51
|
Cheng CL, Lin YY, Hsu CL, Li CL, Yuan CT, Lai YY, Fang WQ, Chen PJ, Yeh SH, Tien HF. Unraveling the role of hepatitis B virus DNA integration in B-cell lymphomagenesis. Br J Cancer 2024; 131:996-1004. [PMID: 39026081 PMCID: PMC11405389 DOI: 10.1038/s41416-024-02763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Studies have shown that hepatitis B virus (HBV)-associated B-cell non-Hodgkin lymphoma (NHL) constitutes a unique subgroup with distinct clinical features. It still leaves open the question of whether the integration of HBV DNA into the B-cell genome is a causal mechanism in the development of lymphoma. METHODS Using the hybridisation capture-based next generation sequencing and RNA sequencing, we characterised the HBV integration pattern in 45 HBV-associated B-cell NHL tumour tissues. RESULTS A total of 354 HBV integration sites were identified in 13 (28.9%) samples, indicating the relatively low integration frequency in B-cell NHLs. High plasma HBV DNA loads were not associated with the existence of HBV integration. The insertion sites distributed randomly across all the lymphoma genome without any preferential hotspot neither at the chromosomal level nor at the genetic level. Intriguingly, most HBV integrations were nonclonal in B-cell NHLs, implying that they did not confer a survival advantage. Analysis of the paired diagnosis-relapse samples showed the unstable status of HBV integrations during disease progression. Furthermore, transcriptomic analysis revealed the limited biological impact of HBV integration. CONCLUSION Our study provides an unbiased HBV integration map in B-cell NHLs, revealing the insignificant role of HBV DNA integration in B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Chieh-Lung Cheng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - You-Yu Lin
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan, ROC
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chiao-Ling Li
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Chang-Tsu Yuan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan, ROC
| | - Ya-Yun Lai
- Microbial Genomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Quan Fang
- Division of New Drug, Center for Drug Evaluation, Taipei, Taiwan, ROC
| | - Pei-Jer Chen
- Microbial Genomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC.
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC.
- Department of Laboratory Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC.
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
- Department of Internal Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan, ROC.
| |
Collapse
|
52
|
Ahn JC, Yang JD. Unveiling etiology-specific blood biomarkers in hepatocellular carcinoma: A gateway to personalized medicine: Editorial on "Multiomics profiling of buffy coat and plasma unveils etiology-specific signatures in hepatocellular carcinoma". Clin Mol Hepatol 2024; 30:689-691. [PMID: 38741236 PMCID: PMC11540397 DOI: 10.3350/cmh.2024.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Joseph C. Ahn
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ju Dong Yang
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
53
|
Guo M, Sun Y, Wang X, Wang Z, Yuan X, Chen X, Yuan X, Wang L. The MCIB Model: A Novel Theory for Describing the Spatial Heterogeneity of the Tumor Microenvironment. Int J Mol Sci 2024; 25:10486. [PMID: 39408814 PMCID: PMC11476373 DOI: 10.3390/ijms251910486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment (TME) can be regarded as a complex and dynamic microecosystem generated by the interactions of tumor cells, interstitial cells, the extracellular matrix, and their products and plays an important role in the occurrence, progression and metastasis of tumors. In a previous study, we constructed an IEO model (prI-, prE-, and pOst-metastatic niche) according to the chronological sequence of TME development. In this paper, to fill the theoretical gap in spatial heterogeneity in the TME, we defined an MCIB model (Metabolic, Circulatory, Immune, and microBial microenvironment). The MCIB model divides the TME into four subtypes that interact with each other in terms of mechanism, corresponding to the four major links of metabolic reprogramming, vascular remodeling, immune response, and microbial action, providing a new way to assess the TME. The combination of the MCIB model and IEO model comprehensively depicts the spatiotemporal evolution of the TME and can provide a theoretical basis for the combination of clinical targeted therapy, immunotherapy, and other comprehensive treatment modalities for tumors according to the combination and crosstalk of different subtypes in the MCIB model and provide a powerful research paradigm for tumor drug-resistance mechanisms and tumor biological behavior.
Collapse
Affiliation(s)
- Minghao Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Yinan Sun
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zikun Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| |
Collapse
|
54
|
Li C, Li X, Niu M, Xiao D, Luo Y, Wang Y, Fang ZE, Zhan X, Zhao X, Fang M, Wang J, Xiao X, Bai Z. Unveiling correlations between aristolochic acids and liver cancer: spatiotemporal heterogeneity phenomenon. Chin Med 2024; 19:132. [PMID: 39342223 PMCID: PMC11439320 DOI: 10.1186/s13020-024-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
Aristolochic acids are a class of naturally occurring compounds in Aristolochiaceae that have similar structural skeletons and chemical properties. Exposure to aristolochic acids is a risk factor for severe kidney disease and urinary system cancer. However, the carcinogenicity of aristolochic acids to the liver, which is the main site of aristolochic acid metabolism, is unclear. Although the characteristic fingerprint of aristolochic acid-induced mutations has been detected in the liver and aristolochic acids are known to be hepatotoxic, whether aristolochic acids can directly cause liver cancer is yet to be verified. This review summarizes the findings of long-term carcinogenicity studies of aristolochic acids in experimental animals. We propose that spatiotemporal heterogeneity in the carcinogenicity of these phytochemicals could explain why direct evidence of aristolochic acids causing liver cancer has never been found in adult individuals. We also summarized the reported approaches to mitigate aristolochic acid-induced hepatotoxicity to better address the associated global safety issue and provide directions and recommendations for future investigation.
Collapse
Affiliation(s)
- Chengxian Li
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xinyu Li
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ming Niu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Dake Xiao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Ye Luo
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yinkang Wang
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-E Fang
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Xiaoyan Zhan
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China
| | - Xu Zhao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Mingxia Fang
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Xiaohe Xiao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China.
| | - Zhaofang Bai
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, 100039, China.
| |
Collapse
|
55
|
Liu Y, Zhang J, Zhai Z, Liu C, Yang S, Zhou Y, Zeng X, Liu J, Zhang X, Nie X, Xu J, Huang J, Liu C, Liu Z, Guo M, Sun G. Upregulated PrP C by HBx enhances NF-κB signal via liquid-liquid phase separation to advance liver cancer. NPJ Precis Oncol 2024; 8:211. [PMID: 39333690 PMCID: PMC11437096 DOI: 10.1038/s41698-024-00697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Cellular prion protein (PrPC) has been implicated in carcinogenic through the activation of various signal pathways, however, the precise mechanisms remain elusive. In vitro studies have shown that PrPC is prone to undergo liquid-liquid phase separation (LLPS). However, it remains unknown whether PrPC contributes to LLPS-inducing cancer development. Herein, we observed an upregulation of PrPC expression in hepatitis B virus-positive hepatocellular carcinoma (HCC). Subsequent investigation revealed that HBx of HBV enhances PrPC expression in a dose-dependent manner by binding to CREB1. Furthermore, we demonstrated that PrPC undergoes LLPS and recruits TRAF2/6, TAB2/3, and TAK1 protein, thereby activating the NF-κB signaling pathway and promoting tumor progression. Notably, although unable to undergo LLPS itself, the α3 helix of PrPC is essential for its activation of the NF-κB signaling pathway during the LLPS process. Further analysis unveiled that disulfide bond formation within the C-terminal domain of PrPC is necessary for its LLPS and subsequent activation of the NF-κB signaling pathway. Additionally, our findings indicate that NF-κB activation by PrPC condensates leads to increased IL-8 expression which further promotes tumor development.
Collapse
Affiliation(s)
- Yang Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jing Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Zixu Zhai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chenyi Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Siqi Yang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ying Zhou
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xianhuang Zeng
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jiaqi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiaoyu Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xinqi Nie
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jiaqi Xu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Junsong Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chaozhi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhepeng Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
- School of Ecology and Environment, Tibet University, Lhasa, 850000, Tibet, People's Republic of China.
| | - Guihong Sun
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
56
|
Talubo NDD, Tsai PW, Tayo LL. Comprehensive RNA-Seq Gene Co-Expression Analysis Reveals Consistent Molecular Pathways in Hepatocellular Carcinoma across Diverse Risk Factors. BIOLOGY 2024; 13:765. [PMID: 39452074 PMCID: PMC11505157 DOI: 10.3390/biology13100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Hepatocellular carcinoma (HCC) has the highest mortality rate and is the most frequent of liver cancers. The heterogeneity of HCC in its etiology and molecular expression increases the difficulty in identifying possible treatments. To elucidate the molecular mechanisms of HCC across grades, data from The Cancer Genome Atlas (TCGA) were used for gene co-expression analysis, categorizing each sample into its pre-existing risk factors. The R library BioNERO was used for preprocessing and gene co-expression network construction. For those modules most correlated with a grade, functional enrichments from different databases were then tested, which appeared to have relatively consistent patterns when grouped by G1/G2 and G3/G4. G1/G2 exhibited the involvement of pathways related to metabolism and the PI3K/Akt pathway, which regulates cell proliferation and related pathways, whereas G3/G4 showed the activation of cell adhesion genes and the p53 signaling pathway, which regulates apoptosis, cell cycle arrest, and similar processes. Module preservation analysis was then used with the no history dataset as the reference network, which found cell adhesion molecules and cell cycle genes to be preserved across all risk factors, suggesting they are imperative in the development of HCC regardless of potential etiology. Through hierarchical clustering, modules related to the cell cycle, cell adhesion, the immune system, and the ribosome were found to be consistently present across all risk factors, with distinct clusters linked to oxidative phosphorylation in viral HCC and pentose and glucuronate interconversions in non-viral HCC, underscoring their potential roles in cancer progression.
Collapse
Affiliation(s)
- Nicholas Dale D. Talubo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Lemmuel L. Tayo
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1203, Philippines
| |
Collapse
|
57
|
Kim S, Park J, Han J, Jang KL. Hepatitis B Virus X Protein Induces Reactive Oxygen Species Generation via Activation of p53 in Human Hepatoma Cells. Biomolecules 2024; 14:1201. [PMID: 39456134 PMCID: PMC11505488 DOI: 10.3390/biom14101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatitis B virus (HBV), particularly through the HBx protein, induces oxidative stress during liver infections. This study reveals that HBx increases reactive oxygen species (ROS) via two distinct mechanisms. The first mechanism is p53-independent, likely involving mitochondrial dysfunction, as demonstrated by elevated ROS levels in p53-deficient Hep3B cells and p53-knocked-down HepG2 cells after HBx expression or HBV infection. The increase in ROS persisted even when p53 transcriptional activity was inhibited by pifithrin-α (PFT-α), a p53 inhibitor. The second mechanism is p53-dependent, wherein HBx activates p53, which then amplifies ROS production through a feedback loop involving ROS and p53. The ability of HBx to elevate ROS levels was higher in HepG2 than in Hep3B cells. Knocking down p53 in HepG2 cells lowered ROS levels, while ectopic p53 expression in Hep3B cells raised ROS. HBx-activated p53 downregulated catalase and upregulated manganese-dependent superoxide dismutase, contributing to ROS amplification. The transcriptional activity of p53 was crucial for these effects, as cells with a p53 R175H mutation or those treated with PFT-α generated less ROS. Additionally, HBx variants with Ser-101 increased p53 and ROS levels, whereas variants with Pro-101 did not. These dual mechanisms of HBx-induced ROS generation are likely significant in the pathogenesis of HBV and may contribute to liver diseases, including hepatocellular carcinoma.
Collapse
Affiliation(s)
- Seungyeon Kim
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (S.K.); (J.P.); (J.H.)
| | - Jimin Park
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (S.K.); (J.P.); (J.H.)
| | - Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (S.K.); (J.P.); (J.H.)
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (S.K.); (J.P.); (J.H.)
