51
|
Structures of ABCB4 provide insight into phosphatidylcholine translocation. Proc Natl Acad Sci U S A 2021; 118:2106702118. [PMID: 34385322 DOI: 10.1073/pnas.2106702118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ABCB4 is expressed in hepatocytes and translocates phosphatidylcholine into bile canaliculi. The mechanism of specific lipid recruitment from the canalicular membrane, which is essential to mitigate the cytotoxicity of bile salts, is poorly understood. We present cryogenic electron microscopy structures of human ABCB4 in three distinct functional conformations. An apo-inward structure reveals how phospholipid can be recruited from the inner leaflet of the membrane without flipping its orientation. An occluded structure reveals a single phospholipid molecule in a central cavity. Its choline moiety is stabilized by cation-π interactions with an essential tryptophan residue, rationalizing the specificity of ABCB4 for phosphatidylcholine. In an inhibitor-bound structure, a posaconazole molecule blocks phospholipids from reaching the central cavity. Using a proteoliposome-based translocation assay with fluorescently labeled phosphatidylcholine analogs, we recapitulated the substrate specificity of ABCB4 in vitro and confirmed the role of the key tryptophan residue. Our results provide a structural basis for understanding an essential translocation step in the generation of bile and its sensitivity to azole drugs.
Collapse
|
52
|
Positive charge in the complementarity-determining regions of synthetic nanobody prevents aggregation. Biochem Biophys Res Commun 2021; 572:1-6. [PMID: 34332323 DOI: 10.1016/j.bbrc.2021.07.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023]
Abstract
In the past, specificity and affinity were the priority for synthetic antibody library. However, therapeutic antibodies need good stability for medical use. Through carefully adjust the chemical diversity in CDRs, one hopes to design a synthetic antibody library with good developability. Here we thoroughly analyzed 296 nanobody sequences and structures, constructed a fully-functional synthetic nanobody library, evaluated the relationship between aggregation and isoelectric point, and found that high-pI nanobodies were more resistant to aggregation than low-pIs. As we used the same framework for constructing the library, CDRs charge played a crucial role in mediating nanobody aggregation. We also analyzed the theoretical pI of 296 nanobodies from PDB, about 75% had basic pI, only 25% were acidic. Those results provided useful guidelines for designing next-generation synthetic nanobody libraries and for identifying potent and safe nanobody therapeutics.
Collapse
|
53
|
Enderle L, Shalaby KH, Gorelik M, Weiss A, Blazer LL, Paduch M, Cardarelli L, Kossiakoff A, Adams JJ, Sidhu SS. A T cell redirection platform for co-targeting dual antigens on solid tumors. MAbs 2021; 13:1933690. [PMID: 34190031 PMCID: PMC8253144 DOI: 10.1080/19420862.2021.1933690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In order to direct T cells to specific features of solid cancer cells, we engineered a bispecific antibody format, named Dual Antigen T cell Engager (DATE), by fusing a single-chain variable fragment targeting CD3 to a tumor-targeting antigen-binding fragment. In this format, multiple novel paratopes against different tumor antigens were able to recruit T-cell cytotoxicity to tumor cells in vitro and in an in vivo pancreatic ductal adenocarcinoma xenograft model. Since unique surface antigens in solid tumors are limited, in order to enhance selectivity, we further engineered “double-DATEs” targeting two tumor antigens simultaneously. The double-DATE contains an additional autonomous variable heavy-chain domain, which binds a second tumor antigen without itself eliciting a cytotoxic response. This novel modality provides a strategy to enhance the selectivity of immune redirection through binary targeting of native tumor antigens. The modularity and use of a common, stable human framework for all components enables a pipeline approach to rapidly develop a broad repertoire of tailored DATEs and double-DATEs with favorable biophysical properties and high potencies and selectivities.
Collapse
Affiliation(s)
- Leonie Enderle
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Karim H Shalaby
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Maryna Gorelik
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alexander Weiss
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Levi L Blazer
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Marcin Paduch
- Institute for Biophysical Dynamics, Gordon Center for Integrative Science, Chicago, USA
| | - Lia Cardarelli
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anthony Kossiakoff
- Institute for Biophysical Dynamics, Gordon Center for Integrative Science, Chicago, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
| | - Jarrett J Adams
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sachdev S Sidhu
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
54
|
Kodali P, Schoeder CT, Schmitz S, Crowe JE, Meiler J. RosettaCM for antibodies with very long HCDR3s and low template availability. Proteins 2021; 89:1458-1472. [PMID: 34176159 PMCID: PMC8492515 DOI: 10.1002/prot.26166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
Antibody-antigen co-crystal structures are a valuable resource for the fundamental understanding of antibody-mediated immunity. Determination of structures with antibodies in complex with their antigens, however, is a laborious task without guarantee of success. Therefore, homology modeling of antibodies and docking to their respective antigens has become a very important technique to drive antibody and vaccine design. The quality of the antibody modeling process is critical for the success of these endeavors. Here, we compare different computational protocols for predicting antibody structure from sequence in the biomolecular modeling software Rosetta-all of which use multiple existing antibody structures to guide modeling. Specifically, we compare protocols developed solely to predict antibody structure (RosettaAntibody, AbPredict) with a universal homology modeling protocol (RosettaCM). Following recent advances in homology modeling with multiple templates simultaneously, we propose that the use of multiple templates over the same antibody regions may improve modeling performance. To evaluate whether multi-template comparative modeling with RosettaCM can improve the modeling accuracy of antibodies over existing methods, this study compares the performance of the three modeling algorithms when modeling human antibodies taken from antibody-antigen co-crystal structures. In these benchmarking experiments, RosettaCM outperformed other methods when modeling antibodies with long HCDR3s and few available templates.
Collapse
Affiliation(s)
- Pranav Kodali
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA.,Center of Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Clara T Schoeder
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA.,Center of Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Samuel Schmitz
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA.,Center of Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA.,Center of Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.,Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| |
Collapse
|
55
|
Golinski AW, Mischler KM, Laxminarayan S, Neurock NL, Fossing M, Pichman H, Martiniani S, Hackel BJ. High-throughput developability assays enable library-scale identification of producible protein scaffold variants. Proc Natl Acad Sci U S A 2021; 118:e2026658118. [PMID: 34078670 PMCID: PMC8201827 DOI: 10.1073/pnas.2026658118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Proteins require high developability-quantified by expression, solubility, and stability-for robust utility as therapeutics, diagnostics, and in other biotechnological applications. Measuring traditional developability metrics is low throughput in nature, often slowing the developmental pipeline. We evaluated the ability of 10 variations of three high-throughput developability assays to predict the bacterial recombinant expression of paratope variants of the protein scaffold Gp2. Enabled by a phenotype/genotype linkage, assay performance for 105 variants was calculated via deep sequencing of populations sorted by proxied developability. We identified the most informative assay combination via cross-validation accuracy and correlation feature selection and demonstrated the ability of machine learning models to exploit nonlinear mutual information to increase the assays' predictive utility. We trained a random forest model that predicts expression from assay performance that is 35% closer to the experimental variance and trains 80% more efficiently than a model predicting from sequence information alone. Utilizing the predicted expression, we performed a site-wise analysis and predicted mutations consistent with enhanced developability. The validated assays offer the ability to identify developable proteins at unprecedented scales, reducing the bottleneck of protein commercialization.
Collapse
Affiliation(s)
- Alexander W Golinski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Katelynn M Mischler
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Sidharth Laxminarayan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Nicole L Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Matthew Fossing
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Hannah Pichman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Stefano Martiniani
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
56
|
Miller CJ, McGinnis JE, Martinez MJ, Wang G, Zhou J, Simmons E, Amet T, Abdeen SJ, Van Huysse JW, Bowsher RR, Kay BK. FN3-based monobodies selective for the receptor binding domain of the SARS-CoV-2 spike protein. N Biotechnol 2021; 62:79-85. [PMID: 33556628 PMCID: PMC7863792 DOI: 10.1016/j.nbt.2021.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
A phage library displaying 1010 variants of the fibronectin type III (FN3) domain was affinity selected with the biotinylated form of the receptor binding domain (RBD, residues 319-541) of the SARS-CoV-2 virus spike protein. Nine binding FN3 variants (i.e. monobodies) were recovered, representing four different primary structures. Soluble forms of the monobodies bound to several different preparations of the RBD and the S1 spike subunit, with affinities ranging from 3 to 14 nM as measured by bio-layer interferometry. Three of the four monobodies bound selectively to the RBD of SARS-CoV-2, with the fourth monobody showing slight cross-reactivity to the RBD of SARS-CoV-1 virus. Examination of binding to the spike fragments and its trimeric form revealed that the monobodies recognise at least three overlapping epitopes on the RBD of SARS-CoV-2. While pairwise tests failed to identify a monobody pair that could bind simultaneously to the RBD, one monobody could simultaneously bind to the RBD with the ectodomain of the cellular receptor angiotensin converting enzyme 2 (ACE2). All four monobodies successfully bound the RBD after overexpression in Chinese hamster ovary (CHO) cells as fusions to the Fc domain of human IgG1.
