51
|
McDowall M, Edwards N, Jahoda C, Hynd P. The role of activins and follistatins in skin and hair follicle development and function. Cytokine Growth Factor Rev 2008; 19:415-26. [DOI: 10.1016/j.cytogfr.2008.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
52
|
Musso T, Scutera S, Vermi W, Daniele R, Fornaro M, Castagnoli C, Alotto D, Ravanini M, Cambieri I, Salogni L, Elia AR, Giovarelli M, Facchetti F, Girolomoni G, Sozzani S. Activin A induces Langerhans cell differentiation in vitro and in human skin explants. PLoS One 2008; 3:e3271. [PMID: 18813341 PMCID: PMC2533393 DOI: 10.1371/journal.pone.0003271] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/01/2008] [Indexed: 12/30/2022] Open
Abstract
Langerhans cells (LC) represent a well characterized subset of dendritic cells located in the epidermis of skin and mucosae. In vivo, they originate from resident and blood-borne precursors in the presence of keratinocyte-derived TGFbeta. In vitro, LC can be generated from monocytes in the presence of GM-CSF, IL-4 and TGFbeta. However, the signals that induce LC during an inflammatory reaction are not fully investigated. Here we report that Activin A, a TGFbeta family member induced by pro-inflammatory cytokines and involved in skin morphogenesis and wound healing, induces the differentiation of human monocytes into LC in the absence of TGFbeta. Activin A-induced LC are Langerin+, Birbeck granules+, E-cadherin+, CLA+ and CCR6+ and possess typical APC functions. In human skin explants, intradermal injection of Activin A increased the number of CD1a+ and Langerin+ cells in both the epidermis and dermis by promoting the differentiation of resident precursor cells. High levels of Activin A were present in the upper epidermal layers and in the dermis of Lichen Planus biopsies in association with a marked infiltration of CD1a+ and Langerin+ cells. This study reports that Activin A induces the differentiation of circulating CD14+ cells into LC. Since Activin A is abundantly produced during inflammatory conditions which are also characterized by increased numbers of LC, we propose that this cytokine represents a new pathway, alternative to TGFbeta, responsible for LC differentiation during inflammatory/autoimmune conditions.
Collapse
Affiliation(s)
- Tiziana Musso
- Department of Public Health and Microbiology, University of Torino, Turin, Italy
| | - Sara Scutera
- Department of Public Health and Microbiology, University of Torino, Turin, Italy
| | - William Vermi
- Department of Pathology, University of Brescia, Brescia, Italy
| | - Roberta Daniele
- Section of General Pathology and Immunology, Department of Biomedical Sciences and Biotecnology, University of Brescia, Brescia, Italy
- Deparment of Dermatology, University of Verona, Verona, Italy
| | - Michele Fornaro
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Carlotta Castagnoli
- Department of Plastic Surgery and Burn Unit Skin Bank, CTO Hospital, Turin, Italy
| | - Daniela Alotto
- Department of Plastic Surgery and Burn Unit Skin Bank, CTO Hospital, Turin, Italy
| | - Maria Ravanini
- Department of Pathology, University of Brescia, Brescia, Italy
| | - Irene Cambieri
- Department of Plastic Surgery and Burn Unit Skin Bank, CTO Hospital, Turin, Italy
| | - Laura Salogni
- Section of General Pathology and Immunology, Department of Biomedical Sciences and Biotecnology, University of Brescia, Brescia, Italy
| | - Angela Rita Elia
- Medicine and Experimental Oncology, and Clinical and Biological Sciences, University of Torino, Center for Experimental Research and Medical Studies (CERMS), S. Giovanni Battista Hospital, Turin, Italy
| | - Mirella Giovarelli
- Medicine and Experimental Oncology, and Clinical and Biological Sciences, University of Torino, Center for Experimental Research and Medical Studies (CERMS), S. Giovanni Battista Hospital, Turin, Italy
| | - Fabio Facchetti
- Department of Pathology, University of Brescia, Brescia, Italy
| | | | - Silvano Sozzani
- Section of General Pathology and Immunology, Department of Biomedical Sciences and Biotecnology, University of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
53
|
Abstract
Burn wounds give rise to the largest scars we can find in human pathology, influencing patients' quality of life. Despite the improved knowledge on pathophysiology, efficacy of the various treatments remains unsatisfactory. In this short review recent literature is examined with a focus on recent data on postburn pathological scars epidemiology and risk factors, which underline the high prevalence and the long evolution, pointing to identify this illness as a systemic inflammatory one, more frequent in women and in those of younger age, regulated by local factors relevant in wound healing.
