51
|
Ruiz E, Honles J, Fernández R, Uribe K, Cerapio JP, Cancino K, Contreras-Mancilla J, Casavilca-Zambrano S, Berrospi F, Pineau P, Bertani S. A preoperative risk score based on early recurrence for estimating outcomes after resection of hepatocellular carcinoma in the non-cirrhotic liver. HPB (Oxford) 2024; 26:691-702. [PMID: 38431511 DOI: 10.1016/j.hpb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Liver resection is the mainstay treatment option for patients with hepatocellular carcinoma in the non-cirrhotic liver (NCL-HCC), but almost half of these patients will experience a recurrence within five years of surgery. Therefore, we aimed to develop a rationale-based risk evaluation tool to assist surgeons in recurrence-related treatment planning for NCL-HCC. METHODS We analyzed single-center data from 263 patients who underwent liver resection for NCL-HCC. Using machine learning modeling, we first determined an optimal cut-off point to discriminate early versus late relapses based on time to recurrence. We then constructed a risk score based on preoperative variables to forecast outcomes according to recurrence-free survival. RESULTS We computed an optimal cut-off point for early recurrence at 12 months post-surgery. We identified macroscopic vascular invasion, multifocal tumor, and spontaneous tumor rupture as predictor variables of outcomes associated with early recurrence and integrated them into a scoring system. We thus stratified, with high concordance, three groups of patients on a graduated scale of recurrence-related survival. CONCLUSION We constructed a preoperative risk score to estimate outcomes after liver resection in NCL-HCC patients. Hence, this score makes it possible to rationally stratify patients based on recurrence risk assessment for better treatment planning.
Collapse
Affiliation(s)
- Eloy Ruiz
- Departamento de Cirugía en Abdomen, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru; International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru.
| | - Jorge Honles
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; UMR 152 PHARMADEV, Université de Toulouse, IRD, Toulouse, France
| | - Ramiro Fernández
- Departamento de Cirugía en Abdomen, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru; International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru
| | - Karla Uribe
- Departamento de Cirugía en Abdomen, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Juan P Cerapio
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; UMR 1037 CRCT, Université de Toulouse, INSERM, Toulouse, France
| | - Karina Cancino
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; UMR 152 PHARMADEV, Université de Toulouse, IRD, Toulouse, France; UMR 1037 CRCT, Université de Toulouse, INSERM, Toulouse, France
| | - Juan Contreras-Mancilla
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; Laboratorio de Investigación Traslacional y Biología Computacional, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sandro Casavilca-Zambrano
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; Departamento de Patología, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru; Facultad de Ciencias de la Salud, Universidad de Huánuco, Huánuco, Peru
| | - Francisco Berrospi
- Departamento de Cirugía en Abdomen, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Pascal Pineau
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; Unité Organisation Nucléaire et Oncogenèse, INSERM, Institut Pasteur, Paris, France
| | - Stéphane Bertani
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; UMR 152 PHARMADEV, Université de Toulouse, IRD, Toulouse, France.
| |
Collapse
|
52
|
Zang Q, Ju Y, Liu S, Wu S, Zhu C, Liu L, Xu W, He Y. The significance of m6A RNA methylation regulators in diagnosis and subtype classification of HBV-related hepatocellular carcinoma. Hum Cell 2024; 37:752-767. [PMID: 38536633 DOI: 10.1007/s13577-024-01044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/14/2024] [Indexed: 04/15/2024]
Abstract
In recent years, abnormal m6A alteration in hepatocellular carcinoma (HCC) has been a focus on investigating the biological implications. In this study, our objective is to determine whether m6A modification contributes to the progression of HBV-related HCC. To achieve this, we employed a random forest model to screen top 8 characteristic m6A regulators from 19 candidate genes. Subsequently, we developed a nomogram model that utilizes these 8 characteristic m6A regulators to predict the prevalence of HBV-related HCC. According to decision curve analysis, patients may benefit from the nomogram model. The clinical impact curves exhibited a robust predictive capability of the nomogram models. Additionally, consensus molecular subtyping was employed to identify m6A modification patterns and m6A-related gene signature. The quantification of immune cell subsets was accomplished through the implementation of ssGSEA algorithms. PCA algorithms were developed to compute the m6A score for individual tumors. Two distinct m6A modification patterns, namely cluster A and cluster B, exhibited significant correlations with distinct immune infiltration patterns and biological pathways. Notably, patients belonging to cluster B demonstrated higher m6A scores compared to those in cluster A, as determined by the m6A score metric. Furthermore, the expression of IGFBP3 proteins was validated through immunofluorescence, revealing their pronounced lower expression in tumor tissues. In summary, our study underscores the importance of m6A modification in the advancement of HBV-related HCC. This research has the potential to yield novel prognostic biomarkers and therapeutic targets for the identification of HBV-related HCC.
Collapse
Affiliation(s)
- Qijuan Zang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Yalin Ju
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Siyi Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Shaobo Wu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengbin Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Liangru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Weicheng Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Yingli He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
53
|
Li CC, Liu M, Lee HP, Wu W, Ma L. Heterogeneity in Liver Cancer Immune Microenvironment: Emerging Single-Cell and Spatial Perspectives. Semin Liver Dis 2024; 44:133-146. [PMID: 38788780 DOI: 10.1055/s-0044-1787152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Primary liver cancer is a solid malignancy with a high mortality rate. The success of immunotherapy has shown great promise in improving patient care and highlights a crucial need to understand the complexity of the liver tumor immune microenvironment (TIME). Recent advances in single-cell and spatial omics technologies, coupled with the development of systems biology approaches, are rapidly transforming the landscape of tumor immunology. Here we review the cellular landscape of liver TIME from single-cell and spatial perspectives. We also discuss the cellular interaction networks within the tumor cell community in regulating immune responses. We further highlight the challenges and opportunities with implications for biomarker discovery, patient stratification, and combination immunotherapies.
Collapse
Affiliation(s)
- Caiyi Cherry Li
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Meng Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hsin-Pei Lee
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Wenqi Wu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
54
|
Zdziarski P, Gamian A. Role of B Cells beyond Antibodies in HBV-Induced Oncogenesis: Fulminant Cancer in Common Variable Immunodeficiency-Clinical and Immunotransplant Implications with a Review of the Literature. Diseases 2024; 12:80. [PMID: 38785735 PMCID: PMC11119213 DOI: 10.3390/diseases12050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Although lymphoma is the most frequent malignancy in common variable immunodeficiency (CVID), solid tumors, especially affected by oncogenic viruses, are not considered. Furthermore, in vitro genetic studies and cell cultures are not adequate for immune system and HBV interaction. We adopted a previously introduced clinical model of host-virus interaction (i.e., infectious process in immunodeficiency) for analysis of B cells and the specific IgG role (an observational study of a CVID patient who received intravenous immunoglobulin (IVIG). Suddenly, the patient deteriorated and a positive results of for HBs and HBV-DNA (369 × 106 copies) were detected. Despite lamivudine therapy and IVIG escalation (from 0.3 to 0.4 g/kg), CT showed an 11 cm intrahepatic tumor (hepatocellular carcinoma). Anti-HBs were positive in time-lapse analysis (range 111-220 IU/mL). Replacement therapy intensification was complicated by an immune complex disease with renal failure. Fulminant HCC in CVID and the development of a tumor as the first sign is of interest. Unfortunately, treatment with hepatitis B immune globulins (HBIG) plays a major role in posttransplant maintenance therapy. Anti-HB substitution has not been proven to be effective, oncoprotective, nor safe. Therefore, immunosuppression in HBV-infected recipients should be carefully minimized, and patient selection more precise with the exclusion of HBV-positive donors. Our clinical model showed an HCC pathway with important humoral host factors, contrary to epidemiological/cohort studies highlighting risk factors only (e.g., chronic hepatitis). The lack of cell cooperation as well as B cell deficiency observed in CVID play a crucial role in high HBV replication, especially in carcinogenesis.
Collapse
Affiliation(s)
- Przemyslaw Zdziarski
- Lower Silesian Center for Cellular Transplantation, 53-439 Wroclaw, Poland
- Clinical Research Center PRION, 50-385 Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland;
| |
Collapse
|
55
|
Meewan I, Panmanee J, Petchyam N, Lertvilai P. HBCVTr: an end-to-end transformer with a deep neural network hybrid model for anti-HBV and HCV activity predictor from SMILES. Sci Rep 2024; 14:9262. [PMID: 38649402 PMCID: PMC11035669 DOI: 10.1038/s41598-024-59933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Hepatitis B and C viruses (HBV and HCV) are significant causes of chronic liver diseases, with approximately 350 million infections globally. To accelerate the finding of effective treatment options, we introduce HBCVTr, a novel ligand-based drug design (LBDD) method for predicting the inhibitory activity of small molecules against HBV and HCV. HBCVTr employs a hybrid model consisting of double encoders of transformers and a deep neural network to learn the relationship between small molecules' simplified molecular-input line-entry system (SMILES) and their antiviral activity against HBV or HCV. The prediction accuracy of HBCVTr has surpassed baseline machine learning models and existing methods, with R-squared values of 0.641 and 0.721 for the HBV and HCV test sets, respectively. The trained models were successfully applied to virtual screening against 10 million compounds within 240 h, leading to the discovery of the top novel inhibitor candidates, including IJN04 for HBV and IJN12 and IJN19 for HCV. Molecular docking and dynamics simulations identified IJN04, IJN12, and IJN19 target proteins as the HBV core antigen, HCV NS5B RNA-dependent RNA polymerase, and HCV NS3/4A serine protease, respectively. Overall, HBCVTr offers a new and rapid drug discovery and development screening method targeting HBV and HCV.
Collapse
Affiliation(s)
- Ittipat Meewan
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Nopphon Petchyam
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pichaya Lertvilai
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
56
|
Contreras A, Sánchez SA, Rodríguez-Medina C, Botero JE. The role and impact of viruses on cancer development. Periodontol 2000 2024. [PMID: 38641954 DOI: 10.1111/prd.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 04/21/2024]
Abstract
This review focuses on three major aspects of oncoviruses' role in cancer development. To begin, we discuss their geographic distribution, revealing that seven oncoviruses cause 20% of all human cancers worldwide. Second, we investigate the primary carcinogenic mechanisms, looking at how these oncogenic viruses can induce cellular transformation, angiogenesis, and local and systemic inflammation. Finally, we investigate the possibility of SARS-CoV-2 infection reactivating latent oncoviruses, which could increase the risk of further disease. The development of oncovirus vaccines holds great promise for reducing cancer burden. Many unanswered questions about the host and environmental cofactors that contribute to cancer development and prevention remain, which ongoing research is attempting to address.
Collapse
Affiliation(s)
| | - Sandra Amaya Sánchez
- Advanced Periodontology Program, Escuela de Odontología, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
57
|
Andrade AAR, Pauli F, Pressete CG, Zavan B, Hanemann JAC, Miyazawa M, Fonseca R, Caixeta ES, Nacif JLM, Aissa AF, Barreiro EJ, Ionta M. Antiproliferative Activity of N-Acylhydrazone Derivative on Hepatocellular Carcinoma Cells Involves Transcriptional Regulation of Genes Required for G2/M Transition. Biomedicines 2024; 12:892. [PMID: 38672246 PMCID: PMC11048582 DOI: 10.3390/biomedicines12040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Liver cancer is the second leading cause of cancer-related death in males. It is estimated that approximately one million deaths will occur by 2030 due to hepatic cancer. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer subtype and is commonly diagnosed at an advanced stage. The drug arsenal used in systemic therapy for HCC is very limited. Multikinase inhibitors sorafenib (Nexavar®) and lenvatinib (Lenvima®) have been used as first-line drugs with modest therapeutic effects. In this scenario, it is imperative to search for new therapeutic strategies for HCC. Herein, the antiproliferative activity of N-acylhydrazone derivatives was evaluated on HCC cells (HepG2 and Hep3B), which were chemically planned on the ALL-993 scaffold, a potent inhibitor of vascular endothelial growth factor 2 (VEGFR2). The substances efficiently reduced the viability of HCC cells, and the LASSBio-2052 derivative was the most effective. Further, we demonstrated that LASSBio-2052 treatment induced FOXM1 downregulation, which compromises the transcriptional activation of genes required for G2/M transition, such as AURKA and AURKB, PLK1, and CDK1. In addition, LASSBio-2052 significantly reduced CCNB1 and CCND1 expression in HCC cells. Our findings indicate that LASSBio-2052 is a promising prototype for further in vivo studies.
