51
|
Computational insights into the development of novel therapeutic strategies for Alzheimer's disease. Future Med Chem 2011; 1:119-35. [PMID: 21426072 DOI: 10.4155/fmc.09.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND β-amyloidosis and oxidative stress have been implicated as root causes of Alzheimer's disease (AD). Current potential therapeutic strategies for the treatment of AD include inhibition of amyloid β (Aβ) production, stimulation of Aβ degradation and prevention of Aβ oligomerization. However, efforts in this direction are hindered by the lack of understanding of the biochemical processes occurring at the atomic level in AD. DISCUSSION A radically different approach to achieve this goal would be the application of comprehensive theoretical and computational techniques such as molecular dynamics, quantum mechanics, hybrid quantum mechanics/molecular mechanics, bioinformatics and rotational spectroscopy to investigate complex chemical and physical processes in β-amyloidosis and the oxidative stress mechanism. CONCLUSION Results obtained from these studies will provide an atomic level understanding of biochemical processes occurring in AD and advance efforts to develop effective therapeutic strategies for this disease.
Collapse
|
52
|
Valensin D, Migliorini C, Valensin G, Gaggelli E, La Penna G, Kozlowski H, Gabbiani C, Messori L. Exploring the reactions of β-amyloid (Aβ) peptide 1-28 with Al(III) and Fe(III) ions. Inorg Chem 2011; 50:6865-7. [PMID: 21718030 DOI: 10.1021/ic201069v] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The reactions of human β-amyloid peptide 1-28 (Aβ28) with Al(III) and Fe(III) ions were investigated by (1)H NMR and electrospray ionization mass spectrometry (ESI-MS) under pH conditions close to physiological ones. (1)H NMR titrations, performed in the 5.3-8.0 pH range, revealed that no measurable amounts of Aβ28-Al(III) or Aβ28-Fe(III) adducts are formed; such metal adducts could not be obtained even by changing a number of experimental conditions, e.g., temperature, buffer, nature of the salt, etc. These observations were later confirmed by ESI-MS. It is thus demonstrated that Aβ28, at physiological pH, is not able to form binary complexes with Al(III) and Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation. The biological implications of these findings are discussed in the frame of current literature.
Collapse
Affiliation(s)
- Daniela Valensin
- Department of Chemistry, University of Siena, Via A. Moro, 53100 Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Liu R, Meng F, Zhang L, Liu A, Qin H, Lan X, Li L, Du G. Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Molecules 2011; 16:2084-96. [PMID: 21368720 PMCID: PMC6259644 DOI: 10.3390/molecules16032084] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 02/22/2011] [Accepted: 02/25/2011] [Indexed: 12/22/2022] Open
Abstract
Luteolin, a 3',4',5,7-tetrahydroxyflavone, is a plant flavonoid and pharmacologically active agent that has been isolated from several plant species. In the present study, the effects of luteolin obtained from the medicinal plant Elsholtzia rugulosa and the related mechanisms were examined in an Alzheimer's disease (AD) cell model. In this model, copper was used to exacerbate the neurotoxicity in β-amyloid precursor protein Swedish mutation stably overexpressed SH-SY5Y cells (named "APPsw cells" for short). Based on this model, we demonstrated that luteolin increased cell viability, reduced intracellular ROS generation, enhanced the activity of SOD and reversed mitochondrial membrane potential dissipation. Inhibition of caspase-related apoptosis was consistently involved in the neuroprotection afforded by luteolin. Furthermore, it down-regulated the expression of AβPP and lowered the secretion of Aβ₁₋₄₂. These results indicated that luteolin from the Elsholtzia rugulosa exerted neroprotective effects through mechanisms that decrease AβPP expression, lower Aβ secretion, regulate the redox imbalance, preserve mitochondrial function, and depress the caspase family-related apoptosis.
Collapse
Affiliation(s)
- Rui Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China ; E-Mail: (R.L.)
| | - Fanrui Meng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China ; E-Mail: (R.L.)
| | - Li Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China ; E-Mail: (R.L.)
| | - Ailin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China ; E-Mail: (R.L.)
| | - Hailin Qin
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China ; E-Mail: (R.L.)
| | - Xi Lan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China ; E-Mail: (R.L.)
| | - Lin Li
- Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China ; E-Mail: (R.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 86-10-63165184; Fax: 86-10-63165184
| |
Collapse
|
54
|
Li X, Zhang L, Zhu Y, Li Y. Dynamic analysis of exposure to aluminum and an acidic condition on bone formation in young growing rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:295-301. [PMID: 21787697 DOI: 10.1016/j.etap.2010.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 11/02/2010] [Accepted: 11/21/2010] [Indexed: 05/31/2023]
Abstract
The toxic effects of exposure to aluminum (Al) in an acidic condition on bone formation in young growing rats were studied. Wistar rats were divided randomly into Al-treated group (100mg Al(3+)/L; pH 5.6) and control group (distilled water). Al-treated rats showed lower body weight, lower serum pH, higher accumulation of Al, in addition to disordered metabolism of calcium and phosphorus compared with control rats. The levels of parathyroid hormone, calcitonin, osteocalcin, procollagen carboxy-terminal propeptide and bone alkaline phosphatase were significantly lower in the Al-treated group than in the control group from days 90, 30, 60, 60 and 90, respectively. The bone mineral density of the distal and proximal femoral metaphysis was significantly lower in the Al-treated group than in the control group on days 120 and 150. These findings suggest that long-term Al exposure in an acidic condition inhibits bone formation and induces bone loss in young growing animals.
