51
|
Abstract
Although WNTs have been long thought of as regulators of cell fate, recent studies highlight their involvement in crucial aspects of synaptic development in the nervous system. Particularly compelling are recent studies of the neuromuscular junction in nematodes, insects, fish and mammals. These studies place WNTs as major determinants of synapse differentiation and neurotransmitter receptor clustering.
Collapse
|
52
|
Sancho RM, Law BMH, Harvey K. Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways. Hum Mol Genet 2009; 18:3955-68. [PMID: 19625296 PMCID: PMC2748899 DOI: 10.1093/hmg/ddp337] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in PARK8, encoding LRRK2, are the most common known cause of Parkinson's disease. The LRRK2 Roc-COR tandem domain exhibits GTPase activity controlling LRRK2 kinase activity via an intramolecular process. We report the interaction of LRRK2 with the dishevelled family of phosphoproteins (DVL1-3), key regulators of Wnt (Wingless/Int) signalling pathways important for axon guidance, synapse formation and neuronal maintenance. Interestingly, DVLs can interact with and mediate the activation of small GTPases with structural similarity to the LRRK2 Roc domain. The LRRK2 Roc-COR domain and the DVL1 DEP domain were necessary and sufficient for LRRK2-DVL1 interaction. Co-expression of DVL1 increased LRRK2 steady-state protein levels, an effect that was dependent on the DEP domain. Strikingly, LRRK2-DVL1-3 interactions were disrupted by the familial PARK8 mutation Y1699C, whereas pathogenic mutations at residues R1441 and R1728 strengthened LRRK2-DVL1 interactions. Co-expression of DVL1 with LRRK2 in mammalian cells resulted in the redistribution of LRRK2 to typical cytoplasmic DVL1 aggregates in HEK293 and SH-SY5Y cells and co-localization in neurites and growth cones of differentiated dopaminergic SH-SY5Y cells. This is the first report of the modulation of a key LRRK2-accessory protein interaction by PARK8 Roc-COR domain mutations segregating with Parkinson's disease. Since the DVL1 DEP domain is known to be involved in the regulation of small GTPases, we propose that: (i) DVLs may influence LRRK2 GTPase activity, and (ii) Roc-COR domain mutations modulating LRRK2-DVL interactions indirectly influence kinase activity. Our findings also link LRRK2 to Wnt signalling pathways, suggesting novel pathogenic mechanisms and new targets for genetic analysis in Parkinson's disease.
Collapse
Affiliation(s)
- Rosa M Sancho
- Department of Pharmacology, The School of Pharmacy, Brunswick Square, London, UK
| | | | | |
Collapse
|
53
|
Yang DH, Yoon JY, Lee SH, Bryja V, Andersson ER, Arenas E, Kwon YG, Choi KY. Wnt5a Is Required for Endothelial Differentiation of Embryonic Stem Cells and Vascularization via Pathways Involving Both Wnt/β-Catenin and Protein Kinase Cα. Circ Res 2009; 104:372-9. [DOI: 10.1161/circresaha.108.185405] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we examined the signaling pathways activated by Wnt5a in endothelial differentiation of embryonic stem (ES) cells and the function of Wnt5a during vascular development. We first found that
Wnt5a
−/−
mouse embryonic stem (mES) cells exhibited a defect in endothelial differentiation, which was rescued by addition of Wnt5a, suggesting that Wnt5a is required for endothelial differentiation of ES cells. Involvement of both β-catenin and protein kinase (PK)Cα pathways in endothelial differentiation of mES cells requiring Wnt5a was indicated by activation of both β-catenin and PKCα in
Wnt5a
+/−
but not in
Wnt5a
−/−
mES cells. We also found that β-catenin or PKCα knockdowns inhibited the Wnt5a-induced endothelial differentiation of ES cells. Moreover, the lack of endothelial differentiation of
Wnt5a
−/−
mES cells was rescued only by transfection of both β-catenin and
PKC
α, indicating that both genes are required for Wnt5a-mediated endothelial differentiation. Wnt5a was also found to be essential for the differentiation of mES cells into immature endothelial progenitor cells, which are known to play a role in repair of damaged endothelium. Furthermore, a defect in the vascularization of the neural tissue was detected at embryonic day 14.5 in
Wnt5a
−/−
mice, implicating Wnt5a in vascular development in vivo. Thus, we conclude that Wnt5a is involved in the endothelial differentiation of ES cells via both Wnt/β-catenin and PKC signaling pathways and regulates embryonic vascular development.