Collapse
Affiliation(s)
| | - Fernanda Pauli
- Institute of Chemistry, Fluminense Federal University, Niterói 24020-140, RJ, Brazil
| | - Carolina Girotto Pressete
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | | | - Marta Miyazawa
- School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | | | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Eliezer J. Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| |
Collapse
|
58
|
Vargas-Accarino E, Higuera M, Buti M, Mínguez B. Hepatitis-C-Related Hepatocellular Carcinoma, Still a Relevant Etiology beyond a Hepatitis C Infection Cure. Cancers (Basel) 2024; 16:1521. [PMID: 38672603 PMCID: PMC11048451 DOI: 10.3390/cancers16081521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND In the past decades, global changes, including hepatitis B vaccination, hepatitis B and C antiviral therapies, and the increasing prevalence of steatotic liver disease, have influenced the landscape of liver cancer etiologies. METHODS We performed a retrospective study focused on the etiological factors of de novo hepatocellular carcinoma (HCC) diagnoses in an academic center between 2019 and 2022. RESULTS Among 352 consecutive patients with HCC, alcohol-related liver disease was the predominant etiology (33.3%), followed by hepatitis C (HCV) infection (30.7%). Significant associations were found between HCC etiology and patient demographics, BCLC stage at diagnosis, and cirrhosis prevalence. CONCLUSIONS Whereas accessibility to antiviral therapy is granted, HCV infection remains as one of the main HCC etiologies. MASLD-related HCC, although growing globally, is not as relevant in our area. Strong public policies need to be implemented to prevent alcohol consumption, the main etiology of liver disease and liver cancer.
Collapse
Affiliation(s)
- Elena Vargas-Accarino
- Liver Diseases Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (B.M.)
| | - Mónica Higuera
- Liver Diseases Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (B.M.)
| | - María Buti
- Liver Diseases Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (B.M.)
- Department of Medicine, UAB Campus, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Liver Unit, Vall d’Hebron Hospital, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Beatriz Mínguez
- Liver Diseases Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (B.M.)
- Department of Medicine, UAB Campus, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Liver Unit, Vall d’Hebron Hospital, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| |
Collapse
|
59
|
Sukowati CHC, Jayanti S, Turyadi T, Muljono DH, Tiribelli C. Hepatitis B virus genotypes in precision medicine of hepatitis B-related hepatocellular carcinoma: Where we are now. World J Gastrointest Oncol 2024; 16:1097-1103. [PMID: 38660644 PMCID: PMC11037070 DOI: 10.4251/wjgo.v16.i4.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/30/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a major player in chronic hepatitis B that may lead to the development of hepatocellular carcinoma (HCC). HBV genetics are diverse where it is classified into at least 9 genotypes (A to I) and 1 putative genotype (J), each with specific geographical distribution and possible different clinical outcomes in the patient. This diversity may be associated with the precision medicine for HBV-related HCC and the success of therapeutical approaches against HCC, related to different pathogenicity of the virus and host response. This Editorial discusses recent updates on whether the classification of HBV genetic diversity is still valid in terms of viral oncogenicity to the HCC and its precision medicine, in addition to the recent advances in cellular and molecular biology technologies.
Collapse
Affiliation(s)
- Caecilia H C Sukowati
- Eijkman Research Center for Molecular Biology, Research Organization for Health, National Research and Innovation Agency of Indonesia, Jakarta 10340, Indonesia
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| | - Sri Jayanti
- Eijkman Research Center for Molecular Biology, Research Organization for Health, National Research and Innovation Agency of Indonesia, Jakarta 10340, Indonesia
| | - Turyadi Turyadi
- Eijkman Research Center for Molecular Biology, Research Organization for Health, National Research and Innovation Agency of Indonesia, Jakarta 10340, Indonesia
| | - David H Muljono
- Faculty of Medicine, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Claudio Tiribelli
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| |
Collapse
|
60
|
Capasso M, Cossiga V, Guarino M, Ranieri L, Morisco F. The Role of Hepatitis Viruses as Drivers of Hepatocancerogenesis. Cancers (Basel) 2024; 16:1505. [PMID: 38672587 PMCID: PMC11048534 DOI: 10.3390/cancers16081505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Recently, metabolic associated steatotic liver disease (MASLD) became the leading cause of chronic liver disease worldwide and one of the most frequent causes of hepatocellular carcinoma (HCC). Nonetheless, in this epidemiological trend, viral hepatitis remains the major driver in hepatic carcinogenesis. Globally, hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma, with an overall attributable risk of approximately 40%, followed by hepatitis C virus (HCV), which accounts for 28-30% of cases, with significant geographic variations between the Eastern and Western world. Considering all the etiologies, HCC risk increases proportionally with the progression of liver disease, but the risk is consistently higher in patients with viral triggers. This evidence indicates that both direct (due to the oncogenic properties of the viruses) and indirect (through the mechanisms of chronic inflammation that lead to cirrhosis) mechanisms are involved, alongside the presence of co-factors contributing to liver damage (smoking, alcohol, and metabolic factors) that synergistically enhance the oncogenic process. The aim of this review is to analyze the oncogenic role of hepatitis viruses in the liver, evaluating epidemiological changes and direct and indirect viral mechanisms that lead to liver cancer.
Collapse
Affiliation(s)
| | - Valentina Cossiga
- Diseases of the Liver and Biliary System Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (M.C.); (M.G.); (L.R.); (F.M.)
| | | | | | | |
Collapse
|
61
|
Xia F, Yang H, Wu H, Zhao B. Spindle component 25 predicts the prognosis and the immunotherapy response of cancers: a pan-cancer analysis. Sci Rep 2024; 14:8452. [PMID: 38605119 PMCID: PMC11009294 DOI: 10.1038/s41598-024-59038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Spindle component 25 (SPC25) is one of the four proteins that make up the nuclear division cycle 80 (NDC80) complex, the other three components being Ndc80p, Nuf2p, and spindle component 24. Deregulation of the components of this complex can lead to uncontrolled proliferation and reduced apoptosis. However, the prognostic and immunotherapeutic value of SPC25 in pan-cancer remains unclear. Data from the UCSC Xena, TIMER2.0, and TCGA were analyzed to investigate the overall differential expression of SPC25 across multiple cancer types. The survival prognosis, clinical features, and genetic changes of SPC25 were also evaluated. Finally, the relationship between SPC25 and immunotherapy response was further explored through Gene Set Enrichment Analysis, tumor microenvironment, and immune cell infiltration. The transcription and protein expression of SPC25 were significantly increased in most cancer types and had prognostic value for the survival of certain cancer patients such as ACC, CESC, KIRC, KIRP, LIHC, LUAD, MESO, STAD, THYM, and UCEC. In some cancer types, SPC25 expression was also markedly correlated with the TMB, MSI, and clinical characteristics. Gene Set Enrichment Analysis showed that SPC25 was significantly associated with immune-related pathways. In addition, it was also confirmed that the expression level of SPC25 was strongly correlated with immune cell infiltration, immune checkpoint genes, immune regulatory genes, Ferroptosis-related genes, Cuproptosis-related genes, and lactate metabolism-related genes. This study comprehensively explored the potential value of SPC25 as a prognostic and immunotherapeutic marker for pan-cancer, providing new direction and evidence for cancer therapy.
Collapse
Affiliation(s)
- Fengjuan Xia
- Department of Neurology of the First People's Hospital of Zhaoqing, China, Zhaoqing, 526000, China
| | - Haixia Yang
- Oncology Center of the First People's Hospital of Zhaoqing, Zhaoqing, 526000, China
| | - Huangjian Wu
- Oncology Center of the First People's Hospital of Zhaoqing, Zhaoqing, 526000, China
| | - Bo Zhao
- Center for Pain Medicine of the First People's Hospital of Zhaoqing, Zhaoqing, 526000, China.
| |
Collapse
|
62
|
Martínez-López MF, Muslin C, Kyriakidis NC. STINGing Defenses: Unmasking the Mechanisms of DNA Oncovirus-Mediated Immune Escape. Viruses 2024; 16:574. [PMID: 38675916 PMCID: PMC11054469 DOI: 10.3390/v16040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
DNA oncoviruses represent an intriguing subject due to their involvement in oncogenesis. These viruses have evolved mechanisms to manipulate the host immune response, facilitating their persistence and actively contributing to carcinogenic processes. This paper describes the complex interactions between DNA oncoviruses and the innate immune system, with a particular emphasis on the cGAS-STING pathway. Exploring these interactions highlights that DNA oncoviruses strategically target and subvert this pathway, exploiting its vulnerabilities for their own survival and proliferation within the host. Understanding these interactions lays the foundation for identifying potential therapeutic interventions. Herein, we sought to contribute to the ongoing efforts in advancing our understanding of the innate immune system in oncoviral pathogenesis.
Collapse
Affiliation(s)
- Mayra F Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| | - Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito 170503, Ecuador;
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| |
Collapse
|
63
|
Abu Baker F, Kopelman Y, Taher R, Abu Much S, Green I, Mari A, Davidov Y, Ben-Ari Z, Israel A. Hepatitis B virus infection and risk of colorectal cancer: a large, population-based cohort study from Israel. Minerva Med 2024; 115:185-190. [PMID: 38197570 DOI: 10.23736/s0026-4806.23.08964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Recent population-based studies have suggested a possible link between hepatitis B (HBV) infection and extra-hepatic malignancies. We aimed to evaluate the association between HBV and colorectal cancer (CRC) using a large, population-based cohort study utilizing data from a large health maintenance organization (HMO). METHODS The study included patients with non-cirrhotic HBV based on relevant ICD-9-CM codes and supportive serology identified from the HMO's database. Age-, sex-, ethnicity-, and BMI-matched non-HBV patients in a 1:10 ratio were included in the control group. We assessed the overall diagnosis rate of CRC and hepatocellular carcinoma (HCC) during the study period and calculated the diagnosis rate of CRC in each age category (≤50, 51-70, and ≥70) in both groups. RESULTS A total of 3430 HBV patients and 34,300 controls were included in the study. The mean age, sex, BMI, and ethnic composition were similar, and the rates of family history of CRC did not differ between both groups. The overall follow-up period was 134±16 months. The diagnosis rate of HCC (1.6% vs. 0.1%; P<0.0001) was significantly higher in the HBV patients. However, the proportion of CRC was comparable for both groups (0.6% vs. 0.8%, P=0.404), which was evident in all age subgroups. CONCLUSIONS Our findings suggest that HBV infection is associated with an increased risk of HCC diagnosis but is not linked to an elevated risk of CRC. These findings may inform future clinical practice and research regarding the relationship between HBV and extrahepatic malignancies.
Collapse
Affiliation(s)
- Fadi Abu Baker
- Department of Gastroenterology and Hepatology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Yael Kopelman
- Department of Gastroenterology and Hepatology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Randa Taher
- Department of Gastroenterology and Hepatology, Hillel Yaffe Medical Center, Hadera, Israel -
- Department of Internal Medicine, Hillel Yaffe Medical Center, Hadera, Israel
| | - Saif Abu Much
- Department of Internal Medicine, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ilan Green
- Leumit Healthcare Service, Tel Aviv, Israel
| | - Amir Mari
- Department of Gastroenterology and Hepatology, EMMS Hospital, Nazareth, Israel
| | - Yana Davidov
- Center for Liver Diseases, Tel HaShomer Hospital, Ramat Gan, Israel
| | - Ziv Ben-Ari
- Center for Liver Diseases, Tel HaShomer Hospital, Ramat Gan, Israel
| | | |
Collapse
|
64
|
Dong W, Wang H, Li M, Li P, Ji S. Virus-induced host genomic remodeling dysregulates gene expression, triggering tumorigenesis. Front Cell Infect Microbiol 2024; 14:1359766. [PMID: 38572321 PMCID: PMC10987825 DOI: 10.3389/fcimb.2024.1359766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Virus-induced genomic remodeling and altered gene expression contribute significantly to cancer development. Some oncogenic viruses such as Human papillomavirus (HPV) specifically trigger certain cancers by integrating into the host's DNA, disrupting gene regulation linked to cell growth and migration. The effect can be through direct integration of viral genomes into the host genome or through indirect modulation of host cell pathways/proteins by viral proteins. Viral proteins also disrupt key cellular processes like apoptosis and DNA repair by interacting with host molecules, affecting signaling pathways. These disruptions lead to mutation accumulation and tumorigenesis. This review focuses on recent studies exploring virus-mediated genomic structure, altered gene expression, and epigenetic modifications in tumorigenesis.