Collapse
Affiliation(s)
- Xinwei Li
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | | | | | | |
Collapse
|
55
|
Bandyopadhyay S, Huang X, Lahiri DK, Rogers JT. Novel drug targets based on metallobiology of Alzheimer's disease. Expert Opin Ther Targets 2011; 14:1177-97. [PMID: 20942746 DOI: 10.1517/14728222.2010.525352] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IMPORTANCE OF THE FIELD Increased localization of Zn, Fe, Cu and Al within the senile plaques (SP) exacerbates amyloid beta (Aβ)-mediated oxidative damage, and acts as catalyst for Aβ aggregation in Alzheimer's disease (AD). Thus, disruption of aberrant metal-peptide interactions via chelation therapy holds considerable promise as a rational therapeutic strategy against Alzheimer's amyloid pathogenesis. AREAS COVERED IN THIS REVIEW The complexities of metal-induced genesis of SP are reviewed. The recent advances in the molecular mechanism of action of metal chelating agents are discussed with critical assessment of their potential to become drugs. WHAT THE READER WILL GAIN Taking into consideration the interaction of metals with the metal-responsive elements on the Alzheimer's amyloid precursor protein (APP), readers will gain understanding of several points to bear in mind when developing a screening campaign for AD-therapeutics. TAKE HOME MESSAGE A functional iron-responsive element (IRE) RNA stem loop in the 5' untranslated region (UTR) of the APP transcript regulates neural APP translation. Desferrioxamine, clioquinol, tetrathiolmolybdate, dimercaptopropanol, VK-28, and natural antioxidants, such as curcumin and ginko biloba need critical evaluation as AD therapeutics. There is a necessity for novel screens (related to metallobiology) to identify therapeutics effective in AD.
Collapse
|
56
|
Microarray analysis on human neuroblastoma cells exposed to aluminum, β(1-42)-amyloid or the β(1-42)-amyloid aluminum complex. PLoS One 2011; 6:e15965. [PMID: 21298039 PMCID: PMC3029275 DOI: 10.1371/journal.pone.0015965] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/01/2010] [Indexed: 12/22/2022] Open
Abstract
Background A typical pathological feature of Alzheimer's disease (AD) is the appearance in the brain of senile plaques made up of β-amyloid (Aβ) and neurofibrillary tangles. AD is also associated with an abnormal accumulation of some metal ions, and we have recently shown that one of these, aluminum (Al), plays a relevant role in affecting Aβ aggregation and neurotoxicity. Methodology In this study, employing a microarray analysis of 35,129 genes, we investigated the effects induced by the exposure to the Aβ1–42-Al (Aβ-Al) complex on the gene expression profile of the neuronal-like cell line, SH-SY5Y. Principal Findings The microarray assay indicated that, compared to Aβ or Al alone, exposure to Aβ-Al complex produced selective changes in gene expression. Some of the genes selectively over or underexpressed are directly related to AD. A further evaluation performed with Ingenuity Pathway analysis revealed that these genes are nodes of networks and pathways that are involved in the modulation of Ca2+ homeostasis as well as in the regulation of glutamatergic transmission and synaptic plasticity. Conclusions and Significance Aβ-Al appears to be largely involved in the molecular machinery that regulates neuronal as well as synaptic dysfunction and loss. Aβ-Al seems critical in modulating key AD-related pathways such as glutamatergic transmission, Ca2+ homeostasis, oxidative stress, inflammation, and neuronal apoptosis.
Collapse
|
57
|
Wan L, Nie G, Zhang J, Luo Y, Zhang P, Zhang Z, Zhao B. β-Amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radic Biol Med 2011; 50:122-9. [PMID: 21034809 DOI: 10.1016/j.freeradbiomed.2010.10.707] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/09/2010] [Accepted: 10/20/2010] [Indexed: 11/29/2022]
Abstract
Recent studies indicate that the deposition of β-amyloid peptide (Aβ) is related to the pathogenesis of Alzheimer disease (AD); however, the underlying mechanism is still not clear. The abnormal interactions of Aβ with metal ions such as iron are implicated in the process of Aβ deposition and oxidative stress in AD brains. In this study, we observed that Aβ increased the levels of iron content and oxidative stress in SH-SY5Y cells overexpressing the Swedish mutant form of human β-amyloid precursor protein (APPsw) and in Caenorhabditis elegans Aβ-expressing strain CL2006. Intracellular iron and calcium levels and reactive oxygen species and nitric oxide generation significantly increased in APPsw cells compared to control cells. The activity of superoxide dismutase and the antioxidant levels of APPsw cells were significantly lower than those of control cells. Moreover, iron treatment decreased cell viability and mitochondrial membrane potential and aggravated oxidative stress damage as well as the release of Aβ1-40 from the APPsw cells. The iron homeostasis disruption in APPsw cells is very probably associated with elevated expression of the iron transporter divalent metal transporter 1, but not transferrin receptor. Furthermore, the C. elegans with Aβ-expression had increased iron accumulation. In aggregate, these results demonstrate that Aβ accumulation in neuronal cells correlated with neuronal iron homeostasis disruption and probably contributed to the pathogenesis of AD.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
58
|
Salvador GA, Uranga RM, Giusto NM. Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis 2010; 2011:720658. [PMID: 21234369 PMCID: PMC3014724 DOI: 10.4061/2011/720658] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/10/2010] [Indexed: 01/21/2023] Open
Abstract
The accumulation of transition metals (e.g., copper, zinc, and iron) and the dysregulation of their metabolism are a hallmark in the pathogenesis of several neurodegenerative diseases. This paper will be focused on the mechanism of neurotoxicity mediated by iron. This metal progressively accumulates in the brain both during normal aging and neurodegenerative processes. High iron concentrations in the brain have been consistently observed in Alzheimer's (AD) and Parkinson's (PD) diseases. In this connection, metalloneurobiology has become extremely important in establishing the role of iron in the onset and progression of neurodegenerative diseases. Neurons have developed several protective mechanisms against oxidative stress, among them, the activation of cellular signaling pathways. The final response will depend on the identity, intensity, and persistence of the oxidative insult. The characterization of the mechanisms mediating the effects of iron-induced increase in neuronal dysfunction and death is central to understanding the pathology of a number of neurodegenerative disorders.