Collapse
Affiliation(s)
- Dong-Hwa Yang
- From the National Research Laboratory of Molecular Complex Control and Department of Biotechnology (D.-H.Y., J.-Y.Y., S.-H.L., K.-Y.C.) and Department of Biochemistry (Y.-G.K.), College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Academy of Sciences of the Czech Republic and Institute of Experimental Biology (V.B.), Faculty of Science, Masaryk University, Brno, Czech Republic; and Laboratory of Molecular Neurobiology (E.R.A., E.A.), Department of Medical Biochemistry
| | - Ju-Young Yoon
- From the National Research Laboratory of Molecular Complex Control and Department of Biotechnology (D.-H.Y., J.-Y.Y., S.-H.L., K.-Y.C.) and Department of Biochemistry (Y.-G.K.), College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Academy of Sciences of the Czech Republic and Institute of Experimental Biology (V.B.), Faculty of Science, Masaryk University, Brno, Czech Republic; and Laboratory of Molecular Neurobiology (E.R.A., E.A.), Department of Medical Biochemistry
| | - Soung-Hoon Lee
- From the National Research Laboratory of Molecular Complex Control and Department of Biotechnology (D.-H.Y., J.-Y.Y., S.-H.L., K.-Y.C.) and Department of Biochemistry (Y.-G.K.), College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Academy of Sciences of the Czech Republic and Institute of Experimental Biology (V.B.), Faculty of Science, Masaryk University, Brno, Czech Republic; and Laboratory of Molecular Neurobiology (E.R.A., E.A.), Department of Medical Biochemistry
| | - Vitezslav Bryja
- From the National Research Laboratory of Molecular Complex Control and Department of Biotechnology (D.-H.Y., J.-Y.Y., S.-H.L., K.-Y.C.) and Department of Biochemistry (Y.-G.K.), College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Academy of Sciences of the Czech Republic and Institute of Experimental Biology (V.B.), Faculty of Science, Masaryk University, Brno, Czech Republic; and Laboratory of Molecular Neurobiology (E.R.A., E.A.), Department of Medical Biochemistry
| | - Emma R. Andersson
- From the National Research Laboratory of Molecular Complex Control and Department of Biotechnology (D.-H.Y., J.-Y.Y., S.-H.L., K.-Y.C.) and Department of Biochemistry (Y.-G.K.), College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Academy of Sciences of the Czech Republic and Institute of Experimental Biology (V.B.), Faculty of Science, Masaryk University, Brno, Czech Republic; and Laboratory of Molecular Neurobiology (E.R.A., E.A.), Department of Medical Biochemistry
| | - Ernest Arenas
- From the National Research Laboratory of Molecular Complex Control and Department of Biotechnology (D.-H.Y., J.-Y.Y., S.-H.L., K.-Y.C.) and Department of Biochemistry (Y.-G.K.), College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Academy of Sciences of the Czech Republic and Institute of Experimental Biology (V.B.), Faculty of Science, Masaryk University, Brno, Czech Republic; and Laboratory of Molecular Neurobiology (E.R.A., E.A.), Department of Medical Biochemistry
| | - Young-Guen Kwon
- From the National Research Laboratory of Molecular Complex Control and Department of Biotechnology (D.-H.Y., J.-Y.Y., S.-H.L., K.-Y.C.) and Department of Biochemistry (Y.-G.K.), College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Academy of Sciences of the Czech Republic and Institute of Experimental Biology (V.B.), Faculty of Science, Masaryk University, Brno, Czech Republic; and Laboratory of Molecular Neurobiology (E.R.A., E.A.), Department of Medical Biochemistry
| | - Kang-Yell Choi
- From the National Research Laboratory of Molecular Complex Control and Department of Biotechnology (D.-H.Y., J.-Y.Y., S.-H.L., K.-Y.C.) and Department of Biochemistry (Y.-G.K.), College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Academy of Sciences of the Czech Republic and Institute of Experimental Biology (V.B.), Faculty of Science, Masaryk University, Brno, Czech Republic; and Laboratory of Molecular Neurobiology (E.R.A., E.A.), Department of Medical Biochemistry
| |
Collapse
|
54
|
Singh AK, Gupta S, Jiang Y, Younus M, Ramzan M. In vitro Neurogenesis from Neural Progenitor Cells Isolated from the Hippocampus Region of the Brain of Adult Rats Exposed to Ethanol during Early Development through Their Alcohol-Drinking Mothers. Alcohol Alcohol 2009; 44:185-98. [DOI: 10.1093/alcalc/agn109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
55
|
Orme R, Fricker-Gates RA, Gates MA. Ontogeny of substantia nigra dopamine neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:3-18. [PMID: 20411764 DOI: 10.1007/978-3-211-92660-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the ontogeny of A9 dopamine (DA) neurons is critical not only to determining basic developmental events that facilitate the emergence of the substantia nigra pars compacta (SNc) but also to the extraction and de novo generation of DA neurons as a potential cell therapy for Parkinson's disease. Recent research has identified a precise window for DA cell birth (differentiation) in the ventral mesencephalon (VM) as well as a number of factors that may facilitate this process. However, application of these factors in vitro has had limited success in specifying a dopaminergic cell fate from undifferentiated cells, suggesting that other cell/molecular signals may as yet remain undiscovered. To resolve this, current work seeks to identify particularly potent and novel DA neuron differentiation factors within the developing VM specifically at the moment of ontogeny. Through such (past and present) studies, a catalog of proteins that play a pivotal role in the generation of nigral DA neurons during normal CNS development has begun to emerge. In the future, it will be crucial to continue to evaluate the critical developmental window where DA neuron ontogeny occurs, not only to facilitate our potential to protect these cells from degeneration in the adult brain but also to mimic the developmental environment in a way that enhances our ability to generate these cells anew either in vitro or in vivo. Here we review our present understanding of factors that are thought to be involved in the emergence of the A9 dopamine neuron group from the ventral mesencephalon.
Collapse
Affiliation(s)
- R Orme
- School of Life Sciences, Keele University, Keele Staffordshire, UK
| | | | | |
Collapse
|
56
|
Ventral mesencephalon astrocytes are more efficient than those of other regions in inducing dopaminergic neurons through higher expression level of TGF-beta3. J Mol Neurosci 2008; 37:288-300. [PMID: 18982456 DOI: 10.1007/s12031-008-9146-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
Being supportive cells for neurons in the central nervous system, astrocytes have recently found to be associated with neurogenesis. Ventral mesencephalon (VM) astrocytes were also detected being instructive for VM dopaminergic (DA) neurogenesis, but the underling mechanisms are still unclear. This research is to figure out whether VM astrocytes are more efficient than those from other brain regions in inducing VM DA neurons from their precursors and whether transforming growth factor-betas (TGF-betas) are the underlying molecules. We found that, compared with astrocytes preparations from striatum and hippocampus, VM astrocytes preparations displayed markedly higher efficacy in inducing DA neurogenesis. Besides, they also expressed higher level of TGF-beta3 than those of two other regions. When TGF-beta3 gene expression in astrocytes preparations was inhibited by its antisense oligonucleotide, the induction of DA neurons decreased to a similar level among these three astrocytes preparations. Thus, our experiment indicates that VM astrocytes preparations which contained highly purified astrocytes are more efficient in inducing DA neurogenesis than those from other regions. Furthermore, it also suggests that the regional differences are regulated by different expression levels of TGF-beta3 in those astrocytes preparations from different derivations.
Collapse
|
57
|
Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo. PLoS One 2008; 3:e3517. [PMID: 18953410 PMCID: PMC2568809 DOI: 10.1371/journal.pone.0003517] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 09/16/2008] [Indexed: 01/13/2023] Open
Abstract
Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5-E13.5. Analysis of Wnt5a-/- mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a-/- mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors.