Collapse
Affiliation(s)
- Christina J Miller
- Tango Biosciences, Inc., 2201 W. Campbell Park Drive, Chicago, IL 60612 USA
| | | | - Michael J Martinez
- Tango Biosciences, Inc., 2201 W. Campbell Park Drive, Chicago, IL 60612 USA
| | - Guangli Wang
- Euprotein Inc., 675 US Highway 1, Suite 129, North Brunswick, NJ 08902 USA
| | - Jian Zhou
- LifeTein LLC, 100 Randolph Road, Suite 2D, Somerset, NJ 08873 USA
| | - Erica Simmons
- B2S Life Sciences, 97 East Monroe Street, Franklin, IN 46131 USA
| | - Tohti Amet
- B2S Life Sciences, 97 East Monroe Street, Franklin, IN 46131 USA
| | - Sanofar J Abdeen
- B2S Life Sciences, 97 East Monroe Street, Franklin, IN 46131 USA
| | | | - Ronald R Bowsher
- B2S Life Sciences, 97 East Monroe Street, Franklin, IN 46131 USA
| | - Brian K Kay
- Tango Biosciences, Inc., 2201 W. Campbell Park Drive, Chicago, IL 60612 USA.
| |
Collapse
|
57
|
Slezak T, Kossiakoff AA. Engineered Ultra-High Affinity Synthetic Antibodies for SARS-CoV-2 Neutralization and Detection. J Mol Biol 2021; 433:166956. [PMID: 33775667 PMCID: PMC7997149 DOI: 10.1016/j.jmb.2021.166956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
The Covid-19 pandemic is a centenarial global catastrophe. Similar events are likely to be recurring with more frequency in the future. The inability to control the virus' impact is caused by many factors, but the lack of a technology infrastructure to detect and impede the virus at an early stage are principal shortcomings. Using phage display mutagenesis, we have generated a cohort of high performance antibody fragments (Fabs) that can be used in a sensitive point of care (POC) assay and are potent inhibitors (IC50-0.5 nM) to viral entry into cells. The POC assay is based on a split-enzyme (β-lactamase) complementation strategy that detects virus particles at low nM levels. We have shown that this assay is equally effective for detecting other viruses like Ebola and Zika. Importantly, its components can be freeze dried and stored, but becomes fully active when rehydrated.
Collapse
Affiliation(s)
- Tomasz Slezak
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, United States
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, United States; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
58
|
Kelil A, Gallo E, Banerjee S, Adams JJ, Sidhu SS. CellectSeq: In silico discovery of antibodies targeting integral membrane proteins combining in situ selections and next-generation sequencing. Commun Biol 2021; 4:561. [PMID: 33980972 PMCID: PMC8115320 DOI: 10.1038/s42003-021-02066-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Synthetic antibody (Ab) technologies are efficient and cost-effective platforms for the generation of monoclonal Abs against human antigens. Yet, they typically depend on purified proteins, which exclude integral membrane proteins that require the lipid bilayers to support their native structure and function. Here, we present an Ab discovery strategy, termed CellectSeq, for targeting integral membrane proteins on native cells in complex environment. As proof of concept, we targeted three transmembrane proteins linked to cancer, tetraspanin CD151, carbonic anhydrase 9, and integrin-α11. First, we performed in situ cell-based selections to enrich phage-displayed synthetic Ab pools for antigen-specific binders. Then, we designed next-generation sequencing procedures to explore Ab diversities and abundances. Finally, we developed motif-based scoring and sequencing error-filtering algorithms for the comprehensive interrogation of next-generation sequencing pools to identify Abs with high diversities and specificities, even at extremely low abundances, which are very difficult to identify using manual sampling or sequence abundances.
Collapse
Affiliation(s)
- Abdellali Kelil
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Eugenio Gallo
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Toronto Recombinant Antibody Centre, University of Toronto, Toronto, Canada
| | - Sunandan Banerjee
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Toronto Recombinant Antibody Centre, University of Toronto, Toronto, Canada
| | - Jarrett J. Adams
- grid.17063.330000 0001 2157 2938Toronto Recombinant Antibody Centre, University of Toronto, Toronto, Canada
| | - Sachdev S. Sidhu
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
59
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
60
|
Watkins EA, Antane JT, Roberts JL, Lorentz KM, Zuerndorfer S, Dunaif AC, Bailey LJ, Tremain AC, Nguyen M, De Loera RC, Wallace RP, Weathered RK, Kontos S, Hubbell JA. Persistent antigen exposure via the eryptotic pathway drives terminal T cell dysfunction. Sci Immunol 2021; 6:6/56/eabe1801. [PMID: 33637595 DOI: 10.1126/sciimmunol.abe1801] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Although most current treatments for autoimmunity involve broad immunosuppression, recent efforts have aimed to suppress T cells in an antigen-specific manner to minimize risk of infection. One such effort is through targeting antigen to the apoptotic pathway to increase presentation of the antigen of interest in a tolerogenic context. Erythrocytes present a rational candidate to target because of their high rate of eryptosis, which facilitates continual uptake by antigen-presenting cells in the spleen. Here, we develop an approach that binds antigens to erythrocytes to induce sustained T cell dysfunction. Transcriptomic and phenotypic analyses revealed signatures of self-tolerance and exhaustion, including up-regulation of PD-1, CTLA4, Lag3, and TOX. Antigen-specific T cells were incapable of responding to an adjuvanted antigenic challenge even months after antigen clearance. With this strategy, we prevented pathology in a mouse experimental autoimmune encephalomyelitis model. CD8+ T cell education occurred in the spleen and was dependent on cross-presenting Batf3+ dendritic cells. These results demonstrate that antigens associated with eryptotic erythrocytes induce lasting T cell dysfunction that could be protective in deactivating pathogenic T cells.
Collapse
Affiliation(s)
- Elyse A Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer T Antane
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jaeda L Roberts
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Anya C Dunaif
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Andrew C Tremain
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Roberto C De Loera
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rachel K Weathered
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. .,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
61
|
Islam M, Kehoe HP, Lissoos JB, Huang M, Ghadban CE, Sánchez GB, Lane HZ, Van Deventer JA. Chemical Diversification of Simple Synthetic Antibodies. ACS Chem Biol 2021; 16:344-359. [PMID: 33482061 PMCID: PMC8096149 DOI: 10.1021/acschembio.0c00865] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibodies possess properties that make them valuable as therapeutics, diagnostics, and basic research tools. However, antibody chemical reactivity and covalent antigen binding are constrained, or even prevented, by the narrow range of chemistries encoded in canonical amino acids. In this work, we investigate strategies for leveraging an expanded range of chemical functionality using yeast displayed antibodies containing noncanonical amino acids (ncAAs) in or near antibody complementarity determining regions (CDRs). To enable systematic characterization of the effects of ncAA incorporation on antibody function, we first investigated whether diversification of a single antibody loop would support the isolation of binding clones against immunoglobulins from three species. We constructed and screened a billion-member library containing canonical amino acid diversity and loop length diversity only within the third complementarity determining region of the heavy chain (CDR-H3). Isolated clones exhibited moderate affinities (double- to triple-digit nanomolar affinities) and, in several cases, single-species specificity, confirming that antibody specificity can be mediated by a single CDR. This constrained diversity enabled the utilization of additional CDRs for the installation of chemically reactive and photo-cross-linkable ncAAs. Binding studies of ncAA-substituted antibodies revealed that ncAA incorporation is reasonably well tolerated, with observed changes in affinity occurring as a function of ncAA side chain identity, substitution site, and the ncAA incorporation machinery used. Multiple azide-containing ncAAs supported copper-catalyzed azide-alkyne cycloaddition (CuAAC) and strain-promoted azide-alkyne cycloaddition (SPAAC) without the abrogation of binding function. Similarly, several alkyne substitutions facilitated CuAAC without the apparent disruption of binding. Finally, antibodies substituted with a photo-cross-linkable ncAA were evaluated for ultraviolet-mediated cross-linking on the yeast surface. Competition-based assays revealed position-dependent covalent linkages, strongly suggesting successful cross-linking. Key findings regarding CuAAC reactions and photo-cross-linking on the yeast surface were confirmed using soluble forms of ncAA-substituted clones. The consistency of findings on the yeast surface and in solution suggest that chemical diversification can be incorporated into yeast display screening approaches. Taken together, our results highlight the power of integrating the use of yeast display and ncAAs in search of proteins with "chemically augmented" binding functions. This includes strategies for systematically introducing small molecule functionality within binding protein structures and evaluating protein-based covalent target binding. The efficient preparation and chemical diversification of antibodies on the yeast surface open up new possibilities for discovering "drug-like" protein leads in high throughput.
Collapse
Affiliation(s)
- Mariha Islam
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Haixing P. Kehoe
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Jacob B. Lissoos
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Manjie Huang
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Christopher E. Ghadban
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Greg B. Sánchez
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Hanan Z. Lane
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
62
|
The ACE2-binding Interface of SARS-CoV-2 Spike Inherently Deflects Immune Recognition. J Mol Biol 2020; 433:166748. [PMID: 33310017 PMCID: PMC7833242 DOI: 10.1016/j.jmb.2020.166748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023]
Abstract
The COVID-19 pandemic remains a global threat, and host immunity remains the main mechanism of protection against the disease. The spike protein on the surface of SARS-CoV-2 is a major antigen and its engagement with human ACE2 receptor plays an essential role in viral entry into host cells. Consequently, antibodies targeting the ACE2-interacting surface (ACE2IS) located in the receptor-binding domain (RBD) of the spike protein can neutralize the virus. However, the understanding of immune responses to SARS-CoV-2 is still limited, and it is unclear how the virus protects this surface from recognition by antibodies. Here, we designed an RBD mutant that disrupts the ACE2IS and used it to characterize the prevalence of antibodies directed to the ACE2IS from convalescent sera of 94 COVID-19-positive patients. We found that only a small fraction of RBD-binding antibodies targeted the ACE2IS. To assess the immunogenicity of different parts of the spike protein, we performed in vitro antibody selection for the spike and the RBD proteins using both unbiased and biased selection strategies. Intriguingly, unbiased selection yielded antibodies that predominantly targeted regions outside the ACE2IS, whereas ACE2IS-binding antibodies were readily identified from biased selection designed to enrich such antibodies. Furthermore, antibodies from an unbiased selection using the RBD preferentially bound to the surfaces that are inaccessible in the context of whole spike protein. These results suggest that the ACE2IS has evolved less immunogenic than the other regions of the spike protein, which has important implications in the development of vaccines against SARS-CoV-2.
