51
|
Prata J, Machado AS, von Doellinger O, Almeida MI, Barbosa MA, Coelho R, Santos SG. The Contribution of Inflammation to Autism Spectrum Disorders: Recent Clinical Evidence. Methods Mol Biol 2019; 2011:493-510. [PMID: 31273718 DOI: 10.1007/978-1-4939-9554-7_29] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Autism comprises a complex and heterogeneous spectrum of neurodevelopmental disorders, usually termed autism spectrum disorders (ASD). It is more prevalent in males than females, and genetic and environmental factors are believed to account in similar percentages to the development of ASD. In recent years, the contribution of inflammation and inflammatory mediators to disease aetiology and perpetuation has been the object of intense research. In this chapter, inflammatory aspects that contribute to ASD are discussed, including abnormal microglia activation and polarization phenotypes, increased systemic levels of pro-inflammatory mediators, and altered patterns of immune cell response to activation stimuli. Also, inflammation in the context of gut microbiome and the impact of inflammation on gender prevalence of ASD are considered. Finally, treatment impact on inflammatory parameters and the potential for use of anti-inflammatory drugs, alone or in combination with antipsychotics, to manage ASD are examined.
Collapse
Affiliation(s)
- J Prata
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - A S Machado
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Clinical Neurosciences and Mental Health, Centro Hospitalar UniversitÃrio São João, Porto, Portugal
| | - O von Doellinger
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar do Tâmega e Sousa, Penafiel, Portugal
| | - M I Almeida
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - M A Barbosa
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - R Coelho
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Clinical Neurosciences and Mental Health, Centro Hospitalar UniversitÃrio São João, Porto, Portugal
| | - S G Santos
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal.
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.
| |
Collapse
|
52
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alshammari MA, Khan MR, Alsaad AM, Attia SM. S3I-201, a selective Stat3 inhibitor, restores neuroimmune function through upregulation of Treg signaling in autistic BTBR T+ Itpr3tf/J mice. Cell Signal 2018; 52:127-136. [DOI: 10.1016/j.cellsig.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
|
53
|
Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Alshammari MA, Attia SM. The PPARδ agonist GW0742 restores neuroimmune function by regulating Tim-3 and Th17/Treg-related signaling in the BTBR autistic mouse model. Neurochem Int 2018; 120:251-261. [DOI: 10.1016/j.neuint.2018.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
|
54
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alshammari MA, Attia SM. Protection by tyrosine kinase inhibitor, tyrphostin AG126, through the suppression of IL-17A, RORγt, and T-bet signaling, in the BTBR mouse model of autism. Brain Res Bull 2018; 142:328-337. [DOI: 10.1016/j.brainresbull.2018.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022]
|
55
|
Gładysz D, Krzywdzińska A, Hozyasz KK. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment? Mol Neurobiol 2018; 55:6387-6435. [PMID: 29307081 PMCID: PMC6061181 DOI: 10.1007/s12035-017-0822-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | | | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
56
|
Basheer S, Venkataswamy MM, Christopher R, Van Amelsvoort T, Srinath S, Girimaji SC, Ravi V. Immune aberrations in children with Autism Spectrum Disorder: a case-control study from a tertiary care neuropsychiatric hospital in India. Psychoneuroendocrinology 2018; 94:162-167. [PMID: 29804052 DOI: 10.1016/j.psyneuen.2018.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/28/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
Abstract
Multiple studies have identified the presence of peripheral immune aberrations in subjects with Autism Spectrum Disorder (ASD). However, comprehensive assessment of these peripheral immune aberrations, in the cellular and systemic compartments, in a single group of subjects with ASD is lacking. We assessed proportions of various subsets of immune cells in peripheral blood (T helper cells, T regulatory cells, B cells, monocytes, Natural Killer cells, dendritic cells) by multi-parametric flow cytometry in 50 children with ASD and compared it with thirty healthy controls matched for age, gender, socio-economic status and body mass index. There were no significant differences noted in the proportion of T regulatory cells, B cells, monocytes and Natural Killer cells, between ASD subjects and controls. On the contrary, the proportion of activated Th17 and myeloid dendritic cells were significantly higher in children with ASD. Based on these findings, group comparison of serum levels of Th17 cytokines (interleukin-6, interleukin-17A) was performed. Elevated serum levels of interleukin-6 and interleukin-17A in children with ASD corroborated our immunophenotyping findings. We did not find any significant differences among the pro-inflammatory (interleukin-1β), Th1 (interferon-γ) and Th2 (interleukin-4) cytokines. This is the first evidence with concurrent findings from immunophenotyping and cytokine data demonstrating activation of the Th17 pathway in subjects with ASD. This finding assumes significance in the light of recent maternal immune activation mouse model study that has highlighted the role of Th17 pathway in the pathophysiology of ASD. Future longitudinal studies are needed to clarify the role of this dysregulated immune pathway in the development of ASD.