Collapse
Affiliation(s)
- Weixia Dong
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Huiqin Wang
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Menghui Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Ping Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Shaoping Ji
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
65
|
Meng J, Yang Z, Jiang X, Zou J. Unveiling NUSAP1 as a common gene signature linking chronic HBV infection and HBV-related HCC. Discov Oncol 2024; 15:61. [PMID: 38441732 PMCID: PMC10914659 DOI: 10.1007/s12672-024-00922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a significant contributor to the development of hepatocellular carcinoma (HCC). Chronic HBV infection (CHB) facilitates disease progression through various mechanisms. However, the specific factor responsible for the progression of HBV infection to HCC remains unresolved. This study aims to identify the hub gene linking CHB and HBV-related HCC through bioinformatic analysis and experimental verification. METHODS Differentially expressed genes (DEGs) were identified in datasets encompassing CHB and HBV-HCC patients from the GEO database. Enriched pathways were derived from GO and KEGG analysis. Hub genes were screened by protein-protein interaction (PPI) analysis and different modules in Cytoscape software. The significance of the selected hub gene in prognosis was further assessed in validated datasets. The effects of hub genes on cell growth and apoptosis were further determined in functional experiments. RESULTS The study revealed upregulation of NUSAP1 in CHBs and HBV-HCCs. High expression of NUSAP1 served as an independent predictor for poor prognosis of liver cancers. Functional experiments demonstrated that NUSAP1 promotes cell growth, influences cell cycle process, and protects cells from apoptosis in HepG2.2.15 cells. CONCLUSION NUSAP1 serves as a poor prognostic indicator for liver cancers, and potentially plays a crucial role in HBV-HCC progression by promoting proliferation and inhibiting apoptosis.
Collapse
Affiliation(s)
- Jiao Meng
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Zhenkun Yang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Xinyi Jiang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
66
|
Huang DQ, Hoang JK, Kamal R, Tsai PC, Toyoda H, Yeh ML, Yasuda S, Leong J, Maeda M, Huang CF, Won Jun D, Ishigami M, Tanaka Y, Uojima H, Ogawa E, Abe H, Hsu YC, Tseng CH, Alsudaney M, Yang JD, Yoshimaru Y, Suzuki T, Liu JK, Landis C, Dai CY, Huang JF, Chuang WL, Schwartz M, Dan YY, Esquivel C, Bonham A, Yu ML, Nguyen MH. Antiviral Therapy Utilization and 10-Year Outcomes in Resected Hepatitis B Virus- and Hepatitis C Virus-Related Hepatocellular Carcinoma. J Clin Oncol 2024; 42:790-799. [PMID: 38175991 DOI: 10.1200/jco.23.00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/31/2023] [Accepted: 10/17/2023] [Indexed: 01/06/2024] Open
Abstract
PURPOSE There are limited data on antiviral treatment utilization and its impact on long-term outcomes of hepatitis B virus (HBV)- and hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC) after hepatic resection. We aimed to determine the utilization and impact of antivirals in HBV- and HCV-related HCC. METHODS This cohort study included 1,906 participants (1,054 HBV-related HCC and 852 HCV-related HCC) from 12 international sites. All participants had HBV- or HCV-related HCC and underwent curative surgical resection. The primary outcome was the utilization of antiviral therapy, and the secondary outcome was long-term overall survival (OS). RESULTS The mean (±standard deviation [SD]) age was 62.1 (±11.3) years, 74% were male, and 84% were Asian. A total of 47% of the total cohort received antiviral therapy during a mean (±SD) follow-up of 5.0 (±4.3) years. The overall antiviral utilization for participants with HBV-related HCC was 57% and declined over time, from 65% before 2010, to 60% from 2010 to 2015, to 47% beyond 2015, P < .0001. The overall utilization of antivirals for HCV-related HCC was 35% and increased over time, from 24% before 2015 to 74% from 2015 and beyond, P < .0001. The 10-year OS was lower in untreated participants for both HBV (58% v 61%) and HCV participants (38% v 82%; both P < .0001). On multivariable Cox regression analysis adjusted for relevant confounders, antiviral therapy initiated before or within 6 months of HCC diagnosis was independently associated with lower mortality in both HBV- (adjusted hazard ratio [aHR], 0.60 [95% CI, 0.43 to 0.83]; P = .002) and HCV-related HCC (aHR, 0.18 [95% CI, 0.11 to 0.31]; P < .0001). CONCLUSION Antiviral therapy is associated with long-term survival in people with HBV- or HCV-related HCC who undergo curative resection but is severely underutilized.
Collapse
Affiliation(s)
- Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
| | - Joseph K Hoang
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA
| | - Rubayet Kamal
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA
- Meharry Medical College, Nashville, TN
| | - Pei-Chien Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Hepatitis Research Center, College of Medicine and Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Hepatitis Research Center, College of Medicine and Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Satoshi Yasuda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Jennifer Leong
- Henry D. Janowitz Division of Gastroenterology, Mt. Sinai Health System, New York, NY
| | - Mayumi Maeda
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Hepatitis Research Center, College of Medicine and Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, South Korea
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Uojima
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara
| | - Eiichi Ogawa
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroshi Abe
- Division of Gastroenterology and Hepatology, Shinmatsudo Central General Hospital, Chiba, Japan
| | - Yao-Chun Hsu
- Division of Gastroenterology of Hepatology, E-Da Cancer Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Hao Tseng
- Division of Gastroenterology of Hepatology, E-Da Cancer Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Manaf Alsudaney
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Yoko Yoshimaru
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takanori Suzuki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | - Charles Landis
- Division of Gastroenterology, Kaiser Permanente, Seattle, WA
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Hepatitis Research Center, College of Medicine and Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Hepatitis Research Center, College of Medicine and Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Hepatitis Research Center, College of Medicine and Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Myron Schwartz
- Recanati-Miller Transplantation Institute, Mount Sinai School of Medicine, New York, NY
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
| | - Carlos Esquivel
- Department of Surgery, Stanford University Medical Center, Palo Alto, CA
| | - Andrew Bonham
- Department of Surgery, Stanford University Medical Center, Palo Alto, CA
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Hepatitis Research Center, College of Medicine and Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA
| |
Collapse
|
67
|
Sun Y, Chen W, Chen S, Wu X, Zhang X, Zhang L, Zhao H, Xu M, Chen Y, Piao H, Li P, Li L, Jiang W, Li X, Xing H, Liu X, Zhang Y, Wang B, Zhou J, Meng T, Zhao X, Shao C, Kong Y, Zhao X, Ou X, Liu C, Jia J, You H. Regression of Liver Fibrosis in Patients on Hepatitis B Therapy Is Associated With Decreased Liver-Related Events. Clin Gastroenterol Hepatol 2024; 22:591-601.e3. [PMID: 38040276 DOI: 10.1016/j.cgh.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND & AIMS Liver fibrosis in patients with chronic hepatitis B can regress with successful antiviral therapy. However, the long-term clinical benefits of fibrosis regression have not been fully elucidated. This study investigated the association between biopsy-proven fibrosis regression by predominantly progressive, indeterminate, and predominantly regressive (P-I-R) score and liver-related events (LREs) in chronic hepatitis B patients. METHODS Patients with on-treatment liver biopsy and significant fibrosis/cirrhosis (Ishak stage ≥3) were included in this analysis. Fibrosis regression was evaluated according to the P-I-R score of the Beijing Classification. LREs were defined as decompensations, hepatocellular carcinoma, liver transplantation, or death. The Cox proportional hazards model was used to determine associations of fibrosis regression with LREs. RESULTS A total of 733 patients with Ishak stages 3/4 (n = 456; 62.2%) and cirrhosis (Ishak stages 5/6; n = 277; 37.8%) by on-treatment liver biopsy were enrolled. According to the P-I-R score, fibrosis regression, indeterminate, and progression were observed in 314 (42.8%), 230 (31.4%), and 189 (25.8%) patients, respectively. The 7-year cumulative incidence of LREs was 4.1%, 8.7%, and 18.1% in regression, indeterminate, and progression, respectively (log-rank, P < .001). Compared with patients with fibrosis progression, those with fibrosis regression had a lower risk of LREs (adjusted hazard ratio, 0.40; 95% CI, 0.16-0.99; P = .047), followed by the indeterminate group (adjusted hazard ratio, 0.86; 95% CI, 0.40-1.85; P = .691). Notably, this favorable association also was observed in patients with cirrhosis or low platelet counts (<150 × 109/L). CONCLUSIONS Antiviral therapy-induced liver fibrosis regression assessed by P-I-R score is associated with reduced LREs. This shows the utility of histologic fibrosis regression assessed by on-treatment P-I-R score as a surrogate endpoint for clinical events in patients with hepatitis B virus-related fibrosis or early cirrhosis.
Collapse
Affiliation(s)
- Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyi Zhang
- Department of Hepatology, Second Hospital, Lanzhou University, Lanzhou, China
| | - Hong Zhao
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mingyi Xu
- Department of Gastroenterology and Hepatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongpeng Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongxin Piao
- Infectious Department, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Ping Li
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Lei Li
- Department of Gastroenterology and Hepatology, Beijing You-an Hospital, Capital Medical University, Beijing, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodong Li
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Huichun Xing
- Department of Hepatology, Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xudong Liu
- Department of Liver Diseases, Ruikang Hospital, Guangxi Traditional Chinese Medicine University, Nanning, China
| | - Yuxi Zhang
- Department of Infectious Diseases, Ningxia People's Hospital, Yinchuan, China
| | - Bingqiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tongtong Meng
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Chen Shao
- Department of Pathology, Beijing You-an Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Kong
- Clinical Epidemiology and Evidence-based Medicine Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyu Zhao
- Clinical Epidemiology and Evidence-based Medicine Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China.
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China.
| |
Collapse
|
68
|
Zhao X, Wang C, Zhao L, Tian Z. HBV DNA polymerase regulates tumor cell glycogen to enhance the malignancy of HCC cells. Hepatol Commun 2024; 8:e0387. [PMID: 38358372 PMCID: PMC10871796 DOI: 10.1097/hc9.0000000000000387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/16/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The essential function of HBV DNA polymerase (HBV-DNA-Pol) is to initiate viral replication by reverse transcription; however, the role of HBV-DNA-Pol in HBV-associated HCC has not been clarified. Glycogen phosphorylase L (PYGL) is a critical regulator of glycogenolysis and is involved in tumorigenesis, including HCC. However, it is unknown whether HBV-DNA-Pol regulates PYGL to contribute to HCC tumorigenesis. METHODS Bioinformatic analysis, real-time quantitative PCR, western blotting, and oncology functional assays were performed to determine the contribution of HBV-DNA-Pol and PYGL to HCC development and glycolysis. The mechanisms of co-immunoprecipitation and ubiquitination were employed to ascertain how HBV-DNA-Pol upregulated PYGL. RESULTS Overexpression of HBV-DNA-Pol enhanced HCC progression in vitro and in vivo. Mechanistically, HBV-DNA-Pol interacted with PYGL and increased PYGL protein levels by inhibiting PYGL ubiquitination, which was mediated by the E3 ligase TRIM21. HBV-DNA-Pol competitively impaired the binding of PYGL to TRIM21 due to its stronger binding affinity to TRIM21, suppressing the ubiquitination of PYGL. Moreover, HBV-DNA-Pol promoted glycogen decomposition by upregulating PYGL, which led to an increased flow of glucose into glycolysis, thereby promoting HCC development. CONCLUSIONS Our study reveals a novel mechanism by which HBV-DNA-Pol promotes HCC by controlling glycogen metabolism in HCC, establishing a direct link between HBV-DNA-Pol and the Warburg effect, thereby providing novel targets for HCC treatment and drug development.
