51
|
Yu M, Zhang M, Fu P, Wu M, Yin X, Chen Z. Research progress of mitophagy in chronic cerebral ischemia. Front Aging Neurosci 2023; 15:1224633. [PMID: 37600521 PMCID: PMC10434995 DOI: 10.3389/fnagi.2023.1224633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Chronic cerebral ischemia (CCI), a condition that can result in headaches, dizziness, cognitive decline, and stroke, is caused by a sustained decrease in cerebral blood flow. Statistics show that 70% of patients with CCI are aged > 80 years and approximately 30% are 45-50 years. The incidence of CCI tends to be lower, and treatment for CCI is urgent. Studies have confirmed that CCI can activate the corresponding mechanisms that lead to mitochondrial dysfunction, which, in turn, can induce mitophagy to maintain mitochondrial homeostasis. Simultaneously, mitochondrial dysfunction can aggravate the insufficient energy supply to cells and various diseases caused by CCI. Regulation of mitophagy has become a promising therapeutic target for the treatment of CCI. This article reviews the latest progress in the important role of mitophagy in CCI and discusses the induction pathways of mitophagy in CCI, including ATP synthesis disorder, oxidative stress injury, induction of reactive oxygen species, and Ca2+ homeostasis disorder, as well as the role of drugs in CCI by regulating mitophagy.
Collapse
Affiliation(s)
- Mayue Yu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Peijie Fu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Moxin Wu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| |
Collapse
|
52
|
Mozayan E, Rafiee-Pour HA, Ghasemi F. CNT-FET for sensitive hydrogen peroxide biosensing via immobilized Cytochrome c. Arch Biochem Biophys 2023:109695. [PMID: 37479051 DOI: 10.1016/j.abb.2023.109695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
H2O2 is an effective substance in the body which contributes to gene expression, insulin metabolism and determining cell shapes. However, a high concentration of H2O2 is harmful to the body and can cause various diseases such as colitis wounds, sepsis disease, lymphocyte proliferation and macrophage apoptosis in systemic lupus erythematosus. In this study, a Cyt c/cMWCNTs/FET was designed to real-time detect H2O2 via immobilized Cyt c on the cMWCNTs/FET surface. The performance of the Cyt c/cMWCNTs/FET biosensor was studied under various parameters such as cMWCNTs and Cyt c concentrations, as well as different pH values. When H2O2 was added to the reaction chamber of the Cyt c/cMWCNTs/FET, the output current of the Bio-FET was reduced, which was attributed to H2O2 detection. The linear response range of this Cyt c/cMWCNT/FET was 10.0 fM to 1.0 nM. The limit of detection and response time of this platform were determined to be 9.13 fM and around 1.0 s, respectively. Also, the operation of the Cyt c/cMWCNTs/FET in the presence of glucose, leucine, tyrosine and ascorbic acid as interfering substances was selective towards H2O2.
Collapse
Affiliation(s)
- Elaheh Mozayan
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Hossain-Ali Rafiee-Pour
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Foad Ghasemi
- Nanoscale Physics Device Lab (NPDL), Department of Physics, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
53
|
Morse PT, Pérez-Mejías G, Wan J, Turner AA, Márquez I, Kalpage HA, Vaishnav A, Zurek MP, Huettemann PP, Kim K, Arroum T, De la Rosa MA, Chowdhury DD, Lee I, Brunzelle JS, Sanderson TH, Malek MH, Meierhofer D, Edwards BFP, Díaz-Moreno I, Hüttemann M. Cytochrome c lysine acetylation regulates cellular respiration and cell death in ischemic skeletal muscle. Nat Commun 2023; 14:4166. [PMID: 37443314 PMCID: PMC10345088 DOI: 10.1038/s41467-023-39820-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Skeletal muscle is more resilient to ischemia-reperfusion injury than other organs. Tissue specific post-translational modifications of cytochrome c (Cytc) are involved in ischemia-reperfusion injury by regulating mitochondrial respiration and apoptosis. Here, we describe an acetylation site of Cytc, lysine 39 (K39), which was mapped in ischemic porcine skeletal muscle and removed by sirtuin5 in vitro. Using purified protein and cellular double knockout models, we show that K39 acetylation and acetylmimetic K39Q replacement increases cytochrome c oxidase (COX) activity and ROS scavenging while inhibiting apoptosis via decreased binding to Apaf-1, caspase cleavage and activity, and cardiolipin peroxidase activity. These results are discussed with X-ray crystallography structures of K39 acetylated (1.50 Å) and acetylmimetic K39Q Cytc (1.36 Å) and NMR dynamics. We propose that K39 acetylation is an adaptive response that controls electron transport chain flux, allowing skeletal muscle to meet heightened energy demand while simultaneously providing the tissue with robust resilience to ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas, Universidad de Sevilla - CSIC, 41092, Sevilla, Spain
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Alice A Turner
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Inmaculada Márquez
- Instituto de Investigaciones Químicas, Universidad de Sevilla - CSIC, 41092, Sevilla, Spain
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Matthew P Zurek
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Philipp P Huettemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Katherine Kim
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas, Universidad de Sevilla - CSIC, 41092, Sevilla, Spain
| | - Dipanwita Dutta Chowdhury
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Joseph S Brunzelle
- Life Sciences Collaborative Access Team, Northwestern University, Center for Synchrotron Research, Argonne, IL, 60439, USA
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Brian F P Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, Universidad de Sevilla - CSIC, 41092, Sevilla, Spain.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
54
|
James MR, Aufiero MA, Vesely EM, Dhingra S, Liu KW, Hohl TM, Cramer RA. Aspergillus fumigatus cytochrome c impacts conidial survival during sterilizing immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544103. [PMID: 37333187 PMCID: PMC10274773 DOI: 10.1101/2023.06.07.544103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening infection caused by species in the ubiquitous fungal genus Aspergillus . While leukocyte-generated reactive oxygen species (ROS) are critical for the clearance of fungal conidia from the lung and resistance to IPA, the processes that govern ROS-dependent fungal cell death remain poorly defined. Using a flow cytometric approach that monitors two independent cell death markers, an endogenous histone H2A:mRFP nuclear integrity reporter and Sytox Blue cell impermeable (live/dead) stain, we observed that loss of A. fumigatus cytochrome c ( cycA ) results in reduced susceptibility to cell death from hydrogen peroxide (H 2 O 2 ) treatment. Consistent with these observations in vitro , loss of cycA confers resistance to both NADPH-oxidase -dependent and -independent killing by host leukocytes. Fungal ROS resistance is partly mediated in part by Bir1, a homolog to survivin in humans, as Bir1 overexpression results in decreased ROS-induced conidial cell death and reduced killing by innate immune cells in vivo . We further report that overexpression of the Bir1 N-terminal BIR domain in A. fumigatus conidia results in altered expression of metabolic genes that functionally converge on mitochondrial function and cytochrome c ( cycA ) activity. Together, these studies demonstrate that cycA in A. fumigatus contributes to cell death responses that are induced by exogenous H 2 O 2 and by host leukocytes. Importance Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk of IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with Chronic Granulomatous Disease (CGD). However, treatments for Aspergillus infections remains limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization (WHO) classified A. fumigatus as a critical priority fungal pathogen. Our research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.