Collapse
Affiliation(s)
- Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas Bahía Blanca, Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Argentina
| | | | | |
Collapse
|
59
|
Yang DJ, Shi S, Zheng LF, Yao TM, Ji LN. Mercury(II) promotes the in vitro aggregation of tau fragment corresponding to the second repeat of microtubule-binding domain: Coordination and conformational transition. Biopolymers 2010; 93:1100-7. [PMID: 20665688 DOI: 10.1002/bip.21527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The loss of metal homeostasis and the toxic effect of metal ion are important events in neurodegenerative and age-related diseases, such as Alzheimer's disease (AD). For the first time, we investigated the impacts of mercury(II) ions on the folding and aggregation of Alzheimer's tau fragment R2 (residues 275-305: VQIIN KKLDL SNVQS KCGSK DNIKH VPGGGS), corresponding to the second repeat unit of the microtubule-binding domain, which was believed to be pivotal to the biochemical properties of full tau protein. By ThS fluorescence assay and electron microscopy, we found that mercury(II) dramatically promoted heparin-induced aggregation of R2 at an optimum molar ratio of 1: 2 (metal: protein), and the resulting R2 filaments became smaller. Isothermal titration calorimetry (ITC) experiment revealed that the strong coordination of mercury(II) with R2 was an enthalpy-controlled, entropy-decreased thermodynamic process. The exceptionally large magnitude of heat release (ΔH₁ = -34.8 Kcal mol⁻¹) suggested that the most possible coordinating site on the R2 peptide chain was the thiol group of cysteine residue (Cys291), and this was further confirmed by a control experiment using Cys291 mutated R2. Circular dichroism spectrum demonstrated that this peptide underwent a significant conformational change from random coil to β-turn structure upon its binding to mercury(II) ion. This study was undertaken to better understand the mechanism of tau aggregation, and evaluate the possible role of mercury(II) in the pathogenesis of AD.
Collapse
Affiliation(s)
- Dan-Jing Yang
- Department of Chemistry, Tongji University, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
60
|
Budimir A, Humbert N, Elhabiri M, Osinska I, Biruš M, Albrecht-Gary AM. Hydroxyquinoline based binders: promising ligands for chelatotherapy? J Inorg Biochem 2010; 105:490-6. [PMID: 20926137 DOI: 10.1016/j.jinorgbio.2010.08.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/24/2010] [Accepted: 08/30/2010] [Indexed: 12/27/2022]
Abstract
We report here a thorough physico-chemical study of the coordination properties of clioquinol, an oxine-type active neurological drug in Alzheimer's disease, toward biologically relevant divalent metal ions (Cu, Zn, Ni, Co and Mn). Using a fruitful combination of electrospray mass spectrometry, absorption spectrophotometry and potentiometry, we have characterized the mono- and bis-chelated metal ion species. The determination of the stability constants showed a classical thermodynamic behavior along the studied series with the cupric complexes being by far the most stable species. Our data are discussed within the scope of Alzheimer's disease.
Collapse
Affiliation(s)
- Ana Budimir
- Laboratoire de Physico-Chimie Bioinorganique, UMR 7177 du CNRS, Université Louis Pasteur, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
61
|
Jiang D, Li X, Liu L, Yagnik GB, Zhou F. Reaction rates and mechanism of the ascorbic acid oxidation by molecular oxygen facilitated by Cu(II)-containing amyloid-beta complexes and aggregates. J Phys Chem B 2010; 114:4896-903. [PMID: 20302320 DOI: 10.1021/jp9095375] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A forefront of the research on Alzheimer's disease (AD) is the interaction of amyloid beta (Abeta) peptides with redox metal ions (e.g., Cu(II), Fe(III), and Fe(II)) and the biological relevance of the Abeta-metal complexes to neuronal cell loss and homeostasis of essential metals and other cellular species. This work is concerned with the kinetic and mechanistic studies of the ascorbic acid oxidation reaction by molecular oxygen that is facilitated by Cu(II) complexes with Abeta(1-16), Abeta(1-42), and aggregates of Abeta(1-42). The reaction rate was found to linearly increase with the concentrations of Abeta-Cu(II) and dissolved oxygen and be invariant with high ascorbic acid concentrations. The rate constants were measured to be 117.2 +/- 15.4 and 15.8 +/- 2.8 M(-1) s(-1) at low (<100 muM) and high AA concentrations, respectively. Unlike free Cu(II), in the presence of AA, Abeta-Cu(II) complexes facilitate the reduction of oxygen by producing H(2)O(2) as a major product. Such a conclusion is drawn on the basis that the reaction stoichiometry between AA and O(2) is 1:1 when the Abeta concentration is kept at a much greater value than that of Cu(II). A mechanism is proposed for the AA oxidation in which the oxidation states of the copper center in the Abeta complex alternates between 2+ and 1+. The catalytic activity of Cu(II) toward O(2) reduction was found to decrease in the order of free Cu(II) > Abeta(1-16)-Cu(II) > Abeta(1-42)-Cu(II) > Cu(II) complexed by the Abeta oligomer/fibril mixture > Cu(II) in Abeta fibrils. The finding that Cu(II) in oligomeric and fibrous Abeta aggregates possesses considerable activity toward H(2)O(2) generation is particularly significant, since in senile plaques of AD patients the coexisting copper and Abeta aggregates have been suggested to inflict oxidative stress through the production of reactive oxygen species (ROS). Although Cu(II) bound to oligomeric and fibrous Abeta aggregates is less effective than free Cu(II) and the monomeric Abeta-Cu(II) complex in producing ROS, in vivo the Cu(II)-containing Abeta oligomers and fibrils might be more biologically relevant given their stronger association with cell membranes and the closer proximity of ROS to cell membranes.
Collapse
Affiliation(s)
- Dianlu Jiang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| | | | | | | | | |
Collapse
|
62
|
Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S. The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 2010; 186:184-99. [DOI: 10.1016/j.cbi.2010.04.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/22/2010] [Accepted: 04/08/2010] [Indexed: 12/14/2022]
|
63
|
Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B, Huang X, Rogers JT. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem 2010; 285:31217-32. [PMID: 20558735 DOI: 10.1074/jbc.m110.149161] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Iron influx increases the translation of the Alzheimer amyloid precursor protein (APP) via an iron-responsive element (IRE) RNA stem loop in its 5'-untranslated region. Equal modulated interaction of the iron regulatory proteins (IRP1 and IRP2) with canonical IREs controls iron-dependent translation of the ferritin subunits. However, our immunoprecipitation RT-PCR and RNA binding experiments demonstrated that IRP1, but not IRP2, selectively bound the APP IRE in human neural cells. This selective IRP1 interaction pattern was evident in human brain and blood tissue from normal and Alzheimer disease patients. We computer-predicted an optimal novel RNA stem loop structure for the human, rhesus monkey, and mouse APP IREs with reference to the canonical ferritin IREs but also the IREs encoded by erythroid heme biosynthetic aminolevulinate synthase and Hif-2α mRNAs, which preferentially bind IRP1. Selective 2'-hydroxyl acylation analyzed by primer extension analysis was consistent with a 13-base single-stranded terminal loop and a conserved GC-rich stem. Biotinylated RNA probes deleted of the conserved CAGA motif in the terminal loop did not bind to IRP1 relative to wild type probes and could no longer base pair to form a predicted AGA triloop. An AGU pseudo-triloop is key for IRP1 binding to the canonical ferritin IREs. RNA probes encoding the APP IRE stem loop exhibited the same high affinity binding to rhIRP1 as occurs for the H-ferritin IRE (35 pm). Intracellular iron chelation increased binding of IRP1 to the APP IRE, decreasing intracellular APP expression in SH-SY5Y cells. Functionally, shRNA knockdown of IRP1 caused increased expression of neural APP consistent with IRP1-APP IRE-driven translation.