Collapse
Affiliation(s)
- Salah Basheer
- Department of Clinical Neuroscience, National Institute of Mental Health and Neuro Sciences, Bangalore, India; Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Manjunatha M Venkataswamy
- Department of Neurovirology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Therese Van Amelsvoort
- Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Shoba Srinath
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Satish Chandra Girimaji
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Vasanthapuram Ravi
- Department of Neurovirology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India.
| |
Collapse
|
57
|
Nadeem A, Ahmad SF, El-Sherbeeny AM, Al-Harbi NO, Bakheet SA, Attia SM. Systemic inflammation in asocial BTBR T + tf/J mice predisposes them to increased psoriatic inflammation. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:8-17. [PMID: 29287831 DOI: 10.1016/j.pnpbp.2017.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/12/2017] [Accepted: 12/24/2017] [Indexed: 01/09/2023]
Abstract
Autistic Spectrum disorder (ASD) is a neurobehavioral disorder characterized by defects in communication skills leading to restricted sociability. ASD has immense dysregulation in immune responses which is thought to affect neuronal system and thus behavior. ASD patients and BTBR T+ tf/J (BTBR) autistic mice have increased systemic inflammation due to dysfunction in innate and adaptive immune responses. Recent studies suggest that ASD patients are associated with several co-morbid autoimmune disorders including psoriasis. However underlying mechanisms for this phenomenon have not been explored. In this study, we used imiquimod (IMQ)-induced psoriatic inflammation in social C57BL/6 (C57) mice and asocial BTBR mice to investigate whether systemic inflammation in BTBR is associated with increased susceptibility to psoriatic inflammation. Our data shows that BTBR mice have increased expression of TLR7/IL-6/IL-23 in systemic DCs but not in skin as compared to C57 mice at baseline. This leads to much greater psoriatic inflammation in BTBR mice upon IMQ application than C57 mice. Consequently, BTBR mice also have higher Th17 related immune responses in the skin and systemic compartment. Overall our study suggests that systemic innate (TLR7/IL-23/IL-6 in DCs) and adaptive (Th17 related signaling) immune responses are heightened in BTBR mice at baseline which predisposes them for greater psoriatic inflammation than C57 mice upon IMQ application. This could be one of the reasons for increased psoriatic inflammation in patients with ASD. Therapies that aim to decrease immune activation may not only benefit ASD-associated neurobehavioral abnormalities but also comorbid disorders such as psoriasis.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
58
|
Abstract
Although autism spectrum disorder (ASD) has a strong genetic basis, its etiology is complex, with several genetic factors likely to be involved as well as environmental factors. Immune dysregulation has gained significant attention as a causal mechanism in ASD pathogenesis. ASD has been associated with immune abnormalities in the brain and periphery, including inflammatory disorders and autoimmunity in not only the affected individuals but also their mothers. Prenatal exposure to maternal immune activation (MIA) has been implicated as an environmental risk factor for ASD. In support of this notion, animal models have shown that MIA results in offspring with behavioral, neurological, and immunological abnormalities similar to those observed in ASD. This raises the question of how MIA exposure can lead to ASD in susceptible individuals. Recent evidence points to a potential inflammation pathway linking MIA-associated ASD with the activity of T helper 17 (Th17) lymphocytes and their effector cytokine interleukin-17A (IL-17A). IL-17A has been implicated from human studies and elevated IL-17A levels in the blood have been