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
58
|
Sometani E, Hikita H, Murai K, Toyoda H, Tanaka S, Oze T, Sung J, Shimoda A, Fukuoka M, Shigeno S, Fukutomi K, Shirai K, Tahata Y, Saito Y, Nishio A, Furuta K, Kodama T, Sakamori R, Tatsumi T, Mita E, Umezawa A, Tanaka Y, Takehara T. High serum growth differentiation factor 15 is a risk factor for the occurrence of hepatocellular carcinoma in chronic hepatitis B patients treated with nucleos(t)ide analogs. Hepatol Res 2024. [PMID: 39291388 DOI: 10.1111/hepr.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
AIM Patients with chronic hepatitis B (CHB) remain at risk for hepatocellular carcinoma (HCC) even with nucleos(t)ide analog therapy. We evaluated risk factors for HCC development, including serum hepatitis B virus (HBV) RNA, hepatitis B core-related antigen level, and growth differentiation factor 15 (GDF15) level, a predictor of HCC development in patients with chronic hepatitis C. METHODS We collected clinical data and stored serum from CHB patients without a history of HCC who were receiving nucleos(t)ide analog treatment for more than 1 year and whose HBV DNA level was less than 3.0 log IU/mL. We measured the serum levels of HBV RNA and GDF15. RESULTS Among 242 CHB patients, 57 had detectable HBV RNA, and GDF15 was quantified in all patients. The median GDF15 level was 0.86 ng/mL. Cox proportional hazards analysis revealed that male sex and higher GDF15, FIB-4 index, alpha-fetoprotein and gamma-glutamyl transpeptidase were independent risk factors for HCC. The presence of HBV RNA above the lower limit of quantification was not a risk factor. When we set cutoff values based on the Youden index, the cumulative incidence of HCC was significantly higher in the male, AFP ≥3.0 ng/mL, gamma-glutamyl transpeptidase ≥22 U/L, FIB-4 index ≥1.93, and GDF-15 ≥1.17 ng/mL groups. In patients with no or more than three of these five risk factors, the 10-year HCC cumulative incidence rates were 0% and 41.0%, respectively. CONCLUSIONS High serum GDF15 is an independent risk factor for the occurrence of HCC in CHB patients treated with nucleos(t)ide analogs.
Collapse
Affiliation(s)
- Emi Sometani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Satoshi Tanaka
- Department of Gastroenterology and Hepatology, NHO Osaka National Hospital, Osaka, Japan
| | - Tsugiko Oze
- Department of Gastroenterology and Hepatology, Koga Community Hospital, Yaizu, Japan
| | - Jihyun Sung
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akiyoshi Shimoda
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Fukuoka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Shigeno
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keisuke Fukutomi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kumiko Shirai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Tahata
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshinobu Saito
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Nishio
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kunimaro Furuta
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, NHO Osaka National Hospital, Osaka, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eiji Mita
- Department of Gastroenterology and Hepatology, NHO Osaka National Hospital, Osaka, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Kumamoto University, Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
59
|
Hu X, Li Y, Cao Y, Shi F, Shang L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim Biophys Acta Rev Cancer 2024; 1879:189156. [PMID: 39032540 DOI: 10.1016/j.bbcan.2024.189156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As a free radical and endogenous effector molecule, mammalian endogenous nitric oxide (NO) is mainly derived from nitric oxide synthase (NOS) via L-arginine. NO participates in normal physiological reactions and provides immune responses to prevent the invasion of foreign bacteria. However, NO also has complex and contradictory biological effects. Abnormal NO signaling is involved in the progression of many diseases, such as cancer. In the past decades, cancer research has been closely linked with NOS/ NO, and many tumors with poor prognosis are associated with high expression of NOS. In this review, we give a overview of the biological effects of NOS/ NO. Then we focus on the oncogenic role of iNOS/ NO in HPV, HBV, EBV and H. pylori related tumors. In fact, there is growing evidence that iNOS could be used as a potential therapeutic target in cancer therapy. We emphasize that the pro-tumor effect of NOS/ NO is greater than the anti-tumor effect.
Collapse
Affiliation(s)
- Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
60
|
Tan X, Xiang Y, Shi J, Chen L, Yu D. Targeting NTCP for liver disease treatment: A promising strategy. J Pharm Anal 2024; 14:100979. [PMID: 39310850 PMCID: PMC11415714 DOI: 10.1016/j.jpha.2024.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
The sodium taurocholate co-transporting polypeptide (NTCP), a bile acids transporter, has been identified as a new therapeutic target for the treatment of liver disease. This paper thoroughly investigates the function of NTCP for regulating bile acid regulation, its correlation with hepatitis B and D infections, and its association with various liver diseases. Additionally, in this review we examine recent breakthroughs in creating NTCP inhibitors and their prospective applications in liver disease treatment. While this review emphasizes the promising potential of targeting NTCP, it concurrently underscores the need for broader and more detailed research to fully understand the long-term implications and potential side effects associated with NTCP inhibition.
Collapse
Affiliation(s)
- Xin Tan
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Guanghan People's Hospital, Guanghan, Sichuan, 618300, China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
61
|
Lv Z, Liu L, You J, Zhou P, Su Y, Zhao K, Zhang J, Zhu F. Small HBV surface antigen drives regorafenib resistance in HCC via KIAA1429-dependent m6A modification of CCR9. J Med Virol 2024; 96:e29894. [PMID: 39206838 DOI: 10.1002/jmv.29894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
A substantial body of literature, including our own, points to a connection between hepatitis B virus (HBV) infection and the development of drug resistance in hepatocellular carcinoma (HCC), particularly against sorafenib. However, the influence of HBV on resistance to regorafenib, another therapeutic agent, has been less studied. In this study, we used the GEO database (GSE87630) and clinical samples to demonstrate that C-C motif chemokine receptor 9 (CCR9) was highly expressed in HBV-related HCC and predicted poor overall survival. Its overexpression correlated with HBsAg-positive HCC patients. Both univariate and multivariable Cox regression analysis elucidated CCR9 was an independent risk factor for poor overall survival in HCC patients. Our in vitro findings further revealed that HBV structural proteins, small HBV surface antigen (SHBs), triggered an upregulation of CCR9. Functional assays showed that SHBs enhanced HCC cell proliferation, migration, and invasion, increased ABCB1 and ABCC1 expression, and promoted regorafenib resistance via CCR9. Intriguingly, overexpression of HBV plasmid and an AAV-HBV mouse model both exhibited a significant elevation in global N6-methyladenosine (m6A) levels. Further investigations revealed that SHBs elevated these m6A levels, upregulated CCR9 and stabilized CCR9 mRNA through KIAA1429-mediated m6A modification, with sites 1373 and 1496 on CCR9 mRNA being critical for modification. In conclusion, SHBs promoted HCC progression and regorafenib resistance via KIAA1429-mediated m6A modification of CCR9. Our findings suggested that CCR9 could be a potential prognostic biomarker and a valuable molecular therapeutic target of regorafenib resistance in HBV-related HCC.
Collapse
Affiliation(s)
- Zhao Lv
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lijuan Liu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| | - Jian You
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yaru Su
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Kexin Zhao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jiahang Zhang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| |
Collapse
|
62
|
Bailey JT, Cangialosi S, Moshkani S, Rexhouse C, Cimino JL, Robek MD. CD40 stimulation activates CD8+ T cells and controls HBV in CD4-depleted mice. JHEP Rep 2024; 6:101121. [PMID: 39282227 PMCID: PMC11399595 DOI: 10.1016/j.jhepr.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/14/2024] [Indexed: 09/18/2024] Open
Abstract
Background & Aims HBV treatment is challenging due to the persistence of the covalently closed circular DNA replication pool, which remains unaffected by antiviral intervention. In this study, we determined whether targeting antigen-presenting cells via CD40 stimulation represents an appropriate therapeutic approach for achieving sustained HBV control in a mouse model of HBV replication. Methods Mice were transduced with an adeno-associated virus encoding the HBV genome (AAV-HBV) to initiate HBV replication and were administered agonistic CD40 antibody. CD4-depleting antibody was administered in addition to the CD40 antibody. Viral antigens in the blood were measured over time to determine HBV control. HBV-specific CD8+ T cells were quantified in the spleen and liver at the experimental endpoint. Results CD40 stimulation in CD4-depleted AAV-HBV mice resulted in the clearance of HBsAg and HBeAg, along with a reduction in liver HBV mRNA, contrasting with CD4-competent counterparts. CD8+ T cells were indispensable for CD40-mediated HBV control, determined by HBV persistence following their depletion. In CD4-replete mice, CD40 stimulation initially facilitated the expansion of HBV-specific CD8+ T cells, which subsequently could not control HBV. Finally, α-CD4/CD40 treatment reduced antigenemia and liver HBV mRNA levels in chronic AAV-HBV mice, with further enhancement through synergy with immunization by VSV-MHBs (vesicular stomatitis virus expressing middle HBsAg). Conclusions Our findings underscore the potential of CD40 stimulation as a targeted therapeutic strategy for achieving sustained HBV control and reveal a CD4+ T cell-dependent limitation on CD40-mediated antiviral efficacy. Impact and implications Immunotherapy has the potential to overcome immune dysfunction in chronic HBV infection. Using a mouse model of HBV replication, this study shows that CD40 stimulation can induce sustained HBV control, which is dependent on CD8+ T cells and further enhanced by co-immunization. Unexpectedly, CD40-mediated HBV reduction was improved by the depletion of CD4+ cells. These findings suggest potential strategies for reversing HBV persistence in infected individuals.
Collapse
Affiliation(s)
- Jacob T Bailey
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Sophia Cangialosi
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Safiehkhatoon Moshkani
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Catherine Rexhouse
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Jesse L Cimino
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Michael D Robek
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
63
|
Li D, Hamadalnil Y, Tu T. Hepatitis B Viral Protein HBx: Roles in Viral Replication and Hepatocarcinogenesis. Viruses 2024; 16:1361. [PMID: 39339838 PMCID: PMC11437454 DOI: 10.3390/v16091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide, with approximately 296 million individuals chronically infected. The HBV-encoded X protein (HBx) is a regulatory protein of 17 kDa, reportedly responsible for a broad range of functions, including viral replication and oncogenic processes. In this review, we summarize the state of knowledge on the mechanisms underlying HBx functions in viral replication, the antiviral effect of therapeutics directed against HBx, and the role of HBx in liver cancer development (including a hypothetical model of hepatocarcinogenesis). We conclude by highlighting major unanswered questions in the field and the implications of their answers.
Collapse
Affiliation(s)
- Dong Li
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
| | | | - Thomas Tu
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
64
|
Zhang M, Chen H, Liu H, Tang H. The impact of integrated hepatitis B virus DNA on oncogenesis and antiviral therapy. Biomark Res 2024; 12:84. [PMID: 39148134 PMCID: PMC11328401 DOI: 10.1186/s40364-024-00611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/29/2024] [Indexed: 08/17/2024] Open
Abstract
The global burden of hepatitis B virus (HBV) infection remains high, with chronic hepatitis B (CHB) patients facing a significantly increased risk of developing cirrhosis and hepatocellular carcinoma (HCC). The ultimate objective of antiviral therapy is to achieve a sterilizing cure for HBV. This necessitates the elimination of intrahepatic covalently closed circular DNA (cccDNA) and the complete eradication of integrated HBV DNA. This review aims to summarize the oncogenetic role of HBV integration and the significance of clearing HBV integration in sterilizing cure. It specifically focuses on the molecular mechanisms through which HBV integration leads to HCC, including modulation of the expression of proto-oncogenes and tumor suppressor genes, induction of chromosomal instability, and expression of truncated mutant HBV proteins. The review also highlights the impact of antiviral therapy in reducing HBV integration and preventing HBV-related HCC. Additionally, the review offers insights into future objectives for the treatment of CHB. Current strategies for HBV DNA integration inhibition and elimination include mainly antiviral therapies, RNA interference and gene editing technologies. Overall, HBV integration deserves further investigation and can potentially serve as a biomarker for CHB and HBV-related HCC.