Collapse
Affiliation(s)
- Maurizio Stella
- Department of Reconstructive Plastic Surgery, Burn Center
and Skin Bank, Trauma Center, Turin, Italy,
| | - Carlotta Castagnoli
- Department of Reconstructive Plastic Surgery, Burn Center
and Skin Bank, Trauma Center, Turin, Italy
| | - Ezio Nicola Gangemi
- Department of Reconstructive Plastic Surgery, Burn Center
and Skin Bank, Trauma Center, Turin, Italy
| |
Collapse
|
54
|
Schneyer AL, Sidis Y, Gulati A, Sun JL, Keutmann H, Krasney PA. Differential antagonism of activin, myostatin and growth and differentiation factor 11 by wild-type and mutant follistatin. Endocrinology 2008; 149:4589-95. [PMID: 18535106 PMCID: PMC2553374 DOI: 10.1210/en.2008-0259] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Follistatin binds and neutralizes members of the TGFbeta superfamily including activin, myostatin, and growth and differentiation factor 11 (GDF11). Crystal structure analysis of the follistatin-activin complex revealed extensive contacts between follistatin domain (FSD)-2 and activin that was critical for the high-affinity interaction. However, it remained unknown whether follistatin residues involved with myostatin and GDF11 binding were distinct from those involved with activin binding. If so, this would allow development of myostatin antagonists that would not inhibit activin actions, a desirable feature for development of myostatin antagonists for treatment of muscle-wasting disorders. We tested this hypothesis with our panel of point and domain swapping follistatin mutants using competitive binding analyses and in vitro bioassays. Our results demonstrate that activin binding and neutralization are mediated primarily by FSD2, whereas myostatin binding is more dependent on FSD1, such that deletion of FSD2 or adding an extra FSD1 in place of FSD2 creates myostatin antagonists with vastly reduced activin antagonism. However, these mutants also bind GDF11, indicating that further analysis is required for creation of myostatin antagonists that will not affect GDF11 activity that could potentially elicit GDF11-induced side effects in vivo.
Collapse
Affiliation(s)
- Alan L Schneyer
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | |
Collapse
|
55
|
Activin-A: a novel dendritic cell–derived cytokine that potently attenuates CD40 ligand–specific cytokine and chemokine production. Blood 2008; 111:2733-43. [DOI: 10.1182/blood-2007-03-080994] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activin-A is a transforming growth factor-β (TGF-β) superfamily member that plays a pivotal role in many developmental and reproductive processes. It is also involved in neuroprotection, apoptosis of tumor and some immune cells, wound healing, and cancer. Its role as an immune-regulating protein has not previously been described. Here we demonstrate for the first time that activin-A has potent autocrine effects on the capacity of human dendritic cells (DCs) to stimulate immune responses. Human monocyte-derived DCs (MoDCs) and the CD1c+ and CD123+ peripheral blood DC populations express both activin-A and the type I and II activin receptors. Furthermore, MoDCs and CD1c+ myeloid DCs rapidly secrete high levels of activin-A after exposure to bacteria, specific toll-like receptor (TLR) ligands, or CD40 ligand (CD40L). Blocking autocrine activin-A signaling in DCs using its antagonist, follistatin, enhanced DC cytokine (IL-6, IL-10, IL-12p70, and tumor necrosis factor-α [TNF-α]) and chemokine (IL-8, IP-10, RANTES, and MCP-1) production during CD40L stimulation, but not TLR-4 ligation. Moreover, antagonizing DC-derived activin-A resulted in significantly enhanced expansion of viral antigen-specific effector CD8+ T cells. These findings establish an immune-regulatory role for activin-A in DCs, highlighting the potential of antagonizing activin-A signaling in vivo to enhance vaccine immunogenicity.