found to correlate with phenotypic severity in a subset of ASD individuals. In MIA model mice, elevated IL-17A levels also have been observed. Additionally, antibody blockade to inhibit IL-17A signaling was found to prevent ASD-like behaviors in offspring exposed to MIA. Therefore, IL-17A dysregulation may play a causal role in the development of ASD. The source of increased IL-17A in the MIA mouse model was attributed to maternal Th17 cells because genetic removal of the transcription factor RORγt to selectively inhibit Th17 differentiation in pregnant mice was able to prevent ASD-like behaviors in the offspring. Similar to ASD individuals, the MIA-exposed offspring also displayed cortical dysplasia which could be prevented by inhibition of IL-17A signaling in pregnant mice. This finding reveals one possible cellular mechanism through which ASD-related cognitive and behavioral deficits may emerge following maternal inflammation. IL-17A can exert strong effects on cell survival and differentiation and the activity of signal transduction cascades, which can have important consequences during cortical development on neural function. This review examines IL-17A signaling pathways in the context of both immunity and neural function that may contribute to the development of ASD associated with MIA.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado-Boulder, CO 80303, United States; Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO 80303, United States; Linda Crnic Institute, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Charles Hoeffer
- Institute for Behavioral Genetics, University of Colorado-Boulder, CO 80303, United States; Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO 80303, United States; Linda Crnic Institute, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
59
|
Activation of IL-17 receptor leads to increased oxidative inflammation in peripheral monocytes of autistic children. Brain Behav Immun 2018; 67:335-344. [PMID: 28935156 DOI: 10.1016/j.bbi.2017.09.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/10/2017] [Accepted: 09/16/2017] [Indexed: 01/09/2023] Open
Abstract
Millions of children are affected by different neurodevelopmental disorders, out of which autism spectrum disorder (ASD) poses a major hurdle to normal life style due to associated behavioral abnormalities. Several studies have shown an increased expression/release of Th17 related cytokine, IL-17A in ASD. IL-17A may enhance neuroinflammation via its IL-17A receptor, i.e. IL-17RA expressed in immune cells (such as monocytes) of autistic children. Increased oxidative stress has been implicated in a number of neuropsychiatric disorders including ASD. However, whether IL-17A/IL-17RA signaling contributes to oxidative inflammation in monocytes of autistic children has not been explored previously. With this background, we performed this study in peripheral monocytes of ASD patients and age-matched typically developing children. Our study shows that ASD individuals have increased IL-17RA expression in monocytes which is associated with increased nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway and inducible nitric oxide synthase (iNOS)/nitrotyrosine expression as compared to typically developing children. Moreover, in vitro activation of IL-17 receptor by IL-17A in monocytes isolated from ASD individuals leads to enhanced iNOS expression via NFκB pathway. IL-17RA antibody treatment in vitro reversed IL-17A-induced increase in NFκB and iNOS/nitrotyrosine expression in monocytes isolated from ASD subjects. These data connect increased IL-17A/IL-17RA signaling in ASD patients with enhanced oxidative inflammation in monocytes. Therefore, IL-17 receptor signaling in monocytes may potentiate the effects of IL-17A released by other immune cells and may aggravate neuroinflammation in ASD. Our study further suggests that blockade of IL-17A/IL-17 receptor signaling may be beneficial in the children with ASD.