Collapse
Affiliation(s)
- Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huan Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
65
|
Anyin Y, Jianping L, Mengru L, Hong Z, Xulei Z, Lianping W. Integrating bioinformatics and machine learning methods to analyze diagnostic biomarkers for HBV-induced hepatocellular carcinoma. Diagn Pathol 2024; 19:105. [PMID: 39095799 PMCID: PMC11295615 DOI: 10.1186/s13000-024-01528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor. It is estimated that approximately 50-80% of HCC cases worldwide are caused by hepatitis b virus (HBV) infection, and other pathogenic factors have been shown to promote the development of HCC when coexisting with HBV. Understanding the molecular mechanisms of HBV-induced hepatocellular carcinoma (HBV-HCC) is crucial for the prevention, diagnosis, and treatment of the disease. In this study, we analyzed the molecular mechanisms of HBV-induced HCC by combining bioinformatics and deep learning methods. Firstly, we collected a gene set related to HBV-HCC from the GEO database, performed differential analysis and WGCNA analysis to identify genes with abnormal expression in tumors and high relevance to tumors. We used three deep learning methods, Lasso, random forest, and SVM, to identify key genes RACGAP1, ECT2, and NDC80. By establishing a diagnostic model, we determined the accuracy of key genes in diagnosing HBV-HCC. In the training set, RACGAP1(AUC:0.976), ECT2(AUC:0.969), and NDC80 (AUC: 0.976) showed high accuracy. They also exhibited good accuracy in the validation set: RACGAP1(AUC:0.878), ECT2(AUC:0.731), and NDC80(AUC:0.915). The key genes were found to be highly expressed in liver cancer tissues compared to normal liver tissues, and survival analysis indicated that high expression of key genes was associated with poor prognosis in liver cancer patients. This suggests a close relationship between key genes RACGAP1, ECT2, and NDC80 and the occurrence and progression of HBV-HCC. Molecular docking results showed that the key genes could spontaneously bind to the anti-hepatocellular carcinoma drugs Lenvatinib, Regorafenib, and Sorafenib with strong binding activity. Therefore, ECT2, NDC80, and RACGAP1 may serve as potential biomarkers for the diagnosis of HBV-HCC and as targets for the development of targeted therapeutic drugs.
Collapse
Affiliation(s)
- Yang Anyin
- Department of Pharmacy, Gaochun People's Hospital, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China
| | - Liu Jianping
- Department of Pharmacy, Gaochun People's Hospital, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China
| | - Li Mengru
- Department of Hospital Infection Management Section, Gaochun People's Hospital, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China
| | - Zhang Hong
- Department of Pharmacy, Gaochun People's Hospital, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China
| | - Zhang Xulei
- Department of Liver Disease, Gaochun People's Hospital, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China.
| | - Wu Lianping
- Department of Pharmacy, Gaochun People's Hospital, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China.
| |
Collapse
|
66
|
Enomoto H, Akuta N, Hikita H, Suda G, Inoue J, Tamaki N, Ito K, Akahane T, Kawaoka T, Morishita A, Ogawa E, Tateishi R, Yoshiji H. Etiological changes of liver cirrhosis and hepatocellular carcinoma-complicated liver cirrhosis in Japan: Updated nationwide survey from 2018 to 2021. Hepatol Res 2024; 54:763-772. [PMID: 38638067 DOI: 10.1111/hepr.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
AIM A nationwide survey in 2018 showed decreasing involvement of viral hepatitis and increasing involvement of nonviral liver diseases in the etiology of liver cirrhosis (LC) in Japan. An updated nationwide survey was undertaken in 2023. METHODS Cases of LC diagnosed between 2018 and 2021 were collected from 75 institutions, and the etiologies of LC were investigated. In addition, the data obtained were compared with the results of previous studies. RESULTS Among the 15 517 cases, alcohol-related liver disease (ALD)-associated LC was the most frequent cause (n = 5,487, 35.4%). Hepatitis C virus-associated LC, nonalcoholic steatohepatitis (NASH)-associated LC, and hepatitis B virus-associated LC were ranked as second, third, and fourth, respectively. In comparison to the previous survey, the ratios of viral hepatitis-associated LC decreased (HBV: from 11.5% to 8.1%; HCV: from 48.2% to 23.4%), while the ratios of ALD-associated LC and NASH-associated LC increased (from 19.9% to 35.4% and from 6.3% to 14.6%, respectively). Regarding cases of LC with hepatocellular carcinoma (n = 5906), HCV-associated LC (1986 cases, 33.6%) was the most frequent cause. Alcohol-related liver disease-associated LC, NASH-associated LC, and HBV-associated LC were the second-, third-, and fourth-ranked causes, respectively. In comparison to the previous survey, as the cause of hepatocellular carcinoma-complicated LC, HCV-associated LC decreased from 60.3% to 33.6%, while the ratios of ALD-associated LC and NASH-associated LC increased from 14.2% to 28.6% and from 4.2% to 14.0%, respectively. CONCLUSIONS The major causes of LC in Japan are suggested to have been shifting from viral hepatitis to nonviral chronic liver diseases.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Division of Hepatobiliary and Pancreatic Diseases, Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Norio Akuta
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Goki Suda
- Departments of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Kiyoaki Ito
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Eiichi Ogawa
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
67
|
Huang C, Jin Y, Sun RN, Hu KY, Yao LG, Guo YW, Yuan ZH, Li XW. Anti-HBV Activities of Cembranoids from the South China Sea Soft Coral Sinularia pedunculata and Their Structure Activity Relationship. Chem Biodivers 2024; 21:e202401146. [PMID: 38772912 DOI: 10.1002/cbdv.202401146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Hepatitis B Virus (HBV) infection is a global public health challenge that seriously endangers human health. Soft coral, as a major source of terpenoids, contains many structurally novel and highly bioactive compounds. Sixteen cembranoids (1-16), including a new one named sinupedunol B (16), were isolated from the South China Sea Soft coral Sinularia pedunculata. The structure of the sinupedunol B (16) was determined through a combination of spectroscopic analysis and X-ray single-crystal diffraction. In this study, cembranoids isolated from Sinularia pedunculata were found of anti-HBV activity for the first time. Among them, flexilarin D (6) showed significant anti-HBV activity with an IC50 value of 5.57 μM without cytotoxicity. We then analyzed the structure-activity relationship (SAR). Furthermore, it is demonstrated that flexilarin D (6) can accelerate the formation of capsid, inhibit HBeAg, HBV core particle DNA, HBV total RNA and pregenomic RNA in a dose dependent manner. We also confirmed the anti-HBV activity of 6 in HepG2-NTCP infection system. Finally, we demonstrated the anti-HBV mechanism of these compounds by inhibiting the ENI/Xp enhancer/promoter.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, 200032, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Jin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Ruo-Nan Sun
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Kong-Ying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Li-Gong Yao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Zheng-Hong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China
| | - Xu-Wen Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
68
|
Zhang W, Zeng M, Li Y, Yu L. Leveraging oncovirus-derived antigen against the viral malignancies in adoptive cell therapies. Biomark Res 2024; 12:71. [PMID: 39075601 PMCID: PMC11287861 DOI: 10.1186/s40364-024-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins, which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and discuss their implications for therapeutic advancement.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, No. 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China.
| |
Collapse
|
69
|
Costa JP, de Carvalho A, Paiva A, Borges O. Insights into Immune Exhaustion in Chronic Hepatitis B: A Review of Checkpoint Receptor Expression. Pharmaceuticals (Basel) 2024; 17:964. [PMID: 39065812 PMCID: PMC11279883 DOI: 10.3390/ph17070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B, caused by the hepatitis B virus (HBV), often progresses to chronic infection, leading to severe complications, such as cirrhosis, liver failure, and hepatocellular carcinoma. Chronic HBV infection is characterized by a complex interplay between the virus and the host immune system, resulting in immune cell exhaustion, a phenomenon commonly observed in chronic viral infections and cancer. This state of exhaustion involves elevated levels of inhibitory molecules, cells, and cell surface receptors, as opposed to stimulatory counterparts. This review aims to elucidate the expression patterns of various co-inhibitory and co-stimulatory receptors on immune cells isolated from chronic hepatitis B (CHB) patients. By analyzing existing data, the review conducts comparisons between CHB patients and healthy adults, explores the differences between HBV-specific and total T cells in CHB patients, and examines variations between intrahepatic and peripheral immune cells in CHB patients. Understanding the mechanisms underlying immune exhaustion in CHB is crucial for developing novel immunotherapeutic approaches. This detailed analysis sheds light on the immune exhaustion observed in CHB and lays the groundwork for future combined immunotherapy strategies aimed at leveraging checkpoint receptors to restore immune function and improve clinical outcomes.
Collapse
Affiliation(s)
- João Panão Costa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Armando de Carvalho
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Paiva
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
70
|
Wu SY, Chen WM, Hsu PJ, Chou TC, Chiang MF, Wu MS, Lee MC, Soong RS. Protective effect of N-acetylcysteine against hepatocellular carcinoma in hepatitis B virus carriers. Am J Cancer Res 2024; 14:3639-3651. [PMID: 39113864 PMCID: PMC11301295 DOI: 10.62347/qlhg1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a leading risk factor for hepatocellular carcinoma (HCC), contributing to cancer development through direct genomic integration and chronic inflammation. N-acetylcysteine (NAC), known for its antioxidant properties, is widely utilized in cancer prevention. However, clinical evidence regarding its protective effect against HCC in HBV carriers remains sparse. In this retrospective cohort study spanning 2008 to 2018, we utilized Taiwan's National Health Insurance Research Database (NHIRD) to include 1,061,174 chronic HBV carriers. Participants were stratified into NAC users and non-users using Propensity Score Matching. We assessed the incidence of HCC in both cohorts, examining the relationship between NAC usage duration and HCC incidence, and evaluating the dose-response effect. NAC users exhibited a significantly lower risk of developing HCC (adjusted hazard ratio [aHR]: 0.38; 95% confidence interval [CI]: 0.36-0.40; P < 0.0001). A dose-response relationship was evident, with higher cumulative defined daily doses (cDDDs) of NAC correlating with reduced HCC risk, revealing a significant trend (P < 0.0001). Notably, a daily NAC intensity of > 1.4 DDDs was associated with a decreased risk of HCC in HBV patients. Our results demonstrate that the use of NAC, in a dose-dependent manner, is intricately linked with a diminished incidence of HCC in individuals chronically infected with the HBV.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic UniversityNew Taipei 242062, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic UniversityNew Taipei 242062, Taiwan
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia UniversityTaichung 41354, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan 265001, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan 265001, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia UniversityTaichung 41354, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical UniversityTaipei 11031, Taiwan
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic UniversityNew Taipei 242062, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic UniversityNew Taipei 242062, Taiwan
| | - Po-Jung Hsu
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical UniversityNo. 111 Section 3, Xinglong Road, Wenshan District, Taipei 116, Taiwan
- College of Medicine, Taipei Medical UniversityNo. 250 Wu-Hsing Street, Taipei 110, Taiwan
- Division of Transplantation Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical UniversityTaipei 116, Taiwan
- TMU Research Center for Organ Transplantation, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Taipei Cancer Center, Taipei Medical UniversityTaipei 110, Taiwan
| | - Ta-Chun Chou
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical UniversityNo. 111 Section 3, Xinglong Road, Wenshan District, Taipei 116, Taiwan
- Division of Transplantation Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical UniversityTaipei 116, Taiwan
- TMU Research Center for Organ Transplantation, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan 265, Taiwan
| | - Ming-Feng Chiang
- Division of General Surgery, Department of Internal Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan 265, Taiwan
| | - Ming-Shun Wu
- College of Medicine, Taipei Medical UniversityNo. 250 Wu-Hsing Street, Taipei 110, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical UniversityTaipei 116, Taiwan
| | - Ming-Che Lee
- College of Medicine, Taipei Medical UniversityNo. 250 Wu-Hsing Street, Taipei 110, Taiwan
- Division of Transplantation Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical UniversityTaipei 116, Taiwan
- TMU Research Center for Organ Transplantation, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Taipei Cancer Center, Taipei Medical UniversityTaipei 110, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical UniversityNo. 291, Jhongjheng Road, Jhonghe, New Taipei 23561, Taiwan
| | - Ruey-Shyang Soong
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical UniversityNo. 111 Section 3, Xinglong Road, Wenshan District, Taipei 116, Taiwan
- College of Medicine, Taipei Medical UniversityNo. 250 Wu-Hsing Street, Taipei 110, Taiwan
- Division of Transplantation Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical UniversityTaipei 116, Taiwan
- TMU Research Center for Organ Transplantation, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Taipei Cancer Center, Taipei Medical UniversityTaipei 110, Taiwan
| |
Collapse
|
71
|
Morrone A, Fiorilli V, Cinti L, Roberto P, Ferri AL, Visentini M, Pulsoni A, Spinelli FR, De Santis A, Antonelli G, Basili S, Tosti ME, Conti F, Casato M. Surface antigen serocleared hepatitis B virus infection increases the risk of mixed cryoglobulinemia vasculitis in male patients with chronic hepatitis C. Front Immunol 2024; 15:1411146. [PMID: 39055707 PMCID: PMC11269149 DOI: 10.3389/fimmu.2024.1411146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Mixed cryoglobulinemia vasculitis (MCV) is caused in ~90% of cases by chronic hepatitis C virus (HCVposMCV) and more rarely by hepatitis B virus (HBV) infection, or apparently noninfectious. HCVposMCV develops in only ~5% of patients with chronic hepatitis C (CHC), but risk factors other than female gender have not been identified so far. We conducted a retrospective case control study investigating whether past active HBV infection, defined by hepatitis B surface antigen (HBsAg) seroclearance and anti-core antibody (HBcAb) positivity, could be a risk factor for developing HCVposMCV. The prevalence of HBsAg seroclearance was 48% within 123 HCVposMCV patients and 29% within 257 CHC patients (p=0.0003). Multiple logistic regression including as variables gender, birth year, age at HBV testing, cirrhosis, and hepatocellular carcinoma, confirmed an association of HBsAg seroclearance with HCVposMCV [adjusted odds ratio (OR) 2.82, 95% confidence interval (95% CI) 1.73-4.59, p<0.0001]. Stratification by gender, however, showed that HBsAg seroclearance was associated with HCVposMCV in male [OR 4.63, 95% CI 2.27-9.48, p<0.0001] and not in female patients [OR 1.85, 95% 95% CI 0.94-3.66, p=0.076]. HBsAg seroclearance, and more likely occult HBV infection, is an independent risk factor for HCVposMCV in male CHC patients.