Collapse
|
55
|
Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants (Basel) 2023; 12:antiox12051075. [PMID: 37237941 DOI: 10.3390/antiox12051075] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria play a major role in ROS production and defense during their life cycle. The transcriptional activator PGC-1α is a key player in the homeostasis of energy metabolism and is therefore closely linked to mitochondrial function. PGC-1α responds to environmental and intracellular conditions and is regulated by SIRT1/3, TFAM, and AMPK, which are also important regulators of mitochondrial biogenesis and function. In this review, we highlight the functions and regulatory mechanisms of PGC-1α within this framework, with a focus on its involvement in the mitochondrial lifecycle and ROS metabolism. As an example, we show the role of PGC-1α in ROS scavenging under inflammatory conditions. Interestingly, PGC-1α and the stress response factor NF-κB, which regulates the immune response, are reciprocally regulated. During inflammation, NF-κB reduces PGC-1α expression and activity. Low PGC-1α activity leads to the downregulation of antioxidant target genes resulting in oxidative stress. Additionally, low PGC-1α levels and concomitant oxidative stress promote NF-κB activity, which exacerbates the inflammatory response.
Collapse
Affiliation(s)
- Othman Abu Shelbayeh
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Tasnim Arroum
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
- Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Silke Morris
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Karin B Busch
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| |
Collapse
|
56
|
Trusova VM, Zhytniakivska OA, Tarabara UK, Vus KA, Gorbenko GP. Deciphering the molecular details of interactions between anti-COVID drugs and functional human proteins: in silico approach. J Pharm Biomed Anal 2023; 233:115448. [PMID: 37167767 DOI: 10.1016/j.jpba.2023.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
The molecular docking calculations have been employed to investigate the interactions a set of proteins with the repurposed anti-COVID drugs. The position of the therapeutic agents within the protein structure was dependent on a particular drug-protein system and varied from the binding cleft to the periphery of the polypeptide chain. Interactions involved in the drug-protein complexation includes predominantly hydrogen bonding and hydrophobic contacts. The obtained results may be of particular importance while developing the anti-COVID strategies as well as for deeper understanding of the drug pharmacodynamics and pharmacokinetics.
Collapse
Affiliation(s)
- Valeriya M Trusova
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine.
| | - Olga A Zhytniakivska
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Uliana K Tarabara
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Kateryna A Vus
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Galyna P Gorbenko
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
57
|
Crabtree A, Boehnke N, Bates F, Hackel B. Consequences of poly(ethylene oxide) and poloxamer P188 on transcription in healthy and stressed myoblasts. Proc Natl Acad Sci U S A 2023; 120:e2219885120. [PMID: 37094151 PMCID: PMC10161009 DOI: 10.1073/pnas.2219885120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/26/2023] [Indexed: 04/26/2023] Open
Abstract
Poly(ethylene oxide) (PEO) and poloxamers, a class of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers, have many personal and medical care applications, including the stabilization of stressed cellular membranes. Despite the widespread use, the cellular transcriptional response to these molecules is relatively unknown. C2C12 myoblasts, a model muscle cell, were subjected to short-term Poloxamer 188 (P188) and PEO181 (8,000 g/mol) treatment in culture. RNA was extracted and sequenced to quantify transcriptomic impact. The addition of moderate concentrations (14 µM) of either polymer to unstressed cells caused substantial differential gene expression, including at least twofold modulation of 357 and 588 genes, respectively. In addition, evaluation of the transcriptome response to osmotic stress without polymer treatment revealed dramatic change in RNA expression. Interestingly, the addition of polymer to stressed cells-at concentrations that provide physiological protection-did not yield a significant difference in expression of any gene relative to stress alone. Genome-scale expression analysis was corroborated by single-gene quantitative real-time PCR. Changes in protein expression were measured via western blot, which revealed partial alignment with the RNA results. Collectively, the significant changes to expression of multiple genes and resultant protein translation demonstrates an unexpectedly broad biochemical response to these polymers in healthy myoblasts in vitro. Meanwhile, the lack of substantial transcriptional response to polymer treatment in stressed cells highlights the physical nature of that protective mechanism.
Collapse
Affiliation(s)
- Adelyn A. Crabtree
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
58
|
Nutho B, Samsri S, Pornsuwan S. Structural Dynamics of the Precatalytic State of Human Cytochrome c upon T28C, G34C, and A50C Mutations: A Molecular Dynamics Simulation Perspective. ACS OMEGA 2023; 8:15229-15238. [PMID: 37151554 PMCID: PMC10157674 DOI: 10.1021/acsomega.3c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
The native structure of cytochrome c (cytc) contains hexacoordinate heme iron with His18 and Met80 residues ligated at the axial sites. Mutations of cytc at Ω-loops have been investigated in modulating the peroxidase activity and, hence, related to the initiation of the apoptotic pathway. Our previous experimental data reported on the peroxidase activity of the cysteine-directed mutants at different parts of the Ω-loop of human cytc (hCytc), that is, T28C, G34C, and A50C. In this work, we performed 1 μs molecular dynamics (MD) simulations to elucidate the detailed structural and dynamic changes upon these mutations, particularly at the proximal Ω-loop. The structures of hCytc were modeled in the hexacoordinated form, which was referred to as the "precatalytic state". The results showed that the structural features of the G34C mutant were more distinctive than those of other mutants. G34C mutation caused local destabilization and flexibility at the proximal Ω-loop (residues 12-28) and an extended distance between this Ω-loop region and heme iron. Besides, analysis of the orientation of the Arg38 side chain of the G34C mutant revealed the Arg38 conformer facing away from the heme iron. The obtained MD results also suggested structural diversity of the precatalytic states for the three hCytc mutants, specifically the effect of G34C mutation on the flexibility of the proximal Ω-loops. Therefore, our MD simulations combined with previous experimental data provide detailed insights into the structural basis of hCytc that could contribute to its pro-apoptotic function.
Collapse
Affiliation(s)
- Bodee Nutho
- Department
of Pharmacology, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Sasiprapa Samsri
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Soraya Pornsuwan
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
59
|
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 2023; 28:730-753. [PMID: 37014578 PMCID: PMC10071271 DOI: 10.1007/s10495-023-01835-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Apoptosis is a process of programmed cell death in which a cell commits suicide while maintaining the integrity and architecture of the tissue as a whole. Apoptosis involves activation of one of two major pathways: the extrinsic pathway, where extracellular pro-apoptotic signals, transduced through plasma membrane death receptors, activate a caspase cascade leading to apoptosis. The second, the intrinsic apoptotic pathway, where damaged DNA, oxidative stress, or chemicals, induce the release of pro-apoptotic proteins from the mitochondria, leading to the activation of caspase-dependent and independent apoptosis. However, it has recently become apparent that proteins involved in apoptosis also exhibit non-cell death-related physiological functions that are related to the cell cycle, differentiation, metabolism, inflammation or immunity. Such non-conventional activities were predominantly reported in non-cancer cells although, recently, such a dual function for pro-apoptotic proteins has also been reported in cancers where they are overexpressed. Interestingly, some apoptotic proteins translocate to the nucleus in order to perform a non-apoptotic function. In this review, we summarize the unconventional roles of the apoptotic proteins from a functional perspective, while focusing on two mitochondrial proteins: VDAC1 and SMAC/Diablo. Despite having pro-apoptotic functions, these proteins are overexpressed in cancers and this apparent paradox and the associated pathophysiological implications will be discussed. We will also present possible mechanisms underlying the switch from apoptotic to non-apoptotic activities although a deeper investigation into the process awaits further study.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Beer Sheva, Israel.