Collapse
Affiliation(s)
- Hyun-Hee Cho
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Lead-induced accumulation of beta-amyloid in the choroid plexus: role of low density lipoprotein receptor protein-1 and protein kinase C. Neurotoxicology 2010; 31:524-32. [PMID: 20488202 DOI: 10.1016/j.neuro.2010.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 11/24/2022]
Abstract
The choroid plexus (CP), constituting the blood-cerebrospinal fluid barrier, has the capacity to remove beta-amyloid (Abeta) from the cerebrospinal fluid. Our previous work indicates that exposure to lead (Pb) results in Abeta accumulation in the CP by decreasing the expression of low density lipoprotein receptor protein-1 (LRP1), a protein involved in the transport and clearance of Abeta. The current study was designed to explore the relationship between Abeta accumulation, protein kinase C (PKC) activity, and LRP1 status in the CP following Pb exposure. Confocal microscopy revealed that LRP1 was primarily localized in the cytosol of the CP in control rats and migrated distinctly towards the apical surface and the microvilli following acute Pb exposure (27 mg Pb/kg, i.p., 24h). Co-immunostaining revealed a co-localization of both PKC-delta and LRP1 in the cytosol of control rats, with a distinct relocalization of both towards the apical membrane following Pb exposure. Preincubation of the tissues with PKC-delta inhibitor rottlerin (2 microM) prior to Pb exposure in vitro, resulted in abolishing the Pb-induced relocalization of LRP1 to the apical surface. Importantly, a significant elevation in intracellular Abeta levels (p<0.01) was observed in the cytosol of the CP following Pb exposure, which was abolished following preincubation with rottlerin. In addition, rottlerin caused a relocalization of Abeta from the cytosol to the nucleus in both Pb-treated and control CP tissues. Finally, co-immunoprecipitation studies revealed a strong protein-protein interaction between LRP1 and PKC-delta in the CP. These studies suggest that Pb exposure disrupts Abeta homeostasis at the CP, owing partly to a Pb-induced relocalization of LRP1 via PKC-delta.
Collapse
|
65
|
Prolyl-peptidyl isomerase, Pin1, phosphorylation is compromised in association with the expression of the HFE polymorphic allele, H63D. Biochim Biophys Acta Mol Basis Dis 2010; 1802:389-95. [DOI: 10.1016/j.bbadis.2010.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 12/09/2009] [Accepted: 01/05/2010] [Indexed: 12/14/2022]
|
66
|
Wang LM, Becker JS, Wu Q, Oliveira MF, Bozza FA, Schwager AL, Hoffman JM, Morton KA. Bioimaging of copper alterations in the aging mouse brain by autoradiography, laser ablation inductively coupled plasma mass spectrometry and immunohistochemistry. Metallomics 2010; 2:348-53. [PMID: 21072380 DOI: 10.1039/c003875j] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper may play an important role in the brain in aging and neurodegenerative diseases. We compare the active Cu uptake, Cu-containing enzyme levels, and total Cu distribution in the brains of young and aging mice. (67)Cu was administered intravenously to 2, 7-9, and 14 month old mice. Active uptake of (67)Cu in the brain was measured at 24 h by digital phosphor autoradiography. Cerebral superoxide dismutase-1 (SOD-1) and cytochrome-C oxidase subunit-1 (CCO-1) levels were analyzed by immunohistochemistry. The total Cu distribution in brain section was determined by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). In aging mice, active (67)Cu uptake and SOD-1 levels were significantly decreased in the brain, whereas blood (67)Cu and CCO-1 levels were similar for all mice, irrespective of age. Paradoxically, global Cu cerebral content was increased in aged mice, suggesting that regulation of active Cu uptake by the brain may be linked to total Cu levels in an attempt to maintain Cu homeostasis. However, focal areas of both decreased Cu uptake and Cu content were noted in the striatum and ventral cortex in aging mice. These focal areas of Cu deficit correspond to the regions of greatest reduction in SOD-1 in the aged mice. In aging, dysregulated Cu homeostasis may result in decreased SOD-1 levels, which may contribute to oxidative vulnerability of the aging brain. This study illustrates the importance of a multi-modality approach in studying the biodistribution and homeostasis of Cu in the brain.
Collapse
Affiliation(s)
- Li-Ming Wang
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Abada S, Lecointre A, Elhabiri M, Charbonnière LJ. Formation of very stable and selective Cu(ii) complexes with a non-macrocyclic ligand: can basicity rival pre-organization? Dalton Trans 2010; 39:9055-62. [DOI: 10.1039/c0dt00453g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
68
|
Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C, Becker JS. Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). MASS SPECTROMETRY REVIEWS 2010; 29:156-75. [PMID: 19557838 DOI: 10.1002/mas.20239] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The distribution analysis of (essential, beneficial, or toxic) metals (e.g., Cu, Fe, Zn, Pb, and others), metalloids, and non-metals in biological tissues is of key interest in life science. Over the past few years, the development and application of several imaging mass spectrometric techniques has been rapidly growing in biology and medicine. Especially, in brain research metalloproteins are in the focus of targeted therapy approaches of neurodegenerative diseases such as Alzheimer's and Parkinson's disease, or stroke, or tumor growth. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using double-focusing sector field (LA-ICP-SFMS) or quadrupole-based mass spectrometers (LA-ICP-QMS) has been successfully applied as a powerful imaging (mapping) technique to produce quantitative images of detailed regionally specific element distributions in thin tissue sections of human or rodent brain. Imaging LA-ICP-QMS was also applied to investigate metal distributions in plant and animal sections to study, for example, the uptake and transport of nutrient and toxic elements or environmental contamination. The combination of imaging LA-ICP-MS of metals with proteomic studies using biomolecular mass spectrometry identifies metal-containing proteins and also phosphoproteins. Metal-containing proteins were imaged in a two-dimensional gel after electrophoretic separation of proteins (SDS or Blue Native PAGE). Recent progress in LA-ICP-MS imaging as a stand-alone technique and in combination with MALDI/ESI-MS for selected life science applications is summarized.