Collapse
|
63
|
Hattori T, Koide A, Panchenko T, Romero LA, Teng KW, Tada T, Landau NR, Koide S. The ACE2-binding interface of SARS-CoV-2 Spike inherently deflects immune recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33173869 PMCID: PMC7654858 DOI: 10.1101/2020.11.03.365270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The COVID-19 pandemic remains a global threat, and host immunity remains the main mechanism of protection against the disease. The spike protein on the surface of SARS-CoV-2 is a major antigen and its engagement with human ACE2 receptor plays an essential role in viral entry into host cells. Consequently, antibodies targeting the ACE2-interacting surface (ACE2IS) located in the receptor-binding domain (RBD) of the spike protein can neutralize the virus. However, the understanding of immune responses to SARS-CoV-2 is still limited, and it is unclear how the virus protects this surface from recognition by antibodies. Here, we designed an RBD mutant that disrupts the ACE2IS and used it to characterize the prevalence of antibodies directed to the ACE2IS from convalescent sera of 94 COVID19-positive patients. We found that only a small fraction of RBD-binding antibodies targeted the ACE2IS. To assess the immunogenicity of different parts of the spike protein, we performed in vitro antibody selection for the spike and the RBD proteins using both unbiased and biased selection strategies. Intriguingly, unbiased selection yielded antibodies that predominantly targeted regions outside the ACE2IS, whereas ACE2IS-binding antibodies were readily identified from biased selection designed to enrich such antibodies. Furthermore, antibodies from an unbiased selection using the RBD preferentially bound to the surfaces that are inaccessible in the context of whole spike protein. These results suggest that the ACE2IS has evolved less immunogenic than the other regions of the spike protein, which has important implications in the development of vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Takamitsu Hattori
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, U.S.A.,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, U.S.A
| | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, U.S.A.,Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, U.S.A
| | - Tatyana Panchenko
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, U.S.A
| | - Larizbeth A Romero
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, U.S.A
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, U.S.A
| | - Takuya Tada
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Nathaniel R Landau
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, U.S.A.,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, U.S.A
| |
Collapse
|
64
|
Yuan X, Garg S, Haan KD, Fellouse FA, Gopalsamy A, Tykvart J, Sidhu SS, Varma MM, Pal P, Hillan EM, Dou JJ, Aitchison JS. Bead-based multiplex detection of dengue biomarkers in a portable imaging device. BIOMEDICAL OPTICS EXPRESS 2020; 11:6154-6167. [PMID: 33282481 PMCID: PMC7687939 DOI: 10.1364/boe.403803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 05/04/2023]
Abstract
Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world. Differential diagnosis is a crucial step for the management of the disease and its epidemiology. Point-of-care testing of blood-borne dengue biomarkers provides an advantageous approach in many health care settings, and the ability to follow more than one biomarker at once could significantly improve the management of the disease. Bead-based multiplex technologies (suspension array) can measure multiple biomarker targets simultaneously by using recognition molecules immobilized on microsphere beads. The overarching objective of our work is to develop a portable detection device for the simultaneous measurement of multiple biomarkers important in dengue diagnosis, monitoring and treatment. Here, we present a bead-based assay for the detection of one of the four serotypes of dengue virus non-structural protein (DENV-NS1) as well as its cognate human IgG. In this system, the fluorescent microspheres containing the classification fluorophore and detection fluorophore are imaged through a microfluidic chip using an infinity-corrected microscope system. Calibration curves were plotted for median fluorescence intensity against known concentrations of DENV-NS1 protein and anti-NS1 human IgG. The limit of quantitation was 7.8 ng/mL and 15.6 ng/mL, respectively. The results of this study demonstrate the feasibility of the multiplex detection of dengue biomarkers and present its analytical performance parameters. The proposed imaging device holds potential for point-of-care testing of biomarkers on a highly portable system, and it may facilitate the diagnosis and prevention of dengue as well as other infectious diseases.
Collapse
Affiliation(s)
- Xilong Yuan
- Department of Electrical and Computer Engineering, University of Toronto, ON, Canada
| | - Srishti Garg
- Department of Electrical and Computer Engineering, University of Toronto, ON, Canada
| | - Kevin De Haan
- Department of Electrical and Computer Engineering, University of Toronto, ON, Canada
- Electrical and Computer Engineering Department, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Frederic A. Fellouse
- Donnelly Centre and Department of Medical Genetics, University of Toronto, ON, Canada
| | - Anupriya Gopalsamy
- Donnelly Centre and Department of Medical Genetics, University of Toronto, ON, Canada
| | - Jan Tykvart
- Donnelly Centre and Department of Medical Genetics, University of Toronto, ON, Canada
- DIANA Biotechnologies s.r.o., Vestec 252 50, Czech Republic
| | - Sachdev S. Sidhu
- Donnelly Centre and Department of Medical Genetics, University of Toronto, ON, Canada
| | - Manoj M. Varma
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Parama Pal
- TCS Research and Innovation, Tata Consultancy Services, Bengaluru, Karnataka, India
| | - Edith M. Hillan
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, ON, Canada
| | | | - J. Stewart Aitchison
- Department of Electrical and Computer Engineering, University of Toronto, ON, Canada
| |
Collapse
|
65
|
Lokareddy RK, Ko YH, Hong N, Doll SG, Paduch M, Niederweis M, Kossiakoff AA, Cingolani G. Recognition of an α-helical hairpin in P22 large terminase by a synthetic antibody fragment. Acta Crystallogr D Struct Biol 2020; 76:876-888. [PMID: 32876063 PMCID: PMC7466751 DOI: 10.1107/s2059798320009912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
The genome-packaging motor of tailed bacteriophages and herpesviruses is a multisubunit protein complex formed by several copies of a large (TerL) and a small (TerS) terminase subunit. The motor assembles transiently at the portal protein vertex of an empty precursor capsid to power the energy-dependent packaging of viral DNA. Both the ATPase and nuclease activities associated with genome packaging reside in TerL. Structural studies of TerL from bacteriophage P22 have been hindered by the conformational flexibility of this enzyme and its susceptibility to proteolysis. Here, an unbiased, synthetic phage-display Fab library was screened and a panel of high-affinity Fabs against P22 TerL were identified. This led to the discovery of a recombinant antibody fragment, Fab4, that binds a 33-amino-acid α-helical hairpin at the N-terminus of TerL with an equilibrium dissociation constant Kd of 71.5 nM. A 1.51 Å resolution crystal structure of Fab4 bound to the TerL epitope (TLE) together with a 1.15 Å resolution crystal structure of the unliganded Fab4, which is the highest resolution ever achieved for a Fab, elucidate the principles governing the recognition of this novel helical epitope. TLE adopts two different conformations in the asymmetric unit and buries as much as 1250 Å2 of solvent-accessible surface in Fab4. TLE recognition is primarily mediated by conformational changes in the third complementarity-determining region of the Fab4 heavy chain (CDR H3) that take place upon epitope binding. It is demonstrated that TLE can be introduced genetically at the N-terminus of a target protein, where it retains high-affinity binding to Fab4.
Collapse
Affiliation(s)
- Ravi K. Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, JAH-4E, Philadelphia, PA 19107, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, JAH-4E, Philadelphia, PA 19107, USA
| | - Nathaniel Hong
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, JAH-4E, Philadelphia, PA 19107, USA
| | - Steven G. Doll
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, JAH-4E, Philadelphia, PA 19107, USA
| | - Marcin Paduch
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, JAH-4E, Philadelphia, PA 19107, USA
| |
Collapse
|
66
|
Sauer DB, Trebesch N, Marden JJ, Cocco N, Song J, Koide A, Koide S, Tajkhorshid E, Wang DN. Structural basis for the reaction cycle of DASS dicarboxylate transporters. eLife 2020; 9:e61350. [PMID: 32869741 PMCID: PMC7553777 DOI: 10.7554/elife.61350] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023] Open
Abstract
Citrate, α-ketoglutarate and succinate are TCA cycle intermediates that also play essential roles in metabolic signaling and cellular regulation. These di- and tricarboxylates are imported into the cell by the divalent anion sodium symporter (DASS) family of plasma membrane transporters, which contains both cotransporters and exchangers. While DASS proteins transport substrates via an elevator mechanism, to date structures are only available for a single DASS cotransporter protein in a substrate-bound, inward-facing state. We report multiple cryo-EM and X-ray structures in four different states, including three hitherto unseen states, along with molecular dynamics simulations, of both a cotransporter and an exchanger. Comparison of these outward- and inward-facing structures reveal how the transport domain translates and rotates within the framework of the scaffold domain through the transport cycle. Additionally, we propose that DASS transporters ensure substrate coupling by a charge-compensation mechanism, and by structural changes upon substrate release.