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
60
|
Bai X, Li P, Peng W, Chen N, Lin JL, Li Y. Ionogel-Electrode for the Study of Protein Tunnel Junctions under Physiologically Relevant Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300663. [PMID: 36965118 DOI: 10.1002/adma.202300663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Indexed: 05/15/2023]
Abstract
The study of charge transport through proteins is essential for understanding complicated electrochemical processes in biological activities while the reasons for the coexistence of tunneling and hopping phenomena in protein junctions still remain unclear. In this work, a flexible and conductive ionogel electrode is synthesized and is used as a top contact to form highly reproducible protein junctions. The junctions of proteins, including human serum albumin, cytochrome C and hemoglobin, show temperature-independent electron tunneling characteristics when the junctions are in solid states while with a different mechanism of temperature-dependent electron hopping when junctions are hydrated under physiologically relevant conditions. It is demonstrated that the solvent reorganization energy plays an important role in the electron-hopping process and experimentally shown that it requires ≈100 meV for electron hopping through one heme group inside a hydrated protein molecule connected between two electrodes.
Collapse
Affiliation(s)
- Xiyue Bai
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Pengfei Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Wuxian Peng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Ningyue Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
61
|
Torp MK, Vaage J, Stensløkken KO. Mitochondria-derived damage-associated molecular patterns and inflammation in the ischemic-reperfused heart. Acta Physiol (Oxf) 2023; 237:e13920. [PMID: 36617670 DOI: 10.1111/apha.13920] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/01/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Abstract
Cardiac cell death after myocardial infarction release endogenous structures termed damage-associated molecular patterns (DAMPs) that trigger the innate immune system and initiate a sterile inflammation in the myocardium. Cardiomyocytes are energy demanding cells and 30% of their volume are mitochondria. Mitochondria are evolutionary endosymbionts originating from bacteria containing molecular patterns similar to bacteria, termed mitochondrial DAMPs (mDAMPs). Consequently, mitochondrial debris may be particularly immunogenic and damaging. However, the role of mDAMPs in myocardial infarction is not clarified. Identifying the most harmful mDAMPs and inhibiting their early inflammatory signaling may reduce infarct size and the risk of developing post-infarct heart failure. The focus of this review is the role of mDAMPs in the immediate pro-inflammatory phase after myocardial infarction before arrival of immune cells in the myocardium. We discuss different mDAMPs, their role in physiology and present knowledge regarding their role in the inflammatory response of acute myocardial infarction.
Collapse
Affiliation(s)
- May-Kristin Torp
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
62
|
Brazhe NA, Nikelshparg EI, Baizhumanov AA, Grivennikova VG, Semenova AA, Novikov SM, Volkov VS, Arsenin AV, Yakubovsky DI, Evlyukhin AB, Bochkova ZV, Goodilin EA, Maksimov GV, Sosnovtseva O, Rubin AB. SERS uncovers the link between conformation of cytochrome c heme and mitochondrial membrane potential. Free Radic Biol Med 2023; 196:133-144. [PMID: 36649901 DOI: 10.1016/j.freeradbiomed.2023.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The balance between the mitochondrial respiratory chain activity and the cell's needs in ATP ensures optimal cellular function. Cytochrome c is an essential component of the electron transport chain (ETC), which regulates ETC activity, oxygen consumption, ATP synthesis and can initiate apoptosis. The impact of conformational changes in cytochrome c on its function is not understood for the lack of access to these changes in intact mitochondria. We have developed a novel sensor that uses unique properties of label-free surface-enhanced Raman spectroscopy (SERS) to identify conformational changes in heme of cytochrome c and to elucidate their role in functioning mitochondria. We have verified that molecule bond vibrations assessed by SERS are a reliable indicator of the heme conformation during changes in the inner mitochondrial membrane potential and ETC activity. We have demonstrated that cytochrome c heme reversibly switches between planar and ruffled conformations in response to the inner mitochondrial membrane potential (ΔΨ) and H+ concentration in the intermembrane space. This regulates the efficiency of the mitochondrial respiratory chain, thus, adjusting the mitochondrial respiration to the cell's consumption of ATP and the overall activity. We have found that under hypertensive conditions cytochrome c heme loses its sensitivity to ΔΨ that can affect the regulation of ETC activity. The ability of the proposed SERS-based sensor to track mitochondrial function opens broad perspectives in cell bioenergetics.
Collapse
Affiliation(s)
- Nadezda A Brazhe
- Department of Biophysics, Biological Faculty, Moscow State University, 119234, Russia.
| | - Evelina I Nikelshparg
- Department of Biophysics, Biological Faculty, Moscow State University, 119234, Russia
| | - Adil A Baizhumanov
- Department of Biophysics, Biological Faculty, Moscow State University, 119234, Russia
| | - Vera G Grivennikova
- Department of Biochemistry, Biological Faculty, Moscow State University, 119234, Russia
| | - Anna A Semenova
- Faculty of Materials Sciences, Moscow State University, 119899, Russia
| | - Sergey M Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141701, Russia
| | - Valentyn S Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141701, Russia; GrapheneTek, Skolkovo Innovation Center, Moscow, 121205, Russia
| | - Aleksey V Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141701, Russia
| | - Dmitry I Yakubovsky
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141701, Russia
| | - Andrey B Evlyukhin
- Institute of Quantum Optics, Leibniz Universität Hannover, Hannover, 30167, Germany
| | - Zhanna V Bochkova
- Department of Biophysics, Biological Faculty, Moscow State University, 119234, Russia
| | - Eugene A Goodilin
- Faculty of Materials Sciences, Moscow State University, 119899, Russia; Faculty of Chemistry, Moscow State University, 119991, Russia; Kurnakov Institute of General and Inorganic Chemistry RAS, Moscow, 119071, Russia
| | - Georgy V Maksimov
- Department of Biophysics, Biological Faculty, Moscow State University, 119234, Russia; Federal State Autonomous Educational Institution of Higher Education "National Research Technological University "MISiS", Moscow, 119049, Russia
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK, 2200, Denmark.
| | - Andrey B Rubin
- Department of Biophysics, Biological Faculty, Moscow State University, 119234, Russia
| |
Collapse
|
63
|
Quercetin Induces Apoptosis in HepG2 Cells via Directly Interacting with YY1 to Disrupt YY1-p53 Interaction. Metabolites 2023; 13:metabo13020229. [PMID: 36837850 PMCID: PMC9968089 DOI: 10.3390/metabo13020229] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Quercetin is a flavonol found in edible plants and possesses a significant anticancer activity. This study explored the mechanism by which quercetin prevented liver cancer via inducing apoptosis in HepG2 cells. Quercetin induced cell proliferation and apoptosis through inhibiting YY1 and facilitating p53 expression and subsequently increasing the Bax/Bcl-2 ratio. The results revealed that YY1 knockdown promoted apoptosis, whilst YY1 overexpression suppressed apoptosis via direct physical interaction between YY1 and p53 to regulate the p53 signaling pathway. Molecular docking using native and mutant YY1 proteins showed that quercetin could interact directly with YY1, and the binding of quercetin to YY1 significantly decreased the docking energy of YY1 with p53 protein. The interactions between quercetin and YY1 protein included direct binding and non-bonded indirect interactions, as confirmed by cellular thermal shift assay, UV-Vis absorption spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. It was likely that quercetin directly bound to YY1 protein to compete with p53 for the binding sites of YY1 to disrupt the YY1-p53 interaction, thereby promoting p53 activation. This study provides insights into the mechanism underlying quercetin's anticancer action and supports the development of quercetin as an anticancer therapeutic agent.