Collapse
|
58
|
Luo GR, Chen Y, Li XP, Liu TX, Le WD. Nr4a2 is essential for the differentiation of dopaminergic neurons during zebrafish embryogenesis. Mol Cell Neurosci 2008; 39:202-10. [DOI: 10.1016/j.mcn.2008.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 01/08/2023] Open
|
59
|
Pacheco II, Macleod RJ. CaSR stimulates secretion of Wnt5a from colonic myofibroblasts to stimulate CDX2 and sucrase-isomaltase using Ror2 on intestinal epithelia. Am J Physiol Gastrointest Liver Physiol 2008; 295:G748-59. [PMID: 18703641 DOI: 10.1152/ajpgi.00560.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To understand whether extracellular calcium-sensing receptor (CaSR) expression on colonic myofibroblast cells (18Co) contributed to epithelial homeostasis, we activated the CaSR with 5 mM Ca(2+), screened by RT-PCR Wnt family members, and measured their secretion. Transcripts for Wnt 1, 2, 2b, 3a, 4, and 7a were either absent or unchanged whereas Wnt3 decreased and Wnt5a increased. We assessed Wnt5a secretion by Western blot. High Ca(2+) (5 mM) substantially increased Wnt5a secretion; small interfering RNA (siRNA) against the CaSR reduced this to constitutive amounts. Expression of Wnt5a plasmid but not Wnt1 or Wnt3a increased caudal homeodomain factor CDX2 transcripts and protein in HT-29 adenocarcinoma cells. Wnt5a increased activity of a sucrase-isomaltase (SI) promoter in Caco-2BBE cells. Wnt5a protein stimulation of CDX2 transcripts and protein and SI reporter were increased by overexpression of wild-type Ror2, a Wnt5a receptor, and reduced with siRNA against Ror2. CaSR activation of HT-29 cells increased Ror2 protein expression. Ror2 protein was expressed in mouse jejunum from crypt base to villus tip and in the colon on surface epithelia. Our results show that activation of a G protein-coupled receptor, the CaSR, stimulates secretion of Wnt5a from myofibroblasts. Stimulation of epithelia by the CaSR increased the expression of a receptor for Wnt5a, the tyrosine kinase Ror2, suggesting existence of a unique paracrine relationship for CDX2 homoeostasis in the intestine and revealing new contributions of CaSR-activated myofibroblasts to intestinal stem cell niche microenvironments.
Collapse
Affiliation(s)
- Ivan I Pacheco
- Department of Physiology, Queen's University, Ontario, Canada
| | | |
Collapse
|
60
|
Yang BZ, Kranzler HR, Zhao H, Gruen JR, Luo X, Gelernter J. Haplotypic variants in DRD2, ANKK1, TTC12, and NCAM1 are associated with comorbid alcohol and drug dependence. Alcohol Clin Exp Res 2008; 32:2117-27. [PMID: 18828801 DOI: 10.1111/j.1530-0277.2008.00800.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Each gene in the chromosome 11q23 cluster of NCAM1, TTC12, ANKK1, and DRD2 is functionally linked to dopamine in brain. Many association studies of DRD2 and substance dependence (SD), including alcohol dependence (AD) and drug dependence (DD), have been reported; the results have been inconsistent. Recent association studies have considered this cluster more comprehensively, examining the association of SD with several risk variants mapped to the other genes in the cluster. Because comorbid AD with DD (AD+DD) is common, we hypothesized that heterogeneity of the SD diagnoses studied might have contributed to the inconsistency of prior results. METHODS We conducted 2 separate association studies of AD+DD and AD without DD (AD-only) in 1,090 European-Americans using family-based and case-control designs and 43 single nucleotide polymorphisms mapped to this cluster. We used a generalized linear model and haplotype score tests for the case-control sample, and the family-based association test for the family sample. RESULTS For AD+DD, the risk regions centered on TTC12 exon 3 [optimal individual haplotype simulated p (p(oihs)) = 0.000015], and another extended from ANKK1 exon 8 to DRD2;C957T (p(oihs) = 0.0028), in both samples. NCAM1 exon 12 markers showed global significance in both designs, but were significant for specific haplotypes (p(oihs) = 0.0029) only for the family sample. For AD-only, NCAM1 intron 14 to 18 and the junction of ANKK1 and DRD2 were associated globally. Population stratification was excluded as the basis for these results. Linkage disequilibrium contrast tests supported selection at TTC12 exon 3 and ANKK1 exon 2. CONCLUSIONS We conclude that variants in TTC12 exon 3, NCAM1 exon 12, and the two 3'-ends of ANKK1 and DRD2 co-regulate risk for comorbid AD and DD.
Collapse
Affiliation(s)
- Bao-Zhu Yang
- Department of Psychiatry, Division of Human Genetics, Yale University School of Medicine, New Haven, Connecticut 06516, USA
| | | | | | | | | | | |
Collapse
|
61
|
Allgeier SH, Lin TM, Vezina CM, Moore RW, Fritz WA, Chiu SY, Zhang C, Peterson RE. WNT5A selectively inhibits mouse ventral prostate development. Dev Biol 2008; 324:10-7. [PMID: 18804104 DOI: 10.1016/j.ydbio.2008.08.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 08/08/2008] [Accepted: 08/18/2008] [Indexed: 11/17/2022]
Abstract
The establishment of prostatic budding patterns occurs early in prostate development but mechanisms responsible for this event are poorly understood. We investigated the role of WNT5A in patterning prostatic buds as they emerge from the fetal mouse urogenital sinus (UGS). Wnt5a mRNA was expressed in UGS mesenchyme during budding and was focally up-regulated as buds emerged from the anterior, dorsolateral, and ventral UGS regions. We observed abnormal UGS morphology and prostatic bud patterns in Wnt5a null male fetuses, demonstrated that prostatic bud number was decreased by recombinant mouse WNT5A protein during wild type UGS morphogenesis in vitro, and showed that ventral prostate development was selectively impaired when these WNT5A-treated UGSs were grafted under under kidney capsules of immunodeficient mice and grown for 28 d. Moreover, a WNT5A inhibitory antibody, added to UGS organ culture media, rescued prostatic budding from inhibition by a ventral prostatic bud inhibitor, 2,3,8,7-tetrachlorodibenzo-p-dioxin, and restored ventral prostate morphogenesis when these tissues were grafted under immunodeficient mouse kidney capsules and grown for 28 d. These results suggest that WNT5A participates in prostatic bud patterning by restricting mouse ventral prostate development.