Collapse
|
60
|
Ansari MA, Nadeem A, Attia SM, Bakheet SA, Raish M, Ahmad SF. Adenosine A2A receptor modulates neuroimmune function through Th17/retinoid-related orphan receptor gamma t (RORγt) signaling in a BTBR T + Itpr3 tf /J mouse model of autism. Cell Signal 2017; 36:14-24. [DOI: 10.1016/j.cellsig.2017.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022]
|
61
|
Fagan K, Crider A, Ahmed AO, Pillai A. Complement C3 Expression Is Decreased in Autism Spectrum Disorder Subjects and Contributes to Behavioral Deficits in Rodents. MOLECULAR NEUROPSYCHIATRY 2017; 3:19-27. [PMID: 28879198 DOI: 10.1159/000465523] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/24/2017] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with hallmark symptoms including social deficits, communication deficits and repetitive behaviors. Accumulating evidence suggests a potential role of the immune system in the pathophysiology of ASD. The complement system represents one of the major effector mechanisms of the innate immune system, and regulates inflammation, and orchestrates defense against pathogens. However, the role of CNS complement system in ASD is not well understood. In the present study, we found a significant increase in C2, C5, and MASP1, but a decrease in C1q, C3, and C4 mRNA levels in the middle frontal gyrus of ASD subjects compared to controls. Significant decreases in the mRNA levels of 2 key proinflammatory cytokines, IL-17 and IL-23 were observed in ASD subjects. Our study further demonstrated a strong association of complement genes with IL-17 and IL-23, suggesting a possible role of the complement system in immune dysregulation in ASD. We observed significant associations between complement components and abnormality of development scores in subjects with ASD. In rodents, C3 knockdown in the prefrontal cortex induced social interaction deficits and repetitive behavior in mice. Together, these studies suggest a potential role of C3 in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Kiley Fagan
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Amanda Crider
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, GA
| | - Anthony O Ahmed
- Department of Psychiatry, Weill Cornell Medical College, White Plains, New York, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, GA
| |
Collapse
|
62
|
Vuong HE, Hsiao EY. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biol Psychiatry 2017; 81:411-423. [PMID: 27773355 PMCID: PMC5285286 DOI: 10.1016/j.biopsych.2016.08.024] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/28/2016] [Accepted: 08/18/2016] [Indexed: 01/16/2023]
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder that affects one in 45 children in the United States, with a similarly striking prevalence in countries around the world. However, mechanisms underlying its etiology and manifestations remain poorly understood. Although ASD is diagnosed based on the presence and severity of impaired social communication and repetitive behavior, immune dysregulation and gastrointestinal issues are common comorbidities. The microbiome is an integral part of human physiology; recent studies show that changes in the gut microbiota can modulate gastrointestinal physiology, immune function, and even behavior. Links between particular bacteria from the indigenous gut microbiota and phenotypes relevant to ASD raise the important question of whether microbial dysbiosis plays a role in the development or presentation of ASD symptoms. Here we review reports of microbial dysbiosis in ASD. We further discuss potential effects of the microbiota on ASD-associated symptoms, drawing on signaling mechanisms for reciprocal interactions among the microbiota, immunity, gut function, and behavior. In addition, we discuss recent findings supporting a role for the microbiome as an interface between environmental and genetic risk factors that are associated with ASD. These studies highlight the integration of pathways across multiple body systems that together can impact brain and behavior and suggest that changes in the microbiome may contribute to symptoms of neurodevelopmental disease.
Collapse
Affiliation(s)
- Helen E. Vuong
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elaine Y. Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA,Correspondence to: ; 610 Charles E. Young Drive MSB 3825A; Los Angeles CA 90095; 310-825-0228
| |
Collapse
|
63
|
Meltzer A, Van de Water J. The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacology 2017; 42:284-298. [PMID: 27534269 PMCID: PMC5143489 DOI: 10.1038/npp.2016.158] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Autism is a neurodevelopmental disorder characterized by deficits in communication and social skills as well as repetitive and stereotypical behaviors. While much effort has focused on the identification of genes associated with autism, research emerging within the past two decades suggests that immune dysfunction is a viable risk factor contributing to the neurodevelopmental deficits observed in autism spectrum disorders (ASD). Further, it is the heterogeneity within this disorder that has brought to light much of the current thinking regarding the subphenotypes within ASD and how the immune system is associated with these distinctions. This review will focus on the two main axes of immune involvement in ASD, namely dysfunction in the prenatal and postnatal periods. During gestation, prenatal insults including maternal infection and subsequent immunological activation may increase the risk of autism in the child. Similarly, the presence of maternally derived anti-brain autoantibodies found in ~20% of mothers whose children are at risk for developing autism has defined an additional subphenotype of ASD. The postnatal environment, on the other hand, is characterized by related but distinct profiles of immune dysregulation, inflammation, and endogenous autoantibodies that all persist within the affected individual. Further definition of the role of immune dysregulation in ASD thus necessitates a deeper understanding of the interaction between both maternal and child immune systems, and the role they have in diagnosis and treatment.