Collapse
|
64
|
Allophylus africanus Stem Bark Extract Modulates the Mitochondrial Apoptotic Pathway in Human Stomach Cancer Cells. Life (Basel) 2023; 13:life13020406. [PMID: 36836763 PMCID: PMC9964695 DOI: 10.3390/life13020406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The present work aimed to detail the mechanisms elicited by Allophylus africanus P. Beauv. stem bark extract in human stomach cancer cells and to identify the bioactives underlying the cytotoxicity. MTT reduction and LDH leakage assays allowed characterizing the cytotoxic effects in AGS cells, which were further detailed by morphological analysis using phalloidin and Hoechst 33258. Proapoptotic mechanisms were elucidated through a mitochondrial membrane potential assay and by assessing the impact upon the activity of caspase-9 and -3. The extract displayed selective cytotoxicity against AGS cells. The absence of plasma membrane permeabilization, along with apoptotic body formation, suggested that pro-apoptotic effects triggered cell death. Intrinsic apoptosis pathway activation was verified, as mitochondrial membrane potential decrease and activation of caspase-9 and -3 were observed. HPLC-DAD profiling enabled the identification of two apigenin-di-C-glycosides, vicenin-2 (1) and apigenin-6-C-hexoside-8-C-pentoside (3), as well as three mono-C-glycosides-O-glycosylated derivatives, apigenin-7-O-hexoside-8-C-hexoside (2), apigenin-8-C-(2-rhamnosyl)hexoside (4) and apigenin-6-C-(2-rhamnosyl)hexoside (5). Isovitexin-2″-O-rhamnoside (5) is the main constituent, accounting for nearly 40% of the total quantifiable flavonoid content. Our results allowed us to establish the relationship between the presence of vicenin-2 and other apigenin derivatives with the contribution to the cytotoxic effects on the presented AGS cells. Our findings attest the anticancer potential of A. africanus stem bark against gastric adenocarcinoma, calling for studies to develop herbal-based products and/or the use of apigenin derivatives in chemotherapeutic drug development.
Collapse
|
65
|
Chapman F, Sticken ET, Wieczorek R, Pour SJ, Dethloff O, Budde J, Rudd K, Mason E, Czekala L, Yu F, Simms L, Nahde T, O'Connell G, Stevenson M. Multiple endpoint in vitro toxicity assessment of a prototype heated tobacco product indicates substantially reduced effects compared to those of combustible cigarette. Toxicol In Vitro 2023; 86:105510. [PMID: 36372310 DOI: 10.1016/j.tiv.2022.105510] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
This study aimed to compare the aerosol chemistry and in vitro toxicological profiles of two prototype Heated Tobacco Product (p-HTP) variants to the 1R6F Reference Cigarette. In the neutral red uptake screen the p-HTPs were 37-39-fold less potent than 1R6F, in the micronucleus assay, responses to the p-HTPs were 8-22-fold less, and in the Ames test mutagenicity was weak or removed compared to 1R6F. The cardiovascular scratch wound assay revealed 58-fold greater wound healing impairment following exposure to 1R6F smoke extracts than the p-HTPs. Furthermore, in seven cell stress-related high content screening endpoints (cell count, cytochrome c release, mitochondrial membrane potential, GSH depletion, NFkB translocation, phosphorylation of c-jun and phosphorylation of H2AX), at 4 and 24 h, responses were substantially greater to 1R6F smoke extracts at comparable nicotine levels. The reduced in vitro effects of the p-HTPs were attributed to substantial reductions (90-97%) in selected HPHCs measured compared to in 1R6F smoke. The multiple endpoint in vitro assessment approach provides greater mechanistic insight and the first reported toxicological characterisation of these p-HTPs in the literature. Overall, the findings contribute to the growing weight of evidence that HTPs may offer a reduced harm mode of nicotine delivery to adult smokers.
Collapse
Affiliation(s)
- Fiona Chapman
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL, UK.
| | - Edgar Trelles Sticken
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Roman Wieczorek
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Sarah Jean Pour
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Ole Dethloff
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Jessica Budde
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Kathryn Rudd
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL, UK
| | - Elizabeth Mason
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL, UK
| | - Lukasz Czekala
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL, UK
| | - Fan Yu
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL, UK
| | - Liam Simms
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL, UK
| | - Thomas Nahde
- Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Albert-Einstein-Ring-7, D-22761 Hamburg, Germany
| | - Grant O'Connell
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL, UK
| | | |
Collapse
|
66
|
Zhang X, Guo F, Cao D, Yan Y, Zhang N, Zhang K, Li X, Kumar P, Zhang X. Neuroprotective Effect of Ponicidin Alleviating the Diabetic Cognitive Impairment: Regulation of Gut Microbiota. Appl Biochem Biotechnol 2023; 195:735-752. [PMID: 36155887 DOI: 10.1007/s12010-022-04113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Cognitive impairment is a major complication of diabetes mellitus, which is caused by constitutive hyperglycaemia. Ponicidin is a diterpenoid isolated from a Chinese traditional herb (Rabdosia rubescens) and demonstrates the various pharmacological effects. The goal of this study was to scrutinise the neuroprotective effect of ponicidin against diabetic nephropathy (DN) induced by streptozotocin (STZ). Intraperitoneal administration of STZ (55 mg/kg) was used for the induction of diabetes and rats were received oral administration of ponicidin (5, 10 and 15 mg/kg) until 28 days. The body weight, food intake, water intake and blood glucose level were assessed at regular time interval. Plasma insulin level, antioxidant, inflammatory cytokines, apoptosis marker and faecal gut microbiota compositions were estimated. DN-induced group rats revealed the augmented glucose level, water intake, food intake and reduced body weight. Ponicidin significantly (P < 0.001) repressed the glucose level and water food intake and improved the body weight and plasma insulin. Ponicidin significantly (P < 0.001) repressed the malonaldehyde (MDA) level and boosted the level of glutathione (GSH), glutathione reductase (GR) and superoxide dismutase (SOD) in the brain and serum level. Ponicidin significantly (P < 0.001) repressed the level of interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and enhanced the level of interleukin-4 (IL-4), interleukin-10 (IL-10) in the brain and serum level. DN group rats exhibited the enhanced relative abundance of Firmicutes, along with enhancing the Firmicutes/Bacteroidetes ratio and repressing the Bacteroidetes relative abundance. Ponicidin effectually restored the relative abundance of Allobaculum, Lactobacillus and Ruminococcus genera. Our findings clearly demonstrated that ponicidin has a neuroprotective effect against diabetic cognitive impairment through modulating the gut microbiome.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Guo
- People's Hospital of Lvliang, Shanxi, 033000, China
| | - Dujuan Cao
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yinan Yan
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ning Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kaili Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyi Li
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | - Xiaojuan Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
67
|
Wang X, Huang L, Zhang Y, Zhu L, Yang X, Zuo H, Luo X, Mao Y, Hopkins DL. Exploratory study on the potential regulating role of Peroxiredoxin 6 on proteolysis and relationships with desmin early postmortem. Meat Sci 2023; 195:109021. [DOI: 10.1016/j.meatsci.2022.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
68
|
Xu J, Luo Y, Wang J, Tu W, Yi X, Xu X, Song Y, Tang Y, Hua X, Yu Y, Yin H, Yang Q, Huang WE. Artificial intelligence-aided rapid and accurate identification of clinical fungal infections by single-cell Raman spectroscopy. Front Microbiol 2023; 14:1125676. [PMID: 37032865 PMCID: PMC10073597 DOI: 10.3389/fmicb.2023.1125676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Integrating artificial intelligence and new diagnostic platforms into routine clinical microbiology laboratory procedures has grown increasingly intriguing, holding promises of reducing turnaround time and cost and maximizing efficiency. At least one billion people are suffering from fungal infections, leading to over 1.6 million mortality every year. Despite the increasing demand for fungal diagnosis, current approaches suffer from manual bias, long cultivation time (from days to months), and low sensitivity (only 50% produce positive fungal cultures). Delayed and inaccurate treatments consequently lead to higher hospital costs, mobility and mortality rates. Here, we developed single-cell Raman spectroscopy and artificial intelligence to achieve rapid identification of infectious fungi. The classification between fungi and bacteria infections was initially achieved with 100% sensitivity and specificity using single-cell Raman spectra (SCRS). Then, we constructed a Raman dataset from clinical fungal isolates obtained from 94 patients, consisting of 115,129 SCRS. By training a classification model with an optimized clinical feedback loop, just 5 cells per patient (acquisition time 2 s per cell) made the most accurate classification. This protocol has achieved 100% accuracies for fungal identification at the species level. This protocol was transformed to assessing clinical samples of urinary tract infection, obtaining the correct diagnosis from raw sample-to-result within 1 h.