Collapse
Affiliation(s)
- J Sabine Becker
- Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|
69
|
Becker JS, Matusch A, Palm C, Salber D, Morton KA, Becker JS. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics. Metallomics 2009; 2:104-11. [PMID: 21069140 DOI: 10.1039/b916722f] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.
Collapse
Affiliation(s)
- J Sabine Becker
- Central Division of Analytical Chemistry, Forschungszentrum Jülich, Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
70
|
de Souza Oliveira RP, Rivas Torres B, Zilli M, de Araújo Viana Marques D, Basso LC, Converti A. Use of sugar cane vinasse to mitigate aluminum toxicity to Saccharomyces cerevisiae. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:488-494. [PMID: 19184166 DOI: 10.1007/s00244-009-9287-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/08/2009] [Indexed: 05/27/2023]
Abstract
Owing to its toxicity, aluminum (Al), which is one of the most abundant metals, inhibits the productivity of many cultures and affects the microbial metabolism. The aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Al on cell growth, viability, and budding, as the likely result of possible chelating action. For this purpose, Fleischmann's yeast (Saccharomyces cerevisiae) was used in growth tests performed in 125-mL Erlenmeyer flasks containing 30 mL of YED medium (5.0 g/L yeast extract plus 20 g/L glucose) supplemented with the selected amounts of either vinasse or Al in the form of AlCl(3) . H(2)O. Without vinasse, the addition of increasing levels of Al up to 54 mg/L reduced the specific growth rate by 18%, whereas no significant reduction was observed in its presence. The toxic effect of Al on S. cerevisiae growth and the mitigating effect of sugar cane vinasse were quantified by the exponential model of Ciftci et al. (Biotechnol Bioeng 25:2007-2023, 1983). The cell viability decreased from 97.7% at the start to 84.0% at the end of runs without vinasse and to 92.3% with vinasse. On the other hand, the cell budding increased from 7.62% at the start to 8.84% at the end of runs without vinasse and to 17.8% with vinasse. These results demonstrate the ability of this raw material to stimulate cell growth and mitigate the toxic effect of Al.
Collapse
Affiliation(s)
- Ricardo Pinheiro de Souza Oliveira
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, São Paulo University, Av Prof Lineu Prestes, 580, Bl. 16, 05508-900 Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
71
|
Affiliation(s)
- Reagan McRae
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Pritha Bagchi
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - S. Sumalekshmy
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| |
Collapse
|
72
|
Zheng W, Xin N, Chi ZH, Zhao BL, Zhang J, Li JY, Wang ZY. Divalent metal transporter 1 is involved in amyloid precursor protein processing and Aβ generation. FASEB J 2009; 23:4207-17. [DOI: 10.1096/fj.09-135749] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wei Zheng
- Key Laboratory of Cell Biology Ministry of Public Health of China Laboratory of Cell Engineering and Cell Therapy China Medical University Shenyang China
| | - Na Xin
- Key Laboratory of Cell Biology Ministry of Public Health of China Laboratory of Cell Engineering and Cell Therapy China Medical University Shenyang China
| | - Zhi-Hong Chi
- Key Laboratory of Cell Biology Ministry of Public Health of China Laboratory of Cell Engineering and Cell Therapy China Medical University Shenyang China
| | - Bo-Lu Zhao
- State Key Laboratory of Brain and Cognitive Sciences Institute of Biophysics Academia Sinica Beijing China
| | - Jie Zhang
- State Key Laboratory of Brain and Cognitive Sciences Institute of Biophysics Academia Sinica Beijing China
| | - Jia-Yi Li
- Department of Experimental Medical Science Lund University Sweden
| | - Zhan-You Wang
- Key Laboratory of Cell Biology Ministry of Public Health of China Laboratory of Cell Engineering and Cell Therapy China Medical University Shenyang China
| |
Collapse
|
73
|
Cahill CM, Lahiri DK, Huang X, Rogers JT. Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:615-28. [PMID: 19166904 PMCID: PMC3981543 DOI: 10.1016/j.bbagen.2008.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 11/24/2008] [Accepted: 12/05/2008] [Indexed: 12/19/2022]
Abstract
Recent studies that alleles in the hemochromatosis gene may accelerate the onset of Alzheimer's disease by five years have validated interest in the model in which metals (particularly iron) accelerate disease course. Biochemical and biophysical measurements demonstrated the presence of elevated levels of neurotoxic copper zinc and iron in the brains of AD patients. Intracellular levels of APP holoprotein were shown to be modulated by iron by a mechanism that is similar to the translation control of the ferritin L- and H mRNAs by iron-responsive element (IRE) RNA stem loops in their 5' untranslated regions (5'UTRs). More recently a putative IRE-like sequence was hypothesized present in the Parkinsons's alpha synuclein (ASYN) transcript (see [A.L. Friedlich, R.E. Tanzi, J.T. Rogers, The 5'-untranslated region of Parkinson's disease alpha-synuclein messenger RNA contains a predicted iron responsive element, Mol. Psychiatry 12 (2007) 222-223. [6]]). Together with the demonstration of metal dependent translation of APP mRNA, the involvement of metals in the plaque of AD patients and of increased iron in striatal neurons in the substantia nigra (SN) of Parkinson's disease patients have stimulated the development of metal attenuating agents and iron chelators as a major new therapeutic strategy for the treatment of these neurodegenerative diseases. In the case of AD, metal based therapeutics may ultimately prove more cost effective than the use of an amyloid vaccine as the preferred anti-amyloid therapeutic strategy to ameliorate the cognitive decline of AD patients.