Collapse
|
56
|
Activin as an anti-inflammatory cytokine produced by microglia. J Neuroimmunol 2007; 192:31-9. [DOI: 10.1016/j.jneuroim.2007.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/20/2007] [Accepted: 08/27/2007] [Indexed: 12/17/2022]
|
57
|
Kupershmidt L, Amit T, Bar-Am O, Youdim MBH, Blumenfeld Z. The neuroprotective effect of Activin A and B: implication for neurodegenerative diseases. J Neurochem 2007; 103:962-71. [PMID: 17680997 DOI: 10.1111/j.1471-4159.2007.04785.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activin is a member of the transforming growth factor-beta superfamily which comprises a growing list of multifunctional proteins that function as modulators of cell proliferation, differentiation, hormone secretion and neuronal survival. This study examined the neuroprotective effect of both Activin A and B in serum withdrawal and oxidative stress apoptotic cellular models and investigated the expression of pro- and anti-apoptotic proteins, which may account for the mechanism of Activin-induced neuroprotection. Here, we report that recombinant Activin A and B are neuroprotective against serum deprivation- and toxin- [either the parkinsonism-inducing neurotoxin, 6-hydroxydopamine (6-OHDA) or the peroxynitrite donor, 3-(4-morpholinyl) sydnonimine hydrochloride (SIN-1)] induced neuronal death in human SH-SY5Y neuroblastoma cells. Furthermore, we demonstrate for the first time that transient transfection with Activin betaA or betaB significantly protect SH-SY5Y and rat pheochromocytoma PC12 cells against serum withdrawal-induced apoptosis. This survival effect is mediated by the Bcl-2 family members and involves inhibition of caspase-3 activation; reduction of cleaved poly-ADP ribose polymerase and phosphorylated H2A.X protein levels and elevation of tyrosine hydroxylase expression. These results indicate that both Activin-A and -B share the potential to induce neuroprotective activity and thus may have positive impact on aging and neurodegenerative diseases to retard the accelerated rate of neuronal degeneration.
Collapse
Affiliation(s)
- Lana Kupershmidt
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel
| | | | | | | | | |
Collapse
|
58
|
Chong AK, Satterwhite T, Pham HM, Costa MA, Luo J, Longaker MT, Wyss-Coray T, Chang J. Live imaging of Smad2/3 signaling in mouse skin wound healing. Wound Repair Regen 2007; 15:762-6. [DOI: 10.1111/j.1524-475x.2007.00299.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
59
|
Fumagalli M, Musso T, Vermi W, Scutera S, Daniele R, Alotto D, Cambieri I, Ostorero A, Gentili F, Caposio P, Zucca M, Sozzani S, Stella M, Castagnoli C. Imbalance between activin A and follistatin drives postburn hypertrophic scar formation in human skin. Exp Dermatol 2007; 16:600-10. [PMID: 17576240 DOI: 10.1111/j.1600-0625.2007.00571.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypertrophic scarring is a skin disorder characterized by persistent inflammation and fibrosis that may occur after wounding or thermal injury. Altered production of cytokines and growth factors, such as TGF-beta, play an important role in this process. Activin A, a member of the TGF-beta family, shares the same intra-cellular Smad signalling pathway with TGF-beta, but binds to its own specific transmembrane receptors and to follistatin, a secreted protein that inhibits activin by sequestration. Recent studies provide evidences of a novel role of activin A in inflammatory and repair processes. The aim of this study was to evaluate the importance of activin A and follistatin expression in the different phases of scar evolution. Immunostaining of sections obtained from active phase hypertrophic scars (AHS) revealed the presence of a high number of alpha-SMA(+) myofibroblasts and DC-SIGN(+) dendritic cells coexpressing activin A. Ex-vivo AHS fibroblasts produced more activin and less follistatin than normal skin or remission phase hypertrophic scar (HS) fibroblasts, both in basal conditions and upon TGF-betas stimulation. We demonstrate that fibroblasts do express activin receptors, and that this expression is not affected by TGF-betas. Treatment of HS fibroblasts with activin A induced Akt phosphorylation, promoted cell proliferation, and enhanced alpha-SMA and type I collagen expression. Follistatin reduced proliferation and suppressed activin-induced collagen expression. These results indicate that the activin/follistatin interplay has a role in HS formation and evolution. The impact of these observations on the understanding of wound healing and on the identification of new therapeutic targets is discussed.