Collapse
Affiliation(s)
- David B Sauer
- Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Noah Trebesch
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Jennifer J Marden
- Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Nicolette Cocco
- Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Jinmei Song
- Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Akiko Koide
- Perlmutter Cancer Center, New York University School of MedicineNew YorkUnited States
- Department of Medicine, New York University School of MedicineNew YorkUnited States
| | - Shohei Koide
- Perlmutter Cancer Center, New York University School of MedicineNew YorkUnited States
- Department of Medicine, New York University School of MedicineNew YorkUnited States
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Da-Neng Wang
- Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| |
Collapse
|
67
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
68
|
Zhao X, Cebrián R, Fu Y, Rink R, Bosma T, Moll GN, Kuipers OP. High-Throughput Screening for Substrate Specificity-Adapted Mutants of the Nisin Dehydratase NisB. ACS Synth Biol 2020; 9:1468-1478. [PMID: 32374981 PMCID: PMC7309312 DOI: 10.1021/acssynbio.0c00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Microbial
lanthipeptides are formed by a two-step enzymatic introduction
of (methyl)lanthionine rings. A dehydratase catalyzes the dehydration
of serine and threonine residues, yielding dehydroalanine and dehydrobutyrine,
respectively. Cyclase-catalyzed coupling of the formed dehydroresidues
to cysteines forms (methyl)lanthionine rings in a peptide. Lanthipeptide
biosynthetic systems allow discovery of target-specific, lanthionine-stabilized
therapeutic peptides. However, the substrate specificity of existing
modification enzymes impose limitations on installing lanthionines
in non-natural substrates. The goal of the present study was to obtain
a lanthipeptide dehydratase with the capacity to dehydrate substrates
that are unsuitable for the nisin dehydratase NisB. We report high-throughput
screening for tailored specificity of intracellular, genetically encoded
NisB dehydratases. The principle is based on the screening of bacterially
displayed lanthionine-constrained streptavidin ligands, which have
a much higher affinity for streptavidin than linear ligands. The designed
NisC-cyclizable high-affinity ligands can be formed via mutant NisB-catalyzed
dehydration but less effectively via wild-type NisB activity. In Lactococcus lactis, a cell surface display precursor was
designed comprising DSHPQFC. The Asp residue preceding the serine
in this sequence disfavors its dehydration by wild-type NisB. The
cell surface display vector was coexpressed with a mutant NisB library
and NisTC. Subsequently, mutant NisB-containing bacteria that display
cyclized strep ligands on the cell surface were selected via panning
rounds with streptavidin-coupled magnetic beads. In this way, a NisB
variant with a tailored capacity of dehydration was obtained, which
was further evaluated with respect to its capacity to dehydrate nisin
mutants. These results demonstrate a powerful method for selecting
lanthipeptide modification enzymes with adapted substrate specificity.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Yuxin Fu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Rick Rink
- Lanthio Pharma, Rozenburglaan 13 B, Groningen 9727 DL, The Netherlands
| | - Tjibbe Bosma
- Lanthio Pharma, Rozenburglaan 13 B, Groningen 9727 DL, The Netherlands
| | - Gert N. Moll
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
- Lanthio Pharma, Rozenburglaan 13 B, Groningen 9727 DL, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
69
|
Mukherjee S, Erramilli SK, Ammirati M, Alvarez FJD, Fennell KF, Purdy MD, Skrobek BM, Radziwon K, Coukos J, Kang Y, Dutka P, Gao X, Qiu X, Yeager M, Eric Xu H, Han S, Kossiakoff AA. Synthetic antibodies against BRIL as universal fiducial marks for single-particle cryoEM structure determination of membrane proteins. Nat Commun 2020; 11:1598. [PMID: 32221310 PMCID: PMC7101349 DOI: 10.1038/s41467-020-15363-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
We propose the concept of universal fiducials based on a set of pre-made semi-synthetic antibodies (sABs) generated by customized phage display selections against the fusion protein BRIL, an engineered variant of apocytochrome b562a. These sABs can bind to BRIL fused either into the loops or termini of different GPCRs, ion channels, receptors and transporters without disrupting their structure. A crystal structure of BRIL in complex with an affinity-matured sAB (BAG2) that bound to all systems tested delineates the footprint of interaction. Negative stain and cryoEM data of several examples of BRIL-membrane protein chimera highlight the effectiveness of the sABs as universal fiducial marks. Taken together with a cryoEM structure of sAB bound human nicotinic acetylcholine receptor, this work demonstrates that these anti-BRIL sABs can greatly enhance the particle properties leading to improved cryoEM outcomes, especially for challenging membrane proteins.
Collapse
Affiliation(s)
- Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Mark Ammirati
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
| | - Frances J D Alvarez
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
| | - Kimberly F Fennell
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
| | - Michael D Purdy
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Blazej M Skrobek
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Gene Center and Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katarzyna Radziwon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| | - John Coukos
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Yanyong Kang
- Center for Cancer and Cell Biology, Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA
- Takeda San Diego Inc., San Diego, CA, USA
| | - Przemysław Dutka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xiang Gao
- Center for Cancer and Cell Biology, Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Xiayang Qiu
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - H Eric Xu
- Center for Cancer and Cell Biology, Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA
- Key Laboratory of Receptor Research, VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Seungil Han
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
70
|
Structure and mechanism of the ER-based glucosyltransferase ALG6. Nature 2020; 579:443-447. [PMID: 32103179 DOI: 10.1038/s41586-020-2044-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/06/2020] [Indexed: 01/03/2023]
Abstract
In eukaryotic protein N-glycosylation, a series of glycosyltransferases catalyse the biosynthesis of a dolichylpyrophosphate-linked oligosaccharide before its transfer onto acceptor proteins1. The final seven steps occur in the lumen of the endoplasmic reticulum (ER) and require dolichylphosphate-activated mannose and glucose as donor substrates2. The responsible enzymes-ALG3, ALG9, ALG12, ALG6, ALG8 and ALG10-are glycosyltransferases of the C-superfamily (GT-Cs), which are loosely defined as containing membrane-spanning helices and processing an isoprenoid-linked carbohydrate donor substrate3,4. Here we present the cryo-electron microscopy structure of yeast ALG6 at 3.0 Å resolution, which reveals a previously undescribed transmembrane protein fold. Comparison with reported GT-C structures suggests that GT-C enzymes contain a modular architecture with a conserved module and a variable module, each with distinct functional roles. We used synthetic analogues of dolichylphosphate-linked and dolichylpyrophosphate-linked sugars and enzymatic glycan extension to generate donor and acceptor substrates using purified enzymes of the ALG pathway to recapitulate the activity of ALG6 in vitro. A second cryo-electron microscopy structure of ALG6 bound to an analogue of dolichylphosphate-glucose at 3.9 Å resolution revealed the active site of the enzyme. Functional analysis of ALG6 variants identified a catalytic aspartate residue that probably acts as a general base. This residue is conserved in the GT-C superfamily. Our results define the architecture of ER-luminal GT-C enzymes and provide a structural basis for understanding their catalytic mechanisms.
Collapse
|
71
|
Gallo E. High-Throughput Generation of In Silico Derived Synthetic Antibodies via One-step Enzymatic DNA Assembly of Fragments. Mol Biotechnol 2020; 62:142-150. [PMID: 31894513 DOI: 10.1007/s12033-019-00232-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phage-display technology offers robust methods for isolating antibody (Ab) molecules with specificity for different target antigens. Recent advancements couple Ab selections with in silico strategies, such as predictive computational models or next-generation sequencing metadata analysis of Ab selections. These advancements result in enhanced Ab clonal diversities with potential for enlarged epitope coverage of the target antigen. A current limitation however, is that de novo Ab sequences must undergo DNA gene synthesis, and subsequent expression as Ab proteins for downstream validations. Due to the high costs and time for commercially generating large sets of DNA genes, we report a high-throughput platform for the synthesis of in silico derived Ab clones. As a proof of concept we demonstrate the simultaneous synthesis of 96 unique Abs with varied lengths and complementary determining region compositions. Each of the 96 Ab clones undergoes a one-step enzymatic assembly of distinct DNA fragments that combine into a circularized Fab expression plasmid. This strategy allows for the rapid and efficient synthesis of 96 DNA constructs in a 3 day window, and exhibits high percentage fidelity-greater than 93%. Accordingly, the synthesis of Ab DNA constructs as Fab expression plasmids allow for rapid execution of downstream Ab protein validations, with potential for implementation into high-throughput Ab protein characterization pipelines. Altogether, the platform presented here proves rapid and also cost-effective, which is important for labs with limited resources, since it utilizes standard laboratory equipment and molecular reagents.
Collapse
Affiliation(s)
- Eugenio Gallo
- Department of Molecular Genetics, Charles Best Institute, University of Toronto, 112 College Street, 112 College Street, Room 70, Toronto, ON, M5G 1L6, Canada.
| |
Collapse
|
72
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
73
|
Gallo E, Kelil A, Bayliss PE, Jeganathan A, Egorova O, Ploder L, Adams JJ, Giblin P, Sidhu SS. In situ antibody phage display yields optimal inhibitors of integrin α11/β1. MAbs 2020; 12:1717265. [PMID: 31980006 PMCID: PMC6999838 DOI: 10.1080/19420862.2020.1717265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023] Open
Abstract
Integrins are transmembrane multi-conformation receptors that mediate interactions with the extracellular matrix. In cancer, integrins influence metastasis, proliferation, and survival. Collagen-binding integrin-α11/β1, a marker of aggressive tumors that is involved in stroma-tumor crosstalk, may be an attractive target for anti-cancer therapeutic antibodies. We performed selections with phage-displayed synthetic antibody libraries for binding to either purified integrin-α11/β1 or in situ on live cells. The in-situ strategy yielded many diverse antibodies, and strikingly, most of these antibodies did not recognize purified integrin-α11/β1. Conversely, none of the antibodies selected for binding to purified integrin-α11/β1 were able to efficiently recognize native cell-surface antigen. Most importantly, only the in-situ selection yielded functional antibodies that were able to compete with collagen-I for binding to cell-surface integrin-α11/β1, and thus inhibited cell adhesion. In-depth characterization of a subset of in situ-derived clones as full-length immunoglobulins revealed high affinity cellular binding and inhibitory activities in the single-digit nanomolar range. Moreover, the antibodies showed high selectivity for integrin-α11/β1 with minimal cross-reactivity for close homologs. Taken together, our findings highlight the advantages of in-situ selections for generation of anti-integrin antibodies optimized for recognition and inhibition of native cell-surface proteins, and our work establishes general methods that could be extended to many other membrane proteins.
Collapse
Affiliation(s)
- Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - Abdellali Kelil
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - Peter E. Bayliss
- Northern Biologics, Inc., Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Ajitha Jeganathan
- Northern Biologics, Inc., Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Olga Egorova
- Northern Biologics, Inc., Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Lynda Ploder
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - Jarret J. Adams
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - Patricia Giblin
- Northern Biologics, Inc., Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Sachdev S. Sidhu
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| |
Collapse
|
74
|
Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature 2019; 576:315-320. [PMID: 31776516 PMCID: PMC6911266 DOI: 10.1038/s41586-019-1795-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023]
Abstract
The emergence and spread of drug-resistant Plasmodium falciparum impedes global efforts to control and eliminate malaria. For decades, treatment of malaria has relied on chloroquine (CQ), a safe and affordable 4-aminoquinoline that was highly effective against intra-erythrocytic asexual blood-stage parasites, until resistance arose in Southeast Asia and South America and spread worldwide1. Clinical resistance to the chemically related current first-line combination drug piperaquine (PPQ) has now emerged regionally, reducing its efficacy2. Resistance to CQ and PPQ has been associated with distinct sets of point mutations in the P. falciparum CQ-resistance transporter PfCRT, a 49-kDa member of the drug/metabolite transporter superfamily that traverses the membrane of the acidic digestive vacuole of the parasite3-9. Here we present the structure, at 3.2 Å resolution, of the PfCRT isoform of CQ-resistant, PPQ-sensitive South American 7G8 parasites, using single-particle cryo-electron microscopy and antigen-binding fragment technology. Mutations that contribute to CQ and PPQ resistance localize primarily to moderately conserved sites on distinct helices that line a central negatively charged cavity, indicating that this cavity is the principal site of interaction with the positively charged CQ and PPQ. Binding and transport studies reveal that the 7G8 isoform binds both drugs with comparable affinities, and that these drugs are mutually competitive. The 7G8 isoform transports CQ in a membrane potential- and pH-dependent manner, consistent with an active efflux mechanism that drives CQ resistance5, but does not transport PPQ. Functional studies on the newly emerging PfCRT F145I and C350R mutations, associated with decreased PPQ susceptibility in Asia and South America, respectively6,9, reveal their ability to mediate PPQ transport in 7G8 variant proteins and to confer resistance in gene-edited parasites. Structural, functional and in silico analyses suggest that distinct mechanistic features mediate the resistance to CQ and PPQ in PfCRT variants. These data provide atomic-level insights into the molecular mechanism of this key mediator of antimalarial treatment failures.