Collapse
Affiliation(s)
- Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, CNY2, Building 149, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
74
|
Alzheimer's disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci 2009; 30:346-55. [DOI: 10.1016/j.tips.2009.05.002] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/15/2009] [Accepted: 05/06/2009] [Indexed: 12/20/2022]
|
75
|
Chen T, Wang X, He Y, Zhang C, Wu Z, Liao K, Wang J, Guo Z. Effects of Cyclen and Cyclam on Zinc(II)- and Copper(II)-Induced Amyloid β-Peptide Aggregation and Neurotoxicity. Inorg Chem 2009; 48:5801-9. [DOI: 10.1021/ic900025x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Nantong University, School of Chemistry and Chemical Engineering, Nantong 226019, China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yafeng He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Changli Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ziyi Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Kuo Liao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jianjun Wang
- School of Medicine, Wayne State University, Detroit, Michigan 48202
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
76
|
Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer's disease. Biochem Soc Trans 2009; 36:1282-7. [PMID: 19021541 DOI: 10.1042/bst0361282] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The essential metals iron, zinc and copper deposit near the Abeta (amyloid beta-peptide) plaques in the brain cortex of AD (Alzheimer's disease) patients. Plaque-associated iron and zinc are in neurotoxic excess at 1 mM concentrations. APP (amyloid precursor protein) is a single transmembrane metalloprotein cleaved to generate the 40-42-amino-acid Abetas, which exhibit metal-catalysed neurotoxicity. In health, ubiquitous APP is cleaved in a non-amyloidogenic pathway within its Abeta domain to release the neuroprotective APP ectodomain, APP(s). To adapt and counteract metal-catalysed oxidative stress, as during reperfusion from stroke, iron and cytokines induce the translation of both APP and ferritin (an iron storage protein) by similar mechanisms. We reported that APP was regulated at the translational level by active IL (interleukin)-1 (IL-1-responsive acute box) and IRE (iron-responsive element) RNA stem-loops in the 5' untranslated region of APP mRNA. The APP IRE is homologous with the canonical IRE RNA stem-loop that binds the iron regulatory proteins (IRP1 and IRP2) to control intracellular iron homoeostasis by modulating ferritin mRNA translation and transferrin receptor mRNA stability. The APP IRE interacts with IRP1 (cytoplasmic cis-aconitase), whereas the canonical H-ferritin IRE RNA stem-loop binds to IRP2 in neural cell lines, and in human brain cortex tissue and in human blood lysates. The same constellation of RNA-binding proteins [IRP1/IRP2/poly(C) binding protein] control ferritin and APP translation with implications for the biology of metals in AD.
Collapse
|
77
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
78
|
Promotion of cellular NAD(+) anabolism: therapeutic potential for oxidative stress in ageing and Alzheimer's disease. Neurotox Res 2008; 13:173-84. [PMID: 18522897 DOI: 10.1007/bf03033501] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxidative imbalance is a prominent feature in Alzheimer's disease and ageing. Increased levels of reactive oxygen species (ROS) can result in disordered cellular metabolism due to lipid peroxdation, protein-cross linking, DNA damage and the depletion of nicotinamide adenine dinucleotide (NAD(+)). NAD(+) is a ubiquitous pyridine nucleotide that plays an essential role in important biological reactions., from ATP production and secondary messenger signaling, to transcriptional regulation and DNA repair. Chronic oxidative stress may be associated with NAD(+) depletion and a subsequent decrease in metabolic regulation and cell viability. Hence, therapies targeted toward maintaining intracellular NAD(+) pools may prove efficacious in the protection of age-dependent cellular damage, in general, and neurodegeneration in chronic central nervous system inflammatory diseases such as Alzheimer's disease, in particular.
Collapse
|
79
|
Drago D, Cavaliere A, Mascetra N, Ciavardelli D, Di Ilio C, Zatta P, Sensi SL. Aluminum Modulates Effects of βAmyloid1–42 on Neuronal Calcium Homeostasis and Mitochondria Functioning and Is Altered in a Triple Transgenic Mouse Model of Alzheimer's Disease. Rejuvenation Res 2008; 11:861-71. [DOI: 10.1089/rej.2008.0761] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Denise Drago
- CNR-Institute for Biomedical Technologies, Padua “Metalloproteins” Unit, Department of Biology, University of Padua, Padua, Italy
| | - Alessandra Cavaliere
- CNR-Institute for Biomedical Technologies, Padua “Metalloproteins” Unit, Department of Biology, University of Padua, Padua, Italy
| | - Nicola Mascetra
- Department of Basic and Applied Medical Science, Molecular Neurology Unit, CeSI-Center for Excellence on Aging, University ‘G. d'Annunzio’, Chieti, Italy
| | - Domenico Ciavardelli
- Department of Biochemistry, Biochemistry Unit, CeSI-Center for Excellence on Aging, University ‘G. d'Annunzio’, Chieti, Italy
| | - Carmine Di Ilio
- Department of Biochemistry, Biochemistry Unit, CeSI-Center for Excellence on Aging, University ‘G. d'Annunzio’, Chieti, Italy
| | - Paolo Zatta
- CNR-Institute for Biomedical Technologies, Padua “Metalloproteins” Unit, Department of Biology, University of Padua, Padua, Italy
| | - Stefano L. Sensi
- Department of Basic and Applied Medical Science, Molecular Neurology Unit, CeSI-Center for Excellence on Aging, University ‘G. d'Annunzio’, Chieti, Italy
- Department of Neurology, University of California–Irvine, Irvine, California
| |
Collapse
|
80
|
Damante CA, Osz K, Nagy Z, Pappalardo G, Grasso G, Impellizzeri G, Rizzarelli E, Sóvágó I. The metal loading ability of beta-amyloid N-terminus: a combined potentiometric and spectroscopic study of copper(II) complexes with beta-amyloid(1-16), its short or mutated peptide fragments, and its polyethylene glycol (PEG)-ylated analogue. Inorg Chem 2008; 47:9669-83. [PMID: 18808108 DOI: 10.1021/ic8006052] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is becoming a rapidly growing health problem, as it is one of the main causes of dementia in the elderly. Interestingly, copper(II) (together with zinc and iron) ions are accumulated in amyloid deposits, suggesting that metal binding to Abeta could be involved in AD pathogenesis. In Abeta, the metal binding is believed to occur within the N-terminal region encompassing the amino acid residues 1-16. In this work, potentiometric, spectroscopic (UV-vis, circular dichroism, and electron paramagnetic resonance), and electrospray ionization mass spectrometry (ESI-MS) approaches were used to investigate the copper(II) coordination features of a new polyethylene glycol (PEG)-conjugated Abeta peptide fragment encompassing the 1-16 amino acid residues of the N-terminal region (Abeta(1-16)PEG). The high water solubility of the resulting metal complexes allowed us to obtain a complete complex speciation at different metal-to-ligand ratios ranging from 1:1 to 4:1. Potentiometric and ESI-MS data indicate that Abeta(1-16)PEG is able to bind up to four copper(II) ions. Furthermore, in order to establish the coordination environment at each metal binding site, a series of shorter peptide fragments of Abeta, namely, Abeta(1-4), Abeta(1-6), AcAbeta(1-6), and AcAbeta(8-16)Y10A, were synthesized, each encompassing a potential copper(II) binding site. The complexation properties of these shorter peptides were also comparatively investigated by using the same experimental approach.