Collapse
Affiliation(s)
- Jiabao Xu
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Yanjun Luo
- Shanghai Hesen Biotech Co., Shanghai, China
| | - Jingkai Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Xiaofei Yi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoting Hua
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huabing Yin
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Qiwen Yang,
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Wei E. Huang,
| |
Collapse
|
69
|
Zhang Y, Yang L, Zhang Y, Liang Y, Zhao H, Li Y, Cai G, Wu Z, Li Z. Identification of Important Factors Causing Developmental Arrest in Cloned Pig Embryos by Embryo Biopsy Combined with Microproteomics. Int J Mol Sci 2022; 23:ijms232415975. [PMID: 36555617 PMCID: PMC9783476 DOI: 10.3390/ijms232415975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The technique of pig cloning holds great promise for the livestock industry, life science, and biomedicine. However, the prenatal death rate of cloned pig embryos is extremely high, resulting in a very low cloning efficiency. This limits the development and application of pig cloning. In this study, we utilized embryo biopsy combined with microproteomics to identify potential factors causing the developmental arrest in cloned pig embryos. We verified the roles of two potential regulators, PDCD6 and PLK1, in cloned pig embryo development. We found that siRNA-mediated knockdown of PDCD6 reduced mRNA and protein expression levels of the pro-apoptotic gene, CASP3, in cloned pig embryos. PDCD6 knockdown also increased the cleavage rate and blastocyst rate of cloned porcine embryos. Overexpression of PLK1 via mRNA microinjection also improved the cleavage rate of cloned pig embryos. This study provided a new strategy to identify key factors responsible for the developmental defects in cloned pig embryos. It also helped establish new methods to improve pig cloning efficiency, specifically by correcting the expression pattern of PDCD6 and PLK1 in cloned pig embryos.
Collapse
Affiliation(s)
- Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Liusong Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Yiqian Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
- Correspondence: (Z.W.); (Z.L.)
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
- Correspondence: (Z.W.); (Z.L.)
| |
Collapse
|
70
|
Tomasina F, Martínez J, Zeida A, Chiribao ML, Demicheli V, Correa A, Quijano C, Castro L, Carnahan RH, Vinson P, Goff M, Cooper T, McDonald WH, Castellana N, Hannibal L, Morse PT, Wan J, Hüttemann M, Jemmerson R, Piacenza L, Radi R. De novo sequencing and construction of a unique antibody for the recognition of alternative conformations of cytochrome c in cells. Proc Natl Acad Sci U S A 2022; 119:e2213432119. [PMID: 36378644 PMCID: PMC9704708 DOI: 10.1073/pnas.2213432119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cytochrome c (cyt c) can undergo reversible conformational changes under biologically relevant conditions. Revealing these alternative cyt c conformers at the cell and tissue level is challenging. A monoclonal antibody (mAb) identifying a key conformational change in cyt c was previously reported, but the hybridoma was rendered nonviable. To resurrect the mAb in a recombinant form, the amino-acid sequences of the heavy and light chains were determined by peptide mapping-mass spectrometry-bioinformatic analysis and used to construct plasmids encoding the full-length chains. The recombinant mAb (R1D3) was shown to perform similarly to the original mAb in antigen-binding assays. The mAb bound to a variety of oxidatively modified cyt c species (e.g., nitrated at Tyr74 or oxidized at Met80), which lose the sixth heme ligation (Fe-Met80); it did not bind to several cyt c phospho- and acetyl-mimetics. Peptide competition assays together with molecular dynamic studies support that R1D3 binds a neoepitope within the loop 40-57. R1D3 was employed to identify alternative conformations of cyt c in cells under oxidant- or senescence-induced challenge as confirmed by immunocytochemistry and immunoaffinity studies. Alternative conformers translocated to the nuclei without causing apoptosis, an observation that was further confirmed after pinocytic loading of oxidatively modified cyt c to B16-F1 cells. Thus, alternative cyt c conformers, known to gain peroxidatic function, may represent redox messengers at the cell nuclei. The availability and properties of R1D3 open avenues of interrogation regarding the presence and biological functions of alternative conformations of cyt c in mammalian cells and tissues.
Collapse
Affiliation(s)
- Florencia Tomasina
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Jennyfer Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - María Laura Chiribao
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Unidad de Biología Molecular, Laboratorio de Interacción Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Verónica Demicheli
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Celia Quijano
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Laura Castro
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
| | | | - Matt Goff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tracy Cooper
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - W. Hayes McDonald
- Department of Biochemistry and the Proteomics Core of the Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37240
| | | | - Luciana Hannibal
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201
| | - Ronald Jemmerson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
71
|
Shukla AK, Abidi SMS, Sharma C, Chand Saini T, Acharya A. Single-walled carbon nanotube conjugated cytochrome c as exogenous nano catalytic medicine to combat intracellular oxidative stress. Free Radic Biol Med 2022; 193:238-252. [PMID: 36257485 DOI: 10.1016/j.freeradbiomed.2022.10.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
Abstract
Mitochondrial dysfunction has been reported to be one of the main causes of many diseases including cancer, type2 diabetes, neurodegenerative disorders, cardiac ischemia, sepsis, muscular dystrophy, etc. Under in vitro conditions, Cytochrome C (Cyt C) maintains mitochondrial homeostasis and stimulates apoptosis, along with being a key participant in the life-supporting function of ATP synthesis. Hence, the medicinal importance of Cyt C as catalytic defense is immensely important in various mitochondrial disorders. Here, we have developed a nanomaterial via electrostatically conjugating oxidized single-wall carbon nanotube with Cyt C (Cyt C@cSWCNT) for the exogenous delivery of Cyt C. The chemical and morphological characterization of the developed Cyt C@cSWCNT was done using UV-vis, FTIR, XPS, powder XRD, TGA/DSC, TEM, etc. The developed Cyt C@cSWCNT exhibited bifunctional catalase and peroxidase activity with Km (∼ 642.7 μM and 351.6 μM) and Vmax (∼0.33 μM/s and 2.62 μM/s) values, respectively. Also, through this conjugation Cyt C was found to retain its catalytic activity even at 60 °C, excellent catalytic recyclability (at least up to 3 times), and wider pH activity (pH = 3 to 9). Cyt C@cSWCNT was found to promote intracellular ROS quenching and maintain mitochondrial membrane potential and cellular membrane integrity via Na+/K+ ion homeostasis during the H2O2 stress. Overall the present strategy provides an alternative approach for the exogenous delivery of Cyt C which can be used as nano catalytic medicine.