Collapse
Affiliation(s)
- Amory Meltzer
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, USA
| | - Judy Van de Water
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, USA
- The M.I.N.D. Institute, University of California, Davis, CA, USA
- NIEHS Center for Children's Environmental Health, University of California, Davis, CA, USA
| |
Collapse
|
64
|
Hori D, Tsujiguchi H, Kambayashi Y, Hamagishi T, Kitaoka M, Mitoma J, Asakura H, Suzuki F, Anyenda EO, Thao NTT, Yamada Y, Tamai S, Hayashi K, Hibino Y, Shibata A, Sagara T, Sasahara S, Matsuzaki I, Nakamura H. The Association of Autism Spectrum Disorders and Symptoms of Asthma, Allergic Rhinoconjunctivitis and Eczema among Japanese Children Aged 3 - 6 Years. Health (London) 2017. [DOI: 10.4236/health.2017.98089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
65
|
Maternal infection during pregnancy and risk of autism spectrum disorders: A systematic review and meta-analysis. Brain Behav Immun 2016; 58:165-172. [PMID: 27287966 DOI: 10.1016/j.bbi.2016.06.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022] Open
Abstract
Conflicting evidence exists with regard to the relationship between maternal infection during pregnancy and the risk of autism spectrum disorder (ASD) in offspring. The aim of this meta-analysis was to systematically assess this relationship. To identify relevant studies, we conducted systematic searches in PubMed and Embase of scientific articles published through March 2016. Random-effects models were adopted to estimate overall relative risk. A total of 15 studies (2 cohort and 13 case-control studies) involving more than 40,000 ASD cases were included in our meta-analysis. Our results showed that maternal infection during pregnancy was associated with an increased risk of ASD in offspring (OR=1.13, 95% confidence interval (CI): 1.03-1.23), particularly among those requiring hospitalization (OR=1.30, 95% CI: 1.14-1.50). Subgroup analyses suggested that risk may be modulated by the type of infectious agent, time of infectious exposure, and site of infection. These findings indicate that maternal infection during pregnancy increases the risk of ASD in offspring. Possible mechanisms may include direct effects of pathogens and, more indirectly, the effects of inflammatory responses on the developing brain.
Collapse
|
66
|
Resveratrol Ameliorates Dysregulation of Th1, Th2, Th17, and T Regulatory Cell-Related Transcription Factor Signaling in a BTBR T + tf/J Mouse Model of Autism. Mol Neurobiol 2016; 54:5201-5212. [DOI: 10.1007/s12035-016-0066-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
|
67
|
Theoharides TC, Tsilioni I, Patel AB, Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry 2016; 6:e844. [PMID: 27351598 PMCID: PMC4931610 DOI: 10.1038/tp.2016.77] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASDs) affect as many as 1 in 45 children and are characterized by deficits in sociability and communication, as well as stereotypic movements. Many children also show severe anxiety. The lack of distinct pathogenesis and reliable biomarkers hampers the development of effective treatments. As a result, most children with ASD are prescribed psychopharmacologic agents that do not address the core symptoms of ASD. Autoantibodies against brain epitopes in mothers of children with ASD and many such children strongly correlate with allergic symptoms and indicate an aberrant immune response, as well as disruption of the blood-brain barrier (BBB). Recent epidemiological studies have shown a strong statistical correlation between risk for ASD and either maternal or infantile atopic diseases, such as asthma, eczema, food allergies and food intolerance, all of which involve activation of mast cells (MCs). These unique tissue immune cells are located perivascularly in all tissues, including the thalamus and hypothalamus, which regulate emotions. MC-derived inflammatory and vasoactive mediators increase BBB permeability. Expression of the inflammatory molecules interleukin (IL-1β), IL-6, 1 L-17 and tumor necrosis factor (TNF) is increased in the brain, cerebrospinal fluid and serum of some patients with ASD, while NF-kB is activated in brain samples and stimulated peripheral blood immune cells of other patients; however, these molecules are not specific. Instead the peptide neurotensin is uniquely elevated in the serum of children with ASD, as is corticotropin-releasing hormone, secreted from the hypothalamus under stress. Both peptides trigger MC to release IL-6 and TNF, which in turn, stimulate microglia proliferation and activation, leading to disruption of neuronal connectivity. MC-derived IL-6 and TGFβ induce maturation of Th17 cells and MCs also secrete IL-17, which is increased in ASD. Serum IL-6 and TNF may define an ASD subgroup that benefits most from treatment with the natural flavonoid luteolin. Atopic diseases may create a phenotype susceptible to ASD and formulations targeting focal inflammation of the brain could have great promise in the treatment of ASD.