Collapse
Affiliation(s)
- Anna Morrone
- Division of Gastroenterology and Hepatology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Valerio Fiorilli
- Division of Rheumatology, Department of Internal Clinical Sciences, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Lilia Cinti
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- The PhD National Programme in “Innovazione Nella Diagnosi, Prevenzione e Terapia Delle Infezioni a Rischio Epidemico-Pandemico”, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Piergiorgio Roberto
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- The PhD National Programme in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Alejandro L. Ferri
- Division of Clinical Immunology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marcella Visentini
- Division of Clinical Immunology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Pulsoni
- Department of Hematology, Sapienza University of Rome, Santa Maria Goretti Hospital, Latina, Italy
| | - Francesca Romana Spinelli
- Division of Rheumatology, Department of Internal Clinical Sciences, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Adriano De Santis
- Division of Gastroenterology and Hepatology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Microbiology and Virology, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Stefania Basili
- Division of Clinical Immunology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Elena Tosti
- Istituto Superiore di Sanità, National Centre for Global Health, Rome, Italy
| | - Fabrizio Conti
- Division of Rheumatology, Department of Internal Clinical Sciences, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Milvia Casato
- Division of Clinical Immunology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
72
|
Meng Y, Shu Z, Wang X, Hong L, Wang B, Jiang J, He K, Cao Q, Shi F, Wang H, Gong L, Diao H. Hepatitis B Virus-Mediated m6A Demethylation Increases Hepatocellular Carcinoma Stemness and Immune Escape. Mol Cancer Res 2024; 22:642-655. [PMID: 38546386 PMCID: PMC11217737 DOI: 10.1158/1541-7786.mcr-23-0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 03/26/2024] [Indexed: 07/03/2024]
Abstract
Hepatitis B viral (HBV) persistent infection plays a significant role in hepatocellular carcinoma (HCC) tumorigenesis. Many studies have revealed the pivotal roles of N6-methyladenosine (m6A) in multiple cancers, while the regulatory mechanism in stemness maintenance of HBV persistent infection-related HCC remains elusive. Here, we demonstrated that the level of m6A modification was downregulated by HBV in HBV-positive HCC, through enhanced stability of ALKBH5 mRNA. More specifically, we also identified that ALKBH5 mRNA was functionally required for the stemness maintenance and self-renewal in the HBV-positive HCC, but dispensable in HBV-negative HCC. Mechanistically, ALKBH5 demethylated the m6A modification in the 3' untranslated region of the oncogenic gene SNAI2 to prevent the recognition of YTHDF2 therewith stabilize SNAI2 transcripts, contributing to cancer stem cell traits in HBV-positive HCC. Moreover, the expression of SNAI2 reversed the suppression of stemness properties by knocking down ALKBH5. In addition, ALKBH5/SNAI2 axis accelerates tumor immune evasion through activated ligand of immune checkpoint CD155. Our study unveiled that the ALKBH5 induces m6A demethylation of the SNAI2 as a key regulator in HBV-related HCC, and identifies the function of ALKBH5/SNAI2/YTHDF2 axis in promoting the stem-like cells phenotype and immune escape during HBV infection. IMPLICATIONS HBV promotes HCC stemness maintenance through elevate m6A modification of SNAI2 in an ALKBH5-YTHDF2-dependent manner and increases the expression of the ligand of immune checkpoint CD155.
Collapse
Affiliation(s)
- Yuting Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Zheyue Shu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, P.R. China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Baohua Wang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Kangxin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Qingyi Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Hai Wang
- Department of Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
73
|
Shi F, Jiang J, Wang B, Hong L, Zhang Y, Meng Y, Zhang X, Gong L, Lin J, Diao H. Hepatitis B virus X protein promotes tumor glycolysis by downregulating lncRNA OIP5-AS1/HKDC1 in HCC. Cell Signal 2024; 119:111183. [PMID: 38636768 DOI: 10.1016/j.cellsig.2024.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide, with Hepatitis B virus (HBV) infection being the leading cause. This study aims to investigate the role of HBV in HCC pathogenesis involving glucose metabolism. Long non-coding RNA (lncRNA) OIP5-AS1 was significantly downregulated in HBV-positive HCC patients, and its low expression indicated a poor prognosis. This lncRNA was primarily localized in the cytoplasm, acting as a tumor suppressor. HBV protein X (HBx) repressed OIP5-AS1 expression by inhibiting a ligand-activated transcriptional factor peroxisome proliferator-activated receptor α (PPARα). Furthermore, mechanistic studies revealed that OIP5-AS1 inhibited tumor growth by suppressing Hexokinase domain component 1 (HKDC1)-mediated glycolysis. The expression of HKDC1 could be enhanced by transcriptional factor sterol regulatory element-binding protein 1 (SREBP1). OIP5-AS1 facilitated the ubiquitination and degradation of SREBP1 to suppress HKDC1 transcription, which inhibited glycolysis. The results suggest that lncRNA OIP5-AS1 plays an anti-oncogenic role in HBV-positive HCC via the HBx/OIP5-AS1/HKDC1 axis, providing a promising diagnostic marker and therapeutic target for HBV-positive HCC patients.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Humans
- Carcinoma, Hepatocellular/virology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/virology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Glycolysis/genetics
- Viral Regulatory and Accessory Proteins
- Trans-Activators/metabolism
- Trans-Activators/genetics
- Hexokinase/metabolism
- Hexokinase/genetics
- Gene Expression Regulation, Neoplastic
- Animals
- Hepatitis B virus
- Male
- Cell Line, Tumor
- Down-Regulation
- Mice
- Mice, Nude
- Female
- Sterol Regulatory Element Binding Protein 1/metabolism
- Sterol Regulatory Element Binding Protein 1/genetics
- Mice, Inbred BALB C
- PPAR alpha/metabolism
- PPAR alpha/genetics
Collapse
Affiliation(s)
- Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Baohua Wang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Yongting Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Yuting Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jianjun Lin
- Clinical Laboratory Department, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, PR China.
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China.
| |
Collapse
|
74
|
Galasso L, Cerrito L, Maccauro V, Termite F, Mignini I, Esposto G, Borriello R, Ainora ME, Gasbarrini A, Zocco MA. Inflammatory Response in the Pathogenesis and Treatment of Hepatocellular Carcinoma: A Double-Edged Weapon. Int J Mol Sci 2024; 25:7191. [PMID: 39000296 PMCID: PMC11241080 DOI: 10.3390/ijms25137191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent among primary liver tumors (90%) and one of the main causes of cancer-related death. It develops usually in a chronically inflamed environment, ranging from compensatory parenchymal regeneration to fibrosis and cirrhosis: carcinogenesis can potentially happen in each of these stages. Inflammation determined by chronic viral infection (hepatitis B, hepatitis C, and hepatitis delta viruses) represents an important risk factor for HCC etiology through both viral direct damage and immune-related mechanisms. The deregulation of the physiological liver immunological network determined by viral infection can lead to carcinogenesis. The recent introduction of immunotherapy as the gold-standard first-line treatment for HCC highlights the role of the immune system and inflammation as a double-edged weapon in both HCC carcinogenesis and treatment. In this review we highlight how the inflammation is the key for the hepatocarcinogenesis in viral, alcohol and metabolic liver diseases.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Valeria Maccauro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Irene Mignini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Giorgio Esposto
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
75
|
Padarath K, Deroubaix A, Naicker P, Stoychev S, Kramvis A. Comparative Proteomic Analysis of Huh7 Cells Transfected with Sub-Saharan African Hepatitis B Virus (Sub)genotypes Reveals Potential Oncogenic Factors. Viruses 2024; 16:1052. [PMID: 39066215 PMCID: PMC11281506 DOI: 10.3390/v16071052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
In sub-Saharan Africa (SSA), the (sub)genotypes A1, D3, and E of the hepatitis B virus (HBV) prevail. Individuals infected with subgenotype A1 have a 4.5-fold increased risk of HCC compared to those infected with other (sub)genotypes. The effect of (sub)genotypes on protein expression and host signalling has not been studied. Mass spectrometry was used to analyse the proteome of Huh7 cells transfected with replication-competent clones. Proteomic analysis revealed significantly differentially expressed proteins between SSA (sub)genotypes. Different (sub)genotypes have the propensity to dysregulate specific host signalling pathways. Subgenotype A1 resulted in dysregulation within the Ras pathway. Ras-associated protein, RhoC, was significantly upregulated in cells transfected with subgenotype A1 compared to those transfected with other (sub)genotypes, on both a proteomic (>1.5-fold) and mRNA level (p < 0.05). Two of the main cellular signalling pathways involving RHOC, MAPK and PI3K/Akt/mTOR, regulate cell growth, motility, and survival. Downstream signalling products of these pathways have been shown to increase MMP2 and MMP9 expression. An extracellular MMP2 and MMP9 ELISA revealed a non-significant increase in MMP2 and MMP9 in the cells transfected with A1 compared to the other (sub)genotypes (p < 0.05). The upregulated Ras-associated proteins have been implicated as oncoproteins in various cancers and could contribute to the increased hepatocarcinogenic potential of A1.