Collapse
Affiliation(s)
- Mara Fumagalli
- Department of Plastic Surgery and Burn Unit Skin Bank, CTO Hospital, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Fitsialos G, Chassot AA, Turchi L, Dayem MA, LeBrigand K, Moreilhon C, Meneguzzi G, Buscà R, Mari B, Barbry P, Ponzio G. Transcriptional signature of epidermal keratinocytes subjected to in vitro scratch wounding reveals selective roles for ERK1/2, p38, and phosphatidylinositol 3-kinase signaling pathways. J Biol Chem 2007; 282:15090-102. [PMID: 17363378 DOI: 10.1074/jbc.m606094200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Covering denuded dermal surfaces after injury requires migration, proliferation, and differentiation of skin keratinocytes. To clarify the major traits controlling these intermingled biological events, we surveyed the genomic modifications occurring during the course of a scratch wound closure of cultured human keratinocytes. Using a DNA microarray approach, we report the identification of 161 new markers of epidermal repair. Expression data, combined with functional analysis performed with specific inhibitors of ERK, p38(MAPK) and phosphatidylinositol 3-kinase (PI3K), demonstrate that kinase pathways exert very selective functions by precisely controlling the expression of specific genes. Inhibition of the ERK pathway totally blocks the wound closure and inactivates many early transcription factors and EGF-type growth factors. p38(MAPK) inhibition only delays "healing," probably in line with the control of genes involved in the propagation of injury-initiated signaling. In contrast, PI3K inhibition accelerates the scratch closure and potentiates the scratch-dependent stimulation of three genes related to epithelial cell transformation, namely HAS3, HBEGF, and ETS1. Our results define in vitro human keratinocyte wound closure as a repair process resulting from a fine balance between positive signals controlled by ERK and p38(MAPK) and negative ones triggered by PI3K. The perturbation of any of these pathways might lead to dysfunction in the healing process, similar to those observed in pathological wounding phenotypes, such as hypertrophic scars or keloids.