Collapse
Affiliation(s)
- Xiaoqing Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunqing Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Liqing Zhao
- Department of Pediatrics, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Zhongzheng Tian
- Shandong Agricultural Technology Extending Center, Jinan, China
| |
Collapse
|
69
|
Shadi Y, Heshmati B, Poorolajal J. Interaction between hepatitis B, hepatitis C and smoking in the development of hepatocellular carcinoma: a systematic review and meta-analysis. J Public Health (Oxf) 2024; 46:51-60. [PMID: 37934962 DOI: 10.1093/pubmed/fdad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND This meta-analysis reports the relationship between hepatitis B virus (HBV), hepatitis C virus (HCV), smoking and their combined impact on the development of hepatocellular carcinoma (HCC). METHODS We conducted a systematic search of PubMed, Web of Science and Scopus databases up to 15 July 2023. Observational studies investigating the association between HBV, HCV and smoking in the development of HCC were included. We assessed between-study heterogeneity using the I2 statistics. The effect sizes were estimated as odds ratio (OR) with 95% confidence intervals (CIs) using a random-effects model. RESULTS Out of 20 794 studies identified in the initial search, 32 observational studies involving 22 282 participants met the inclusion criteria. Our meta-analysis showed that the combined impact of HBV and smoking was associated with an OR of 19.81 (95% CI: 14.77, 26.58), HCV and smoking was associated with an OR of 24.86 (95% CI: 12.41, 49.79), and coinfection of HBV and HCV was associated with an OR of 32.58 (95% CI: 20.57, 51.60). CONCLUSIONS Our findings indicate a significant interaction between HBV, HCV and smoking in the development of HCC and highlight the importance of addressing smoking cessation and viral hepatitis prevention and treatment as potential strategies for reducing HCC.
Collapse
Affiliation(s)
- Yahya Shadi
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan 6517838695, Iran
| | - Bahram Heshmati
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan 6517838695, Iran
| | - Jalal Poorolajal
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan 6517838695, Iran
- Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan 6517838695, Iran
| |
Collapse
|
70
|
Agustiningsih A, Rasyak MR, Turyadi, Jayanti S, Sukowati C. The oncogenic role of hepatitis B virus X gene in hepatocarcinogenesis: recent updates. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:120-134. [PMID: 38464387 PMCID: PMC10918233 DOI: 10.37349/etat.2024.00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 03/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancers with high mortality rate. Among its various etiological factors, one of the major risk factors for HCC is a chronic infection of hepatitis B virus (HBV). HBV X protein (HBx) has been identified to play an important role in the HBV-induced HCC pathogenesis since it may interfere with several key regulators of many cellular processes. HBx localization within the cells may be beneficial to HBx multiple functions at different phases of HBV infection and associated hepatocarcinogenesis. HBx as a regulatory protein modulates cellular transcription, molecular signal transduction, cell cycle, apoptosis, autophagy, protein degradation pathways, and host genetic stability via interaction with various factors, including its association with various non-coding RNAs. A better understanding on the regulatory mechanism of HBx on various characteristics of HCC would provide an overall picture of HBV-associated HCC. This article addresses recent data on HBx role in the HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Agustiningsih Agustiningsih
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
| | - Muhammad Rezki Rasyak
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
- Post Graduate School, Faculty of Medicine, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Turyadi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
| | - Sri Jayanti
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
| | - Caecilia Sukowati
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, AREA Science Park, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
71
|
Sirirungreung A, Lee PC, Hu YH, Liew Z, Ritz B, Heck JE. Maternal medically diagnosed infection and antibiotic prescription during pregnancy and risk of childhood cancer: A population-based cohort study in Taiwan, 2004 to 2015. Int J Cancer 2024; 154:626-635. [PMID: 37792464 PMCID: PMC10942658 DOI: 10.1002/ijc.34744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
While associations between maternal infections during pregnancy and childhood leukemia in offspring have been extensively studied, the evidence for other types of childhood cancers is limited. Additionally, antibiotic exposure during pregnancy could potentially increase the risk of childhood cancers. Our study investigates associations between maternal infections and antibiotic prescriptions during pregnancy and the risk of childhood cancer in Taiwan. We conducted a population-based cohort study using the Taiwan Maternal and Child Health Database (TMCHD), linked with national health and cancer registries. The study included 2 267 186 mother-child pairs, and the median follow-up time was 7.96 years. Cox proportional hazard models were utilized to estimate effects. Maternal infections during pregnancy were associated with a moderate increase in the risk of childhood hepatoblastoma (adjusted hazard ratio [HR] = 1.34; 95% confidence interval [CI]: 0.90-1.98) and a weaker increase in the risk of childhood acute lymphoblastic leukemia (ALL) (adjusted HR = 1.15; 95% CI: 0.99-1.35). Antibiotic prescriptions during pregnancy were also associated with an elevated risk of childhood ALL (adjusted HR = 1.30; 95% CI: 1.04-1.63), particularly with tetracyclines (adjusted HR = 2.15; 95% CI: 1.34-3.45). Several specific antibiotics were also associated with an increased risk of hepatoblastoma and medulloblastoma. Children exposed in utero to antibiotic prescription or both infections and antibiotics during pregnancy were at higher risk of developing ALL. Our findings suggest that there are associations between maternal infections, antibiotic use during pregnancy and the risk of several childhood cancers in addition to ALL and highlight the importance of further research in this area.
Collapse
Affiliation(s)
- Anupong Sirirungreung
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Pei-Chen Lee
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Hui Hu
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Julia E Heck
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- College of Health and Public Service, University of North Texas, Denton, TX, USA
| |
Collapse
|
72
|
Zheng Q, Sun Q, Yao H, Shi R, Wang C, Ma Z, Xu H, Zhou G, Cheng Z, Xia H. Single-cell landscape identifies the immunophenotypes and microenvironments of HBV-positive and HBV-negative liver cancer. Hepatol Commun 2024; 8:e0364. [PMID: 38251896 PMCID: PMC10805423 DOI: 10.1097/hc9.0000000000000364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND HBV infection leads to HCC and affects immunotherapy. We are exploring the tumor ecosystem in HCC to help gain a deeper understanding and design more effective immunotherapy strategies for patients with HCC with or without HBV infection. METHODS Single-cell RNA sequencing series were integrated as a discovery cohort to interrogate the tumor microenvironment of HBV-positive (HBV+) HCC and HBV-negative (HBV-) HCC. We further dissect the intratumoral immune status of HBV+ HCC and HBV- HCC. An independent cohort, including samples treated with immune checkpoint blockade therapy, was used to validate the major finding and investigate the effect of HBV infection on response to immunotherapy. RESULTS The interrogation of tumor microenvironment indicated that regulatory T cells, exhausted CD8+ T cells, and M1-like Macrophage_MMP9 were enriched in HBV+ HCC, while mucosa-associated invariant T cells were enriched in HBV- HCC. All subclusters of T cells showed high expression of immune checkpoint genes in HBV+ HCC. Regulatory T cells enriched in HBV+ HCC also showed more robust immunosuppressive properties, which was confirmed by cross talk between immune cell subsets. The ability of antigen presentation with major histocompatibility complex-II was downregulated in HBV+ HCC and this phenomenon can be reversed by immunotherapy. Two types of HCC also present different responses to immunotherapy. CONCLUSIONS There is a more immunosuppressive and exhausted tumor microenvironment in HBV+ HCC than in HBV- HCC. This in-depth immunophenotyping strategy is critical to understanding the impact of HBV and the HCC immune microenvironment and helping develop more effective treatments in patients with HCC.
Collapse
Affiliation(s)
- Qian Zheng
- Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- School of Basic Medical Sciences, Key Laboratory of Antibody Technique of National Health Commission, Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, China
| | - Qi Sun
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Hong Yao
- Department of Cancer Biotherapy Center & Cancer Research Institute of Yunnan, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruoyu Shi
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Cheng Wang
- School of Basic Medical Sciences, Key Laboratory of Antibody Technique of National Health Commission, Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, China
| | - Zhijie Ma
- School of Basic Medical Sciences, Key Laboratory of Antibody Technique of National Health Commission, Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, China
| | - Haojun Xu
- School of Basic Medical Sciences, Key Laboratory of Antibody Technique of National Health Commission, Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhangjun Cheng
- Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Hongping Xia
- Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- School of Basic Medical Sciences, Key Laboratory of Antibody Technique of National Health Commission, Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, China
- Department of Cancer Biotherapy Center & Cancer Research Institute of Yunnan, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
73
|
Liu Y, Kim ES, Guo H. Hepatitis B virus-related hepatocellular carcinoma exhibits distinct intratumoral microbiota and immune microenvironment signatures. J Med Virol 2024; 96:e29485. [PMID: 38377167 PMCID: PMC10916714 DOI: 10.1002/jmv.29485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Emerging evidence supports a high prevalence of cancer type-specific microbiota residing within tumor tissues. The intratumoral microbiome in hepatocellular carcinoma (HCC), especially in viral (hepatitis B virus [HBV]/hepatitis C virus [HCV]) HCC, has not been well characterized for their existence, composition, distribution, and biological functions. We report herein a finding of specific microbial signature in viral HCC as compared to non-HBV/non-HCV (NBNC) HCC. However, the significantly diverse tumor microbiome was only observed in HBV-related HCC, and Cutibacterium was identified as the representative taxa biomarker. Biological function of the unique tumor microbiota in modulating tumor microenvironment (TME) was characterized by using formalin-fixed paraffin-embedded (FFPE) tissue-based multiplex immunofluorescence histochemistry (mIFH) allowing simultaneous in situ detection of the liver cancer cells surrounded with high/low density of microbiota, and the infiltrating immune cells. In HBV_HCC, the intratumoral microbiota are positively associated with increased tumor-infiltrating CD8+ T lymphocytes, but not the CD56+ NK cells. Two subtypes of myeloid-derived suppressor cells (MDSCs): monocytic MDSCs and polymorphonuclear MDSCs, were also found to be positively correlated with the intratumoral microbiota in HBV_HCC, indicating an inhibitory role of these microbial species in antitumor immunity and the contribution to the liver TME in combination of chronic viral hepatitis during HCC development.
Collapse
Affiliation(s)
- Yuanjie Liu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
- Cancer Microbiome Facility, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine
| | - Elena S. Kim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine
| |
Collapse
|
74
|
He XL, Guo HJ, Lei YR, Li J, Li JY, Li MH, Li N, Wang F, Mo CF. NAMPT promotes the malignant progression of HBV-associated hepatocellular carcinoma through activation of SREBP1-mediated lipogenesis. FASEB J 2024; 38:e23444. [PMID: 38252081 DOI: 10.1096/fj.202300070rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Metabolic reprogramming is a hallmark of cancer. The nicotinamide phosphoribosyltransferase (NAMPT)-mediated salvage pathway maintains sufficient cellular NAD levels and is required for tumorigenesis and development. However, the molecular mechanism by which NAMPT contributes to HBV-associated hepatocellular carcinoma (HCC) remains not fully understood. In the present study, our results showed that NAMPT protein was obviously upregulated in HBV-positive HCC tissues compared with HBV-negative HCC tissues. NAMPT was positively associated with aggressive HCC phenotypes and poor prognosis in HBV-positive HCC patients. NAMPT overexpression strengthened the proliferative, migratory, and invasive capacities of HBV-associated HCC cells, while NAMPT-insufficient HCC cells exhibited decreased growth and mobility. Mechanistically, we demonstrated that NAMPT activated SREBP1 (sterol regulatory element-binding protein 1) by increasing the expression and nuclear translocation of SREBP1, leading to the transcription of SREBP1 downstream lipogenesis-related genes and the production of intracellular lipids and cholesterol. Altogether, our data uncovered an important molecular mechanism by which NAMPT promoted HBV-induced HCC progression through the activation of SREBP1-triggered lipid metabolism reprogramming and suggested NAMPT as a promising prognostic biomarker and therapeutic target for HBV-associated HCC patients.
Collapse
Affiliation(s)
- Xian-Lu He
- Department of General Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Hui-Jie Guo
- Department of General Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Ya-Ruo Lei
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jun Li
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jing-Yi Li
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Min-Hui Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Fei Wang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Chun-Fen Mo
- Department of General Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
75
|
Xu L, Xu Y, Zhang F, Xu P, Wang L. Immunological pathways in viral hepatitis-induced hepato-cellular carcinoma. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:64-72. [PMID: 38426692 PMCID: PMC10945487 DOI: 10.3724/zdxbyxb-2023-0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/25/2023] [Indexed: 03/02/2024]
Abstract
Hepatocellular carcinoma (HCC) is a serious neoplastic disease with increasing incidence and mortality, accounting for 90% of all liver cancers. Hepatitis viruses are the major causative agents in the development of HCC. Hepatitis A virus (HAV) primarily causes acute infections, which is associated with HCC to a certain extent, as shown by clinicopathological studies. Chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infections lead to persistent liver inflammation and cirrhosis, disrupt multiple pathways associated with cellular apoptosis and proliferation, and are the most common viral precursors of HCC. Mutations in the HBV X protein (HBx) gene are closely associated with the incidence of HCC, while the expression of HCV core proteins contributes to hepatocellular lipid accumulation, thereby promoting tumorigenesis. In the clinical setting, hepatitis D virus (HDV) frequently co-infects with HBV, increasing the risk of chronic hepatitis. Hepatitis E virus (HEV) usually causes acute infections. However, chronic infections of HEV have been increasing recently, particularly in immuno-compromised patients and organ transplant recipients, which may increase the risk of progression to cirrhosis and the occurrence of HCC. Early detection, effective intervention and vaccination against these viruses may significantly reduce the incidence of liver cancer, while mechanistic insights into the interplay between hepatitis viruses and HCC may facilitate the development of more effective intervention strategies. This article provides a comprehensive overview of hepatitis viruses and reviews recent advances in research on aberrant hepatic immune responses and the pathogenesis of HCC due to viral infection.