Collapse
Affiliation(s)
- Kiyasha Padarath
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
| | - Aurélie Deroubaix
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
- Life Sciences Imaging Facility, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Previn Naicker
- Future Production Chemicals, Council for Scientific and Industrial Research, Pretoria 0184, South Africa;
| | - Stoyan Stoychev
- ReSyn Biosciences, Johannesburg 2000, South Africa;
- Evosep Biosystems, 5230 Odense, Denmark
| | - Anna Kramvis
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
| |
Collapse
|
76
|
Zhang M, Kong Y, Xu X, Sun Y, Jia J, You H. "Treat-all" Strategy for Patients with Chronic Hepatitis B Virus Infection in China: Are We There Yet? J Clin Transl Hepatol 2024; 12:589-593. [PMID: 38974957 PMCID: PMC11224901 DOI: 10.14218/jcth.2024.00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 04/26/2024] [Indexed: 07/09/2024] Open
Abstract
Chronic hepatitis B remains the primary cause of liver-related events in China. The World Health Organization set a goal to eliminate viral hepatitis as a public health threat by 2030. However, achieving this goal appears challenging due to the current low rates of diagnosis and treatment. The "Treat-all" strategy, which proposes treating all patients with detectable hepatitis B virus (HBV) DNA or even all patients with positive HBsAg, has been suggested to simplify anti-HBV treatment. In 2022, the Chinese Society of Hepatology and the Chinese Society of Infectious Diseases updated the guidelines for the prevention and treatment of chronic hepatitis B in China, expanding antiviral indications and simplifying the treatment algorithm. According to this latest guideline, nearly 95% of patients with detectable HBV DNA are eligible for antiviral treatment. This review aimed to provide a detailed interpretation of the treatment indications outlined in the Chinese Guidelines for the Prevention and Treatment of Chronic Hepatitis B (version 2022) and to identify gaps in achieving the "Treat-all" strategy in China.
Collapse
Affiliation(s)
- Mengyang Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Yuanyuan Kong
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Xiaoqian Xu
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| |
Collapse
|
77
|
Yan W, Rao D, Fan F, Liang H, Zhang Z, Dong H. Hepatitis B virus X protein and TGF-β: partners in the carcinogenic journey of hepatocellular carcinoma. Front Oncol 2024; 14:1407434. [PMID: 38962270 PMCID: PMC11220127 DOI: 10.3389/fonc.2024.1407434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-β (TGF-β) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-β has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-β interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-β in HCC occurrence and development.
Collapse
Affiliation(s)
- Wei Yan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Feimu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Hanhua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| |
Collapse
|
78
|
Jeong Y, Han J, Jang KL. Reactive Oxygen Species Induction by Hepatitis B Virus: Implications for Viral Replication in p53-Positive Human Hepatoma Cells. Int J Mol Sci 2024; 25:6606. [PMID: 38928309 PMCID: PMC11204012 DOI: 10.3390/ijms25126606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis B virus (HBV) infects approximately 300 million people worldwide, causing chronic infections. The HBV X protein (HBx) is crucial for viral replication and induces reactive oxygen species (ROS), leading to cellular damage. This study explores the relationship between HBx-induced ROS, p53 activation, and HBV replication. Using HepG2 and Hep3B cell lines that express the HBV receptor NTCP, we compared ROS generation and HBV replication relative to p53 status. Results indicated that HBV infection significantly increased ROS levels in p53-positive HepG2-NTCP cells compared to p53-deficient Hep3B-NTCP cells. Knockdown of p53 reduced ROS levels and enhanced HBV replication in HepG2-NTCP cells, whereas p53 overexpression increased ROS and inhibited HBV replication in Hep3B-NTCP cells. The ROS scavenger N-acetyl-L-cysteine (NAC) reversed these effects. The study also found that ROS-induced degradation of the HBx is mediated by the E3 ligase Siah-1, which is activated by p53. Mutations in p53 or inhibition of its transcriptional activity prevented ROS-mediated HBx degradation and HBV inhibition. These findings reveal a p53-dependent negative feedback loop where HBx-induced ROS increases p53 levels, leading to Siah-1-mediated HBx degradation and HBV replication inhibition. This study offers insights into the molecular mechanisms of HBV replication and identifies potential therapeutic targets involving ROS and p53 pathways.
Collapse
Affiliation(s)
- Yuna Jeong
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
| | - Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
79
|
Prescott NA, Mansisidor A, Bram Y, Biaco T, Rendleman J, Faulkner SC, Lemmon AA, Lim C, Hamard PJ, Koche RP, Risca VI, Schwartz RE, David Y. A nucleosome switch primes Hepatitis B Virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.03.531011. [PMID: 38915612 PMCID: PMC11195122 DOI: 10.1101/2023.03.03.531011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is an incurable global health threat responsible for causing liver disease and hepatocellular carcinoma. During the genesis of infection, HBV establishes an independent minichromosome consisting of the viral covalently closed circular DNA (cccDNA) genome and host histones. The viral X gene must be expressed immediately upon infection to induce degradation of the host silencing factor, Smc5/6. However, the relationship between cccDNA chromatinization and X gene transcription remains poorly understood. Establishing a reconstituted viral minichromosome platform, we found that nucleosome occupancy in cccDNA drives X transcription. We corroborated these findings in cells and further showed that the chromatin destabilizing molecule CBL137 inhibits X transcription and HBV infection in hepatocytes. Our results shed light on a long-standing paradox and represent a potential new therapeutic avenue for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Nicholas A. Prescott
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Andrés Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
- These authors contributed equally
| | - Yaron Bram
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
- These authors contributed equally
| | - Tracy Biaco
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine; New York, NY 10065, USA
- These authors contributed equally
| | - Justin Rendleman
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
| | - Sarah C. Faulkner
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Abigail A. Lemmon
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Christine Lim
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Pierre-Jacques Hamard
- Epigenetics Research Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Richard P. Koche
- Epigenetics Research Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
| | - Robert E. Schwartz
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine; New York, NY 10065, USA
| | - Yael David
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine; New York, NY 10065, USA
- Lead Contact
| |
Collapse
|
80
|
Han J, Jang KL. All-trans retinoic acid downregulates HBx levels via E6-associated protein-mediated proteasomal degradation to suppress hepatitis B virus replication. PLoS One 2024; 19:e0305350. [PMID: 38861553 PMCID: PMC11166335 DOI: 10.1371/journal.pone.0305350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
All-trans retinoic acid (ATRA), recognized as the principal and most biologically potent metabolite of vitamin A, has been identified for its inhibitory effects on hepatitis B virus (HBV) replication. Nevertheless, the underlying mechanism remains elusive. The present study reveals that ATRA induces E6-associated protein (E6AP)-mediated proteasomal degradation of HBx to suppress HBV replication in human hepatoma cells in a p53-dependent pathway. For this effect, ATRA induced promoter hypomethylation of E6AP in the presence of HBx, which resulted in the upregulation of E6AP levels in HepG2 but not in Hep3B cells, emphasizing the p53-dependent nature of this effect. As a consequence, ATRA augmented the interaction between E6AP and HBx, resulting in substantial ubiquitination of HBx and consequent reduction in HBx protein levels in both the HBx overexpression system and the in vitro HBV replication model. Additionally, the knockdown of E6AP under ATRA treatment reduced the interaction between HBx and E6AP and decreased the ubiquitin-dependent proteasomal degradation of HBx, which prompted a recovery of HBV replication in the presence of ATRA, as confirmed by increased levels of intracellular HBV proteins and secreted HBV levels. This study not only contributes to the understanding of the complex interactions between ATRA, p53, E6AP, and HBx but also provides an academic basis for the clinical employment of ATRA in the treatment of HBV infection.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
81
|
Zheng C, Su H, Liu M, Qian Y, Fan H. miRNA‑mRNA network contributes to HBV‑related hepatocellular carcinoma via immune infiltration induced by GRB2. Biomed Rep 2024; 20:90. [PMID: 38682088 PMCID: PMC11046184 DOI: 10.3892/br.2024.1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/05/2024] [Indexed: 05/01/2024] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a critical causative factor in the tumorigenesis and progression of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) serve a critical role in the process of viral infection. However, there has been insufficient evaluation of HBV-associated miRNA-mRNA regulatory networks in HCC. The differential expression levels of miRNAs were compared in HBV-associated HCC tumor and normal tissues using the Gene Expression Omnibus database. The present study evaluated potential target genes of differentially expressed miRNAs using protein-protein interaction network, hub gene, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene set enrichment and immune infiltration analysis. A total of five miRNAs and seven target genes were identified in the HBV-associated miRNA-mRNA network. miRNA-93 could positively regulate the growth factor receptor bound protein 2 (GRB2) gene, while there was a positive correlation between GRB2 and cancer immune infiltrate function in Tumor Immune Estimation Resource. Collectively, the present study investigated the miRNA-mRNA regulatory network in HCC with HBV infection and showed that miRNA-93 positively regulated immune infiltration-related GRB2. Restoring GRB2 may be a candidate strategy for the treatment of HBV-related HCC.
Collapse
Affiliation(s)
- Chuqian Zheng
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Hongmeng Su
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Min Liu
- School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yanyan Qian
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
82
|
Du S, Shen X, Sun Y, Li J, Wang J, Cai Y, Li H. A retrospective study to determine the correlation among HBV PreS1 antigen, HBV e antigen, alanine aminotransferase, and HBV DNA. Clin Res Hepatol Gastroenterol 2024; 48:102369. [PMID: 38719147 DOI: 10.1016/j.clinre.2024.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND AIM Hepatitis B virus (HBV) infection presents with indicators of varying clinical significance. We aimed to evaluate the correlation among HBV Pre-S1 antigen (HBV PreS1-Ag), HBV e antigen (HBeAg), HBV DNA, and alanine aminotransferase (ALT) levels. METHODS We retrospectively analyzed 6180 serum samples collected between 2020 and 2022 at the Shanghai General Hospital, China. Data regarding PreS1-Ag, HBeAg, ALT, and HBV DNA were compiled. Correlation analyses and cross-tabulations were employed to explore the diagnostic indicators. RESULTS The detection rates of both antigen indicators showed a proportional increase with HBV DNA loads. The correlation between PreS1-Ag and HBV DNA (r = 0.616) was stronger than that between HBeAg and HBV DNA (r = 0.391). The specificity of PreS1-Ag (84.30 %) was lower than that of HBeAg (97.44 %), whereas the sensitivity of HBeAg (91.13 %) significantly surpassed that of PreS1-Ag (29.56 %). Among the HBV DNA positive patients, 92.04 % tested positive for at least one indicator, which exceeded the rate of PreS1+HBeAg- and PreS1-HBeAg+ (52. 28 % and 68. 56 %, respectively). Only 1.75 % of the patients exhibited double negativity, which was lower than the percentage of patients with single negativity (1.95 % and 12.00 % for PreS1-Ag and HBeAg, respectively). The PreS1 levels correlated with ALT levels (r = 0.317); patients with PreS1-positive status had higher ALT levels than patients with PreS1-negative status. CONCLUSION PreS1-Ag is a more robust HBV replication indicator than HBeAg. PreS1-Ag displayed high sensitivity, whereas HBeAg demonstrated high specificity. Moreover, PreS1-Ag levels correlated with ALT levels. A combination of these indicators demonstrated dependable clinical value for detecting HBV infection and evaluating liver function.