Collapse
Affiliation(s)
- Sarah Hicks Allgeier
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Sanchez-Pernaute R, Lee H, Patterson M, Reske-Nielsen C, Yoshizaki T, Sonntag KC, Studer L, Isacson O. Parthenogenetic dopamine neurons from primate embryonic stem cells restore function in experimental Parkinson's disease. ACTA ACUST UNITED AC 2008; 131:2127-39. [PMID: 18669499 DOI: 10.1093/brain/awn144] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The identity and functional potential of dopamine neurons derived in vitro from embryonic stem cells are critical for the development of a stem cell-based replacement therapy for Parkinson's disease. Using a parthenogenetic primate embryonic stem cell line, we have generated dopamine neurons that display persistent expression of midbrain regional and cell-specific transcription factors, which establish their proper identity and allow for their survival. We show here that transplantation of parthenogenetic dopamine neurons restores motor function in hemi-parkinsonian, 6-hydroxy-dopamine-lesioned rats. Exposure to Wnt5a and fibroblast growth factors (FGF) 20 and 2 at the final stage of in vitro differentiation enhanced the survival of dopamine neurons and, correspondingly, the extent of motor recovery of transplanted animals. Importantly for future development of clinical applications, dopamine neurons were post-mitotic at the time of transplantation and there was no tumour formation. These data provide proof for the concept that parthenogenetic stem cells are a suitable source of functional neurons for therapeutic applications.
Collapse
Affiliation(s)
- Rosario Sanchez-Pernaute
- McLean Hospital/Harvard University Udall Parkinson's Disease Research Center of Excellence, McLean Hospital, Belmont, MA 02478, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Harrison SJ, Parrish M, Monaghan AP. Sall3 is required for the terminal maturation of olfactory glomerular interneurons. J Comp Neurol 2008; 507:1780-94. [PMID: 18260139 DOI: 10.1002/cne.21650] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sall3 is a zinc finger containing putative transcription factor and a member of the Sall gene family. Members of the Sall gene family are highly expressed during development. Sall3-deficient mice die in the perinatal period because of dehydration and display alterations in palate formation and cranial nerve formation (Parrish et al. [2004] Mol Cell Biol 24:7102-7112). We examined the role of Sall3 in the development of the olfactory system. We determined that Sall3 is expressed by cells in the olfactory epithelium and olfactory bulb. Sall3 deficiency specifically alters formation of the glomerular layer. The glomerular layer was hypocellular, because of a decrease in the number of interneurons. The lateral ganglionic eminence and rostral migratory stream developed normally in Sall3-deficient animals, which suggests that Sall3 is not required for the initial specification of olfactory bulb interneurons. Fewer GAD65/67-, Pax6-, calretinin-, and calbindin-positive cells were detected in the glomerular layer, accompanied by an increase in cells positive for these markers in the granule cell layer. In addition, a complete absence of tyrosine hydroxylase expression was observed in the olfactory bulb in the absence of Sall3. However, expression of Nurr1, a marker of dopaminergic precursors, was maintained, indicating that dopaminergic precursors were present. Our data suggest that Sall3 is required for the terminal maturation of neurons destined for the glomerular layer.
Collapse
Affiliation(s)
- Susan J Harrison
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
64
|
Bonilla S, Hall AC, Pinto L, Attardo A, Götz M, Huttner WB, Arenas E. Identification of midbrain floor plate radial glia-like cells as dopaminergic progenitors. Glia 2008; 56:809-20. [DOI: 10.1002/glia.20654] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
65
|
Sabolek M, Mieskes I, Lenk T, Lehmensiek V, Hermann A, Schwarz J, Storch A. Stage-dependent vulnerability of fetal mesencephalic neuroprogenitors towards dopaminergic neurotoxins. Neurotoxicology 2008; 29:714-21. [PMID: 18513801 DOI: 10.1016/j.neuro.2008.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/10/2008] [Accepted: 04/16/2008] [Indexed: 12/17/2022]
Abstract
Although extensive knowledge exists on selective vulnerability of dopaminergic neurons against parkinsonism-inducing neurotoxins, there is a complete lack of such data on immature neuroprogenitors. Here we investigated the toxicity of 1-methyl-4-phenylpyridinium (MPP+), 6-hydroxydopamine (6-OHDA) and the free radical generator H2O2 on various developmental stages of predopaminergic mesencephalic neuroprogenitors (mNPCs) to evaluate stage-dependency of selective dopaminergic neurotoxicity. Striatal NPCs (sNPCs) without dopaminergic differentiation potential served as controls. Exposure of both undifferentiated NPCs to MPP+ resulted in concentration-dependent cell death at concentrations of >10 microM after 72 h without differences between both cell types, while 6-OHDA led to relevant cell death at 1000 microM after 24h with significant higher sensitivity of mNPCs compared to sNPCs. H2O2 did not induce relevant cell death in all cell types. In NPC cultures differentiated for 14 days, MPP+ showed enhanced toxicity compared to the undifferentiated counterparts, but no significant differences between both NPC type and differentiation conditions. 6-OHDA showed similar toxicity pattern in differentiated compared to undifferentiated NPCs. By evaluating the toxicity of MPP+ on MAP2ab+ neurons derived from both mNPCs and sNPCs as well as tyrosine hydroxylase (TH)+ dopaminergic cells from mNPCs, we found concentration-dependent cell death of all cell types with no increased vulnerability of TH+ cells. Primary TH+ neurons showed significantly higher vulnerability to MPP+. Together, we demonstrated stage-dependent vulnerability of NPCs towards dopaminergic neurotoxins, but no selective vulnerability of NPC-derived TH+ dopaminergic cells towards MPP+. This cell system seems not suitable as a screening tool for selective dopaminergic toxicity.