Collapse
|
75
|
Basu K, Green EM, Cheng Y, Craik CS. Why recombinant antibodies - benefits and applications. Curr Opin Biotechnol 2019; 60:153-158. [PMID: 30849700 PMCID: PMC6728236 DOI: 10.1016/j.copbio.2019.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/22/2018] [Accepted: 01/21/2019] [Indexed: 01/07/2023]
Abstract
Antibodies (Abs) are ubiquitous reagents for biological and biochemical research and are rapidly expanding into new therapeutic areas. They are one of the most important probes for determining how proteins function under normal and pathophysiological conditions. Abs are required for the quantification of targets, detection of temporal and spatial patterns of protein expression in cells and tissues, and identification of interacting partners and their biological activities. Their remarkable specificity and unique binding properties can facilitate three-dimensional structure determination using X-ray crystallography and electron cryomicroscopy. While hybridoma technology that involves animal immunization is often productive, many antigen targets do not generate useful Abs. This is particularly true if unique states of the target or critical non-immunogenic target sequences need to be recognized by the Abs. By using the methods of recombinant antibody generation, identification, and engineering, these 'hybridoma-refractory' antigens can be readily targeted. Specific, reproducible, and renewable recombinant Abs are proving to be invaluable reagents in applications ranging from biological discovery to structure determination of challenging macromolecules.
Collapse
Affiliation(s)
- Koli Basu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| | - Evan M Green
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States; Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| |
Collapse
|
76
|
Barreto K, Maruthachalam BV, Hill W, Hogan D, Sutherland AR, Kusalik A, Fonge H, DeCoteau JF, Geyer CR. Next-generation sequencing-guided identification and reconstruction of antibody CDR combinations from phage selection outputs. Nucleic Acids Res 2019; 47:e50. [PMID: 30854567 PMCID: PMC6511873 DOI: 10.1093/nar/gkz131] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 12/12/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have been employed in several phage display platforms for analyzing natural and synthetic antibody sequences and for identifying and reconstructing single-chain variable fragments (scFv) and antigen-binding fragments (Fab) not found by conventional ELISA screens. In this work, we developed an NGS-assisted antibody discovery platform by integrating phage-displayed, single-framework, synthetic Fab libraries. Due to limitations in attainable read and amplicon lengths, NGS analysis of Fab libraries and selection outputs is usually restricted to either VH or VL. Since this information alone is not sufficient for high-throughput reconstruction of Fabs, we developed a rapid and simple method for linking and sequencing all diversified CDRs in phage Fab pools. Our method resulted in a reliable and straightforward platform for converting NGS information into Fab clones. We used our NGS-assisted Fab reconstruction method to recover low-frequency rare clones from phage selection outputs. While previous studies chose rare clones for rescue based on their relative frequencies in sequencing outputs, we chose rare clones for reconstruction from less-frequent CDRH3 lengths. In some cases, reconstructed rare clones (frequency ∼0.1%) showed higher affinity and better specificity than high-frequency top clones identified by Sanger sequencing, highlighting the significance of NGS-based approaches in synthetic antibody discovery.
Collapse
Affiliation(s)
- Kris Barreto
- Department of Pathology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | - Wayne Hill
- Department of Pathology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Ashley R Sutherland
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - John F DeCoteau
- Department of Pathology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - C Ronald Geyer
- Department of Pathology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
77
|
Miller MS, Douglass J, Hwang MS, Skora AD, Murphy M, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S, Gabelli SB. An engineered antibody fragment targeting mutant β-catenin via major histocompatibility complex I neoantigen presentation. J Biol Chem 2019; 294:19322-19334. [PMID: 31690625 PMCID: PMC6916501 DOI: 10.1074/jbc.ra119.010251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Mutations in CTNNB1, the gene encoding β-catenin, are common in colon and liver cancers, the most frequent mutation affecting Ser-45 in β-catenin. Peptides derived from WT β-catenin have previously been shown to be presented on the cell surface as part of major histocompatibility complex (MHC) class I, suggesting an opportunity for targeting this common driver gene mutation with antibody-based therapies. Here, crystal structures of both the WT and S45F mutant peptide bound to HLA-A*03:01 at 2.20 and 2.45 Å resolutions, respectively, confirmed the accessibility of the phenylalanine residue for antibody recognition. Phage display was then used to identify single-chain variable fragment clones that selectively bind the S45F mutant peptide presented in HLA-A*03:01 and have minimal WT or other off-target binding. Following the initial characterization of five clones, we selected a single clone, E10, for further investigation. We developed a computational model of the binding of E10 to the mutant peptide-bound HLA-A3, incorporating data from affinity maturation as initial validation. In the future, our model may be used to design clones with maintained specificity and higher affinity. Such derivatives could be adapted into either cell-based (CAR-T) or protein-based (bispecific T-cell engagers) therapies to target cancer cells harboring the S45F mutation in CTNNB1.
Collapse
Affiliation(s)
- Michelle S Miller
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Andrew D Skora
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Michael Murphy
- GE Healthcare Life Sciences, Marlborough, Massachusetts 01752
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287 .,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
78
|
Slezak T, Bailey LJ, Jaskolowski M, Nahotko DA, Filippova EV, Davydova EK, Kossiakoff AA. An engineered ultra-high affinity Fab-Protein G pair enables a modular antibody platform with multifunctional capability. Protein Sci 2019; 29:141-156. [PMID: 31622515 DOI: 10.1002/pro.3751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
Engineered recombinant antibody-based reagents are rapidly supplanting traditionally derived antibodies in many cell biological applications. A particularly powerful aspect of these engineered reagents is that other modules having myriad functions can be attached to them either chemically or through molecular fusions. However, these processes can be cumbersome and do not lend themselves to high throughput applications. Consequently, we have endeavored to develop a platform that can introduce multiple functionalities into a class of Fab-based affinity reagents in a "plug and play" fashion. This platform exploits the ultra-tight binding interaction between affinity matured variants of a Fab scaffold (FabS ) and a domain of an immunoglobulin binding protein, protein G (GA1). GA1 is easily genetically manipulatable facilitating the ability to link these modules together like beads on a string with adjustable spacing to produce multivalent and bi-specific entities. GA1 can also be fused to other proteins or be chemically modified to engage other types of functional components. To demonstrate the utility for the Fab-GA1 platform, we applied it to a detection proximity assay based on the β-lactamase (BL) split enzyme system. We also show the bi-specific capabilities of the module by using it in context of a Bi-specific T-cell engager (BiTE), which is a therapeutic assemblage that induces cell killing by crosslinking T-cells to cancer cells. We show that GA1-Fab modules are easily engineered into potent cell-killing BiTE-like assemblages and have the advantage of interchanging Fabs directed against different cell surface cancer-related targets in a plug and play fashion.
Collapse
Affiliation(s)
- Tomasz Slezak
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Lucas J Bailey
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Mateusz Jaskolowski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Dominik A Nahotko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Ekaterina V Filippova
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Elena K Davydova
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
79
|
Abstract
Subtiligase-catalyzed peptide ligation is a powerful approach for site-specific protein bioconjugation, synthesis and semisynthesis of proteins and peptides, and chemoproteomic analysis of cellular N termini. Here, we provide a comprehensive review of the subtiligase technology, including its development, applications, and impacts on protein science. We highlight key advantages and limitations of the tool and compare it to other peptide ligase enzymes. Finally, we provide a perspective on future applications and challenges and how they may be addressed.
Collapse
Affiliation(s)
- Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
80
|
Development of "Plug and Play" Fiducial Marks for Structural Studies of GPCR Signaling Complexes by Single-Particle Cryo-EM. Structure 2019; 27:1862-1874.e7. [PMID: 31669042 DOI: 10.1016/j.str.2019.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/26/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
"Universal" synthetic antibody (sAB)-based fiducial marks have been generated by customized phage display selections to facilitate the rapid structure determination of G protein-coupled receptor (GPCR) signaling complexes by single-particle cryo-electron microscopy (SP cryo-EM). sABs were generated to the two major G protein subclasses: trimeric Gi and Gs, as well as mini-Gs, and were tested to ensure binding in the context of their cognate GPCRs. Epitope binning revealed that multiple distinct epitopes exist for each G(αβγ) protein. Several Gβγ-specific sABs, cross-reactive between trimeric Gi and Gs, were identified suggesting they could be used across all subclasses in a "plug and play" fashion. sABs were also generated to a representative of another class of GPCR signaling partner, G protein receptor kinase 1 (GRK1) and evaluated further, supporting the generalizability of the approach. EM data suggested that the subclass-specific sABs provide effective single and dual fiducials for multiple GPCR signaling complexes.
Collapse
|
81
|
Amatya P, Wagner N, Chen G, Luthra P, Shi L, Borek D, Pavlenco A, Rohrs H, Basler CF, Sidhu SS, Gross ML, Leung DW. Inhibition of Marburg Virus RNA Synthesis by a Synthetic Anti-VP35 Antibody. ACS Infect Dis 2019; 5:1385-1396. [PMID: 31120240 DOI: 10.1021/acsinfecdis.9b00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Marburg virus causes sporadic outbreaks of severe hemorrhagic fever with high case fatality rates. Approved, effective, and safe therapeutic or prophylactic countermeasures are lacking. To address this, we used phage display to engineer a synthetic antibody, sFab H3, which binds the Marburg virus VP35 protein (mVP35). mVP35 is a critical cofactor of the viral replication complex and a viral immune antagonist. sFab H3 displayed high specificity for mVP35 and not for the closely related Ebola virus VP35. sFab H3 inhibited viral-RNA synthesis in a minigenome assay, suggesting its potential use as an antiviral. We characterized sFab H3 by a combination of biophysical and biochemical methods, and a crystal structure of the complex solved to 1.7 Å resolution defined the molecular interface between the sFab H3 and mVP35 interferon inhibitory domain. Our study identifies mVP35 as a therapeutic target using an approach that provides a framework for generating engineered Fabs targeting other viral proteins.