Collapse
Affiliation(s)
- Sihan Du
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China; Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ximin Shen
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Yi Sun
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Jia Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Juan Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Yiting Cai
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China.
| | - He Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
83
|
Ruli TM, Pollack ED, Lodh A, Evers CD, Price CA, Shoreibah M. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma and Their Hepatic-Related Side Effects: A Review. Cancers (Basel) 2024; 16:2042. [PMID: 38893164 PMCID: PMC11171072 DOI: 10.3390/cancers16112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Primary liver cancer is one of the leading causes of cancer mortality worldwide, with hepatocellular carcinoma (HCC) being the most prevalent type of liver cancer. The prognosis of patients with advanced, unresectable HCC has historically been poor. However, with the emergence of immunotherapy, specifically immune checkpoint inhibitors (ICIs), there is reason for optimism. Nevertheless, ICIs do not come without risk, especially when administered in patients with HCC, given their potential underlying poor hepatic reserve. Given their novelty in the management of HCC, there are few studies to date specifically investigating ICI-related side effects on the liver in patients with underlying HCC. This review will serve as a guide for clinicians on ICIs' role in the management of HCC and their potential side effect profile. There will be a discussion on ICI-related hepatotoxicity, the potential for hepatitis B and C reactivation with ICI use, the potential for the development of autoimmune hepatitis with ICI use, and the risk of gastrointestinal bleeding with ICI use. As ICIs become more commonplace as a treatment option in patients with advanced HCC, it is imperative that clinicians not only understand the mechanism of action of such agents but also understand and are able to identify hepatic-related side effects.
Collapse
Affiliation(s)
- Thomas M. Ruli
- Internal Medicine Residency Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.D.P.); (A.L.); (C.A.P.)
| | - Ethan D. Pollack
- Internal Medicine Residency Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.D.P.); (A.L.); (C.A.P.)
| | - Atul Lodh
- Internal Medicine Residency Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.D.P.); (A.L.); (C.A.P.)
| | - Charles D. Evers
- Internal Medicine Residency Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.D.P.); (A.L.); (C.A.P.)
| | - Christopher A. Price
- Internal Medicine Residency Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.D.P.); (A.L.); (C.A.P.)
| | - Mohamed Shoreibah
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
84
|
Zhu Y, Zhao Y, Ning Z, Deng Y, Li B, Sun Y, Meng Z. Metabolic self-feeding in HBV-associated hepatocarcinoma centered on feedback between circulation lipids and the cellular MAPK/mTOR axis. Cell Commun Signal 2024; 22:280. [PMID: 38773448 PMCID: PMC11106961 DOI: 10.1186/s12964-024-01619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/17/2024] [Indexed: 05/23/2024] Open
Abstract
INTRODUCTION Hepatitis B Virus (HBV) is widely recognized as a "metabolic virus" that disrupts hepatic metabolic homeostasis, rendering it one of the foremost risk factors for hepatocellular carcinoma (HCC). Except for antiviral therapy, the fundamental principles underlying HBV- and HBV+ HCC have remained unchanged, limiting HCC treatment options. OBJECTIVES In this study, we aim to identify the distinctive metabolic profile of HBV-associated HCC, with the promise of identifying novel metabolic targets that confer survival advantages and ultimately impede cancer progression. METHODS We employed a comprehensive methodology to evaluate metabolic alterations systematically. Initially, we analyzed transcriptomic and proteomic data obtained from a public database, subsequently validating these findings within our test cohort at both the proteomic and transcriptomic levels. Additionally, we conducted a comprehensive analysis of tissue metabolomics profiles, lipidomics, and the activity of the MAPK and AKT signaling pathway to corroborate the abovementioned changes. RESULTS Our multi-omics approach revealed distinct metabolic dysfunctions associated with HBV-associated HCC. Specifically, we observed upregulated steroid hormone biosynthesis, primary bile acid metabolism, and sphingolipid metabolism in HBV-associated HCC patients' serum. Notably, metabolites involved in primary bile acid and sphingolipids can activate the MAPK/mTOR pathway. Tissue metabolomics and lipidomics analyses further validated the serum metabolic alterations, particularly alterations in lipid composition and accumulation of unsaturated fatty acids. CONCLUSION Our findings emphasize the pivotal role of HBV in HCC metabolism, elucidating the activation of a unique MAPK/mTOR signaling axis by primary bile acids and sphingolipids. Moreover, the hyperactive MAPK/mTOR signaling axis transduction leads to significant reprogramming in lipid metabolism within HCC cells, further triggering the activation of the MAPK/mTOR pathway in turn, thereby establishing a self-feeding circle driven by primary bile acids and sphingolipids.
Collapse
Affiliation(s)
- Ying Zhu
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yingke Zhao
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Zhouyu Ning
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yong Deng
- Department of Research and Development, Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Bing Li
- Department of Research and Development, Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Yun Sun
- Department of Research and Development, Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China.
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, 201321, China.
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China.
| | - Zhiqiang Meng
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
85
|
Johnson PJ, Kalyuzhnyy A, Boswell E, Toyoda H. Progression of chronic liver disease to hepatocellular carcinoma: implications for surveillance and management. BJC REPORTS 2024; 2:39. [PMID: 39516538 PMCID: PMC11523965 DOI: 10.1038/s44276-024-00050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Current opinion holds that hepatocellular carcinoma (HCC) arises as a stepwise progression from chronic liver disease (CLD) to cirrhosis and then to HCC. However, some HCCs may develop in a non-cirrhotic liver, raising uncertainty about their origin. METHODS We analysed a prospectively accrued cohort of 2592 CLD patients (median follow-up = 13 years) with no prior evidence of liver cirrhosis. To track the progression of liver fibrosis prior to HCC diagnosis, we examined serial measurements of Fib-4 (an index of liver fibrosis). We also evaluated fibrosis progression in response to antiviral treatment in patients with hepatitis C (HCV) and hepatitis B (HBV). Recognising the limitations of serologic fibrosis assessment, we correlated Fib-4 and fibrosis histology within this cohort. RESULTS Among HCC patients, 28% had no indication of cirrhosis prior to HCC diagnosis. Only 31% of HBV-related HCC cases followed the cirrhotic pathway. HCV patients who achieved sustained virological response (SVR) developed cirrhosis approximately 7 years before HCC diagnosis. CONCLUSIONS Our analysis challenges the notion of cirrhosis as an obligatory stage of HCC development in CLD patients. We affirm HBV's direct oncogenic potential and find that achieving SVR does not universally prevent HCC development. Our findings have major implications for HCC surveillance.
Collapse
Affiliation(s)
- Philip J Johnson
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| | - Anton Kalyuzhnyy
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Ellen Boswell
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| |
Collapse
|
86
|
Xiao R, Tian Y, Zhang J, Li N, Qi M, Liu L, Wang J, Li Z, Zhang J, Zhao F, Wang T, Tan S, Li C, Wu Z, Yu M, Jiang X, Zhan P, Gao L, Han B, Liu X, Liang X, Ma C. Increased Siglec-9/Siglec-9L interactions on NK cells predict poor HCC prognosis and present a targetable checkpoint for immunotherapy. J Hepatol 2024; 80:792-804. [PMID: 38331327 DOI: 10.1016/j.jhep.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND & AIMS Natural killer (NK) cell-based anti-hepatocellular carcinoma (HCC) therapy is an increasingly attractive approach that warrants further study. Siglec-9 interacts with its ligand (Siglec-9L) and restrains NK cell functions, suggesting it is a potential therapeutic target. However, in situ Siglec-9/Siglec-9L interactions in HCC have not been reported, and a relevant interventional strategy is lacking. Herein, we aim to illustrate Siglec-9/Siglec-9L-mediated cell sociology and identify small-molecule inhibitors targeting Siglec-9 that could improve the efficacy of NK cell-based immunotherapy for HCC. METHODS Multiplexed immunofluorescence staining was performed to analyze the expression pattern of Siglec-7, -9 and their ligands in HCC tissues. Then we conducted docking-based virtual screening combined with bio-layer interferometry assays to identify a potent small-molecule Siglec-9 inhibitor. The therapeutic potential was further evaluated in vitro and in hepatoma-bearing NCG mice. RESULTS Siglec-9 expression, rather than Siglec-7, was markedly upregulated on tumor-infiltrating NK cells, which correlated significantly with reduced survival of patients with HCC. Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival, further suggesting that Siglec-9/Siglec-9L interactions are a potential therapeutic target in HCC. In addition, we identified a small-molecule Siglec-9 inhibitor MTX-3937 which inhibited phosphorylation of Siglec-9 and downstream SHP1 and SHP2. Accordingly, MTX-3937 led to considerable improvement in NK cell function. Notably, MTX-3937 enhanced cytotoxicity of both human peripheral and tumor-infiltrating NK cells. Furthermore, transfer of MTX-3937-treated NK92 cells greatly suppressed the growth of hepatoma xenografts in NCG mice. CONCLUSIONS Our study provides the rationale for HCC treatment by targeting Siglec-9 on NK cells and identifies a promising small-molecule inhibitor against Siglec-9 that enhances NK cell-mediated HCC surveillance. IMPACT AND IMPLICATIONS Herein, we found that Siglec-9 expression is markedly upregulated on tumor-infiltrating natural killer (TINK) cells and correlates with reduced survival in patients with hepatocellular carcinoma (HCC). Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival. More importantly, we identified a small-molecule inhibitor targeting Siglec-9 that augments NK cell functions, revealing a novel immunotherapy strategy for liver cancer that warrants further clinical investigation.
Collapse
Affiliation(s)
- Rong Xiao
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Ye Tian
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Na Li
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu Hospital, Jinan 250012, Shandong, China
| | - Ling Liu
- Department of Pathology, Dezhou Municipal Hospital, Dezhou 253036, Shandong, China
| | - Jianping Wang
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Jie Zhang
- Advanced Medical Research Institute and Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Mingyan Yu
- Shandong Institute for Food and Drug Control, Jinan 250101, Shandong, China
| | - Xuemei Jiang
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Bo Han
- Department of Pathology, Shandong University Qilu Hospital, Jinan 250012, Shandong, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education & Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
87
|
Ruiz E, Honles J, Fernández R, Uribe K, Cerapio JP, Cancino K, Contreras-Mancilla J, Casavilca-Zambrano S, Berrospi F, Pineau P, Bertani S. A preoperative risk score based on early recurrence for estimating outcomes after resection of hepatocellular carcinoma in the non-cirrhotic liver. HPB (Oxford) 2024; 26:691-702. [PMID: 38431511 DOI: 10.1016/j.hpb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Liver resection is the mainstay treatment option for patients with hepatocellular carcinoma in the non-cirrhotic liver (NCL-HCC), but almost half of these patients will experience a recurrence within five years of surgery. Therefore, we aimed to develop a rationale-based risk evaluation tool to assist surgeons in recurrence-related treatment planning for NCL-HCC. METHODS We analyzed single-center data from 263 patients who underwent liver resection for NCL-HCC. Using machine learning modeling, we first determined an optimal cut-off point to discriminate early versus late relapses based on time to recurrence. We then constructed a risk score based on preoperative variables to forecast outcomes according to recurrence-free survival. RESULTS We computed an optimal cut-off point for early recurrence at 12 months post-surgery. We identified macroscopic vascular invasion, multifocal tumor, and spontaneous tumor rupture as predictor variables of outcomes associated with early recurrence and integrated them into a scoring system. We thus stratified, with high concordance, three groups of patients on a graduated scale of recurrence-related survival. CONCLUSION We constructed a preoperative risk score to estimate outcomes after liver resection in NCL-HCC patients. Hence, this score makes it possible to rationally stratify patients based on recurrence risk assessment for better treatment planning.