Collapse
Affiliation(s)
- Chiara A Damante
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Kastenholz B. Phytochemical approach and bioanalytical strategy to develop chaperone-based medications. Open Biochem J 2008; 2:44-8. [PMID: 18949074 PMCID: PMC2570550 DOI: 10.2174/1874091x00802010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/19/2008] [Accepted: 03/25/2008] [Indexed: 11/22/2022] Open
Abstract
Currently, no pharmaceuticals for the etiological treatment of degenerative protein-misfolding diseases (e.g., ALS, Alzheimer's or prion diseases) are commercially available. In this technical note theoretical considerations and practical approaches concerning the development of chaperone-based medications from medicinal plants (e.g., Ginkgo biloba) are reviewed and discussed in detail. Phytochaperones and other agents isolated from medicinal plants are proposed to serve as the general basis of drug development in protein-misfolding diseases.
Collapse
Affiliation(s)
- Bernd Kastenholz
- Aachen City Region, North Rhine-Westphalia, Eschweiler (Rhld.) 52249, Germany
| |
Collapse
|
82
|
Guilarte TR, Burton NC, Verina T, Prabhu VV, Becker KG, Syversen T, Schneider JS. Increased APLP1 expression and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. J Neurochem 2008; 105:1948-59. [PMID: 18284614 DOI: 10.1111/j.1471-4159.2008.05295.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic manganese (Mn) exposure produces a neurological syndrome with psychiatric, cognitive, and parkinsonian features. Gene expression profiling in the frontal cortex of Cynomologous macaques receiving 3.3-5.0 mg Mn/kg weekly for 10 months showed that 61 genes were increased and four genes were decreased relative to controls from a total of 6766 genes. Gene changes were associated with cell cycle regulation, DNA repair, apoptosis, ubiquitin-proteasome system, protein folding, cholesterol homeostasis, axonal/vesicular transport, and inflammation. Amyloid-beta (Abeta) precursor-like protein 1, a member of the amyloid precursor protein family, was the most highly up-regulated gene. Immunohistochemistry confirmed increased amyloid precursor-like protein 1 protein expression and revealed the presence of diffuse Abeta plaques in Mn-exposed frontal cortex. Cortical neurons and white matter fibers from Mn-exposed animals accumulated silver grains indicative of on-going degeneration. Cortical neurons also exhibited nuclear hypertrophy, intracytoplasmic vacuoles, and apoptosis stigmata. p53 immunolabeling was increased in the cytoplasm of neurons and in the nucleus and processes of glial cells in Mn-exposed tissue. In summary, chronic Mn exposure produces a cellular stress response leading to neurodegenerative changes and diffuse Abeta plaques in the frontal cortex. These changes may explain the subtle cognitive deficits previously demonstrated in these same animals.
Collapse
Affiliation(s)
- Tomás R Guilarte
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
83
|
Potential pathogenic role of β-amyloid1–42–aluminum complex in Alzheimer's disease. Int J Biochem Cell Biol 2008; 40:731-46. [DOI: 10.1016/j.biocel.2007.10.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/09/2007] [Accepted: 10/09/2007] [Indexed: 11/20/2022]
|
84
|
Linkous DH, Flinn JM, Koh JY, Lanzirotti A, Bertsch PM, Jones BF, Giblin LJ, Frederickson CJ. Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles. J Histochem Cytochem 2007; 56:3-6. [PMID: 17712179 PMCID: PMC2323120 DOI: 10.1369/jhc.6a7035.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ZNT3 protein decorates the presynaptic vesicles of central neurons harboring vesicular zinc, and deletion of this protein removes staining for zinc. However, it has been unclear whether only histochemically reactive zinc is lacking or if, indeed, total elemental zinc is missing from neurons lacking the Slc30a3 gene, which encodes the ZNT3 protein. The limitations of conventional histochemical procedures have contributed to this enigma. However, a novel technique, microprobe synchrotron X-ray fluorescence, reveals that the normal 2- to 3-fold elevation of zinc concentration normally present in the hippocampal mossy fibers is absent in Slc30a3 knockout (ZNT3) mice. Thus, the ZNT3 protein evidently controls not only the "stainability" but also the actual mass of zinc in mossy-fiber synaptic vesicles. This work thus confirms the metal-transporting role of the ZNT3 protein in the brain.