Collapse
Affiliation(s)
- Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.), 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.), 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.), 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Trilok Chand Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.), 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.), 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
72
|
Phosphorylation disrupts long-distance electron transport in cytochrome c. Nat Commun 2022; 13:7100. [PMID: 36402842 PMCID: PMC9675734 DOI: 10.1038/s41467-022-34809-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
It has been recently shown that electron transfer between mitochondrial cytochrome c and the cytochrome c1 subunit of the cytochrome bc1 can proceed at long-distance through the aqueous solution. Cytochrome c is thought to adjust its activity by changing the affinity for its partners via Tyr48 phosphorylation, but it is unknown how it impacts the nanoscopic environment, interaction forces, and long-range electron transfer. Here, we constrain the orientation and separation between cytochrome c1 and cytochrome c or the phosphomimetic Y48pCMF cytochrome c, and deploy an array of single-molecule, bulk, and computational methods to investigate the molecular mechanism of electron transfer regulation by cytochrome c phosphorylation. We demonstrate that phosphorylation impairs long-range electron transfer, shortens the long-distance charge conduit between the partners, strengthens their interaction, and departs it from equilibrium. These results unveil a nanoscopic view of the interaction between redox protein partners in electron transport chains and its mechanisms of regulation.
Collapse
|
73
|
Cheng X, Liang H, Li Q, Wang J, Liu J, Zhang Y, Ru Y, Zhou Y. Raman spectroscopy differ leukemic cells from their healthy counterparts and screen biomarkers in acute leukemia. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121558. [PMID: 35843058 DOI: 10.1016/j.saa.2022.121558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Precision medicine is important in the treatment of acute leukemia (AL). The target therapies of AL provide an opportunity to reduce the mortality of AL. How AL cells differ from their healthy counterparts is the basis for the development of therapies and the outcome of AL patients. Therefore, a label-free and noninvasive single-cell Raman platform was used to characterize cell molecular profiles and found potential biomarkers from three healthy people and twelve AL patients with more than 90% accuracy. We analyzed myeloblasts, abnormal promyelocytes, monoblasts and B-ALL cells respectively, compared with their healthy counterparts, which could be distinguished by their intrinsic phenotypic Raman spectra using orthogonal partial least squares discriminate analysis (OPLS-DA). Most importantly, we selected statistically significant markers of the four leukemia models. Further analysis of leukemic granulocytes, we found that a combination of the 1003, 1341 and 1579 cm-1 Raman peaks could discriminate myeloblasts and abnormal promyelocytes from normal granulocytes. The assignments of 1579 cm-1 gave us a clue to find potential important variables myeloperoxidase related with AL diagnosis. Our study demonstrates the capability of the Raman platform to characterize leukemia cells with non-invasively probing metabolites. The biomarker we identified could be extensible to other blood cells and potentially have a high impact on leukemia therapy.
Collapse
Affiliation(s)
- Xuelian Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Haoyue Liang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qing Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jing Wang
- Nankai University, National Demonstration Center for Experimental Chemistry Education, Tianjin 300071, China
| | - Jing Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yun Zhang
- Department of Clinical Laboratory, The District People's Hospital of Zhangqiu, Jinan 250000, China
| | - Yongxin Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
74
|
Yadav S, Sawarni N, Kumari P, Sharma M. Advancement in analytical techniques fabricated for the quantitation of cytochrome c. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
75
|
Antimicrobial Peptides Mediate Apoptosis by Changing Mitochondrial Membrane Permeability. Int J Mol Sci 2022; 23:ijms232112732. [PMID: 36361521 PMCID: PMC9653759 DOI: 10.3390/ijms232112732] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023] Open
Abstract
Changes in mitochondrial membrane permeability are closely associated with mitochondria-mediated apoptosis. Antimicrobial peptides (AMPs), which have been found to enter cells to exert physiological effects, cause damage to the mitochondria. This paper reviews the molecular mechanisms of AMP-mediated apoptosis by changing the permeability of the mitochondrial membrane through three pathways: the outer mitochondrial membrane (OMM), inner mitochondrial membrane (IMM), and mitochondrial permeability transition pore (MPTP). The roles of AMPs in inducing changes in membrane permeability and apoptosis are also discussed. Combined with recent research results, the possible application prospects of AMPs are proposed to provide a theoretical reference for the development of AMPs as therapeutic agents for human diseases.
Collapse
|
76
|
Chen B, Luo Y, Kang X, Sun Y, Jiang C, Yi B, Yan X, Chen Y, Shi R. Development of a prognostic prediction model based on a combined multi-omics analysis of head and neck squamous cell carcinoma cell pyroptosis-related genes. Front Genet 2022; 13:981222. [PMID: 36246601 PMCID: PMC9557126 DOI: 10.3389/fgene.2022.981222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to understand the prognosis of patients with head and neck squamous cell carcinoma (HNSCC) and to develop and validate a prognostic model for HNSCC based on pyroptosis-associated genes (PAGs) in nasopharyngeal carcinoma. The Cancer Genome Atlas database was used to identify differentially expressed PAGs. These genes were analyzed using the Kyoto Encyclopedia of Genes and Genomes functional annotation analyses and Gene Ontology analyses. The NLR family pyrin domain containing 1 (NLRP1) gene, charged multivesicular body protein 7 (CHMP7) gene, and cytochrome C (CYCS) gene were used to create a prognostic model for HNSCC. The results of the Kaplan-Meier (K-M) and Cox regression analyses indicated that the developed model served as an independent risk factor for HNSCC. According to the K-M analysis, the overall survival of high-risk patients was lower than that of low-risk patients. The hazard ratios corresponding to the risk scores determined using the multivariate and univariate Cox regression analyses were 1.646 (95% confidence interval (CI): 1.189–2.278) and 1.724 (95% CI: 1.294–2.298), respectively, and the area under the receiver operator characteristic curve was 0.621. The potential mechanisms associated with the functions of the identified genes were then identified, and the tumor microenvironment and levels of immune cell infiltration achieved were analyzed. The immune infiltration analysis revealed differences in the distribution of Th cells, tumor-infiltrating lymphocytes, regulatory T cells, follicular helper T cells, adipose-derived cells, interdigitating dendritic cells, CD8+ T cells, and B cells. However, validating bioinformatics analyses through biological experiments is still recommended. This study developed a prognostic model for HNSCC that included NLRP1, CHMP7, and CYCS.
Collapse
Affiliation(s)
- Bin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yuanbo Luo
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xueran Kang
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yuxing Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Chenyan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiaojun Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Runjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Runjie Shi,
| |
Collapse
|
77
|
Campagnol D, Karimian N, Paladin D, Rizzolio F, Ugo P. Molecularly imprinted electrochemical sensor for the ultrasensitive detection of cytochrome c. Bioelectrochemistry 2022; 148:108269. [PMID: 36179393 DOI: 10.1016/j.bioelechem.2022.108269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Cytochrome c (Cyt c) is an important biomarker for the early stage of apoptosis that plays a role in the diagnosis and therapy of several diseases including cancer. Here, an electrochemical sensor based on molecularly imprinted polymer (MIP) for the ultrasensitive detection of Cyt c is studied. It is prepared by electropolymerization of o-phenylenediamine in the presence of Cyt c as template, followed by solvent extraction, resulting in the formation of Cyt c recognition sites. The MIP is characterised by cyclic voltammetry and differential pulse voltammetry, using ferrocenecarboxylic acid as redox probe. Voltammetric data indicates that the MIP-sensor behaves as an electrode with partially blocked surface. The partition isotherm obtained fits the Langmuir model, indicating a high affinity for Cyt c, with an association constant Ka = 5 × 10 11 M-1. DPV measurements allow to achieve extremely high analytical sensitivity and low detection limit, in the femtomolar range, with negligible unspecific adsorption. Satisfactory analytical recovery tests performed in the presence of possible interfering proteins and in diluted human serum confirmed the selectivity of the MIP-sensor as well as its potential applicability for real samples analysis.