Collapse
|
66
|
Parish CL, Castelo-Branco G, Rawal N, Tonnesen J, Sorensen AT, Salto C, Kokaia M, Lindvall O, Arenas E. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. J Clin Invest 2008; 118:149-60. [PMID: 18060047 DOI: 10.1172/jci32273] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 10/03/2007] [Indexed: 12/23/2022] Open
Abstract
Dopamine (DA) cell replacement therapy in Parkinson disease (PD) can be achieved using human fetal mesencephalic tissue; however, limited tissue availability has hindered further developments. Embryonic stem cells provide a promising alternative, but poor survival and risk of teratoma formation have prevented their clinical application. We present here a method for generating large numbers of DA neurons based on expanding and differentiating ventral midbrain (VM) neural stem cells/progenitors in the presence of key signals necessary for VM DA neuron development. Mouse VM neurospheres (VMNs) expanded with FGF2, differentiated with sonic hedgehog and FGF8, and transfected with Wnt5a (VMN-Wnt5a) generated 10-fold more DA neurons than did conventional FGF2-treated VMNs. VMN-Wnt5a cells exhibited the transcriptional and biochemical profiles and intrinsic electrophysiological properties of midbrain DA cells. Transplantation of these cells into parkinsonian mice resulted in significant cellular and functional recovery. Importantly, no tumors were detected and only a few transplanted grafts contained sporadic nestin-expressing progenitors. Our findings show that Wnt5a improves the differentiation and functional integration of stem cell-derived DA neurons in vivo and define Wnt5a-treated neural stem cells as an efficient and safe source of DA neurons for cell replacement therapy in PD.
Collapse
Affiliation(s)
- Clare L Parish
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Hedlund E, Pruszak J, Lardaro T, Ludwig W, Viñuela A, Kim KS, Isacson O. Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson's disease. Stem Cells 2008; 26:1526-36. [PMID: 18388307 DOI: 10.1634/stemcells.2007-0996] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Both fetal ventral mesencephalic (VM) and embryonic stem (ES) cell-derived dopamine neurons have been used successfully to correct behavioral responses in animal models of Parkinson's disease. However, grafts derived from fetal VM cells or from ES cells contain multiple cell types, and the majority of these cells are not dopamine neurons. Isolation of ES cell-derived dopamine neurons and subsequent transplantation would both elucidate the capacity of these neurons to provide functional input and also further explore an efficient and safer use of ES cells for the treatment of Parkinson's disease. Toward this goal, we used a Pitx3-enhanced green fluorescent protein (Pitx3-eGFP) knock-in mouse blastocyst-derived embryonic stem (mES) cell line and fluorescence-activated cell sorting (FACS) to select and purify midbrain dopamine neurons. Initially, the dopaminergic marker profile of intact Pitx3-eGFP mES cultures was evaluated after differentiation in vitro. eGFP expression overlapped closely with that of Pitx3, Nurr1, Engrailed-1, Lmx1a, tyrosine hydroxylase (TH), l-aromatic amino acid decarboxylase (AADC), and vesicular monoamine transporter 2 (VMAT2), demonstrating that these cells were of a midbrain dopamine neuron character. Furthermore, postmitotic Pitx3-eGFP(+) dopamine neurons, which constituted 2%-5% of all live cells in the culture after dissociation, could be highly enriched to >90% purity by FACS, and these isolated neurons were viable, extended neurites, and maintained a dopaminergic profile in vitro. Transplantation to 6-hydroxydopamine-lesioned rats showed that an enriched dopaminergic population could survive and restore both amphetamine- and apomorphine-induced functions, and the grafts contained large numbers of midbrain dopamine neurons, which innervated the host striatum. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Eva Hedlund
- Udall Parkinson's Disease Research Center for Excellence, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Anwar MR, Andreasen CM, Lippert SK, Zimmer J, Martinez-Serrano A, Meyer M. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices. J Neurochem 2008; 105:460-70. [DOI: 10.1111/j.1471-4159.2007.05164.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
69
|
Allen ND. Temporal and epigenetic regulation of neurodevelopmental plasticity. Philos Trans R Soc Lond B Biol Sci 2008; 363:23-38. [PMID: 17311782 PMCID: PMC2605484 DOI: 10.1098/rstb.2006.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The anticipated therapeutic uses of neural stem cells depend on their ability to retain a certain level of developmental plasticity. In particular, cells must respond to developmental manipulations designed to specify precise neural fates. Studies in vivo and in vitro have shown that the developmental potential of neural progenitor cells changes and becomes progressively restricted with time. For in vitro cultured neural progenitors, it is those derived from embryonic stem cells that exhibit the greatest developmental potential. It is clear that both extrinsic and intrinsic mechanisms determine the developmental potential of neural progenitors and that epigenetic, or chromatin structural, changes regulate and coordinate hierarchical changes in fate-determining gene expression. Here, we review the temporal changes in developmental plasticity of neural progenitor cells and discuss the epigenetic mechanisms that underpin these changes. We propose that understanding the processes of epigenetic programming within the neural lineage is likely to lead to the development of more rationale strategies for cell reprogramming that may be used to expand the developmental potential of otherwise restricted progenitor populations.
