of iron oxides.
Collapse
Affiliation(s)
- Ndue Kanari
- Université de Lorraine, CNRS, GeoRessources, F-54000 Nancy, France; (L.O.F.); (E.A.); (J.Y.)
- Correspondence: ; Tel.: +33-372-744-530
| | - Nour-Eddine Menad
- Waste and Raw Materials and Recycling Unit, Water, Environment Process and Analysis Department, BRGM, 3 Avenue Claude Guillemin, BP 36009, CEDEX, F-45060 Orléans, France;
| | - Lev O. Filippov
- Université de Lorraine, CNRS, GeoRessources, F-54000 Nancy, France; (L.O.F.); (E.A.); (J.Y.)
| | - Seit Shallari
- Faculty of Agriculture and Environment, Agricultural University of Tirana, 1029 Tirana, Albania;
| | - Eric Allain
- Université de Lorraine, CNRS, GeoRessources, F-54000 Nancy, France; (L.O.F.); (E.A.); (J.Y.)
| | - Fabrice Patisson
- Université de Lorraine, CNRS, Labex DAMAS, IJL, F-54000 Nancy, France;
| | - Jacques Yvon
- Université de Lorraine, CNRS, GeoRessources, F-54000 Nancy, France; (L.O.F.); (E.A.); (J.Y.)
| |
Collapse
|
67
|
A New Challenge for the Management and Disposal of Personal Protective Equipment Waste during the COVID-19 Pandemic. SUSTAINABILITY 2021. [DOI: 10.3390/su13137034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To prevent the transmission of the Coronavirus (SARS-CoV-2) in the public, the demand and consumption of personal protective equipment (PPE) increased drastically. Such wide use of PPE has brough a new challenge to waste management and disposal. It is difficult to sort PPE waste before further treatment, and such waste will often end up being processed by some traditional disposal methods. During the pandemic, incineration and landfill facilities are currently under significant pressure. In addition, a certain amount of PPE waste is discarded into the environment rather than going to landfills and incinerators. It not only directly affects the ecosystem, but also indirectly threatens human health through various routes of exposure. PPE waste is also the source and carrier of pathogens and chemical contaminants, causing a secondary pollution. Therefore, it is necessary to establish appropriate strategies to deal with the PPE problems related to energy, environment and health, requiring the collaborative efforts of researchers, practitioners, policymakers, and governments.
Collapse
|
68
|
Osra F, Morsy EA, Abd El-Rahim IH. Guidance plans for solid waste management during COVID-19 in Makkah, Saudi Arabia. ARABIAN JOURNAL OF GEOSCIENCES 2021; 14:1466. [PMCID: PMC8299739 DOI: 10.1007/s12517-021-07990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The COVID-19 pandemic has emphasized disasters related to environmental topics, human health, social lifestyles, and economic systems around the world. COVID-19 may further spread through municipal solid waste (MSW), if it is collected, handled, transported, or disposed in an improper way. The current paper provides an overview of the multiple challenges that COVID-19 has introduced to the various tasks of MSW management including the impact of the implemented precautionary measures on MSW management, priorities and hierarchy of MSW, direct impact on the constitution, and characterization of MSW in Makkah, Saudi Arabia, based on waste management characterization guidance. In addition, specific and alternative guidance plans for the potential critical points of the infection were suggested to protect public health during the pandemic. The results of the current study revealed that the hierarchical system of MSW was modified under pandemic conditions. Implementation of control measures in Makkah has led to a change of lifestyle, which resulted in a physical change of the MSW constitution in Makkah, with the following average rates: organic matter, 57%; plastics, 31%; paper and cardboard, 9%; metals, 1%; glass, 1%; and wood, 1%. In conclusion, a specific guidance plan for MSW management during the COVID-19 pandemic was developed, aimed at handlers, pickers, collection, transportation, transfer stations, and MSW disposal. Such a guidance plan may play a vital role in controlling the pandemic, especially in the outdoor environment. The suggested guidance plan describes and specifies structured and ordered practices of MSW management in Makkah during COVID-19 and other pandemics.
Collapse
Affiliation(s)
- Faisal Osra
- Civil Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Essam A. Morsy
- Department of Environmental and Health Research, Umm Al-Qura University, P.O. Box 6287, Makkah, 21955 Saudi Arabia
- Geophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ibrahim H.A. Abd El-Rahim
- Department of Environmental and Health Research, Umm Al-Qura University, P.O. Box 6287, Makkah, 21955 Saudi Arabia
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| |
Collapse
|