Collapse
Affiliation(s)
- Davide Campagnol
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - Najmeh Karimian
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy.
| | - Dino Paladin
- Dott. Dino Paladin, bic incubatori Fvg, via Flavia 23/1, 34148 Trieste, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy
| | - Paolo Ugo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy.
| |
Collapse
|
78
|
Dou M, Wu Y, Du J. Luminescent gold nanoclusters as a signal reporter for cytochrome c assay with a double signal amplification strategy. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Min‐Na Dou
- Normal Department Xianyang Vocational Technical College Xianyang China
| | - Yifan Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi′an China
| | - Jianxiu Du
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi′an China
| |
Collapse
|
79
|
Wang M, Wei R, Li G, Bi HL, Jia Z, Zhang M, Pang M, Li X, Ma L, Tang Y. SUMOylation of SYNJ2BP-COX16 promotes breast cancer progression through DRP1-mediated mitochondrial fission. Cancer Lett 2022; 547:215871. [PMID: 35998797 DOI: 10.1016/j.canlet.2022.215871] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Treatments targeting oncogenic fusion proteins are notable examples of successful drug development. Abnormal splicing of genes resulting in fusion proteins is a critical driver of various tumors, but the underlying mechanism remains poorly understood. Here, we show that SUMOylation of the fusion protein Synaptojanin 2 binding protein-Cytochrome-c oxidase 16 (SYNJ2BP-COX16) at K107 induces mitochondrial fission in breast cancer and that the K107 site regulates SYNJ2BP-COX16 mitochondrial subcellular localization. Compared with a non-SUMOylated K107R mutant, wild-type SYNJ2BP-COX16 contributed to breast cancer cell proliferation and metastasis in vivo and in vitro by increasing adenosine triphosphate (ATP) production and cytochrome-c oxidase (COX) activity. SUMOylated SYNJ2BP-COX16 recruits dynamin-related protein 1 (DRP1) to the mitochondria to promote ubiquitin-conjugating enzyme 9 (UBC9) binding to DRP1, enhance SUMOylation of DRP1 and phosphorylation of DRP1 at S616, and then induce mitochondrial fission. Moreover, Mdivi-1, an inhibitor of DRP1 phosphorylation, decreased the localization of DRP1 in mitochondria, and prevents SYNJ2BP-COX16 induced mitochondrial fission, cell proliferation and metastasis. Based on these data, SYNJ2BP-COX16 promotes breast cancer progression through the phosphorylation of DRP1 and subsequent induction of mitochondrial fission, indicating that SUMOylation at the K107 residue of SYNJ2BP-COX16 is a novel potential treatment target for breast cancer.
Collapse
Affiliation(s)
- Miao Wang
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| | - Ranru Wei
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| | - Guohui Li
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China; College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Hai-Lian Bi
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116024, China.
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Mengjie Zhang
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| | - Mengyao Pang
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| | - Xiaona Li
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| | - Liming Ma
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| | - Ying Tang
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| |
Collapse
|
80
|
Suriya Muthukumaran N, Velusamy P, Akino Mercy CS, Langford D, Natarajaseenivasan K, Shanmughapriya S. MicroRNAs as Regulators of Cancer Cell Energy Metabolism. J Pers Med 2022; 12:1329. [PMID: 36013278 PMCID: PMC9410355 DOI: 10.3390/jpm12081329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
To adapt to the tumor environment or to escape chemotherapy, cancer cells rapidly reprogram their metabolism. The hallmark biochemical phenotype of cancer cells is the shift in metabolic reprogramming towards aerobic glycolysis. It was thought that this metabolic shift to glycolysis alone was sufficient for cancer cells to meet their heightened energy and metabolic demands for proliferation and survival. Recent studies, however, show that cancer cells rely on glutamine, lipid, and mitochondrial metabolism for energy. Oncogenes and scavenging pathways control many of these metabolic changes, and several metabolic and tumorigenic pathways are post-transcriptionally regulated by microRNA (miRNAs). Genes that are directly or indirectly responsible for energy production in cells are either negatively or positively regulated by miRNAs. Therefore, some miRNAs play an oncogenic role by regulating the metabolic shift that occurs in cancer cells. Additionally, miRNAs can regulate mitochondrial calcium stores and energy metabolism, thus promoting cancer cell survival, cell growth, and metastasis. In the electron transport chain (ETC), miRNAs enhance the activity of apoptosis-inducing factor (AIF) and cytochrome c, and these apoptosome proteins are directed towards the ETC rather than to the apoptotic pathway. This review will highlight how miRNAs regulate the enzymes, signaling pathways, and transcription factors of cancer cell metabolism and mitochondrial calcium import/export pathways. The review will also focus on the metabolic reprogramming of cancer cells to promote survival, proliferation, growth, and metastasis with an emphasis on the therapeutic potential of miRNAs for cancer treatment.
Collapse
Affiliation(s)
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| | - Charles Solomon Akino Mercy
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| |
Collapse
|
81
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
82
|
Kari S, Subramanian K, Altomonte IA, Murugesan A, Yli-Harja O, Kandhavelu M. Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis 2022; 27:482-508. [PMID: 35713779 PMCID: PMC9308588 DOI: 10.1007/s10495-022-01735-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/15/2023]
Abstract
Programmed cell death is considered a key player in a variety of cellular processes that helps to regulate tissue growth, embryogenesis, cell turnover, immune response, and other biological processes. Among different types of cell death, apoptosis has been studied widely, especially in the field of cancer research to understand and analyse cellular mechanisms, and signaling pathways that control cell cycle arrest. Hallmarks of different types of cell death have been identified by following the patterns and events through microscopy. Identified biomarkers have also supported drug development to induce cell death in cancerous cells. There are various serological and microscopic techniques with advantages and limitations, that are available and are being utilized to detect and study the mechanism of cell death. The complexity of the mechanism and difficulties in distinguishing among different types of programmed cell death make it challenging to carry out the interventions and delay its progression. In this review, mechanisms of different forms of programmed cell death along with their conventional and unconventional methods of detection of have been critically reviewed systematically and categorized on the basis of morphological hallmarks and biomarkers to understand the principle, mechanism, application, advantages and disadvantages of each method. Furthermore, a very comprehensive comparative analysis has been drawn to highlight the most efficient and effective methods of detection of programmed cell death, helping researchers to make a reliable and prudent selection among the available methods of cell death assay. Conclusively, how programmed cell death detection methods can be improved and can provide information about distinctive stages of cell death detection have been discussed.
Collapse
Affiliation(s)
- Sana Kari
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland
| | - Kumar Subramanian
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland
| | - Ilenia Agata Altomonte
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland.,Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, 625002, India
| | - Olli Yli-Harja
- Institute for Systems Biology, 1441N 34th Street, Seattle, WA, USA.,Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101, Tampere, Finland. .,Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, 625002, India.
| |
Collapse
|
83
|
High glucose induces apoptosis, glycogen accumulation and suppresses protein synthesis in muscle cells of olive flounder Paralichthys olivaceus. Br J Nutr 2022; 127:1601-1612. [PMID: 34256876 DOI: 10.1017/s0007114521002634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect and the mechanism of high glucose on fish muscle cells are not fully understood. In the present study, muscle cells of olive flounder (Paralichthys olivaceus) were treated with high glucose (33 mM) in vitro. Cells were incubated in three kinds of medium containing 5 mM glucose, 5 mM glucose and 28 mM mannitol (as an isotonic contrast) or 33 mM glucose named the Control group, the Mannitol group and the high glucose (HG) group, respectively. Results showed that high glucose increased the ADP:ATP ratio and the reactive oxygen species (ROS) level, decreased mitochondrial membrane potential (MMP), induced the release of cytochrome C (CytC) and cell apoptosis. High glucose also led to cell glycogen accumulation by increasing the glucose uptake ability and affecting the mRNA expressions of glycogen synthase and glycogen phosphorylase. Meanwhile, it activated AMP-activated protein kinase (AMPK), inhibited the activity of mammalian target of rapamycin (mTOR) signalling pathway and the expressions of myogenic regulatory factors (MRF). The expressions of myostatin-1 (mstn-1) and E3 ubiquitin ligases including muscle RING-finger protein 1 (murf-1) and muscle atrophy F-box protein (mafbx) were also increased by the high glucose treatment. No difference was found between the Mannitol group and the Control group. These results demonstrate that high glucose has the effects of inducing apoptosis, increasing glycogen accumulation and inhibiting protein synthesis on muscle cells of olive flounder. The mitochondria-mediated apoptotic signalling pathway, AMPK and mTOR pathways participated in these biological effects.