Collapse
|
61
|
McDougal JN, Garrett CM, Amato CM, Berberich SJ. Effects of brief cutaneous JP-8 jet fuel exposures on time course of gene expression in the epidermis. Toxicol Sci 2006; 95:495-510. [PMID: 17085751 DOI: 10.1093/toxsci/kfl154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The jet fuel jet propulsion fuel 8 (JP-8) has been shown to cause an inflammatory response in the skin, which is characterized histologically by erythema, edema, and hyperplasia. Studies in laboratory animal skin and cultured keratinocytes have identified a variety of changes in protein levels related to inflammation, oxidative damage, apoptosis, and cellular growth. Most of these studies have focused on prolonged exposures and subsequent effects. In an attempt to understand the earliest responses of the skin to JP-8, we have investigated changes in gene expression in the epidermis for up to 8 h after a 1-h cutaneous exposure in rats. After exposure, we separated the epidermis from the rest of the skin with a cryotome and isolated total mRNA. Gene expression was studied with microarray techniques, and changes from sham treatments were analyzed and characterized. We found consistent twofold increases in gene expression of 27 transcripts at 1, 4, and 8 h after the beginning of the 1-h exposure that were related primarily to structural proteins, cell signaling, inflammatory mediators, growth factors, and enzymes. Analysis of pathways changed showed that several signaling pathways were increased at 1 h and that the most significant changes at 8 h were in metabolic pathways, many of which were downregulated. These results confirm and expand many of the previous molecular studies with JP-8. Based on the 1-h changes in gene expression, we hypothesize that the trigger of the JP-8-induced, epidermal stress response is a physical disruption of osmotic, oxidative, and membrane stability which activates gene expression in the signaling pathways and results in the inflammatory, apoptotic, and growth responses that have been previously identified.
Collapse
Affiliation(s)
- James N McDougal
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | |
Collapse
|
62
|
Phillips DJ, Nguyen P, Adamides AA, Bye N, Rosenfeld JV, Kossmann T, Vallance S, Murray L, Morganti-Kossmann MC. Activin A Release into Cerebrospinal Fluid in a Subset of Patients with Severe Traumatic Brain Injury. J Neurotrauma 2006; 23:1283-94. [PMID: 16958581 DOI: 10.1089/neu.2006.23.1283] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activin A is a member of the transforming growth factor-beta superfamily and has been demonstrated to be elevated during inflammation and to have neuroprotective properties following neural insults. In this study, we examined whether traumatic brain injury (TBI) induced a response in activin A or in the concentrations of its binding protein, follistatin. Thirty-nine patients with severe TBI had daily, matched cerebrospinal fluid (CSF) and serum samples collected post-TBI and these were assayed for activin A and follistatin using specific immunoassays. Concentrations of both molecules were assessed relative to a variety of clinical parameters, such as the Glasgow Coma Score, computer tomography classification of TBI, measurement of injury markers, cell metabolism and membrane breakdown products. In about half of the patients, there was a notable increase in CSF activin A concentrations in the first few days post-TBI. There were only minor perturbations in either serum activin or in either CSF or serum follistatin concentrations. The CSF activin A response was not related to any of the common TBI indices, but was strongly correlated with two common markers of brain damage, neuronal specific enolase and S100-beta. Further, activin A levels were also associated with indices of metabolism, such as lactate and pyruvate, excitotoxicity (glutamate) and membrane lipid breakdown products such as glycerol. In one of the two patients who developed a CSF infection, activin A concentrations in CSF became markedly elevated. Thus, some TBI patients have an early release of activin A into the CSF that may result from activation of inflammatory and/or neuroprotective pathways.