Collapse
Affiliation(s)
- Lingdong Xu
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Yifan Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Fei Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Pinglong Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Lie Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
76
|
Ding S, Liu H, Liu L, Ma L, Chen Z, Zhu M, Liu L, Zhang X, Hao H, Zuo L, Yang J, Wu X, Zhou P, Huang F, Zhu F, Guan W. Epigenetic addition of m 5C to HBV transcripts promotes viral replication and evasion of innate antiviral responses. Cell Death Dis 2024; 15:39. [PMID: 38216565 PMCID: PMC10786922 DOI: 10.1038/s41419-023-06412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024]
Abstract
Eukaryotic five-methylcytosine (m5C) is an important regulator of viral RNA splicing, stability, and translation. However, its role in HBV replication remains largely unknown. In this study, functional m5C sites are identified in hepatitis B virus (HBV) mRNA. The m5C modification at nt 1291 is not only indispensable for Aly/REF export factor (ALYREF) recognition to promote viral mRNA export and HBx translation but also for the inhibition of RIG-I binding to suppress interferon-β (IFN-β) production. Moreover, NOP2/Sun RNA methyltransferase 2 (NSUN2) catalyzes the addition of m5C to HBV mRNA and is transcriptionally downregulated by the viral protein HBx, which suppresses the binding of EGR1 to the NSUN2 promoter. Additionally, NSUN2 expression correlates with m5C modification of type I IFN mRNA in host cells, thus, positively regulating IFN expression. Hence, the delicate regulation of NSUN2 expression induces m5C modification of HBV mRNA while decreasing the levels of m5C in host IFN mRNA, making it a vital component of the HBV life cycle. These findings provide new molecular insights into the mechanism of HBV-mediated IFN inhibition and may inform the development of new IFN-α based therapies.
Collapse
Affiliation(s)
- Shuang Ding
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
- Hubei JiangXia Laboratory, Wuhan, Hubei, 430200, China
| | - Lijuan Liu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Li Ma
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Miao Zhu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Lishi Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Li Zuo
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Jingwen Yang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Fang Huang
- Hubei JiangXia Laboratory, Wuhan, Hubei, 430200, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, Hubei, 430071, China.
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China.
- Hubei JiangXia Laboratory, Wuhan, Hubei, 430200, China.
| |
Collapse
|
77
|
Tian R, Yang D, Xu B, Deng R, Xue B, Wang L, Li H, Liu Q, Wang X, Tang S, Wan M, Pei H, Zhu H. Establishment of cell culture model and humanized mouse model of chronic hepatitis B virus infection. Microbiol Spectr 2024; 12:e0274523. [PMID: 38018998 PMCID: PMC10783038 DOI: 10.1128/spectrum.02745-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Approximately 257 million people worldwide have been infected with hepatitis B virus (HBV), and HBV infection can cause chronic hepatitis, cirrhosis, and even liver cancer. The lack of suitable and effective infection models has greatly limited research in HBV-related fields for a long time, and it is still not possible to discover a method to completely and effectively remove the HBV genome. We have constructed a hepatocellular carcinoma cell line, HLCZ01, that can support the complete life cycle of HBV. This model can mimic the long-term stable infection of HBV in the natural state and can replace primary human hepatocytes for the development of human liver chimeric mice. This model will be a powerful tool for research in the field of HBV.
Collapse
Affiliation(s)
- Renyun Tian
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Di Yang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Biaoming Xu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Rilin Deng
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Luoling Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Qian Liu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Xiaohong Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Mengyu Wan
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Hua Pei
- Department of Pathogen Biology and Immunology, Department of Clinical Laboratory of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education,Institute of Pathogen Biology and Immunology,School of Basic Medicine and Life Science, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Department of Pathogen Biology and Immunology, Department of Clinical Laboratory of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education,Institute of Pathogen Biology and Immunology,School of Basic Medicine and Life Science, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| |
Collapse
|
78
|
Dai H, Klause H, Conran RM. Educational Case: Hepatocellular carcinoma. Acad Pathol 2024; 11:100108. [PMID: 38433777 PMCID: PMC10904914 DOI: 10.1016/j.acpath.2024.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024] Open
Affiliation(s)
- Harrison Dai
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Harrison Klause
- Department of Radiology, Eastern Virginia Medical School, Medical Center Radiologists, Norfolk, VA, USA
| | - Richard M. Conran
- Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
79
|
Weidemann H, Yeh K, Hunter K, Roy S. Risk Factors and Comorbidities Associated With Hepatocellular Carcinoma in Patients With Chronic Hepatitis B Virus Infection. J Prim Care Community Health 2024; 15:21501319241259413. [PMID: 38884145 PMCID: PMC11185008 DOI: 10.1177/21501319241259413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
INTRODUCTION/OBJECTIVES Chronic hepatitis B virus infection (CHBVI) is a major public health problem affecting about 296 million people worldwide. HBV infects the liver, and when it becomes chronic, may cause cirrhosis and hepatocellular carcinoma (HCC). The aim of our study was to identify the risk factors and comorbid medical conditions that were associated with HCC in patients who had CHBVI. METHODS We performed a retrospective electronic medical record review of adult patients diagnosed with CHBVI, who presented to our primary care office between October 1, 2017 and October 21, 2022. Selected variables in patients with CHBVI with HCC (HCC group) were compared to those without HCC (NoHCC group). RESULTS Among 125 patients with CHBVI, 24% had HCC and 76% did not have HCC. There were higher frequencies of association of certain comorbidities in the HCC group compared to NoHCC group, such as anemia (63.3% vs 26.3%; P < .001), ascites (53.3% vs 1.1%; P < .001), portal hypertension (43.3% vs 0.0%; P < .001), chronic kidney disease (40.0% vs 13.7%; P = .002), and HCV coinfection (13.3% vs 7.4%; P < .001). The logistic regression model showed increased odds of HCC for each year of increase in age (OR = 1.06, 95% CI = 1.01-1.11; P = .014), and increased odds in men (OR = 5.96, 95% CI = 1.71-20.73; P = .005). Although Asians represented the racial majority in both the groups, there was no significant difference in the race distribution between the two groups. CONCLUSION In patients with CHBVI, increasing age and male sex are factors associated with increased odds of having HCC. Patients with CHBVI and HCC have higher frequencies of association of tobacco use, recreational drug use, anemia, ascites, portal hypertension, chronic kidney disease, and co-infection with HCV.
Collapse
Affiliation(s)
| | - Kristen Yeh
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Krystal Hunter
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Satyajeet Roy
- Cooper Medical School of Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
| |
Collapse
|
80
|
Chen H, Cao D, Han N, Zhang M, Jiang W, Wang X, Zeng Q, Tang H. Hepatitis B Virus-Encoded MicroRNA (HBV-miR-3) Inhibits FIH-1 Expression to Promote Tumor Angiogenesis in HBV-Related Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:2337-2353. [PMID: 38163053 PMCID: PMC10757782 DOI: 10.2147/jhc.s436926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is a solid tumor with a rich blood supply, and anti-angiogenesis has important clinical significance. Hepatitis B Virus-Encoded MicroRNA 3 (HBV-miR-3) has recently been reported to be involved in HCC development. In this study, we aim to elucidate the role of HBV-miR-3 in promoting HBV-related HCC angiogenesis through Factor Inhibiting Hypoxia-inducible factor 1 (FIH-1). Results By analyzing HBV-related HCC tissue samples, we found that high expression of HBV-miR-3 was associated with poor overall survival and HBV-miR-3 expression was significantly correlated with VEGFR2 and FIH-1 expressions. In vitro, HBV-miR-3 agomir repressed FIH-1 expression and promoted HIF-1α/VEGFA signaling activation in HepG2 cells, resulting in increased HUVEC lumen formation in HepG2-HUVEC co-culture model. Conversely, HBV-miR-3 antagomir induced FIH-1 expression and inhibited HIF-1α/VEGFA signaling activation in HepG2.2.15 cells, resulting in decreased HUVEC lumen formation in HepG2.2.15-HUVEC co-culture model. The effect of HBV-miR-3 to HCC angiogenesis was also confirmed by a mouse tumor bearing model. We also confirmed that HBV-miR-3 repressed FIH-1 expression via targeting the 3'-UTR of FIH-1 mRNA by luciferase activity assay. Conclusion HBV-miR-3 was related to HCC patients' overall survival and it promoted angiogenesis by repressing FIH-1 expression. HBV-miR-3 may be a new marker for predicting prognosis and a novel target for anti-angiogenic treatment of HBV-related HCC.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Dan Cao
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xin Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Qinmin Zeng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
81
|
Aasarey R, Yadav K, Kashyap BK, Prabha S, Kumar P, Kumar A, Ruokolainen J, Kesari KK. Role of Immunological Cells in Hepatocellular Carcinoma Disease and Associated Pathways. ACS Pharmacol Transl Sci 2023; 6:1801-1816. [PMID: 38093838 PMCID: PMC10714437 DOI: 10.1021/acsptsci.3c00216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 03/28/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the predominant causes of cancer-related mortality across the globe. It is attributed to obesity, excessive alcohol consumption, smoking, and infection by the hepatitis virus. Early diagnosis of HCC is essential, and local treatments such as surgical excision and percutaneous ablation are effective. Palliative systemic therapy, primarily with the tyrosine kinase inhibitor Sorafenib, is used in advanced cases. However, the prognosis for advanced HCC remains poor. This Review additionally describes the pathophysiological mechanisms of HCC, which include aberrant molecular signaling, genomic instability, persistent inflammation, and the paradoxical position of the immune system in promoting and suppressing HCC. The paper concludes by discussing the growing body of research on the relationship between mitochondria and HCC, suggesting that mitochondrial dysfunction may contribute to the progression of HCC. This Review focuses on immunological interactions between different mechanisms of HCC progression, including obesity, viral infection, and alcohol consumption.