Collapse
Affiliation(s)
- Eloy Ruiz
- Departamento de Cirugía en Abdomen, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru; International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru.
| | - Jorge Honles
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; UMR 152 PHARMADEV, Université de Toulouse, IRD, Toulouse, France
| | - Ramiro Fernández
- Departamento de Cirugía en Abdomen, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru; International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru
| | - Karla Uribe
- Departamento de Cirugía en Abdomen, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Juan P Cerapio
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; UMR 1037 CRCT, Université de Toulouse, INSERM, Toulouse, France
| | - Karina Cancino
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; UMR 152 PHARMADEV, Université de Toulouse, IRD, Toulouse, France; UMR 1037 CRCT, Université de Toulouse, INSERM, Toulouse, France
| | - Juan Contreras-Mancilla
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; Laboratorio de Investigación Traslacional y Biología Computacional, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sandro Casavilca-Zambrano
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; Departamento de Patología, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru; Facultad de Ciencias de la Salud, Universidad de Huánuco, Huánuco, Peru
| | - Francisco Berrospi
- Departamento de Cirugía en Abdomen, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | - Pascal Pineau
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; Unité Organisation Nucléaire et Oncogenèse, INSERM, Institut Pasteur, Paris, France
| | - Stéphane Bertani
- International Joint Laboratory of Molecular Anthropological Oncology, INEN, IRD, Lima, Peru; UMR 152 PHARMADEV, Université de Toulouse, IRD, Toulouse, France.
| |
Collapse
|
88
|
Zang Q, Ju Y, Liu S, Wu S, Zhu C, Liu L, Xu W, He Y. The significance of m6A RNA methylation regulators in diagnosis and subtype classification of HBV-related hepatocellular carcinoma. Hum Cell 2024; 37:752-767. [PMID: 38536633 DOI: 10.1007/s13577-024-01044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/14/2024] [Indexed: 04/15/2024]
Abstract
In recent years, abnormal m6A alteration in hepatocellular carcinoma (HCC) has been a focus on investigating the biological implications. In this study, our objective is to determine whether m6A modification contributes to the progression of HBV-related HCC. To achieve this, we employed a random forest model to screen top 8 characteristic m6A regulators from 19 candidate genes. Subsequently, we developed a nomogram model that utilizes these 8 characteristic m6A regulators to predict the prevalence of HBV-related HCC. According to decision curve analysis, patients may benefit from the nomogram model. The clinical impact curves exhibited a robust predictive capability of the nomogram models. Additionally, consensus molecular subtyping was employed to identify m6A modification patterns and m6A-related gene signature. The quantification of immune cell subsets was accomplished through the implementation of ssGSEA algorithms. PCA algorithms were developed to compute the m6A score for individual tumors. Two distinct m6A modification patterns, namely cluster A and cluster B, exhibited significant correlations with distinct immune infiltration patterns and biological pathways. Notably, patients belonging to cluster B demonstrated higher m6A scores compared to those in cluster A, as determined by the m6A score metric. Furthermore, the expression of IGFBP3 proteins was validated through immunofluorescence, revealing their pronounced lower expression in tumor tissues. In summary, our study underscores the importance of m6A modification in the advancement of HBV-related HCC. This research has the potential to yield novel prognostic biomarkers and therapeutic targets for the identification of HBV-related HCC.
Collapse
Affiliation(s)
- Qijuan Zang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Yalin Ju
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Siyi Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Shaobo Wu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengbin Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Liangru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Weicheng Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China
| | - Yingli He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Road(W), Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
89
|
Li CC, Liu M, Lee HP, Wu W, Ma L. Heterogeneity in Liver Cancer Immune Microenvironment: Emerging Single-Cell and Spatial Perspectives. Semin Liver Dis 2024; 44:133-146. [PMID: 38788780 DOI: 10.1055/s-0044-1787152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Primary liver cancer is a solid malignancy with a high mortality rate. The success of immunotherapy has shown great promise in improving patient care and highlights a crucial need to understand the complexity of the liver tumor immune microenvironment (TIME). Recent advances in single-cell and spatial omics technologies, coupled with the development of systems biology approaches, are rapidly transforming the landscape of tumor immunology. Here we review the cellular landscape of liver TIME from single-cell and spatial perspectives. We also discuss the cellular interaction networks within the tumor cell community in regulating immune responses. We further highlight the challenges and opportunities with implications for biomarker discovery, patient stratification, and combination immunotherapies.
Collapse
Affiliation(s)
- Caiyi Cherry Li
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Meng Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hsin-Pei Lee
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Wenqi Wu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
90
|
Zdziarski P, Gamian A. Role of B Cells beyond Antibodies in HBV-Induced Oncogenesis: Fulminant Cancer in Common Variable Immunodeficiency-Clinical and Immunotransplant Implications with a Review of the Literature. Diseases 2024; 12:80. [PMID: 38785735 PMCID: PMC11119213 DOI: 10.3390/diseases12050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Although lymphoma is the most frequent malignancy in common variable immunodeficiency (CVID), solid tumors, especially affected by oncogenic viruses, are not considered. Furthermore, in vitro genetic studies and cell cultures are not adequate for immune system and HBV interaction. We adopted a previously introduced clinical model of host-virus interaction (i.e., infectious process in immunodeficiency) for analysis of B cells and the specific IgG role (an observational study of a CVID patient who received intravenous immunoglobulin (IVIG). Suddenly, the patient deteriorated and a positive results of for HBs and HBV-DNA (369 × 106 copies) were detected. Despite lamivudine therapy and IVIG escalation (from 0.3 to 0.4 g/kg), CT showed an 11 cm intrahepatic tumor (hepatocellular carcinoma). Anti-HBs were positive in time-lapse analysis (range 111-220 IU/mL). Replacement therapy intensification was complicated by an immune complex disease with renal failure. Fulminant HCC in CVID and the development of a tumor as the first sign is of interest. Unfortunately, treatment with hepatitis B immune globulins (HBIG) plays a major role in posttransplant maintenance therapy. Anti-HB substitution has not been proven to be effective, oncoprotective, nor safe. Therefore, immunosuppression in HBV-infected recipients should be carefully minimized, and patient selection more precise with the exclusion of HBV-positive donors. Our clinical model showed an HCC pathway with important humoral host factors, contrary to epidemiological/cohort studies highlighting risk factors only (e.g., chronic hepatitis). The lack of cell cooperation as well as B cell deficiency observed in CVID play a crucial role in high HBV replication, especially in carcinogenesis.
Collapse
Affiliation(s)
- Przemyslaw Zdziarski
- Lower Silesian Center for Cellular Transplantation, 53-439 Wroclaw, Poland
- Clinical Research Center PRION, 50-385 Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland;
| |
Collapse
|
91
|
Meewan I, Panmanee J, Petchyam N, Lertvilai P. HBCVTr: an end-to-end transformer with a deep neural network hybrid model for anti-HBV and HCV activity predictor from SMILES. Sci Rep 2024; 14:9262. [PMID: 38649402 PMCID: PMC11035669 DOI: 10.1038/s41598-024-59933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Hepatitis B and C viruses (HBV and HCV) are significant causes of chronic liver diseases, with approximately 350 million infections globally. To accelerate the finding of effective treatment options, we introduce HBCVTr, a novel ligand-based drug design (LBDD) method for predicting the inhibitory activity of small molecules against HBV and HCV. HBCVTr employs a hybrid model consisting of double encoders of transformers and a deep neural network to learn the relationship between small molecules' simplified molecular-input line-entry system (SMILES) and their antiviral activity against HBV or HCV. The prediction accuracy of HBCVTr has surpassed baseline machine learning models and existing methods, with R-squared values of 0.641 and 0.721 for the HBV and HCV test sets, respectively. The trained models were successfully applied to virtual screening against 10 million compounds within 240 h, leading to the discovery of the top novel inhibitor candidates, including IJN04 for HBV and IJN12 and IJN19 for HCV. Molecular docking and dynamics simulations identified IJN04, IJN12, and IJN19 target proteins as the HBV core antigen, HCV NS5B RNA-dependent RNA polymerase, and HCV NS3/4A serine protease, respectively. Overall, HBCVTr offers a new and rapid drug discovery and development screening method targeting HBV and HCV.
Collapse
Affiliation(s)
- Ittipat Meewan
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Nopphon Petchyam
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pichaya Lertvilai
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
92
|
Andrade AAR, Pauli F, Pressete CG, Zavan B, Hanemann JAC, Miyazawa M, Fonseca R, Caixeta ES, Nacif JLM, Aissa AF, Barreiro EJ, Ionta M. Antiproliferative Activity of N-Acylhydrazone Derivative on Hepatocellular Carcinoma Cells Involves Transcriptional Regulation of Genes Required for G2/M Transition. Biomedicines 2024; 12:892. [PMID: 38672246 PMCID: PMC11048582 DOI: 10.3390/biomedicines12040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Liver cancer is the second leading cause of cancer-related death in males. It is estimated that approximately one million deaths will occur by 2030 due to hepatic cancer. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer subtype and is commonly diagnosed at an advanced stage. The drug arsenal used in systemic therapy for HCC is very limited. Multikinase inhibitors sorafenib (Nexavar®) and lenvatinib (Lenvima®) have been used as first-line drugs with modest therapeutic effects. In this scenario, it is imperative to search for new therapeutic strategies for HCC. Herein, the antiproliferative activity of N-acylhydrazone derivatives was evaluated on HCC cells (HepG2 and Hep3B), which were chemically planned on the ALL-993 scaffold, a potent inhibitor of vascular endothelial growth factor 2 (VEGFR2). The substances efficiently reduced the viability of HCC cells, and the LASSBio-2052 derivative was the most effective. Further, we demonstrated that LASSBio-2052 treatment induced FOXM1 downregulation, which compromises the transcriptional activation of genes required for G2/M transition, such as AURKA and AURKB, PLK1, and CDK1. In addition, LASSBio-2052 significantly reduced CCNB1 and CCND1 expression in HCC cells. Our findings indicate that LASSBio-2052 is a promising prototype for further in vivo studies.
Collapse
Affiliation(s)
| | - Fernanda Pauli
- Institute of Chemistry, Fluminense Federal University, Niterói 24020-140, RJ, Brazil
| | - Carolina Girotto Pressete
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | | | - Marta Miyazawa
- School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | | | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Eliezer J. Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| |
Collapse
|
93
|
Vargas-Accarino E, Higuera M, Buti M, Mínguez B. Hepatitis-C-Related Hepatocellular Carcinoma, Still a Relevant Etiology beyond a Hepatitis C Infection Cure. Cancers (Basel) 2024; 16:1521. [PMID: 38672603 PMCID: PMC11048451 DOI: 10.3390/cancers16081521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND In the past decades, global changes, including hepatitis B vaccination, hepatitis B and C antiviral therapies, and the increasing prevalence of steatotic liver disease, have influenced the landscape of liver cancer etiologies. METHODS We performed a retrospective study focused on the etiological factors of de novo hepatocellular carcinoma (HCC) diagnoses in an academic center between 2019 and 2022. RESULTS Among 352 consecutive patients with HCC, alcohol-related liver disease was the predominant etiology (33.3%), followed by hepatitis C (HCV) infection (30.7%). Significant associations were found between HCC etiology and patient demographics, BCLC stage at diagnosis, and cirrhosis prevalence. CONCLUSIONS Whereas accessibility to antiviral therapy is granted, HCV infection remains as one of the main HCC etiologies. MASLD-related HCC, although growing globally, is not as relevant in our area. Strong public policies need to be implemented to prevent alcohol consumption, the main etiology of liver disease and liver cancer.
Collapse
Affiliation(s)
- Elena Vargas-Accarino
- Liver Diseases Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (B.M.)
| | - Mónica Higuera
- Liver Diseases Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (B.M.)
| | - María Buti
- Liver Diseases Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (B.M.)
- Department of Medicine, UAB Campus, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Liver Unit, Vall d’Hebron Hospital, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Beatriz Mínguez
- Liver Diseases Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (B.M.)