Collapse
Affiliation(s)
- Nicholas D Allen
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| |
Collapse
|
70
|
Park CH, Kang JS, Yoon EH, Shim JW, Suh-Kim H, Lee SH. Proneural bHLH neurogenin 2 differentially regulates Nurr1-induced dopamine neuron differentiation in rat and mouse neural precursor cells in vitro. FEBS Lett 2008; 582:537-42. [DOI: 10.1016/j.febslet.2008.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 12/13/2007] [Accepted: 01/08/2008] [Indexed: 11/28/2022]
|
71
|
Bauer M, Szulc J, Meyer M, Jensen CH, Terki TA, Meixner A, Kinkl N, Gasser T, Aebischer P, Ueffing M. Delta-like 1 participates in the specification of ventral midbrain progenitor derived dopaminergic neurons. J Neurochem 2007; 104:1101-15. [PMID: 17986227 DOI: 10.1111/j.1471-4159.2007.05037.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Delta-like 1 (Dlk1), a member of the Delta/Notch protein family, is expressed in the mouse ventral midbrain (VM) as early as embryonic day 11.5 (E11.5) followed by exclusive expression in tyrosine 3-monooxygenase (TH) positive neurons from E12.5 onwards. To further elucidate the yet unknown function of Dlk1 in VM neuron development, we investigated the effect of soluble Dlk1 protein as well as the intrinsic Dlk1 function in the course of VM progenitor expansion and dopaminergic (DA) neuron differentiation in vitro. Dlk1 treatment during expansion increased DA progenitor proliferation and the proportion of NR4A2+ neurons expressing TH after differentiation, whereas Dlk1 treatment during the course of DA precursor differentiation did not alter TH+ neuron counts. In contrast, silencing of endogenously expressed Dlk1 prior to DA precursor differentiation partially prevented the expression of DA neuron markers, which was not accompanied with alteration of overall or local proliferation. Due to the latter finding in combination with the absence of Dlk1 negative DA neurons in differentiated cultures, we suggest that Dlk1 expression might have a permissive effect on DA neuron differentiation in vitro. The study presented here is the first publication identifying Dlk1 effects on ventral midbrain-derived DA precursor differentiation.
Collapse
Affiliation(s)
- Matthias Bauer
- GSF - National Research Center for Environment and Health, Institute of Human Genetics, Munich-Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Yu JM, Jun ES, Jung JS, Suh SY, Han JY, Kim JY, Kim KW, Jung JS. Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Lett 2007; 257:172-81. [PMID: 17709179 DOI: 10.1016/j.canlet.2007.07.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 02/08/2023]
Abstract
Wnt5a operates as either a tumor suppressor or a tumor stimulator, according to tumor type. The functions of Wnt5a in human glioblastoma (GBM) have yet to be determined. We initially evaluated the expression of Wnt5a in human glioma. The results of immunohistochemical analyses have revealed that Wnt5a expression was higher in human GBM than in normal brain tissue and low-grade astrocytoma. In order to assess the role of Wnt5a on proliferation in human glioblastoma cells, we employed U87MG and GBM-05, a newly established GBM cell line. GBM-05 was established from a patient diagnosed with GBM. GBM-05 cells were shown to express Nestin, but did not express GFAP and Map2ab. GBM-05 cells formed infiltrating brain tumors after being intracerebrally transplanted into nude mice, and xenotransplanted GBM-05 cells were observed to differentiate into neuronal and astrocyte lineages. Wnt5a expression in the xenotransplanted tumors was higher than that detected in the surrounding brain tissues. The overexpression of Wnt5a increased the proliferation of GBM-05 and U87MG in vitro. By way of contrast, the downregulation of Wnt5a expression as the result of RNA interference reduced proliferation from GBM-05 and U87MG cells in vitro, and reduced tumorigenicity in vivo. Our data indicate that Wnt5a signaling is an important regulator in the proliferation of human glioma cells.
Collapse
Affiliation(s)
- Ji Min Yu
- Department of Physiology, School of Medicine, Pusan National University, Pusan 602-739, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Parish CL, Arenas E. Stem-cell-based strategies for the treatment of Parkinson's disease. NEURODEGENER DIS 2007; 4:339-47. [PMID: 17627139 DOI: 10.1159/000101892] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cell transplantation to replace lost neurons in neurodegenerative diseases such as Parkinson's disease (PD) offers a hopeful prospect for many patients. Previously, fetal grafts have been shown to survive, integrate and induce functional recovery in PD patients. However, limited tissue availability has haltered the widespread use of this therapy and begs the demand for alternative tissue sources. In this regard, stem cells may constitute one such source. OBJECTIVE/METHODS In this review we outline various types of stem cells currently available and provide an overview of their possible application for PD. We address not only the obvious possibility of using stem cells in cell replacement therapy but also the benefits of stem cell lines in drug discovery. RESULTS/CONCLUSION Stem cells carrying reporters or mutations in genes linked to familial PD are likely to contribute to the identification of new drug targets and subsequent development of new drugs for PD. Thus, stem cells are, and will be more so in the future, invaluable tools in the quest for new therapies against neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Clare L Parish
- Laboratory of Molecular Neurobiology, Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
74
|
Maguire-Zeiss KA, Mhyre TR, Federoff HJ. Gazing into the future: Parkinson's disease gene therapeutics to modify natural history. Exp Neurol 2007; 209:101-13. [PMID: 18035353 DOI: 10.1016/j.expneurol.2007.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/19/2007] [Accepted: 09/24/2007] [Indexed: 12/21/2022]
Abstract
PD gene therapy clinical trials have primarily focused on increasing the production of dopamine (DA) through supplemental amino acid decarboxylase (AADC) expression, neurotrophic support for surviving dopaminergic neurons (DAN) or altering brain circuitry to compensate for DA neuron loss. The future of PD gene therapy will depend upon resolving a number of important issues that are discussed in this special issue. Of particular importance is the identification of novel targets that are amenable to early intervention prior to the substantial loss of DAN. However, for the most part the etiopathogenesis of PD is unknown making early intervention a challenge and the development of early biomarker diagnostics imperative.
Collapse
|
75
|
Michaelidis TM, Lie DC. Wnt signaling and neural stem cells: caught in the Wnt web. Cell Tissue Res 2007; 331:193-210. [PMID: 17828608 DOI: 10.1007/s00441-007-0476-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 07/13/2007] [Indexed: 12/22/2022]
Abstract
Wnt proteins have now been identified as major physiological regulators of multiple aspects of stem cell biology, from self-renewal and pluripotency to precursor cell competence and terminal differentiation. Neural stem cells are the cellular building blocks of the developing nervous system and provide the basis for continued neurogenesis in the adult mammalian central nervous system. Here, we outline the most recent advances in the field about the critical factors and regulatory networks involved in Wnt signaling and discuss recent findings on how this increasingly intricate pathway contributes to the shaping of the developing and adult nervous system on the level of the neural stem cell.