Collapse
Affiliation(s)
- David H Linkous
- NeuroBioTex, Inc., 101 Christopher Columbus Blvd., Galveston, TX 77550, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Swan GE, Lessov-Schlaggar CN. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol Rev 2007; 17:259-73. [PMID: 17690985 DOI: 10.1007/s11065-007-9035-9] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 06/26/2007] [Indexed: 11/25/2022]
Abstract
Tobacco smoke consists of thousands of compounds including nicotine. Many constituents have known toxicity to the brain, cardiovascular, and pulmonary systems. Nicotine, on the other hand, by virtue of its short-term actions on the cholinergic system, has positive effects on certain cognitive domains including working memory and executive function and may be, under certain conditions, neuroprotective. In this paper, we review recent literature, laboratory and epidemiologic, that describes the components of mainstream and sidestream tobacco smoke, including heavy metals and their toxicity, the effect of medicinal nicotine on the brain, and studies of the relationship between smoking and (1) preclinical brain changes including silent brain infarcts; white matter hyperintensities, and atrophy; (2) single measures of cognition; (3) cognitive decline over repeated measures; and (4) dementia. In most studies, exposure to smoke is associated with increased risk for negative preclinical and cognitive outcomes in younger people as well as in older adults. Potential mechanisms for smoke's harmful effects include oxidative stress, inflammation, and atherosclerotic processes. Recent evidence implicates medicinal nicotine as potentially harmful to both neurodevelopment in children and to catalyzing processes underlying neuropathology in Alzheimer's Disease. The reviewed evidence suggests caution with the use of medicinal nicotine in pregnant mothers and older adults at risk for certain neurological disease. Directions for future research in this area include the assessment of comorbidities (alcohol consumption, depression) that could confound the association between smoking and neurocognitive outcomes, the use of more specific measures of smoking behavior and cognition, the use of biomarkers to index exposure to smoke, and the assessment of cognition-related genotypes to better understand the role of interactions between smoking/nicotine and variation in genotype in determining susceptibility to the neurotoxic effects of smoking and the putative beneficial effects of medicinal nicotine.
Collapse
Affiliation(s)
- Gary E Swan
- Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| | | |
Collapse
|
86
|
Mandel S, Amit T, Bar-Am O, Youdim MBH. Iron dysregulation in Alzheimer's disease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents. Prog Neurobiol 2007; 82:348-60. [PMID: 17659826 DOI: 10.1016/j.pneurobio.2007.06.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/11/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
Considering the multi-etiological character of Alzheimer's disease (AD), the current pharmacological approaches using drugs oriented towards a single molecular target possess limited ability to modify the course of the disease and thus, offer a partial benefit to the patient. In line with this concept, novel strategies include the use of a cocktail of several drugs and/or the development of a single molecule, possessing two or more active neuroprotective-neurorescue moieties that simultaneously manipulate multiple targets involved in AD pathology. A consistent observation in AD is a dysregulation of metal ions (Fe(2+), Cu(2+) and Zn(2+)) homeostasis and consequential induction of oxidative stress, associated with beta-amyloid aggregation and neurite plaque formation. In particular, iron has been demonstrated to modulate the Alzheimer's amyloid precursor holo-protein expression by a pathway similar to that of ferritin L-and H-mRNA translation through iron-responsive elements in their 5'UTRs. This review will discuss two separate scenarios concerning multiple therapy targets in AD, sharing in common the implementation of iron chelation activity: (i) novel multimodal brain-permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities; (ii) natural plant polyphenols (flavonoids), such as green tea epigallocatechin gallate (EGCG) and curcumin, reported to have access to the brain and to possess multifunctional activities, such as metal chelation-radical scavenging, anti-inflammation and neuroprotection.
Collapse
Affiliation(s)
- Silvia Mandel
- Eve Topf and USA NPF Centers of Excellence, Technion-Faculty of Medicine, Department of Pharmacology, Israel
| | | | | | | |
Collapse
|
87
|
Abstract
Alzheimer's Disease (AD) is a progressive, irreversible neurodegenerative disease. Despite several genetic mutations (Haass et al., J. Biol. Chem. 269:17741-17748, 1994; Ancolio et al., Proc. Natl. Acad. Sci. USA 96:4119-4124, 1999; Munoz and Feldman, CMAJ 162:65-72, 2000; Gatz et al., Neurobiol. Aging 26:439-447, 2005) found in AD patients, more than 90% of AD cases are sporadic (Bertram and Tanzi, Hum. Mol. Genet. 13:R135-R141, 2004). Therefore, it is plausible that environmental exposure may be an etiologic factor in the pathogenesis of AD. The AD brain is characterized by extracellular beta-amyloid (Abeta) deposition and intracellular hyperphosphorylated tau protein. Our lab has demonstrated that developmental exposure of rodents to the heavy metal lead (Pb) increases APP (amyloid precursor protein) and Abeta production later in the aging brain (Basha et al., J. Neurosci. 25:823-829, 2005a). We also found elevations in the oxidative marker 8-oxo-dG in older animals that had been developmentally exposed to Pb (Bolin et al., FASEB J. 20:788-790, 2006) as well as promotion of amyloidogenic histopathology in primates. These findings indicate that early life experiences contribute to amyloidogenesis in old age perhaps through epigenetic pathways. Here we explore the role of epigenetics as the underlying mechanism that mediates this early exposure-latent pathogenesis with a special emphasis on alterations in the methylation profiles of CpG dinucleotides in the promoters of genes and their influence on both gene transcription and oxidative DNA damage.
Collapse
Affiliation(s)
- Jinfang Wu
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | | |
Collapse
|
88
|
Paunesku T, Vogt S, Maser J, Lai B, Woloschak G. X-ray fluorescence microprobe imaging in biology and medicine. J Cell Biochem 2007; 99:1489-502. [PMID: 17006954 DOI: 10.1002/jcb.21047] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Characteristic X-ray fluorescence is a technique that can be used to establish elemental concentrations for a large number of different chemical elements simultaneously in different locations in cell and tissue samples. Exposing the samples to an X-ray beam is the basis of X-ray fluorescence microscopy (XFM). This technique provides the excellent trace element sensitivity; and, due to the large penetration depth of hard X-rays, an opportunity to image whole cells and quantify elements on a per cell basis. Moreover, because specimens prepared for XFM do not require sectioning, they can be investigated close to their natural, hydrated state with cryogenic approaches. Until several years ago, XFM was not widely available to bio-medical communities, and rarely offered resolution better then several microns. This has changed drastically with the development of third-generation synchrotrons. Recent examples of elemental imaging of cells and tissues show the maturation of XFM imaging technique into an elegant and informative way to gain insight into cellular processes. Future developments of XFM-building of new XFM facilities with higher resolution, higher sensitivity or higher throughput will further advance studies of native elemental makeup of cells and provide the biological community including the budding area of bionanotechnology with a tool perfectly suited to monitor the distribution of metals including nanovectors and measure the results of interactions between the nanovectors and living cells and tissues.
Collapse
Affiliation(s)
- Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|