Collapse
Affiliation(s)
- Ram Aasarey
- Department
of Laboratory Medicine, All India Institute
of Medical Science, New Delhi-11029, India
| | - Kajal Yadav
- Department
of Biotechnology, All India Institute of
Medical Science, New Delhi-11029, India
| | - Brijendra Kumar Kashyap
- Department
of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi-284128, Uttar Pradesh, India
| | - Sarit Prabha
- Department
of Biological Science and Engineering, Maulana
Azad National Institute of Technology, Bhopal-462003, Madhya Pradesh,India
| | - Pramod Kumar
- Indian
Council of Medical Research, National Institute
of Cancer Prevention and Research (NICPR), l-7, Sector-39, Noida-201301, National Capital Region, India
| | - Anil Kumar
- Department
of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke-835222, Ranchi, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Espoo, Finland
- Research
and Development Cell, Lovely Professional
University, Phagwara-144411, Punjab, India
| |
Collapse
|
82
|
Wang X, Zhao Y, Bai T, Ye J, Lu S, Wu F, Li L, Chen J. Serum immune biomarker levels combined with hepatitis B virus infection status predict early recurrence of early-stage hepatocellular carcinoma with microvascular invasion after liver resection. Acta Chir Belg 2023; 123:659-665. [PMID: 36222747 DOI: 10.1080/00015458.2022.2136051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/09/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The tumor immune response plays a vital role in cancer recurrence in patients with malignancies. We aim to clarify the risk factors for early recurrence and investigate the efficacy of blood-based biomarkers to predict the risk of early recurrence in early-stage hepatocellular carcinoma (HCC) patients with microvascular invasion (MVI) after hepatectomy. MATERIALS AND METHODS A total of 101 cases of HCC with MVI who underwent liver resection were enrolled. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors of early recurrence. We calculated the area under the receiver operating characteristic curve to evaluate the performance of the four biomarkers identified as risk factors for early recurrence. RESULTS Multiple logistic regression analysis indicated that complement (C)4, cluster of differentiation (CD)4+, immunoglobulin A (IgA), and hepatitis B virus (HBV) DNA of greater than 500 IU/mL were correlated with early recurrence of HCC. The area under the curve was greater for the combination model than for the HBV DNA, CD4+, IgA, or C4 models alone. CONCLUSION Preoperative serum CD4+, C4, IgA, and HBV DNA levels were linked with early recurrence of early-stage HCC with MVI and the combination model was of considerable predictive value for the prognosis of HCC with MVI.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Yuanquan Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Tao Bai
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Shaolong Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| |
Collapse
|
83
|
Fukano K, Wakae K, Nao N, Saito M, Tsubota A, Toyoshima T, Aizaki H, Iijima H, Matsudaira T, Kimura M, Watashi K, Sugiura W, Muramatsu M. A versatile method to profile hepatitis B virus DNA integration. Hepatol Commun 2023; 7:e0328. [PMID: 38051537 PMCID: PMC10697629 DOI: 10.1097/hc9.0000000000000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND HBV DNA integration into the host genome is frequently found in HBV-associated HCC tissues and is associated with hepatocarcinogenesis. Multiple detection methods, including hybrid capture-sequencing, have identified integration sites and provided clinical implications; however, each has advantages and disadvantages concerning sensitivity, cost, and throughput. Therefore, methods that can comprehensively and cost-effectively detect integration sites with high sensitivity are required. Here, we investigated the efficiency of RAISING (Rapid Amplification of Integration Site without Interference by Genomic DNA contamination) as a simple and inexpensive method to detect viral integration by amplifying HBV-integrated fragments using virus-specific primers covering the entire HBV genome. METHODS AND RESULTS Illumina sequencing of RAISING products from HCC-derived cell lines (PLC/PRF/5 and Hep3B cells) identified HBV-human junction sequences as well as their frequencies. The HBV-human junction profiles identified using RAISING were consistent with those determined using hybrid capture-sequencing, and the representative junctions could be validated by junction-specific nested PCR. The comparison of these detection methods revealed that RAISING-sequencing outperforms hybrid capture-sequencing in concentrating junction sequences. RAISING-sequencing was also demonstrated to determine the sites of de novo integration in HBV-infected HepG2-NTCP cells, primary human hepatocytes, liver-humanized mice, and clinical specimens. Furthermore, we made use of xenograft mice subcutaneously engrafted with PLC/PRF/5 or Hep3B cells, and HBV-human junctions determined by RAISING-sequencing were detectable in the plasma cell-free DNA using droplet digital PCR. CONCLUSIONS RAISING successfully profiles HBV-human junction sequences with smaller amounts of sequencing data and at a lower cost than hybrid capture-sequencing. This method is expected to aid basic HBV integration and clinical diagnosis research.
Collapse
Affiliation(s)
- Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | - Masumichi Saito
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihito Tsubota
- Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Takae Toyoshima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroko Iijima
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Hyogo, Japan
| | - Takahiro Matsudaira
- Biotechnological Research Support Division, FASMAC Co., Ltd., Kanagawa, Japan
| | - Moto Kimura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
84
|
Zeng M, Tang Z, Ren L, Wang H, Wang X, Zhu W, Mao X, Li Z, Mo X, Chen J, Han J, Kong D, Ji J, Carr AM, Liu C. Hepatitis B virus infection disrupts homologous recombination in hepatocellular carcinoma by stabilizing resection inhibitor ADRM1. J Clin Invest 2023; 133:e171533. [PMID: 37815873 PMCID: PMC10688980 DOI: 10.1172/jci171533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Many cancers harbor homologous recombination defects (HRDs). A HRD is a therapeutic target that is being successfully utilized in treatment of breast/ovarian cancer via synthetic lethality. However, canonical HRD caused by BRCAness mutations do not prevail in liver cancer. Here we report a subtype of HRD caused by the perturbation of a proteasome variant (CDW19S) in hepatitis B virus-bearing (HBV-bearing) cells. This amalgamate protein complex contained the 19S proteasome decorated with CRL4WDR70 ubiquitin ligase, and assembled at broken chromatin in a PSMD4Rpn10- and ATM-MDC1-RNF8-dependent manner. CDW19S promoted DNA end processing via segregated modules that promote nuclease activities of MRE11 and EXO1. Contrarily, a proteasomal component, ADRM1Rpn13, inhibited resection and was removed by CRL4WDR70-catalyzed ubiquitination upon commitment of extensive resection. HBx interfered with ADRM1Rpn13 degradation, leading to the imposition of ADRM1Rpn13-dependent resection barrier and consequent viral HRD subtype distinguishable from that caused by BRCA1 defect. Finally, we demonstrated that viral HRD in HBV-associated hepatocellular carcinoma can be exploited to restrict tumor progression. Our work clarifies the underlying mechanism of a virus-induced HRD subtype.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zizhi Tang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Laifeng Ren
- Department of Immunology, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| | - Haibin Wang
- Department of Pediatric Surgery, Wuhan Children’s Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Wang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiaobing Mao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyang Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xianming Mo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junhong Han
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Daochun Kong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Antony M. Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Cong Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
85
|
Piewbang C, Wardhani SW, Siripoonsub J, Sirivisoot S, Rungsipipat A, Techangamsuwan S. Domestic cat hepadnavirus detection in blood and tissue samples of cats with lymphoma. Vet Q 2023; 43:1-10. [PMID: 37768269 PMCID: PMC10563604 DOI: 10.1080/01652176.2023.2265172] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Abstract
Domestic cat hepadnavirus (DCH), a relative hepatitis B virus (HBV) in human, has been recently identified in cats; however, association of DCH infection with lymphoma in cats is not investigated. To determine the association between DCH infection and feline lymphoma, seven hundred and seventeen cats included 131 cats with lymphoma (68 blood and 63 tumor samples) and 586 (526 blood and 60 lymph node samples) cats without lymphoma. DCH DNA was investigated in blood and formalin-fixed paraffin-embedded (FFPE) tissues by quantitative polymerase chain reaction (qPCR). The FFPE lymphoma tissues were immunohistochemically subtyped, and the localization of DCH in lymphoma sections was investigated using in situ hybridization (ISH). Feline retroviral infection was investigated in the DCH-positive cases. DCH DNA was detected in 16.18% (11/68) (p = 0.002; odds ratio [OR], 5.15; 95% confidence interval [CI], 2.33-11.36) of blood and 9.52% (6/63) (p = 0.028; OR, 13.68; 95% CI, 0.75-248.36) of neoplastic samples obtained from lymphoma cats, whereas only 3.61% (19/526) of blood obtained from non-lymphoma cats was positive for DCH detection. Within the DCH-positive lymphoma, in 3/6 cats, feline leukemia virus was co-detected, and in 6/6 were B-cell lymphoma (p > 0.9; OR, 1.93; 95% CI, 0.09-37.89) and were multicentric form (p = 0.008; OR, 1.327; 95% CI, 0.06-31.18). DCH was found in the CD79-positive pleomorphic cells. Cats with lymphoma were more likely to be positive for DCH than cats without lymphoma, and infection associated with lymphoma development needs further investigations.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sabrina Wahyu Wardhani
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jedsada Siripoonsub
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirintra Sirivisoot
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
86
|
Ramakrishnan K, Babu S, Shaji V, Soman S, Leelamma A, Rehman N, Raju R. Hepatitis B Virus Modulated Transcriptional Regulatory Map of Hepatic Cellular MicroRNAs. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:581-597. [PMID: 38064540 DOI: 10.1089/omi.2023.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Hepatitis B virus (HBV) is an enveloped, hepatotropic, noncytopathic virus with a partially double-stranded DNA genome. It infects hepatocytes and is associated with progression to liver fibrosis and cirrhosis, culminating in hepatocellular carcinoma (HCC), accounting for 55% of total HCC cases. MicroRNAs (miRNAs) regulated by HBV play an important role in these pathologies. Mapping the miRNAs responsive to HBV and HBV-specific proteins, including HBV X protein (HBx) that harbor the majority of HBV-human protein interactions, could aid accelerate the diagnostics and therapeutics innovation against the infection and associated diseases. With this in mind, we used a unique annotation strategy whereby we first amassed 362 mature HBV responsive-human Differentially Expressed miRNAs (HBV-hDEmiRs). The core experimentally-validated messenger RNA targets of the HBV-hDEmiRs were mostly associated with viral infections and hepatic inflammation processes. Moreover, our annotation strategy enabled the characterization of HBx-dependent/independent HBV-hDEmiRs as a tool for evaluation of the impact of HBx as a therapeutic target. Bioinformatics analysis of the HBV-human protein-protein interactome revealed new insights into the transcriptional regulatory network of the HBV-hDEmiRs. We performed a comparative analysis of data on miRNAs gathered from HBV infected cell line studies and from tissue studies of fibrosis, cirrhosis, and HCC. Accordingly, we propose hsa-miR-15a-5p that is downregulated by multiple HBV proteins, including HBx, as a potential biomarker of HBV infection, and its progression to HCC. In all, this study underscores (1) the complexity of miRNA regulation in response to HBV infection and its progression into other liver pathologies and (2) provides a regulatory map of HBV-hDEmiRs and the underlying mechanisms modulating their expression through a cross talk between HBV viral proteins and human transcription factors.
Collapse
Affiliation(s)
| | - Sreeranjini Babu
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - Vineetha Shaji
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Anila Leelamma
- Department of Biochemistry, NSS College, Nilamel, Kollam, Kerala, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
87
|
Kong Y, Sun Y, Wu X, Zhou J, Wang H, Ding H, Xie W, Chen G, Ma A, Piao H, Xu X, Jiang W, Feng B, Ou X, You H, Lee SS, Jia J. Distinct on-treatment HCC risks associated with different decompensation events in HBV patients with cirrhosis. Hepatol Int 2023; 17:1350-1358. [PMID: 37597121 DOI: 10.1007/s12072-023-10567-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/24/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVES Long-term treatment with nucleoside analog (NA) reduces the risks for decompensation and hepatocellular carcinoma (HCC) in chronic hepatitis B (CHB) patients with compensated cirrhosis (CC). However, whether antiviral therapy has differential efficacy on the risks for decompensation and HCC is insufficiently elucidated. Therefore, we investigated the disease state transition, focusing on decompensation event-specific HCC risk in NA-treated CHB patients with CC. METHODS We prospectively followed up on 1163 NA-treated CHB patients with CC every six months for up to seven years. The cumulative incidence and risk of HCC were analyzed by the Kaplan-Meier method and competing risk model. The multistate model was used to estimate the transition probabilities to HCC from different disease states. RESULTS HCC predominated the first liver-related events, with a 5-year cumulative incidence of 9.0%, followed by decompensation (8.3%, including 7.9% nonbleeding decompensation and 2.4% variceal bleeding) and 0.2% death. The decompensation stage had a significantly higher 5-year cumulative HCC incidence than the CC stage (27.6% vs. 9.1%; HR = 2.42, 95% CI: 1.24, 4.71). Furthermore, nonbleeding decompensation events had a higher 5-year transition probability to HCC than bleeding (27.6% vs. 15.8%; HR = 2.69, 95% CI: 1.41, 4.17). Viral suppression modified the on-treatment transition risk to HCC (1-year: HR = 0.45, 95% CI: 0.28, 0.73; 3-year: HR = 0.23, 95% CI: 0.14, 0.38). An online calculator was developed to facilitate HCC risk stratification. CONCLUSIONS In NA-treated CHB patients with compensated cirrhosis, the risk was higher for HCC than for decompensation; more importantly, different decompensation events conferred distinct HCC risks.