Collapse
Affiliation(s)
- David J Phillips
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Krneta J, Kroll J, Alves F, Prahst C, Sananbenesi F, Dullin C, Kimmina S, Phillips DJ, Augustin HG. Dissociation of Angiogenesis and Tumorigenesis in Follistatin- and Activin-Expressing Tumors. Cancer Res 2006; 66:5686-95. [PMID: 16740706 DOI: 10.1158/0008-5472.can-05-3821] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transforming growth factor-beta superfamily member activin and its antagonist, follistatin, act as a pleiotropic growth factor system that controls cell proliferation, differentiation, and apoptosis. Activin inhibits fibroblast growth factor 2-induced sprouting angiogenesis in vitro (spheroidal angiogenesis assay) and in vivo (Matrigel assay). To further study the role of the activin/follistatin system during angiogenesis and tumor progression, activin- and follistatin-expressing R30C mammary carcinoma cells were studied in mouse tumor experiments. Surprisingly, activin-expressing tumors grew much faster than follistatin-expressing tumors although they failed to induce increased angiogenesis (as evidenced by low microvessel density counts). Conversely, follistatin-expressing tumors were much smaller but had a dense network of small-diameter capillaries. Qualitative angioarchitectural analyses (mural cell recruitment, perfusion) revealed no major functional differences of the tumor neovasculature. Analysis of activin- and follistatin-expressing R30C cells identified a cell autonomous role of this system in controlling tumor cell growth. Whereas proliferation of R30C cells was not altered, follistatin-expressing R30C cells had an enhanced susceptibility to undergo apoptosis. These findings in experimental tumors are complemented by an intriguing case report of a human renal cell carcinoma that similarly shows a dissociation of angiogenesis and tumorigenesis during tumor progression. Collectively, the data shed further light into the dichotomous stimulating and inhibiting roles that the activin/follistatin system can exert during angiogenesis and tumor progression. Furthermore, the experiments provide a critical proof-of-principle example for the dissociation of angiogenesis and tumorigenesis, supporting the concept that tumor growth may not be dependent on increased angiogenesis as long as a minimal intratumoral microvessel density is maintained.
Collapse
Affiliation(s)
- Jelena Krneta
- Department of Vascular Biology and Angiogenesis Research, Tumor Biology Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Alge CS, Hauck SM, Priglinger SG, Kampik A, Ueffing M. Differential protein profiling of primary versus immortalized human RPE cells identifies expression patterns associated with cytoskeletal remodeling and cell survival. J Proteome Res 2006; 5:862-78. [PMID: 16602694 DOI: 10.1021/pr050420t] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Functional research of retinal pigment epithelium (RPE) most often relies on utilization of RPE-derived cell lines in vitro. However, no studies about similarities and differences of the respective cell lines exist so far. Thus, we here analyze the proteome of the most popular RPE cell lines: ARPE-19 and hTERT and compare their constitutive and de novo synthesized protein expression profiles to human early passage retinal pigment epithelial cells (epRPE) by 2-D electrophoresis and MALDI-TOF peptide mass fingerprinting. In all three cell lines the baseline protein expression pattern corresponded well to the de novo synthesized cellular proteome. However, comparison of the protein profile of epRPE cells with that of hTERT-RPE cells revealed a higher abundance of proteins related to cell migration, adhesion, and extracellular matrix formation, paralleled by a down-regulation of proteins attributed to cell polarization, and showed an altered expression of detoxification enzymes in hTERT-RPE. ARPE-19 cells, however, exhibited a higher abundance of components of the microtubule cytoskeleton and differences in expression of proteins related to proliferation and cell death. epRPE cells, hTERT-RPE, and ARPE-19 therefore may respond differently with respect to certain functional properties, a finding that should prove valuable for future in vitro studies.