Collapse
Affiliation(s)
- Parmeshwar Amatya
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Nicole Wagner
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Gang Chen
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 816-160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Priya Luthra
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303, United States
| | - Liuqing Shi
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Dominika Borek
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Alevtina Pavlenco
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 816-160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Henry Rohrs
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Christopher F. Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303, United States
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 816-160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Daisy W. Leung
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
82
|
Pastushok L, Fu Y, Lin L, Luo Y, DeCoteau JF, Lee K, Geyer CR. A Novel Cell-Penetrating Antibody Fragment Inhibits the DNA Repair Protein RAD51. Sci Rep 2019; 9:11227. [PMID: 31375703 PMCID: PMC6677837 DOI: 10.1038/s41598-019-47600-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
DNA damaging chemotherapies are successful in cancer therapy, however, the damage can be reversed by DNA repair mechanisms that may be up-regulated in cancer cells. We hypothesized that inhibiting RAD51, a protein involved in homologous recombination DNA repair, would block DNA repair and restore the effectiveness of DNA damaging chemotherapy. We used phage-display to generate a novel synthetic antibody fragment that bound human RAD51 with high affinity (KD = 8.1 nM) and inhibited RAD51 ssDNA binding in vitro. As RAD51 is an intracellular target, we created a corresponding intrabody fragment that caused a strong growth inhibitory phenotype on human cells in culture. We then used a novel cell-penetrating peptide "iPTD" fusion to generate a therapeutically relevant antibody fragment that effectively entered living cells and enhanced the cell-killing effect of a DNA alkylating agent. The iPTD may be similarly useful as a cell-penetrating peptide for other antibody fragments and open the door to numerous intracellular targets previously off-limits in living cells.
Collapse
Affiliation(s)
- Landon Pastushok
- Department of Pathology and Lab Medicine, University of Saskatchewan, Saskatoon, Canada
- Advanced Diagnostics Research Lab, Saskatchewan Cancer Agency, Saskatoon, Canada
| | - Yongpeng Fu
- Department of Pathology and Lab Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Leo Lin
- iProgen Biotech Inc., Burnaby, Canada
| | - Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - John F DeCoteau
- Department of Pathology and Lab Medicine, University of Saskatchewan, Saskatoon, Canada
- Advanced Diagnostics Research Lab, Saskatchewan Cancer Agency, Saskatoon, Canada
| | - Ken Lee
- iProgen Biotech Inc., Burnaby, Canada
| | - C Ronald Geyer
- Department of Pathology and Lab Medicine, University of Saskatchewan, Saskatoon, Canada.
- Advanced Diagnostics Research Lab, Saskatchewan Cancer Agency, Saskatoon, Canada.
| |
Collapse
|
83
|
Farcasanu M, Wang AG, Uchański T, Bailey LJ, Yue J, Chen Z, Wu X, Kossiakoff A, Tang WJ. Rapid Discovery and Characterization of Synthetic Neutralizing Antibodies against Anthrax Edema Toxin. Biochemistry 2019; 58:2996-3004. [PMID: 31243996 DOI: 10.1021/acs.biochem.9b00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Anthrax, a lethal, weaponizable disease caused by Bacillus anthracis, acts through exotoxins that are primary mediators of systemic toxicity and also targets for neutralization by passive immunotherapy. The ease of engineering B. anthracis strains resistant to established therapy and the historic use of the microbe in bioterrorism present a compelling test case for platforms that permit the rapid and modular development of neutralizing agents. In vitro antigen-binding fragment (Fab) selection offers the advantages of speed, sequence level molecular control, and engineering flexibility compared to traditional monoclonal antibody pipelines. By screening an unbiased, chemically synthetic phage Fab library and characterizing hits in cell-based assays, we identified two high-affinity neutralizing Fabs, A4 and B7, against anthrax edema factor (EF), a key mediator of anthrax pathogenesis. Engineered homodimers of these Fabs exhibited potency comparable to that of the best reported neutralizing monoclonal antibody against EF at preventing EF-induced cyclic AMP production. Using internalization assays in COS cells, B7 was found to block steps prior to EF internalization. This work demonstrates the efficacy of synthetic alternatives to traditional antibody therapeutics against anthrax while also demonstrating a broadly generalizable, rapid, and modular screening pipeline for neutralizing antibody generation.
Collapse
Affiliation(s)
- Mara Farcasanu
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrew G Wang
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Tomasz Uchański
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Lucas J Bailey
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Jiping Yue
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Zhaochun Chen
- National Institute of Allergy and Infection , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Xiaoyang Wu
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Anthony Kossiakoff
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Wei-Jen Tang
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
84
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
85
|
A High-Throughput Platform for the Generation of Synthetic Ab Clones by Single-Strand Site-Directed Mutagenesis. Mol Biotechnol 2019; 61:410-420. [PMID: 30963479 DOI: 10.1007/s12033-019-00171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current developments in meta-data analysis and predictive computational models offer alternative routes for the identification of antibodies. In silico-based technologies and NGS data analysis from Ab phage-display selections offer expanded selections of Ab candidates. Accordingly, the identified de novo Abs with predicted selectivity for a target antigen must undergo rapid gene synthesis for downstream Ab characterizations. Here we describe a high-throughput strategy for the generation of synthetic Ab clones for expression as Fab proteins in Escherichia coli. Our approach utilizes simultaneous single-stranded site-directed mutagenesis of diversified Ab regions of a phagemid template with engineered complementary determining regions that contain multiple stop codon and restriction enzyme sites. Subsequently, we perform rapid screening of Ab DNA clones for correct gene assemblies by high-throughput Ab-phage protein expression screens. Identified sequences are corroborated by Sanger DNA sequencing analysis. In summary, our work describes a rapid and cost-effective platform for the high-throughput synthesis of synthetic Ab genes as Fab proteins for implementation into downstream protein validation pipelines.
Collapse
|
86
|
Arlotta KJ, Owen SC. Antibody and antibody derivatives as cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1556. [DOI: 10.1002/wnan.1556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/20/2019] [Accepted: 03/10/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Keith J. Arlotta
- Department of Biomedical Engineering University of Utah Salt Lake City Utah
| | - Shawn C. Owen
- Department of Biomedical Engineering University of Utah Salt Lake City Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry University of Utah Salt Lake City Utah
| |
Collapse
|
87
|
Ahn S, Li J, Sun C, Gao K, Hirabayashi K, Li H, Savoldo B, Liu R, Dotti G. Cancer Immunotherapy with T Cells Carrying Bispecific Receptors That Mimic Antibodies. Cancer Immunol Res 2019; 7:773-783. [PMID: 30842091 DOI: 10.1158/2326-6066.cir-18-0636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/06/2018] [Accepted: 02/27/2019] [Indexed: 12/23/2022]
Abstract
Tumors are inherently heterogeneous in antigen expression, and escape from immune surveillance due to antigen loss remains one of the limitations of targeted immunotherapy. Despite the clinical use of adoptive therapy with chimeric antigen receptor (CAR)-redirected T cells in lymphoblastic leukemia, treatment failure due to epitope loss occurs. Targeting multiple tumor-associated antigens (TAAs) may thus improve the outcome of CAR-T cell therapies. CARs developed to simultaneously target multiple targets are limited by the large size of each single-chain variable fragment and compromised protein folding when several single chains are linearly assembled. Here, we describe single-domain antibody mimics that function within CAR parameters but form a very compact structure. We show that antibody mimics targeting EGFR and HER2 of the ErbB receptor tyrosine kinase family can be assembled into receptor molecules, which we call antibody mimic receptors (amR). These amR can redirect T cells to recognize two different epitopes of the same antigen or two different TAAs in vitro and in vivo.
Collapse
Affiliation(s)
- Sarah Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jingjing Li
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chuang Sun
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Keliang Gao
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Koichi Hirabayashi
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hongxia Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Beijing Chest Hospital, Department of Medical Oncology, Capital Medical University, Beijing, China
| | - Barbara Savoldo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rihe Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
88
|
Soong JX, Chan SK, Lim TS, Choong YS. Optimisation of human V H domain antibodies specific to Mycobacterium tuberculosis heat shock protein (HSP16.3). J Comput Aided Mol Des 2019; 33:375-385. [PMID: 30689080 DOI: 10.1007/s10822-019-00186-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis (Mtb) 16.3 kDa heat shock protein 16.3 (HSP16.3) is a latency-associated antigen that can be targeted for latent tuberculosis (TB) diagnostic and therapeutic development. We have previously developed human VH domain antibodies (dAbs; clone E3 and F1) specific against HSP16.3. In this work, we applied computational methods to optimise and design the antibodies in order to improve the binding affinity with HSP16.3. The VH domain antibodies were first docked to the dimer form of HSP16.3 and further sampled using molecular dynamics simulation. The calculated binding free energy of the HSP16.3-dAb complexes showed non-polar interactions were responsible for the antigen-antibody association. Per-residue free energy decomposition and computational alanine scanning have identified one hotspot residue for E3 (Y391) and 4 hotspot residues for F1 (M394, Y396, R397 and M398). These hotspot residues were then mutated and evaluated by binding free energy calculations. Phage ELISA assay was carried out on the potential mutants (E3Y391W, F1M394E, F1R397N and F1M398Y). The experimental assay showed improved binding affinities of E3Y391W and F1M394E against HSP16.3 compared with the wild type E3 and F1. This case study has thus showed in silico methods are able to assist in optimisation or improvement of antibody-antigen binding.