Collapse
Affiliation(s)
- Theologos M Michaelidis
- GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764, Munich-Neuherberg, Germany
| | | |
Collapse
|
76
|
Kitagawa H, Ray WJ, Glantschnig H, Nantermet PV, Yu Y, Leu CT, Harada SI, Kato S, Freedman LP. A regulatory circuit mediating convergence between Nurr1 transcriptional regulation and Wnt signaling. Mol Cell Biol 2007; 27:7486-96. [PMID: 17709391 PMCID: PMC2169041 DOI: 10.1128/mcb.00409-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The orphan nuclear receptor Nurr1 is essential for the development and maintenance of midbrain dopaminergic neurons, the cells that degenerate during Parkinson's disease, by promoting the transcription of genes involved in dopaminergic neurotransmission. Since Nurr1 lacks a classical ligand-binding pocket, it is not clear which factors regulate its activity and how these factors are affected during disease pathogenesis. Since Wnt signaling via beta-catenin promotes the differentiation of Nurr1(+) dopaminergic precursors in vitro, we tested for functional interactions between these systems. We found that beta-catenin and Nurr1 functionally interact at multiple levels. In the absence of beta-catenin, Nurr1 is associated with Lef-1 in corepressor complexes. Beta-catenin binds Nurr1 and disrupts these corepressor complexes, leading to coactivator recruitment and induction of Wnt- and Nurr1-responsive genes. We then identified KCNIP4/calsenilin-like protein as being responsive to concurrent activation by Nurr1 and beta-catenin. Since KCNIP4 interacts with presenilins, the Alzheimer's disease-associated proteins that promote beta-catenin degradation, we tested the possibility that KCNIP4 induction regulates beta-catenin signaling. KCNIP4 induction limited beta-catenin activity in a presenilin-dependent manner, thereby serving as a negative feedback loop; furthermore, Nurr1 inhibition of beta-catenin activity was absent in PS1(-/-) cells or in the presence of small interfering RNAs specific to KCNIP4. These data describe regulatory convergence between Nurr1 and beta-catenin, providing a mechanism by which Nurr1 could be regulated by Wnt signaling.
Collapse
Affiliation(s)
- Hirochika Kitagawa
- Department of Molecular Endocrinology, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
MacLeod RJ, Hayes M, Pacheco I. Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells. Am J Physiol Gastrointest Liver Physiol 2007; 293:G403-11. [PMID: 17463182 DOI: 10.1152/ajpgi.00119.2007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To understand the role of the colonic extracellular calcium-sensing receptor (CaSR) in calcium chemoprotection against colon cancer, we activated the CaSR with 5 mM Ca(2+) on HT-29 cells, an adenocarcinoma cell line. High Ca(2+) stimulated the upregulation (as assessed by RT-PCR) and the secretion of Wnt5a (assessed by Western blot), a noncanonical Wnt family member. Inhibiting CaSR activity with a short interfering RNA (siRNA) duplex against the CaSR reduced CaSR protein and prevented the secretion of Wnt5a. Dominant negative CaSR (R185Q) or siRNA blocked the high Ca(2+)-mediated inhibition of the beta-catenin reporter TOPflash. The CaSR/Wnt5a inhibition of beta-catenin reporter was prevented by dominant negative ubiquitin ligase seven in absentia homolog 2 (Siah2). In low-calcium medium, overexpressing Wnt5a increased Siah2 amplicons and protein. Inducing the expression of full-length adenomatous polyposis coli (APC) prevented CaSRmediated increases of Siah2 and Wnt5a. Overexpressing the receptor tyrosine kinase-like orphan receptor 2 (Ror2) increased Wnt5a and CaSR-mediated inhibition of TOPflash. Conditioned medium from Wnt5a-transfected cells added to HT-29 cells in low-Ca(2+) medium inhibited the beta-catenin reporter. This inhibition was blocked dose responsively by Frizzled-8/Fc chimeric antibody. Overexpression of Ror2 in HT-29 cells in low-Ca(2+) medium increased the inhibition of beta-catenin reporter caused by recombinant Wnt5a protein compared with addition of Wnt5a protein alone. Our findings demonstrate that APC status plays a key role as a determinant of Wnt5a secretion and suggest that CaSR-mediated secretion of Wnt5a will inhibit defective Wnt signaling in APC-truncated cells in an autocrine manner.
Collapse
Affiliation(s)
- R John MacLeod
- Department of Physiology, Queen's University, 76 Stuart Street, Kingston, Ontario, Canada.
| | | | | |
Collapse
|
78
|
Környei Z, Gócza E, Rühl R, Orsolits B, Vörös E, Szabó B, Vágovits B, Madarász E. Astroglia‐derived retinoic acid is a key factor in glia‐induced neurogenesis. FASEB J 2007; 21:2496-509. [PMID: 17438145 DOI: 10.1096/fj.06-7756com] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Astroglial cells are essential components of the neurogenic niches within the central nervous system. Emerging evidence suggests that they are among the key regulators of postnatal neurogenesis. Although astrocytes have been demonstrated to possess the potential to instruct stem cells to adopt a neuronal fate, little is known about the nature of the glia-derived instructive signals. Here we propose that all-trans retinoic acid, one of the most powerful morphogenic molecules regulating neuronal cell fate commitment, may be one of the glia-derived factors directing astroglia-induced neurogenesis. According to data obtained from several complementary approaches, we show that cultured astrocytes express the key enzyme mRNAs of retinoic acid biosynthesis and actively produce all-trans retinoic acid. We show that blockage of retinoic acid signaling by the pan-RAR antagonist AGN193109 prevents glia-induced neuron formation by noncommitted stem cells. Therefore, we provide strong in vitro evidence for retinoic acid action in astroglia-induced neuronal differentiation.