Collapse
Affiliation(s)
- T C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Program in Cell, Molecular and Developmental Biology, Tufts University, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - I Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - A B Patel
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Program in Cell, Molecular and Developmental Biology, Tufts University, Boston, MA, USA
| | - R Doyle
- Department of Child Psychiatry, Harvard Medical School, Massachusetts General Hospital and McLean Hospital, Boston, MA, USA
| |
Collapse
|
68
|
Dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in children with autism. Mol Neurobiol 2016; 54:4390-4400. [PMID: 27344332 DOI: 10.1007/s12035-016-9977-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by stereotypic repetitive behaviors, impaired social interactions, and communication deficits. Numerous immune system abnormalities have been described in individuals with autism including abnormalities in the ratio of Th1/Th2/Th17 cells; however, the expression of the transcription factors responsible for the regulation and differentiation of Th1/Th2/Th17/Treg cells has not previously been evaluated. Peripheral blood mononuclear cells (PBMCs) from children with autism (AU) or typically developing (TD) control children were stimulated with phorbol-12-myristate 13-acetate (PMA) and ionomycin in the presence of brefeldin A. The expressions of Foxp3, RORγt, STAT-3, T-bet, and GATA-3 mRNAs and proteins were then assessed. Our study shows that children with AU displayed altered immune profiles and function, characterized by a systemic deficit of Foxp3+ T regulatory (Treg) cells and increased RORγt+, T-bet+, GATA-3+, and production by CD4+ T cells as compared to TD. This was confirmed by real-time PCR (RT-PCR) and western blot analyses. Our results suggest that autism impacts transcription factor signaling, which results in an immunological imbalance. Therefore, the restoration of transcription factor signaling may have a great therapeutic potential in the treatment of autistic disorders.
Collapse
|
69
|
Zheng Z, Zhang L, Zhu T, Huang J, Qu Y, Mu D. Association between Asthma and Autism Spectrum Disorder: A Meta-Analysis. PLoS One 2016; 11:e0156662. [PMID: 27257919 PMCID: PMC4892578 DOI: 10.1371/journal.pone.0156662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022] Open
Abstract
Objective We conducted a meta-analysis to summarize the evidence from epidemiological studies of the association between asthma and autism spectrum disorder (ASD). Methods A literature search was conducted using PubMed, Embase, and Cochrane library for studies published before February 2nd, 2016. Observational studies investigating the association between asthma and ASD were included. A random effects model was used to calculate the pooled risk estimates for the outcome. Subgroup analysis was used to explore potential sources of heterogeneity and publication bias was estimated using Begg's and Egger's tests. Results Ten studies encompassing 175,406 participants and 8,809 cases of ASD were included in this meta-analysis. In the cross-sectional studies, the prevalence of asthma in ASD was 20.4%, while the prevalence of asthma in controls was 15.4% (P < 0.001). The pooled odds ratio (OR) for the prevalence of asthma in ASD in the cross-sectional studies was 1.26 (95% confidence interval (CI): 0.98–1.61) (P = 0.07), with moderate heterogeneity (I2 = 65.0%, P = 0.02) across studies. In the case-control studies, the pooled OR for the prevalence of asthma in ASD was 0.98 (95% CI: 0.68–1.43) (P = 0.94), and there was no evidence of an association between asthma and ASD. No evidence of significant publication bias on the association between asthma and ASD was found. Conclusions In conclusion, the results of this meta-analysis do not suggest an association between asthma and ASD. Further prospective studies ascertaining the association between asthma and ASD are warranted.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Tingting Zhu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Jichong Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
- Department of Pediatrics and Neurology, University of California San Francisco, San Francisco, CA 94143, United States of America
- * E-mail:
| |
Collapse
|