Collapse
Affiliation(s)
- Jia Xin Soong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia
| | - Soo Khim Chan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.,Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
89
|
Turowec JP, Lau EWT, Wang X, Brown KR, Fellouse FA, Jawanda KK, Pan J, Moffat J, Sidhu SS. Functional genomic characterization of a synthetic anti-HER3 antibody reveals a role for ubiquitination by RNF41 in the anti-proliferative response. J Biol Chem 2019; 294:1396-1409. [PMID: 30523157 DOI: 10.1074/jbc.ra118.004420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/25/2018] [Indexed: 11/06/2022] Open
Abstract
Dysregulation of the ErbB family of receptor tyrosine kinases is involved in the progression of many cancers. Antibodies targeting the dimerization domains of family members EGFR and HER2 are approved cancer therapeutics, but efficacy is restricted to a subset of tumors and resistance often develops in response to treatment. A third family member, HER3, heterodimerizes with both EGFR and HER2 and has also been implicated in cancer. Consequently, there is strong interest in developing antibodies that target HER3, but to date, no therapeutics have been approved. To aid the development of anti-HER3 antibodies as cancer therapeutics, we combined antibody engineering and functional genomics screens to identify putative mechanisms of resistance or synthetic lethality with antibody-mediated anti-proliferative effects. We developed a synthetic antibody called IgG 95, which binds to HER3 and promotes ubiquitination, internalization, and receptor down-regulation. Using an shRNA library targeting enzymes in the ubiquitin proteasome system, we screened for genes that effect response to IgG 95 and uncovered the E3 ubiquitin ligase RNF41 as a driver of IgG 95 anti-proliferative activity. RNF41 has been shown previously to regulate HER3 levels under normal conditions and we now show that it is also responsible for down-regulation of HER3 upon treatment with IgG 95. Moreover, our findings suggest that down-regulation of RNF41 itself may be a mechanism for acquired resistance to treatment with IgG 95 and perhaps other anti-HER3 antibodies. Our work deepens our understanding of HER3 signaling by uncovering the mechanistic basis for the anti-proliferative effects of potential anti-HER3 antibody therapeutics.
Collapse
Affiliation(s)
- Jacob P Turowec
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Esther W T Lau
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Xiaowei Wang
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Kevin R Brown
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Frederic A Fellouse
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Kamaldeep K Jawanda
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - James Pan
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jason Moffat
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|
90
|
Jian JW, Chen HS, Chiu YK, Peng HP, Tung CP, Chen IC, Yu CM, Tsou YL, Kuo WY, Hsu HJ, Yang AS. Effective binding to protein antigens by antibodies from antibody libraries designed with enhanced protein recognition propensities. MAbs 2019; 11:373-387. [PMID: 30526270 PMCID: PMC6380391 DOI: 10.1080/19420862.2018.1550320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antibodies provide immune protection by recognizing antigens of diverse chemical properties, but elucidating the amino acid sequence-function relationships underlying the specificity and affinity of antibody-antigen interactions remains challenging. We designed and constructed phage-displayed synthetic antibody libraries with enriched protein antigen-recognition propensities calculated with machine learning predictors, which indicated that the designed single-chain variable fragment variants were encoded with enhanced distributions of complementarity-determining region (CDR) hot spot residues with high protein antigen recognition propensities in comparison with those in the human antibody germline sequences. Antibodies derived directly from the synthetic antibody libraries, without affinity maturation cycles comparable to those in in vivo immune systems, bound to the corresponding protein antigen through diverse conformational or linear epitopes with specificity and affinity comparable to those of the affinity-matured antibodies from in vivo immune systems. The results indicated that more densely populated CDR hot spot residues were sustainable by the antibody structural frameworks and could be accompanied by enhanced functionalities in recognizing protein antigens. Our study results suggest that synthetic antibody libraries, which are not limited by the sequences found in antibodies in nature, could be designed with the guidance of the computational machine learning algorithms that are programmed to predict interaction propensities to molecules of diverse chemical properties, leading to antibodies with optimal characteristics pertinent to their medical applications.
Collapse
Affiliation(s)
- Jhih-Wei Jian
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan.,b Institute of Biomedical Informatics, National Yang-Ming University , Taipei , Taiwan.,c Bioinformatics Program, Taiwan International Graduate Program , Institute of Information Science, Academia Sinica , Taipei , Taiwan
| | - Hong-Sen Chen
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Yi-Kai Chiu
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Hung-Pin Peng
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Chao-Ping Tung
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Ing-Chien Chen
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Chung-Ming Yu
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Yueh-Liang Tsou
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Wei-Ying Kuo
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Hung-Ju Hsu
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - An-Suei Yang
- a Genomics Research Center , Academia Sinica , Taipei , Taiwan
| |
Collapse
|
91
|
Dal Ferro M, Rizzo S, Rizzo E, Marano F, Luisi I, Tarasiuk O, Sblattero D. Phage Display Technology for Human Monoclonal Antibodies. Methods Mol Biol 2019; 1904:319-338. [PMID: 30539478 DOI: 10.1007/978-1-4939-8958-4_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During the last 20 years in vitro technologies opened powerful routes to combine the generation of large libraries together with fast selection and screening procedures to identify lead candidates. One of the most successful methods is based on the use of filamentous phages. Functional Antibodies (Abs) fragments can be displayed on the surface of phages by fusing the coding sequence of the antibody variable (V) regions to the phage minor coat protein pIII. By creating large libraries, antibodies with affinities comparable to those obtained using traditional hybridoma technology can be isolated by a series of cycles of selection on the antigen of interest. In this system, antibody genes can be recovered simultaneously with selection and can be easily further engineered, for example by increasing their affinity to levels unobtainable in the immune system, or by modulating their specificity and their effector functions (by recloning into a full-length immunoglobulin scaffold). This chapter describes the basic protocols for antibody library construction and selection of binder with desired specificity.
Collapse
Affiliation(s)
- Marco Dal Ferro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Serena Rizzo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Emanuela Rizzo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Francesca Marano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Immacolata Luisi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Olga Tarasiuk
- Department of Health Sciences and IRCAD, University of Eastern Piedmont, Novara, Italy
| | | |
Collapse
|
92
|
Abstract
The BCL-2 protein family plays central roles in the mitochondrial pathway of cell apoptosis. The BCL-2-Associated X protein (BAX), along with other proapoptotic proteins, induces cell death in response to a variety of stress stimuli. Upon receipt of killing signals, cytosolic BAX is activated and translocates to mitochondria where it causes mitochondrial outer membrane permeabilization (MOMP) and initials a series of cellular events that eventually lead to cell destruction. Despite recent progress toward understanding the structure, function, and activation mechanism of BAX, detailed information about how cytosolic BAX can be inhibited is still limited. Here we describe a method of selecting synthetic antibody fragments (Fabs) against BAX using phage display. Synthetic antibodies discovered from the selection have been used as structural probes to gain novel mechanistic details on BAX inhibition. This synthetic antibody selection method could be potentially applied to other BCL-2 proteins.
Collapse
Affiliation(s)
- Zhou Dai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
93
|
Hu AX, Adams JJ, Vora P, Qazi M, Singh SK, Moffat J, Sidhu SS. EPH Profiling of BTIC Populations in Glioblastoma Multiforme Using CyTOF. Methods Mol Biol 2019; 1869:155-168. [PMID: 30324522 DOI: 10.1007/978-1-4939-8805-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability to elucidate the phenotype of brain tumor initiating cell (BTIC) in the context of bulk tumor in glioblastoma multiforme (GBM) provides significant therapeutic benefits for therapeutic evaluation. For the identification of such an elusive and rare subpopulation of cells, a single cell analysis technology with deep profiling capabilities known as Mass Cytometry (CyTOF) can prove to be highly useful. CyTOF circumvents the spectral overlap limitations of traditional flow cytometry by replacing fluorophores with metal isotope tags, allowing the accurate detection of significantly more parameters at the same time. In this chapter, we demonstrate that synthetic antibodies can be conjugated with metal isotope tags for CyTOF analysis, resulting in the development of a highly tailored, custom multi-parameter panel. This toolset was used to stain patient-derived GBM cells, which was analyzed via CyTOF. Analysis software viSNE and SPADE were applied to study the co-expression patterns of the Eph Receptor (EphR) family and several putative BTIC markers in GBM, resulting in the identification of a distinct group of cells consistent with a BTIC subpopulation. This approach can be readily adapted to the detection of cancer stem-like cells in other cancer types.
Collapse
Affiliation(s)
- Amy X Hu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| | - Jarrett J Adams
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Parvez Vora
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Maleeha Qazi
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
94
|
Veggiani G, Huang H, Yates BP, Tong J, Kaneko T, Joshi R, Li SSC, Moran MF, Gish G, Sidhu SS. Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis. Protein Sci 2018; 28:403-413. [PMID: 30431205 DOI: 10.1002/pro.3551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023]
Abstract
Protein phosphorylation is the most abundant post-translational modification in cells. Src homology 2 (SH2) domains specifically recognize phosphorylated tyrosine (pTyr) residues to mediate signaling cascades. A conserved pocket in the SH2 domain binds the pTyr side chain and the EF and BG loops determine binding specificity. By using large phage-displayed libraries, we engineered the EF and BG loops of the Fyn SH2 domain to alter specificity. Engineered SH2 variants exhibited distinct specificity profiles and were able to bind pTyr sites on the epidermal growth factor receptor, which were not recognized by the wild-type Fyn SH2 domain. Furthermore, mass spectrometry showed that SH2 variants with additional mutations in the pTyr-binding pocket that enhanced affinity were highly effective for enrichment of diverse pTyr peptides within the human proteome. These results showed that engineering of the EF and BG loops could be used to tailor SH2 domain specificity, and SH2 variants with diverse specificities and high affinities for pTyr residues enabled more comprehensive analysis of the human phosphoproteome. STATEMENT: Src Homology 2 (SH2) domains are modular domains that recognize phosphorylated tyrosine embedded in proteins, transducing these post-translational modifications into cellular responses. Here we used phage display to engineer hundreds of SH2 domain variants with altered binding specificities and enhanced affinities, which enabled efficient and differential enrichment of the human phosphoproteome for analysis by mass spectrometry. These engineered SH2 domain variants will be useful tools for elucidating the molecular determinants governing SH2 domains binding specificity and for enhancing analysis and understanding of the human phosphoproteome.