Collapse
Affiliation(s)
- Yuanyuan Kong
- Clinical Epidemiology & EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Clinical Epidemiology & EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guofeng Chen
- Division of Liver Fibrosis, The Fifth Medical Center, General Hospital of the People's Liberation Army, Beijing, China
| | - Anlin Ma
- Division of Infectious Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Hongxin Piao
- Infectious Disease Department, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Xiaoyuan Xu
- Division of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Feng
- Hepatology Institution, Peking University People's Hospital, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Beijing Key Laboratory of Translational Medicine On Liver Cirrhosis, Beijing Clinical Research Institute, Beijing, China.
| | - Samuel S Lee
- Liver Unit, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
88
|
Zhao Y, Chen K, Yang H, Zhang F, Ding L, Liu Y, Zhang L, Zhang Y, Wang H, Deng Y. HLA-DR genetic polymorphisms and hepatitis B virus mutations affect the risk of hepatocellular carcinoma in Han Chinese population. Virol J 2023; 20:283. [PMID: 38037048 PMCID: PMC10691135 DOI: 10.1186/s12985-023-02253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Human leucocyte antigen (HLA)-DR plays a crucial role in the immune response against hepatitis B virus (HBV). We aimed to investigate the associations of HLA-DR single nucleotide polymorphisms (SNPs) with the generation of hepatocellular carcinoma (HCC)-related HBV mutations. The effects of HLA-DR SNPs and their interactions with HBV mutations on HCC risks were also determined. METHODS Five HLA-DR SNPs (rs3135363, rs9268644, rs35445101, rs24755213, and rs984778) were genotyped in 792 healthy controls, 586 chronic hepatitis B (CHB) patients, 536 liver cirrhosis (LC) patients, and 1500 HCC patients using quantitative PCR. Sanger sequencing was used to identify the HBV mutations. Logistic regression model was performed to evaluate the association of HLA-DR SNPs with HCC risk and the frequencies of HCC-related HBV mutations. RESULTS The variant genotypes at rs3135363, rs9268644, rs35445101, rs24755213, and rs984778 were associated with decreased HCC risks. In genotype C HBV-infected subjects, variant genotypes of these SNPs were associated with decreased frequencies of HCC-related HBV mutations such as C1653T, T1674C/G, G1719T, T1753A/C, A1762T/G1764A, A1846T, G1896A, G1899A, and preS deletion. AG genotype at rs3135363, CA genotype at rs9268644, and AG genotype at rs24755213 reduced the generation of T1753A/C and G1896A in genotype B HBV-infected subjects, respectively. In addition, the interactions of rs3135363, rs9268644, rs24755213 with C1653T, T1753A/C, A1846T, and G1896A decreased the risks of HCC. CONCLUSIONS HLA-DR genetic polymorphisms might predispose the host to immunoselection of HCC-related HBV mutations and affect the HCC risks possibly through interacting with HBV mutations.
Collapse
Affiliation(s)
- Yubao Zhao
- Department of Infectious Diseases, Second Affiliated Hospital of Shandong First Medical University, 706 Taishan Street, Tai'an, Shandong Province, China
| | - Kun Chen
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong Province, China
| | - Hui Yang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong Province, China
| | - Feng Zhang
- Department of Gastrointestinal Surgery, Tai'an Central Hospital, 29 Longtan Road, Tai'an, Shandong Province, China
| | - Lu Ding
- Department of Public Health, Jinan Central Hospital, 105 Jiefang Road, Jinan, Shandong Province, China
| | - Yan Liu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong Province, China
| | - Le Zhang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong Province, China
| | - Yuchen Zhang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong Province, China
| | - Huiliang Wang
- Department of Infectious Diseases, Second Affiliated Hospital of Shandong First Medical University, 706 Taishan Street, Tai'an, Shandong Province, China
| | - Yang Deng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong Province, China.
| |
Collapse
|
89
|
Li Y, Wang C, Yin X, Jiang L, Li X, Yang J. Profile and clinical significance of interferon gamma-inducible protein-10 (IP-10) and its receptor in patients with hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:14879-14888. [PMID: 37599316 DOI: 10.1007/s00432-023-05265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Chemokines play a vital role in tumor progression, metastasis and prognosis; however, the profile and clinical significance of gamma interferon-inducible protein-10 (IP-10) and its receptor (CXCR3) in patients with hepatocellular carcinoma (HCC) have not been well evaluated. METHODS Liquid-phase chip technology was used to detect the serum IP-10 in 85 patients with HBV-related HCC, 50 patients with chronic hepatitis B (CHB) and 50 liver cirrhosis subjects (CS); simultaneously, the CXCR3 and Alpha fetoprotein (AFP) were determined. Additionally, their mRNA or protein expression levels in peripheral blood mononuclear cells (PBMC), liver tumor and paracancerous tissues were quantified using qRT-PCR or ELISA. Moreover, the IP-10 and CXCR3 expression was verified by the online data from Gene Expression Omnibus. Furthermore, the relationships of serum IP-10, CXCR3 and AFP levels with their overall survival rate were also analyzed. RESULTS The levels of IP-10 and CXCR3 in HCC group were significantly higher than those in CHB and CS groups, and their mRNA of PBMC is significantly positive correlation with those in their liver tissues or HBV DNA load (P < 0.0001), respectively. The serum IP-10 and CXCR3 in HCC were significantly correlated with tumor differentiation, metastases staging and distant metastasis (P < 0.05), but not related to gender, age and tumor size (P > 0.05, except IP-10 based on age). CONCLUSIONS The serum IP-10 (142.6 pg/mL) and CXCR3 (241.2 pg/mL) could be differential diagnostic surrogates that distinguish HCC from CS, and the lower IP-10 level may be conducive to the postoperative survival of HCC patients. Moreover, the IP-10 and CXCR3 would be related to anti-tumor immunity in HCC patients and be a potential target for treatment of HCC.
Collapse
Affiliation(s)
- Yongtao Li
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Hangzhou, 310003, China
| | - Chengfei Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Hangzhou, 310003, China
| | - Xuying Yin
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Hangzhou, 310003, China
| | - Lili Jiang
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Hangzhou, 310003, China
| | - Xuefen Li
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Jiezuan Yang
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
90
|
Qu W, Sui L, Li Y. Vaccine escape challenges virus prevention: The example of two vaccine-preventable oncogenic viruses. J Med Virol 2023; 95:e29184. [PMID: 37943176 DOI: 10.1002/jmv.29184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Over the years, the pace of developing vaccines for HBV and HPV has never stopped. After more than 30 years of application, the HBV vaccine has reduced 80% of hepatocellular carcinoma (HCC). However, vaccine escape variants occur under selective pressure induced by widespread vaccination and antiviral therapy, which results in fulminant infection and horizontal transmission. Several mechanisms have been studied to explain HBV vaccine escape, including vaccine escape mutations (VEMs) in the major hydrophilic region, which leads to a decrease in the binding ability to neutralize antibodies and is the primary escape mechanism, protein conformational and N-linked glycosylation sites changes caused by VEMs, differences in genotype distribution, gene recombination, and some temporarily unknown reasons. However, effective solutions are still being explored. The HPV vaccine has also been proven to prevent 70%-90% of cervical cancer worldwide. Cases of HPV infection after being vaccinated have been observed in clinical practice. However, few researchers have paid attention to the mechanism of HPV vaccine escape. Thus, we reviewed the literature on vaccine escape of both HBV and HPV to discuss the mechanism of the virus escaping from vaccine protection and possible solutions to this problem. We analyzed the gap between studies of HPV and HBV and made prospects for further research in HPV vaccine escape.
Collapse
Affiliation(s)
- Wenjie Qu
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Long Sui
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yanyun Li
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
91
|
Funato K, Miyake N, Sekiba K, Miyakawa Y, Seimiya T, Shibata C, Kishikawa T, Otsuka M. Cabozantinib inhibits HBV-RNA transcription by decreasing STAT3 binding to the enhancer region of cccDNA. Hepatol Commun 2023; 7:e0313. [PMID: 37938099 PMCID: PMC10635605 DOI: 10.1097/hc9.0000000000000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Precision medicine and customized therapeutics based on the features of each patient are important for maximizing therapeutic effects. Because most cases of HCC occur in the damaged liver through various etiologies, such as hepatitis virus infection, steatohepatitis, and autoimmune hepatitis, there should be a rationale for the choice of therapeutic options based on these etiologies. Although cabozantinib, an oral multikinase inhibitor, has demonstrated clinical effectiveness in advanced HCC, subgroup analyses showed a lower HR for death in HBV-related HCC. This study aimed to determine the therapeutic effects of cabozantinib in HBV-related HCC. METHODS Using HBV infection models and gene knockout cells, we determined the crucial signaling axis responsible for the effects of cabozantinib on HBV. A chromatin immunoprecipitation assay was performed to determine the interaction between the signaling molecules and HBV DNA. Agonists and inhibitors were used for confirmation. RESULTS Cabozantinib inhibited HBV replication through the HGF-mesenchymal-epithelial transition factor-signal transducer and activator of transcription 3 (MET-STAT3) signaling axis. The importance of STAT3 in viral replication has been confirmed using gene-edited STAT3 knockout cells. The chromatin immunoprecipitation assay revealed that the binding levels of phosphorylated STAT3 to enhancer region 1 of HBV covalently closed circular DNA were significantly increased by HGF stimulation. CONCLUSIONS Cabozantinib has favorable therapeutic effects on HBV-related HCC because it inhibits HCC not only directly but also indirectly by means of inhibitory effects on HBV.
Collapse
Affiliation(s)
- Kazuyoshi Funato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nozomi Miyake
- Department of Gastroenterology, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yu Miyakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chikako Shibata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Gastroenterology, Graduate School of Medicine, Okayama University, Okayama, Japan
| |
Collapse
|
92
|
Yu J, Li W, Hou GJ, Sun DP, Yang Y, Yuan SX, Dai ZH, Yin HZ, Sun SH, Huang G, Zhou WP, Yang F. Circular RNA cFAM210A, degradable by HBx, inhibits HCC tumorigenesis by suppressing YBX1 transactivation. Exp Mol Med 2023; 55:2390-2401. [PMID: 37907737 PMCID: PMC10689457 DOI: 10.1038/s12276-023-01108-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023] Open
Abstract
Hepatitis B protein x (HBx) has been reported to promote tumorigenesis in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), but the mechanism awaits further investigation. In this study, we found that cFAM210A (a circular RNA derived from the third exon of transcript NM_001098801 of the FAM210A gene; CircBase ID: hsa_circ_0003979) can be silenced by HBx. cFAM210A expression was downregulated and negatively correlated with tumorigenesis in patients with HBV-related HCC. Furthermore, cFAM210A reduced the proliferation, stemness, and tumorigenicity of HCC cells. Mechanistically, HBx increased the N6-methyladenosine (m6A) level of cFAM210A by promoting the expression of RBM15 (an m6A methyltransferase), thus inducing the degradation of cFAM210A via the YTHDF2-HRSP12-RNase P/MRP pathway. cFAM210A bound to YBX1 and inhibited its phosphorylation, suppressing its transactivation function toward MET. These findings suggest the important role of circular RNAs in HBx-induced hepatocarcinogenesis and identify cFAM210A a potential target in the prevention and treatment of HBV-related HCC.
Collapse
Affiliation(s)
- Jian Yu
- The Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Wen Li
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Guo-Jun Hou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Da-Peng Sun
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Sheng-Xian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhi-Hui Dai
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Hao-Zan Yin
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Shu-Han Sun
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Gang Huang
- The Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| | - Fu Yang
- The Department of Medical Genetics, Naval Medical University, Shanghai, China.
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, 200433, China.
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China.
| |
Collapse
|
93
|
Gao H, Fan H, Xie H. miR-HCC2 suppresses hepatitis B virus replication by inhibiting the activity of the enhancer I/X promoter. Arch Virol 2023; 168:282. [PMID: 37889339 DOI: 10.1007/s00705-023-05899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023]
Abstract
miR-HCC2 has been reported to markedly promote the growth, metastasis, and stemness of hepatocellular carcinoma (HCC) cells in vitro and in vivo. Deep sequencing showed that miR-HCC2 was significantly upregulated in hepatitis B virus (HBV)-positive (HBV+) HCC tissue samples compared with HBV-negative (HBV-) HCC tissue samples. miR-HCC2 expression was further evaluated in HCC tissues and cells, and the expression of miR-HCC2 was found to be significantly higher in HBV+ HCC tissues and cells than in HBV- HCC tissues and cells, suggesting that high miR-HCC2 expression could be induced by HBV infection. To explore the relationship between miR-HCC2 and HBV, we investigated the effect of miR-HCC2 on HBV antigen expression, transcription, and replication. We found that miR-HCC2 was involved in the negative feedback regulation of HBV replication. Further mechanistic studies revealed that miR-HCC2 suppressed HBV replication by inhibiting the activity of the enhancer I/X promoter. Our study demonstrates the effect of the inhibition of miR-HCC2 on HBV gene expression and replication, which can help to illustrate the complex regulatory network involving host miRNAs and HBV.