Collapse
Affiliation(s)
- Claudia S Alge
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany, and GSF Research Center for Environment and Health, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
65
|
Diskin S, Kumar J, Cao Z, Schuman JS, Gilmartin T, Head SR, Panjwani N. Detection of differentially expressed glycogenes in trabecular meshwork of eyes with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2006; 47:1491-9. [PMID: 16565384 PMCID: PMC1940047 DOI: 10.1167/iovs.05-0736] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify differentially expressed glycogenes in trabecular meshwork (TM) of eyes with primary open-angle glaucoma (POAG). METHODS Total RNA was isolated from TM of cadaveric eyes derived from donors with diagnosed glaucomas of different etiologies and from normal control subjects. RNA was amplified and hybridized to the GLYCOv2 oligonucleotide microarray that contains probes for carbohydrate-binding proteins, glycosyltransferases, and other genes involved in the regulation of glycosylation. Statistical analysis was used to identify differentially expressed genes between normal and POAG samples. RESULTS This study revealed that POAG TM and normal TM have distinct gene expression profiles. Of the 2001 genes on the array, 19 genes showed differential expression of greater than 1.4-fold in POAG. Mimecan and activinA, which have been shown to be upregulated in models of glaucoma, were both found to be elevated in POAG TM. Many genes were identified for the first time to be differentially regulated in POAG. Among the upregulated genes were: (1) cell adhesion molecules including platelet endothelial cell adhesion molecule-1 and P-selectin, both of which are targets of NFkappaB, which has been shown to be activated in glaucomatous TM; (2) lumican, a core protein of keratan sulfate proteoglycans; and (3) the receptor for IL6, a cytokine that has been shown to be upregulated in TM in response to elevated intraocular pressure. Among the downregulated genes were chondroitin-4-O-sulfotransferase involved in the synthesis of chondroitin sulfate chains and the receptor for PDGFbeta, a growth factor that has been shown to stimulate both TM cell proliferation and phagocytic activity. Results for several genes were confirmed by RTq-PCR. CONCLUSIONS Microarray technology was used to show, for the first time, that POAG TM has a distinct glycogene expression profile. Differentially expressed glycogenes identified in this study have not been previously investigated for their role in the pathogenesis of POAG and thus are novel factors for further study of the mechanism of the disease and for their possible use as diagnostic markers.
Collapse
Affiliation(s)
- Shiri Diskin
- New England Eye Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts
- Department of Anatomy and Cell Biology, Tufts Sackler School of Biomedical Sciences, Boston, Massachusetts
| | - Janardan Kumar
- New England Eye Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts
- Department of Anatomy and Cell Biology, Tufts Sackler School of Biomedical Sciences, Boston, Massachusetts
| | - Zhiyi Cao
- New England Eye Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts
| | - Joel S. Schuman
- UPMC Eye Center, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tim Gilmartin
- DNA Array Core Facility, The Scripps Research Institute, La Jolla, California
| | - Steven R. Head
- DNA Array Core Facility, The Scripps Research Institute, La Jolla, California
| | - Noorjahan Panjwani
- New England Eye Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts
- Department of Anatomy and Cell Biology, Tufts Sackler School of Biomedical Sciences, Boston, Massachusetts
| |
Collapse
|
66
|
Rombauts L, Donoghue J, Cann L, Jones RL, Healy DL. Activin-A secretion is increased in the eutopic endometrium from women with essndometriosis. Aust N Z J Obstet Gynaecol 2006; 46:148-53. [PMID: 16638039 DOI: 10.1111/j.1479-828x.2006.00546.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Activin is a well-characterised growth and differentiation factor and an important inflammatory mediator. Activin is secreted by normal endometrial glands and stroma and is expressed by endometrial leucocytes. It is also known that the eutopic endometrium from women with endometriosis is functionally different to that from women without endometriosis. In this study, we hypothesise that the endometrial secretion of activin is altered in women with endometriosis. AIMS To determine whether the expression of inhibin/activin subunits and the secretion of activin-A is different in eutopic endometrium from women with and without endometriosis. METHODS Endometrial biopsies were obtained from premenopausal, regularly menstruating women with and without endometriosis. Staining intensity for the different inhibin/activin subunits was compared in endometrial and endometriotic biopsies. Activin-A secretion was studied using endometrial explants and endometrial glandular and stromal monolayer cell cultures. RESULTS The alpha- and betaA-subunits of inhibin/activin were more abundant in eutopic glandular cells from patients with minimal to mild endometriosis compared to women without endometriosis. In patients with endometriosis, the betaB-subunit was more abundant in eutopic stromal cells and endometrial leucocytes. Comparison of paired endometrial and endometriotic biopsies from the same patient did not reveal significant differences for any of the inhibin/activin subunits or activin receptors. Activin-A secretion by glandular and stromal endometrial cells was sevenfold and threefold higher, respectively, in women with endometriosis compared to women without endometriosis. CONCLUSIONS The expression of inhibin/activin subunits in eutopic endometrium is altered in women with endometriosis, leading to higher levels of activin-A secretion by both glandular cells and stromal cells.