Collapse
Affiliation(s)
- Gianluca Veggiani
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Haiming Huang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Bradley P Yates
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Jiefei Tong
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 0A4, Canada
| | - Tomonori Kaneko
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Rakesh Joshi
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Shawn S C Li
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Michael F Moran
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.,The Hospital for Sick Children, SPARC Biocentre, Toronto, Ontario, M5G 0A4, Canada
| | - Gerald Gish
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Sachdev S Sidhu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| |
Collapse
|
95
|
Newsted D, Banerjee S, Watt K, Nersesian S, Truesdell P, Blazer LL, Cardarelli L, Adams JJ, Sidhu SS, Craig AW. Blockade of TGF-β signaling with novel synthetic antibodies limits immune exclusion and improves chemotherapy response in metastatic ovarian cancer models. Oncoimmunology 2018; 8:e1539613. [PMID: 30713798 DOI: 10.1080/2162402x.2018.1539613] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. EOC is often diagnosed at late stages, with peritoneal metastases and ascites production. Current surgery and platinum-based chemotherapy regimes fail to prevent recurrence in most patients. High levels of Transforming growth factor-β (TGF-β) within ascites has been linked to poor prognosis. TGF-β signaling promotes epithelial-mesenchymal transition (EMT) in EOC tumor cells, and immune suppression within the tumor microenvironment, with both contributing to chemotherapy resistance and metastasis. The goal of this study was to develop specific synthetic inhibitory antibodies to the Type II TGF-β receptor (TGFBR2), and test these antibodies in EOC cell and tumor models. Following screening of a phage-displayed synthetic antigen-binding fragment (Fab) library with the extracellular domain of TGFBR2, we identified a lead inhibitory Fab that suppressed TGF-β signaling in mouse and human EOC cell lines. Affinity maturation of the lead inhibitory Fab resulted in several derivative Fabs with increased affinity for TGFBR2 and efficacy as suppressors of TGF-β signaling, EMT and EOC cell invasion. In EOC xenograft and syngeneic tumor models, blockade of TGFBR2 with our lead antibodies led to improved chemotherapy response. This correlated with reversal of EMT and immune exclusion in these tumor models with TGFBR2 blockade. Together, these results describe new inhibitors of the TGF-β pathway that improve antitumor immunity, and response to chemotherapy in preclinical EOC models.
Collapse
Affiliation(s)
- Daniel Newsted
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | | | - Kathleen Watt
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Sarah Nersesian
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Peter Truesdell
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Levi L Blazer
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Lia Cardarelli
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jarrett J Adams
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Andrew W Craig
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| |
Collapse
|
96
|
A Two-Step Approach for the Design and Generation of Nanobodies. Int J Mol Sci 2018; 19:ijms19113444. [PMID: 30400198 PMCID: PMC6274671 DOI: 10.3390/ijms19113444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022] Open
Abstract
Nanobodies, the smallest possible antibody format, have become of considerable interest for biotechnological and immunotherapeutic applications. They show excellent robustness, are non-immunogenic in humans, and can easily be engineered and produced in prokaryotic hosts. Traditionally, nanobodies are selected from camelid immune libraries involving the maintenance and treatment of animals. Recent advances have involved the generation of nanobodies from naïve or synthetic libraries. However, such approaches demand large library sizes and sophisticated selection procedures. Here, we propose an alternative, two-step approach for the design and generation of nanobodies. In a first step, complementarity-determining regions (CDRs) are grafted from conventional antibody formats onto nanobody frameworks, generating weak antigen binders. In a second step, the weak binders serve as templates to design focused synthetic phage libraries for affinity maturation. We validated this approach by grafting toxin- and hapten-specific CDRs onto frameworks derived from variable domains of camelid heavy-chain-only antibodies (VHH). We then affinity matured the hapten binder via panning of a synthetic phage library. We suggest that this strategy can complement existing immune, naïve, and synthetic library based methods, requiring neither animal experiments, nor large libraries, nor sophisticated selection protocols.
Collapse
|
97
|
Abstract
The display of antibodies on the surface of Saccharomyces cerevisiae cells enables the high-throughput and precise selection of specific binders for the target antigen. The recent implementation of next-generation sequencing (NGS) to antibody display screening provides a complete picture of the entire selected polyclonal population. As such, NGS overcomes the limitations of random clones screening, but it comes with two main limitations: (1) depending upon the platform, the sequencing is usually restricted to the variable heavy chain domain complementary determining region 3 (HCDR3), or VH gene, and does not provide additional information on the rest of the antibody gene, including the VL; and (2) the sequence-identified clones are not physically available for validation. Here, we describe a rapid and effective protocol based on an inverse-PCR method to recover specific antibody clones based on their HCDR3 sequence from a yeast display selection output.
Collapse
|
98
|
Pavlovic Z, Adams JJ, Blazer LL, Gakhal AK, Jarvik N, Steinhart Z, Robitaille M, Mascall K, Pan J, Angers S, Moffat J, Sidhu SS. A synthetic anti-Frizzled antibody engineered for broadened specificity exhibits enhanced anti-tumor properties. MAbs 2018; 10:1157-1167. [PMID: 30183492 DOI: 10.1080/19420862.2018.1515565] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Secreted Wnt ligands play a major role in the development and progression of many cancers by modulating signaling through cell-surface Frizzled receptors (FZDs). In order to achieve maximal effect on Wnt signaling by targeting the cell surface, we developed a synthetic antibody targeting six of the 10 human FZDs. We first identified an anti-FZD antagonist antibody (F2) with a specificity profile matching that of OMP-18R5, a monoclonal antibody that inhibits growth of many cancers by targeting FZD7, FZD1, FZD2, FZD5 and FZD8. We then used combinatorial antibody engineering by phage display to develop a variant antibody F2.A with specificity broadened to include FZD4. We confirmed that F2.A blocked binding of Wnt ligands, but not binding of Norrin, a ligand that also activates FZD4. Importantly, F2.A proved to be much more efficacious than either OMP-18R5 or F2 in inhibiting the growth of multiple RNF43-mutant pancreatic ductal adenocarcinoma cell lines, including patient-derived cells.
Collapse
Affiliation(s)
- Zvezdan Pavlovic
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Jarrett J Adams
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Levi L Blazer
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Amandeep K Gakhal
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Nick Jarvik
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Zachary Steinhart
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada
| | - Mélanie Robitaille
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada
| | - Keith Mascall
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada
| | - James Pan
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Stephane Angers
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada.,c Department of Biochemistry , University of Toronto , Toronto , Canada
| | - Jason Moffat
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada.,d Department of Molecular Genetics , University of Toronto , Toronto , Canada.,e Canadian Institute for Advanced Research , Toronto , Canada
| | - Sachdev S Sidhu
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada.,d Department of Molecular Genetics , University of Toronto , Toronto , Canada
| |
Collapse
|
99
|
Kintzer AF, Green EM, Dominik PK, Bridges M, Armache JP, Deneka D, Kim SS, Hubbell W, Kossiakoff AA, Cheng Y, Stroud RM. Structural basis for activation of voltage sensor domains in an ion channel TPC1. Proc Natl Acad Sci U S A 2018; 115:E9095-E9104. [PMID: 30190435 PMCID: PMC6166827 DOI: 10.1073/pnas.1805651115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-sensing domains (VSDs) couple changes in transmembrane electrical potential to conformational changes that regulate ion conductance through a central channel. Positively charged amino acids inside each sensor cooperatively respond to changes in voltage. Our previous structure of a TPC1 channel captured an example of a resting-state VSD in an intact ion channel. To generate an activated-state VSD in the same channel we removed the luminal inhibitory Ca2+-binding site (Cai2+), which shifts voltage-dependent opening to more negative voltage and activation at 0 mV. Cryo-EM reveals two coexisting structures of the VSD, an intermediate state 1 that partially closes access to the cytoplasmic side but remains occluded on the luminal side and an intermediate activated state 2 in which the cytoplasmic solvent access to the gating charges closes, while luminal access partially opens. Activation can be thought of as moving a hydrophobic insulating region of the VSD from the external side to an alternate grouping on the internal side. This effectively moves the gating charges from the inside potential to that of the outside. Activation also requires binding of Ca2+ to a cytoplasmic site (Caa2+). An X-ray structure with Caa2+ removed and a near-atomic resolution cryo-EM structure with Cai2+ removed define how dramatic conformational changes in the cytoplasmic domains may communicate with the VSD during activation. Together four structures provide a basis for understanding the voltage-dependent transition from resting to activated state, the tuning of VSD by thermodynamic stability, and this channel's requirement of cytoplasmic Ca2+ ions for activation.
Collapse
Affiliation(s)
- Alexander F Kintzer
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Evan M Green
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Pawel K Dominik
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Michael Bridges
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Jean-Paul Armache
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Dawid Deneka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Sangwoo S Kim
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Wayne Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
| |
Collapse
|
100
|
Shingarova LN, Petrovskaya LE, Zlobinov AV, Gapizov SS, Kryukova EA, Birikh KR, Boldyreva EF, Yakimov SA, Dolgikh DA, Kirpichnikov MP. Construction of Artificial TNF-Binding Proteins Based on the 10th Human Fibronectin Type III Domain Using Bacterial Display. BIOCHEMISTRY (MOSCOW) 2018; 83:708-716. [PMID: 30195327 DOI: 10.1134/s0006297918060081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Construction of antibody mimetics on the base of alternative scaffold proteins is a promising strategy for obtaining new products for medicine and biotechnology. The aim of our work was to optimize the cell display system for the 10th human fibronectin type III domain (10Fn3) scaffold protein based on the AT877 autotransporter from Psychrobacter cryohalolentis K5T and to construct new artificial TNF-binding proteins. We obtained a 10Fn3 gene combinatorial library and screened it using the bacterial display method. After expression of the selected 10Fn3 variants in Escherichia coli cells and analysis of their TNF-binding activity, we identified proteins that display high affinity for TNF and characterized their properties.
Collapse
Affiliation(s)
- L N Shingarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - L E Petrovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - A V Zlobinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - S Sh Gapizov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - E A Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - K R Birikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - E F Boldyreva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S A Yakimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - D A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - M P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| |
Collapse
|