- Department of Medicine, UAB Campus, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Liver Unit, Vall d’Hebron Hospital, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| |
Collapse
|
94
|
Sukowati CHC, Jayanti S, Turyadi T, Muljono DH, Tiribelli C. Hepatitis B virus genotypes in precision medicine of hepatitis B-related hepatocellular carcinoma: Where we are now. World J Gastrointest Oncol 2024; 16:1097-1103. [PMID: 38660644 PMCID: PMC11037070 DOI: 10.4251/wjgo.v16.i4.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/30/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a major player in chronic hepatitis B that may lead to the development of hepatocellular carcinoma (HCC). HBV genetics are diverse where it is classified into at least 9 genotypes (A to I) and 1 putative genotype (J), each with specific geographical distribution and possible different clinical outcomes in the patient. This diversity may be associated with the precision medicine for HBV-related HCC and the success of therapeutical approaches against HCC, related to different pathogenicity of the virus and host response. This Editorial discusses recent updates on whether the classification of HBV genetic diversity is still valid in terms of viral oncogenicity to the HCC and its precision medicine, in addition to the recent advances in cellular and molecular biology technologies.
Collapse
Affiliation(s)
- Caecilia H C Sukowati
- Eijkman Research Center for Molecular Biology, Research Organization for Health, National Research and Innovation Agency of Indonesia, Jakarta 10340, Indonesia
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| | - Sri Jayanti
- Eijkman Research Center for Molecular Biology, Research Organization for Health, National Research and Innovation Agency of Indonesia, Jakarta 10340, Indonesia
| | - Turyadi Turyadi
- Eijkman Research Center for Molecular Biology, Research Organization for Health, National Research and Innovation Agency of Indonesia, Jakarta 10340, Indonesia
| | - David H Muljono
- Faculty of Medicine, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Claudio Tiribelli
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| |
Collapse
|
95
|
Capasso M, Cossiga V, Guarino M, Ranieri L, Morisco F. The Role of Hepatitis Viruses as Drivers of Hepatocancerogenesis. Cancers (Basel) 2024; 16:1505. [PMID: 38672587 PMCID: PMC11048534 DOI: 10.3390/cancers16081505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Recently, metabolic associated steatotic liver disease (MASLD) became the leading cause of chronic liver disease worldwide and one of the most frequent causes of hepatocellular carcinoma (HCC). Nonetheless, in this epidemiological trend, viral hepatitis remains the major driver in hepatic carcinogenesis. Globally, hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma, with an overall attributable risk of approximately 40%, followed by hepatitis C virus (HCV), which accounts for 28-30% of cases, with significant geographic variations between the Eastern and Western world. Considering all the etiologies, HCC risk increases proportionally with the progression of liver disease, but the risk is consistently higher in patients with viral triggers. This evidence indicates that both direct (due to the oncogenic properties of the viruses) and indirect (through the mechanisms of chronic inflammation that lead to cirrhosis) mechanisms are involved, alongside the presence of co-factors contributing to liver damage (smoking, alcohol, and metabolic factors) that synergistically enhance the oncogenic process. The aim of this review is to analyze the oncogenic role of hepatitis viruses in the liver, evaluating epidemiological changes and direct and indirect viral mechanisms that lead to liver cancer.
Collapse
Affiliation(s)
| | - Valentina Cossiga
- Diseases of the Liver and Biliary System Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (M.C.); (M.G.); (L.R.); (F.M.)
| | | | | | | |
Collapse
|
96
|
Xia F, Yang H, Wu H, Zhao B. Spindle component 25 predicts the prognosis and the immunotherapy response of cancers: a pan-cancer analysis. Sci Rep 2024; 14:8452. [PMID: 38605119 PMCID: PMC11009294 DOI: 10.1038/s41598-024-59038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Spindle component 25 (SPC25) is one of the four proteins that make up the nuclear division cycle 80 (NDC80) complex, the other three components being Ndc80p, Nuf2p, and spindle component 24. Deregulation of the components of this complex can lead to uncontrolled proliferation and reduced apoptosis. However, the prognostic and immunotherapeutic value of SPC25 in pan-cancer remains unclear. Data from the UCSC Xena, TIMER2.0, and TCGA were analyzed to investigate the overall differential expression of SPC25 across multiple cancer types. The survival prognosis, clinical features, and genetic changes of SPC25 were also evaluated. Finally, the relationship between SPC25 and immunotherapy response was further explored through Gene Set Enrichment Analysis, tumor microenvironment, and immune cell infiltration. The transcription and protein expression of SPC25 were significantly increased in most cancer types and had prognostic value for the survival of certain cancer patients such as ACC, CESC, KIRC, KIRP, LIHC, LUAD, MESO, STAD, THYM, and UCEC. In some cancer types, SPC25 expression was also markedly correlated with the TMB, MSI, and clinical characteristics. Gene Set Enrichment Analysis showed that SPC25 was significantly associated with immune-related pathways. In addition, it was also confirmed that the expression level of SPC25 was strongly correlated with immune cell infiltration, immune checkpoint genes, immune regulatory genes, Ferroptosis-related genes, Cuproptosis-related genes, and lactate metabolism-related genes. This study comprehensively explored the potential value of SPC25 as a prognostic and immunotherapeutic marker for pan-cancer, providing new direction and evidence for cancer therapy.
Collapse
Affiliation(s)
- Fengjuan Xia
- Department of Neurology of the First People's Hospital of Zhaoqing, China, Zhaoqing, 526000, China
| | - Haixia Yang
- Oncology Center of the First People's Hospital of Zhaoqing, Zhaoqing, 526000, China
| | - Huangjian Wu
- Oncology Center of the First People's Hospital of Zhaoqing, Zhaoqing, 526000, China
| | - Bo Zhao
- Center for Pain Medicine of the First People's Hospital of Zhaoqing, Zhaoqing, 526000, China.
| |
Collapse
|
97
|
Martínez-López MF, Muslin C, Kyriakidis NC. STINGing Defenses: Unmasking the Mechanisms of DNA Oncovirus-Mediated Immune Escape. Viruses 2024; 16:574. [PMID: 38675916 PMCID: PMC11054469 DOI: 10.3390/v16040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
DNA oncoviruses represent an intriguing subject due to their involvement in oncogenesis. These viruses have evolved mechanisms to manipulate the host immune response, facilitating their persistence and actively contributing to carcinogenic processes. This paper describes the complex interactions between DNA oncoviruses and the innate immune system, with a particular emphasis on the cGAS-STING pathway. Exploring these interactions highlights that DNA oncoviruses strategically target and subvert this pathway, exploiting its vulnerabilities for their own survival and proliferation within the host. Understanding these interactions lays the foundation for identifying potential therapeutic interventions. Herein, we sought to contribute to the ongoing efforts in advancing our understanding of the innate immune system in oncoviral pathogenesis.
Collapse
Affiliation(s)
- Mayra F Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| | - Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito 170503, Ecuador;
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| |
Collapse
|
98
|
Abu Baker F, Kopelman Y, Taher R, Abu Much S, Green I, Mari A, Davidov Y, Ben-Ari Z, Israel A. Hepatitis B virus infection and risk of colorectal cancer: a large, population-based cohort study from Israel. Minerva Med 2024; 115:185-190. [PMID: 38197570 DOI: 10.23736/s0026-4806.23.08964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Recent population-based studies have suggested a possible link between hepatitis B (HBV) infection and extra-hepatic malignancies. We aimed to evaluate the association between HBV and colorectal cancer (CRC) using a large, population-based cohort study utilizing data from a large health maintenance organization (HMO). METHODS The study included patients with non-cirrhotic HBV based on relevant ICD-9-CM codes and supportive serology identified from the HMO's database. Age-, sex-, ethnicity-, and BMI-matched non-HBV patients in a 1:10 ratio were included in the control group. We assessed the overall diagnosis rate of CRC and hepatocellular carcinoma (HCC) during the study period and calculated the diagnosis rate of CRC in each age category (≤50, 51-70, and ≥70) in both groups. RESULTS A total of 3430 HBV patients and 34,300 controls were included in the study. The mean age, sex, BMI, and ethnic composition were similar, and the rates of family history of CRC did not differ between both groups. The overall follow-up period was 134±16 months. The diagnosis rate of HCC (1.6% vs. 0.1%; P<0.0001) was significantly higher in the HBV patients. However, the proportion of CRC was comparable for both groups (0.6% vs. 0.8%, P=0.404), which was evident in all age subgroups. CONCLUSIONS Our findings suggest that HBV infection is associated with an increased risk of HCC diagnosis but is not linked to an elevated risk of CRC. These findings may inform future clinical practice and research regarding the relationship between HBV and extrahepatic malignancies.
Collapse
Affiliation(s)
- Fadi Abu Baker
- Department of Gastroenterology and Hepatology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Yael Kopelman
- Department of Gastroenterology and Hepatology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Randa Taher
- Department of Gastroenterology and Hepatology, Hillel Yaffe Medical Center, Hadera, Israel -
- Department of Internal Medicine, Hillel Yaffe Medical Center, Hadera, Israel
| | - Saif Abu Much
- Department of Internal Medicine, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ilan Green
- Leumit Healthcare Service, Tel Aviv, Israel
| | - Amir Mari
- Department of Gastroenterology and Hepatology, EMMS Hospital, Nazareth, Israel
| | - Yana Davidov
- Center for Liver Diseases, Tel HaShomer Hospital, Ramat Gan, Israel
| | - Ziv Ben-Ari
- Center for Liver Diseases, Tel HaShomer Hospital, Ramat Gan, Israel
| | | |
Collapse
|
99
|
Dong W, Wang H, Li M, Li P, Ji S. Virus-induced host genomic remodeling dysregulates gene expression, triggering tumorigenesis. Front Cell Infect Microbiol 2024; 14:1359766. [PMID: 38572321 PMCID: PMC10987825 DOI: 10.3389/fcimb.2024.1359766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Virus-induced genomic remodeling and altered gene expression contribute significantly to cancer development. Some oncogenic viruses such as Human papillomavirus (HPV) specifically trigger certain cancers by integrating into the host's DNA, disrupting gene regulation linked to cell growth and migration. The effect can be through direct integration of viral genomes into the host genome or through indirect modulation of host cell pathways/proteins by viral proteins. Viral proteins also disrupt key cellular processes like apoptosis and DNA repair by interacting with host molecules, affecting signaling pathways. These disruptions lead to mutation accumulation and tumorigenesis. This review focuses on recent studies exploring virus-mediated genomic structure, altered gene expression, and epigenetic modifications in tumorigenesis.
Collapse
Affiliation(s)
- Weixia Dong
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Huiqin Wang
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Menghui Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Ping Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Shaoping Ji
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
100
|
Meng J, Yang Z, Jiang X, Zou J. Unveiling NUSAP1 as a common gene signature linking chronic HBV infection and HBV-related HCC. Discov Oncol 2024; 15:61. [PMID: 38441732 PMCID: PMC10914659 DOI: 10.1007/s12672-024-00922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a significant contributor to the development of hepatocellular carcinoma (HCC). Chronic HBV infection (CHB) facilitates disease progression through various mechanisms. However, the specific factor responsible for the progression of HBV infection to HCC remains unresolved. This study aims to identify the hub gene linking CHB and HBV-related HCC through bioinformatic analysis and experimental verification. METHODS Differentially expressed genes (DEGs) were identified in datasets encompassing CHB and HBV-HCC patients from the GEO database. Enriched pathways were derived from GO and KEGG analysis. Hub genes were screened by protein-protein interaction (PPI) analysis and different modules in Cytoscape software. The significance of the selected hub gene in prognosis was further assessed in validated datasets. The effects of hub genes on cell growth and apoptosis were further determined in functional experiments. RESULTS The study revealed upregulation of NUSAP1 in CHBs and HBV-HCCs. High expression of NUSAP1 served as an independent predictor for poor prognosis of liver cancers. Functional experiments demonstrated that NUSAP1 promotes cell growth, influences cell cycle process, and protects cells from apoptosis in HepG2.2.15 cells. CONCLUSION NUSAP1 serves as a poor prognostic indicator for liver cancers, and potentially plays a crucial role in HBV-HCC progression by promoting proliferation and inhibiting apoptosis.
Collapse
Affiliation(s)
- Jiao Meng
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Zhenkun Yang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| | - Xinyi Jiang
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
| | - Jian Zou
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|