Collapse
Affiliation(s)
- Z Környei
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Laboratory of Cellular and Developmental Neurobiology, H-1083 43 Szigony U., Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Bryja V, Schulte G, Rawal N, Grahn A, Arenas E. Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. J Cell Sci 2007; 120:586-95. [PMID: 17244647 DOI: 10.1242/jcs.03368] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously, we have shown that Wnt-5a strongly regulates dopaminergic neuron differentiation by inducing phosphorylation of Dishevelled (Dvl). Here, we identify additional components of the Wnt-5a-Dvl pathway in dopaminergic cells. Using in vitro gain-of-function and loss-of-function approaches, we reveal that casein kinase 1 (CK1) delta and CK1epsilon are crucial for Dvl phosphorylation by non-canonical Wnts. We show that in response to Wnt-5a, CK1epsilon binds Dvl and is subsequently phosphorylated. Moreover, in response to Wnt-5a or CK1epsilon, the distribution of Dvl changed from punctate to an even appearance within the cytoplasm. The opposite effect was induced by a CK1epsilon kinase-dead mutant or by CK1 inhibitors. As expected, Wnt-5a blocked the Wnt-3a-induced activation of beta-catenin. However, both Wnt-3a and Wnt-5a activated Dvl2 by a CK1-dependent mechanism in a cooperative manner. Finally, we show that CK1 kinase activity is necessary for Wnt-5a-induced differentiation of primary dopaminergic precursors. Thus, our data identify CK1 as a component of Wnt-5a-induced signalling machinery that regulates dopaminergic differentiation, and suggest that CK1delta/epsilon-mediated phosphorylation of Dvl is a common step in both canonical and non-canonical Wnt signalling.
Collapse
Affiliation(s)
- Vítezslav Bryja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
80
|
Lange C, Mix E, Rateitschak K, Rolfs A. Wnt signal pathways and neural stem cell differentiation. NEURODEGENER DIS 2006; 3:76-86. [PMID: 16909041 DOI: 10.1159/000092097] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Self-renewal, migration and differentiation of neural progenitor cells are controlled by a variety of pleiotropic signal molecules. Members of the morphogen family of Wnt molecules play a crucial role for developmental and repair mechanisms in the embryonic and adult nervous system. A strategy of disclosure of the role of different canonical (glycogen synthase kinase-3beta/beta-catenin-dependent) and noncanonical (Ca2+- and JNK-dependent) signal pathways for progenitor cell expansion and differentiations is illustrated at the example of the rat striatal progenitor cell line ST14A that is immortalized by stable retroviral transfection with a temperature-sensitive mutant of the SV40 large T antigen. A shift from permissive 33 degrees C to nonpermissive 39 degrees C leads to proliferation stop and start of differentiation into glial and neuronal cells. Investigation of expression of Wnts, Wnt receptors and Wnt-dependent signal pathway assay point to a stage-dependent involvement of canonical and noncanonical signaling in proliferation and differentiation of ST14A cells, whereby a mutual suppression of pathway activities is likely. Canonical Wnt molecules are not detected in proliferating and differentiating ST14A cells except Wnt2. The noncanonical Wnt molecules Wnt4, Wnt5a and Wnt11 are expressed in proliferating cells and increase during differentiation, whereas cellular beta-catenin decreases in the early phase and is restored in the late phase of differentiation. Accumulation of beta-catenin at the membrane in undifferentiated proliferating cells and its nuclear localization in nondividing undifferentiated cells under differentiation conditions argues for a distinct spatially regulated role of the molecule in the proliferation and early differentiation phase. Ca2+-dependent and JNK-dependent noncanonical Wnt signaling is not detected during differentiation of ST14A cells. Complete exploration of the role of Wnt pathways, for differentiation of the neural progenitor cells ST14A will require Wnt overexpression and exposure of ST14A cells to exogenous Wnts either with purified Wnts or by co-cultures with Wnt producers.
Collapse
Affiliation(s)
- Christian Lange
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | | | | |
Collapse
|
81
|
Abstract
One of the keys to using embryonic stem cells (ESCs) in brain research and potential application in neurological diseases is directed differentiation of neuronal and glial subtypes. This may be achieved by application of developmental principles in guiding cell lineage specification from naïve stem cells. Establishment of defined ESC differentiation models that recapitulate in vivo development, especially from human ESCs, will most likely provide a dynamic tool for dissecting molecular mechanisms underlying early embryonic development that is otherwise not readily obtainable. This is also a rational and realistic way of producing enriched populations of functional neurons and glia for pathological analyses as well as possible therapeutic applications.
Collapse
Affiliation(s)
- Su-Chun Zhang
- Department of Anatomy, School of Medicine and Public Health, Waisman Center, Wisconsin Stem Cell Research Program, WiCell Institute, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
82
|
Moses D, Teper Y, Gantois I, Finkelstein DI, Horne MK, Drago J. Murine embryonic EGF-responsive ventral mesencephalic neurospheres display distinct regional specification and promote survival of dopaminergic neurons. Exp Neurol 2006; 199:209-21. [PMID: 16626706 DOI: 10.1016/j.expneurol.2006.02.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 01/24/2006] [Accepted: 02/21/2006] [Indexed: 11/16/2022]
Abstract
Similar to embryonic forebrain, the embryonic mesencephalon contains Fibroblast Growth Factor 2 (FGF2)- and Epidermal Growth Factor (EGF)-responsive progenitors that can be isolated as neurospheres. Developmentally, the FGF2-responsive population appears first and is thought to give rise to EGF-responsive neural stem cells. It is not known whether following this developmental switch of growth factor responsiveness ventral mesencephalic (VM)-derived neural stem cells display distinct region-specific properties. We found that murine VM- and dorsal mesencephalic (DM)-derived primary neurospheres isolated with EGF at embryonic day 14.5 differed with respect to neurosphere formation efficacy and size. VM- but not DM-derived spheres expressed En1, the molecular marker of isthmic organizer, and contained transcripts of BDNF, FGF2, IGF-I and NT-3. Both VM and DM primary neurospheres were self-renewing and gave rise to astroglial cells, but 20% of VM spheres also generated neurons. According to in vitro properties, DM- and majority of VM-derived EGF-responsive progenitors represent glial precursors. VM- but not DM-derived primary neurospheres enriched their respective conditioned medium with factors that promoted the survival of dopaminergic neurons in vitro, suggesting that ventral mesencephalic EGF-responsive progenitors are endowed with the potential to provide trophic support to nearby nascent dopaminergic neurons. These data may have implications in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- David Moses
- Howard Florey Institute of Experimental Physiology and Medicine, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|