Collapse
Affiliation(s)
- Huijie Gao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang-Tai Road, Tianjin, 300070, China.
| | - Hongxia Fan
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang-Tai Road, Tianjin, 300070, China
| | - Hong Xie
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang-Tai Road, Tianjin, 300070, China.
| |
Collapse
|
94
|
Kim SR, Kim SK. Hepatocellular Carcinoma and Hepatitis: Advanced Diagnosis and Management with a Focus on the Prevention of Hepatitis B-Related Hepatocellular Carcinoma. Diagnostics (Basel) 2023; 13:3212. [PMID: 37892033 PMCID: PMC10605503 DOI: 10.3390/diagnostics13203212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Though the world-wide hepatitis B virus (HBV) vaccination program has been well completed for almost thirty years in many nations, almost HBV-related hepatocellular carcinoma (HCC) occurs in unvaccinated middle-aged and elderly adults. Apparently, treating 80% of qualified subjects could decrease HBV-related mortality by 65% in a short period. Nevertheless, globally, only 2.2% of CHB patients undergo antiviral therapy. The HBV markers related to HCC occurrence and prevention are as follows: the HCC risk is the highest at a baseline of HBV DNA of 6-7 log copies/mL, and it is the lowest at a baseline of an HBV DNA level of >8 log copies/mL and ≤4 log copies/mL (parabolic, and not linear pattern). The titer of an HBV core-related antigen (HBcrAg) reflecting the amount of HBV covalently closed circular DNA (ccc DNA) in the liver is related to HCC occurrence. The seroclearance of HBs antigen (HBsAg) is more crucial than HBV DNA negativity for the prevention of HCC. In terms of the secondary prevention of hepatitis B-related HCC involving antiviral therapies with nucleos(t)ide analogues (NAs), unsolved issues include the definition of the immune-tolerant phase; the optimal time for starting antiviral therapies with NAs; the limits of increased aminotransferase (ALT) levels as criteria for therapy in CHB patients; the normalization of ALT levels with NAs and the relation to the risk of HCC; and the relation between serum HBV levels and the risk of HCC. Moreover, the first-line therapy with NAs including entecavir (ETV), tenofovir disoproxil fumarate (TDF), and tenofovir alafenamide (TAF) remains to be clarified. Discussed here, therefore, are the recent findings of HBV markers related to HCC occurrence and prevention, unsolved issues, and the current secondary antiviral therapy for the prevention of HBV-related HCC.
Collapse
Affiliation(s)
| | - Soo Ki Kim
- Department of Gastroenterology, Kobe Asahi Hospital, Kobe 653-0801, Japan;
| |
Collapse
|
95
|
Michalak TI. The Initial Hepatitis B Virus-Hepatocyte Genomic Integrations and Their Role in Hepatocellular Oncogenesis. Int J Mol Sci 2023; 24:14849. [PMID: 37834296 PMCID: PMC10573506 DOI: 10.3390/ijms241914849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Hepatitis B virus (HBV) remains a dominant cause of hepatocellular carcinoma (HCC). Recently, it was shown that HBV and woodchuck hepatitis virus (WHV) integrate into the hepatocyte genome minutes after invasion. Retrotransposons and transposable sequences were frequent sites of the initial insertions, suggesting a mechanism for spontaneous HBV DNA dispersal throughout the hepatocyte genome. Several somatic genes were also identified as early insertional targets in infected hepatocytes and woodchuck livers. Head-to-tail joints (HTJs) dominated amongst fusions, indicating their creation by non-homologous end-joining (NHEJ). Their formation coincided with the robust oxidative damage of hepatocyte DNA. This was associated with the activation of poly(ADP-ribose) polymerase 1 (PARP1)-mediated dsDNA repair, as reflected by the augmented transcription of PARP1 and XRCC1; the PARP1 binding partner OGG1, a responder to oxidative DNA damage; and increased activity of NAD+, a marker of PARP1 activation, and HO1, an indicator of cell oxidative stress. The engagement of the PARP1-mediated NHEJ repair pathway explains the HTJ format of the initial merges. The findings show that HBV and WHV are immediate inducers of oxidative DNA damage and hijack dsDNA repair to integrate into the hepatocyte genome, and through this mechanism, they may initiate pro-oncogenic processes. Tracking initial integrations may uncover early markers of HCC and help to explain HBV-associated oncogenesis.
Collapse
Affiliation(s)
- Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Science, Faculty of Medicine, Health Science Center, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
96
|
Liu Y, Tong X, Hu W, Chen D. HDAC11: A novel target for improved cancer therapy. Biomed Pharmacother 2023; 166:115418. [PMID: 37659201 DOI: 10.1016/j.biopha.2023.115418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
Histone deacetylase 11 (HDAC11) is a unique member of the histone deacetylase family that plays an important role in the regulation of gene expression and protein function. In recent years, research on the role of HDAC11 in tumors has attracted increasing attention. This review summarizes the current knowledge on the subcellular localization, structure, expression, and functions of HDAC11 in tumors, as well as the regulatory mechanisms involved in its network, including ncRNA and substrates. Moreover, we focus on the progress made in targeting HDAC11 to overcome tumor therapy resistance, and the development of HDAC11 inhibitors for cancer treatment. Collectively, this review provides comprehensive insights into the potential clinical implications of HDAC11 for cancer therapy.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Xuechao Tong
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
97
|
Ren H, Chen X, Wang J, Chen Y, Hafiz A, Xiao Q, Fu S, Madireddy A, Li WV, Shi X, Cao J. Temporal and structural patterns of hepatitis B virus integrations in hepatocellular carcinoma. J Med Virol 2023; 95:e29187. [PMID: 37877809 PMCID: PMC11131385 DOI: 10.1002/jmv.29187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Chronic infection of hepatitis B virus (HBV) is the major cause of hepatocellular carcinoma (HCC). Notably, 90% of HBV-positive HCC cases exhibit detectable HBV integrations, hinting at the potential early entanglement of these viral integrations in tumorigenesis and their subsequent oncogenic implications. Nevertheless, the precise chronology of integration events during HCC tumorigenesis, alongside their sequential structural patterns, has remained elusive thus far. In this study, we applied whole-genome sequencing to multiple biopsies extracted from six HBV-positive HCC cases. Through this approach, we identified point mutations and viral integrations, offering a blueprint for the intricate tumor phylogeny of these samples. The emergent narrative paints a rich tapestry of diverse evolutionary trajectories characterizing the analyzed tumors. We uncovered oncogenic integration events in some samples that appear to happen before and during the initiation stage of tumor development based on their locations in reconstituted trajectories. Furthermore, we conducted additional long-read sequencing of selected samples and unveiled integration-bridged chromosome rearrangements and tandem repeats of the HBV sequence within integrations. In summary, this study revealed premalignant oncogenic and sequential complex integrations and highlighted the contributions of HBV integrations to HCC development and genome instability.
Collapse
Affiliation(s)
- Haozhen Ren
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Xun Chen
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Ying Chen
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Alex Hafiz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Qian Xiao
- Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Shiwei Fu
- Department of Statistics, University of California, Riverside, Riverside, CA
| | - Advaitha Madireddy
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Wei Vivian Li
- Department of Statistics, University of California, Riverside, Riverside, CA
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| |
Collapse
|
98
|
Xu J, Zhou Y, Dong K, Gong J, Xiong W, Wang X, Gu C, Lu XY, Huang DP, Shen XD, She XK, Zhao XC, Yu XJ, Zhang H. Gene variation profile and it's potential correlation with clinical characteristics in HBV-associated HCC patients of Sichuan Han nationality in China. Asian J Surg 2023; 46:4371-4377. [PMID: 36894454 DOI: 10.1016/j.asjsur.2023.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/13/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
OBJECTIVE To explore the correlation between hepatocellular carcinoma (HCC) gene variation profile and clinical characteristics in Han nationality with HBV infection in Sichuan province. METHODS The clinical data and HCC tissues were obtained from the enrolled patients. Whole exome sequencing and bioinformatics analysis were performed on formalin-fixed and paraffin-embedded samples from HCC. Tumor mutational burden (TMB) was measured by an algorithm developed in-house. RESULTS Sixteen high-frequency mutated genes with differential expressions were identified by WES. SMG1 gene variation could be positively correlated with satellite lesions. AMY2B and RGPD4 gene mutation seemed to have a greater chance of vascular invasion. The patients with TATDN1 variation have bigger diameters and greater chances of vascular and microvascular invasion (all P < 0.05). Univariate analysis indicated patients with gene TATDN1 variation had worse prognoses both in disease free survival (DFS) and overall survival (OS). In addition, the enrichment analysis showed many pathways, including the cell cycle pathway, viral oncogene pathway, MAPK pathway, PI3K-AKT pathway, etc., may be associated with HCC. CONCLUSION This study explores the gene variation profile of HCC patients with HBV infection in Han nationality of Sichuan Province for the first time, which confirmed the existence of some high-frequency mutated genes and the possibility that the gene variations are involved in the tumorigenesis of HCC through multiple signal pathways. Also, patients with TATDN1 wild type showed a trend of better prognosis both in DFS and OS.
Collapse
Affiliation(s)
- Jian Xu
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Yao Zhou
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Medical School, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Ke Dong
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Jun Gong
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Wei Xiong
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xu Wang
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Chun Gu
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xiang-Yu Lu
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - De-Pei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, 201114, PR China
| | - Xu-Dong Shen
- The Medical Department, 3D Medicines Inc., Shanghai, 201114, PR China
| | - Xue-Ke She
- The Medical Department, 3D Medicines Inc., Shanghai, 201114, PR China
| | - Xiao-Chen Zhao
- The Medical Department, 3D Medicines Inc., Shanghai, 201114, PR China
| | - Xiao-Jiong Yu
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
99
|
Diaz O, Legrand AF, El-Orch W, Jacolin F, Lotteau V, Ramière C, Vidalain PO, Perrin-Cocon L. [Role of cellular metabolism in the control of chronic viral hepatitis]. Med Sci (Paris) 2023; 39:754-762. [PMID: 37943136 DOI: 10.1051/medsci/2023125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Hepatitis viruses modify the cellular metabolism of hepatocytes by interacting with specific enzymes such as glucokinase. The metabolic changes induced by viruses can have a direct impact on the innate antiviral response. The complex interactions between viral components, innate immunity, and hepatocyte metabolism explain why chronic hepatitis infections lead to liver inflammation, progressing to cirrhosis, fibrosis, and hepatocellular carcinoma. Metabolic regulators could be used in innovative therapies to deprive viruses of key metabolites and induce an antiviral defense.
Collapse
Affiliation(s)
- Olivier Diaz
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Anne-Flore Legrand
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Walid El-Orch
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Florentine Jacolin
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Christophe Ramière
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France - Service de virologie, hospices civils de Lyon, hôpital de la Croix-Rousse, Lyon, France
| | - Pierre-Olivier Vidalain
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre international de recherche en infectiologie, équipe VIRIMI, Univ Lyon, Inserm U1111, université Claude Bernard Lyon 1, CNRS, UMR5308, École normale supérieure (ENS) de Lyon, F-69007, Lyon, France
| |
Collapse
|
100
|
Gao X, Zuo S. Immune landscape and immunotherapy of hepatocellular carcinoma: focus on innate and adaptive immune cells. Clin Exp Med 2023; 23:1881-1899. [PMID: 36773210 PMCID: PMC10543580 DOI: 10.1007/s10238-023-01015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is responsible for roughly 90% of all cases of primary liver cancer, and the cases are on the rise. The treatment of advanced HCC is a serious challenge. Immune checkpoint inhibitor (ICI) therapy has marked a watershed moment in the history of HCC systemic treatment. Atezolizumab in combination with bevacizumab has been approved as a first-line treatment for advanced HCC since 2020; however, the combination therapy is only effective in a limited percentage of patients. Considering that the tumor immune microenvironment (TIME) has a great impact on immunotherapies for HCC, an in-depth understanding of the immune landscape in tumors and the current immunotherapeutic approaches is extremely necessary. We elaborate on the features, functions, and cross talk of the innate and adaptive immune cells in HCC and highlight the benefits and drawbacks of various immunotherapies for advanced HCC, as well as future projections. HCC consists of a heterogeneous group of cancers with distinct etiologies and immune microenvironments. Almost all the components of innate and adaptive immune cells in HCC have altered, showing a decreasing trend in the number of tumor suppressor cells and an increasing trend in the pro-cancer cells, and there is also cross talk between various cell types. Various immunotherapies for HCC have also shown promising efficacy and application prospect. There are multilayered interwoven webs among various immune cell types in HCC, and emerging evidence demonstrates the promising prospect of immunotherapeutic approaches for HCC.
Collapse
Affiliation(s)
- Xiaoqiang Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550000, Guizhou, China
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550000, Guizhou, China.
- Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|