Collapse
Affiliation(s)
- Luk Rombauts
- Centre for Women's Health Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
67
|
Xu P, Van Slambrouck C, Berti-Mattera L, Hall AK. Activin induces tactile allodynia and increases calcitonin gene-related peptide after peripheral inflammation. J Neurosci 2005; 25:9227-35. [PMID: 16207882 PMCID: PMC6725762 DOI: 10.1523/jneurosci.3051-05.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a sensory neuropeptide important in inflammatory pain that conveys pain information centrally and dilates blood vessels peripherally. Previous studies indicate that activin A increases CGRP-immunoreactive (IR) sensory neurons in vitro, and following wound, activin A protein increases in the skin and more neurons have detectable CGRP expression in the innervating dorsal root ganglion (DRG). These data suggest some adult sensory neurons respond to activin A or other target-derived factors with increased neuropeptide expression. This study was undertaken to test whether activin contributes to inflammatory pain and increased CGRP and to learn which neurons retained plasticity. After adjuvant-induced inflammation, activin mRNA, but not NGF or glial cell line-derived neurotrophic factor, increased in the skin. To examine which DRG neurons increased CGRP immunoreactivity, retrograde tracer-labeled cutaneous neurons were characterized after inflammation. The proportion and size of tracer-labeled DRG neurons with detectable CGRP increased after inflammation. One-third of CGRP-IR neurons that appear after inflammation also had isolectin B4 binding, suggesting that some mechanoreceptors became CGRP-IR. In contrast, the increased proportion of CGRP-IR neurons did not appear to come from RT97-IR neurons. To learn whether central projections were altered after inflammation, CGRP immunoreactivity in the protein kinase Cgamma-IR lamina IIi was quantified and found to increase. Injection of activin A protein alone caused robust tactile allodynia and increased CGRP in the DRG. Together, these data support the hypothesis that inflammation and skin changes involving activin A cause some sensory neurons to increase CGRP expression and pain responses.
Collapse
Affiliation(s)
- Pin Xu
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
68
|
Bamberger C, Schärer A, Antsiferova M, Tychsen B, Pankow S, Müller M, Rülicke T, Paus R, Werner S. Activin controls skin morphogenesis and wound repair predominantly via stromal cells and in a concentration-dependent manner via keratinocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:733-47. [PMID: 16127153 PMCID: PMC1698729 DOI: 10.1016/s0002-9440(10)62047-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The transforming growth factor-beta family member activin is a potent regulator of skin morphogenesis and repair. Transgenic mice overexpressing activin in keratinocytes display epidermal hyper-thickening and dermal fibrosis in normal skin and enhanced granulation tissue formation after wounding. Mice overexpressing the secreted activin antagonist follistatin, however, have the opposite wound-healing phenotype. To determine whether activin affects skin morphogenesis and repair via activation of keratinocytes and/or stromal cells, we generated transgenic mice expressing a dominant-negative activin receptor IB mutant (dnActRIB) in keratinocytes. The architecture of adult skin was unaltered in these mice, but delays were observed in postnatal pelage hair follicle morphogenesis and in the first catagen-telogen transformation of hair follicles. Although dnActRIB-transgenic mice showed slightly delayed wound re-epithelialization after skin injury, the strong inhibition of granulation tissue formation seen in follistatin-transgenic mice was not observed. Therefore, although endogenous activin appeared to affect skin morphogenesis and repair predominantly via stromal cells, overexpressed activin strongly affected the epidermis. The epidermal phenotype of activin-overexpressing mice was partially rescued by breeding these animals with dnActRIB-transgenic mice. These results demonstrate that activin affects both stromal cells and keratinocytes in normal and wounded skin and that the effect on keratinocytes is dose-dependent in vivo.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department of Biology, Institute of Cell Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|