Collapse
|
84
|
Yadav N, Venkatesu P. Current understanding and insights towards protein stabilization and activation in deep eutectic solvents as sustainable solvent media. Phys Chem Chem Phys 2022; 24:13474-13509. [PMID: 35640592 DOI: 10.1039/d2cp00084a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deep eutectic solvents (DESs) have emerged as a new class of green, designer and biocompatible solvents, an alternative to conventional organic solvents and ionic liquids (ILs) which are comparatively toxic and non-biodegradable. DESs are eutectic mixtures that are formed when a hydrogen bond acceptor (HBA) is mixed with a hydrogen bond donor (HBD) at particular molar ratios by mechanical grinding or under mild heating conditions. Very recently, these solvents have been the center of attention for researchers in biotechnology, biomedicine and various scientific applications. These environmentally benign solvents have a close analogy with ILs; however, they offer certain unique merits over traditional ILs. DESs display remarkable properties such as easy preparation, tunable composition, biodegradability, recyclability, inherently low toxicity, sustainability and biocompatibility; these special features validate DESs as new potential solvents/co-solvents for biomolecules. Mechanistically, the biocompatibility and protein friendly nature of DESs depend on various factors, which include the composition of the DES, viscosity and hydration level. Therefore, it becomes an essential task to bring together all the studies related to protein behaviour in DESs to unlock their biomolecular proficiency. This review specifically highlights recent insights into the biomacromolecular functionality in DESs, including outlines of the solubilization and stabilization of proteins, long term protein packaging, different extraction methods and enzyme activation in the presence of DESs. A literature survey reveals that DESs act as green media in which the protein structure and activity are retained. In some cases, proteins refolded and enzymatic activity was enhanced several fold in the presence of DESs. Furthermore, we have reviewed the possible mechanistic behaviour behind protein stabilization, refolding and activation in DESs. Overall, the main objective of this review is to explicate the advantages of the introduction of DESs for biomolecules and to demonstrate the versatility of these eco-friendly solvents for future bio-based applications.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | | |
Collapse
|
85
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
86
|
Dong C, Song C, Chao J, Xiong J, Fang X, Zhang J, Zhu Y, Zhang Y, Wang L. Multi-armed tetrahedral DNA probes for visualizing the whole-course of cell apoptosis by simultaneously fluorescence imaging intracellular cytochrome c and telomerase. Biosens Bioelectron 2022; 205:114059. [DOI: 10.1016/j.bios.2022.114059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
|
87
|
Fadl AM, Abdelnaby EA, El‐Sherbiny HR. Supplemental dietary zinc sulphate and folic acid combination improves testicular volume and haemodynamics, testosterone levels and semen quality in rams under heat stress conditions. Reprod Domest Anim 2022. [DOI: 10.1111/rda.14096\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Aya M. Fadl
- Theriogenology Department Faculty of Veterinary Medicine Cairo University Cairo Egypt
| | - Elshymaa A. Abdelnaby
- Theriogenology Department Faculty of Veterinary Medicine Cairo University Cairo Egypt
| | - Hossam R. El‐Sherbiny
- Theriogenology Department Faculty of Veterinary Medicine Cairo University Cairo Egypt
| |
Collapse
|
88
|
Pezzotti G, Kobara M, Nakaya T, Imamura H, Miyamoto N, Adachi T, Yamamoto T, Kanamura N, Ohgitani E, Marin E, Zhu W, Nishimura I, Mazda O, Nakata T, Makimura K. Raman Spectroscopy of Oral Candida Species: Molecular-Scale Analyses, Chemometrics, and Barcode Identification. Int J Mol Sci 2022; 23:5359. [PMID: 35628169 PMCID: PMC9141024 DOI: 10.3390/ijms23105359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/19/2023] Open
Abstract
Oral candidiasis, a common opportunistic infection of the oral cavity, is mainly caused by the following four Candida species (in decreasing incidence rate): Candida albicans, Candida glabrata, Candida tropicalis, and Candida krusei. This study offers in-depth Raman spectroscopy analyses of these species and proposes procedures for an accurate and rapid identification of oral yeast species. We first obtained average spectra for different Candida species and systematically analyzed them in order to decode structural differences among species at the molecular scale. Then, we searched for a statistical validation through a chemometric method based on principal component analysis (PCA). This method was found only partially capable to mechanistically distinguish among Candida species. We thus proposed a new Raman barcoding approach based on an algorithm that converts spectrally deconvoluted Raman sub-bands into barcodes. Barcode-assisted Raman analyses could enable on-site identification in nearly real-time, thus implementing preventive oral control, enabling prompt selection of the most effective drug, and increasing the probability to interrupt disease transmission.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (E.O.); (O.M.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita 565-0854, Japan
| | - Miyuki Kobara
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan; (M.K.); (T.N.)
| | - Tamaki Nakaya
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (E.O.); (O.M.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
| | - Ichiro Nishimura
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (E.O.); (O.M.)
| | - Tetsuo Nakata
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan; (M.K.); (T.N.)
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan;
| |
Collapse
|
89
|
Liu J, Pan M, Liu Y, Huang D, Luo K, Wu Z, Zhang W, Mai K. Taurine alleviates endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in the muscle cells of olive flounder (Paralichthysolivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 123:358-368. [PMID: 35318136 DOI: 10.1016/j.fsi.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to evaluate the effects of taurine on endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in primary cultured muscle cells of olive flounder (Paralichthys olivaceus). Three experimental groups were designed as follows: muscle cells of olive flounder incubated with three kinds of medium containing 5 mM glucose (control), 33 mM glucose (HG) or 33 mM glucose + 10 mM taurine (HG + T), respectively. Results showed that taurine addition significantly alleviated the decreased activity of superoxide dismutase (SOD) and the ratio of reduced to oxidized glutathione (GSH/GSSG) induced by high glucose. The increase of cellular reactive oxygen species (ROS), malondialdehyde content and cell apoptosis induced by high glucose were alleviated by taurine. Besides, gene expression of glucose-regulated protein 78, PKR-like ER kinase, tumor necrosis factor-α, interleukin-6, interleukin-1β, interleukin-8, muscle atrophy F-box protein and muscle RING-finger protein 1 were significantly up-regulated in the HG group, and taurine addition decreased the expression of these genes. High glucose led to the swelling of the endoplasmic reticulum (ER). Meanwhile, the nuclear translocation of nuclear factor κB (NF-κB) and the release of cytochrome C from mitochondria induced by high glucose were suppressed by taurine addition. These results demonstrated that taurine alleviated ERS, inflammation and mitochondrial oxidative stress induced by high glucose in olive flounder muscle cells. The ROS production, NF-κB signaling pathway and mitochondria function were the main targets of the biological effects of taurine under high glucose condition.
Collapse
Affiliation(s)
- Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Kai Luo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| |
Collapse
|
90
|
Redox state changes of mitochondrial cytochromes in brain and breast cancers by Raman spectroscopy and imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
91
|
Fadl AM, Abdelnaby EA, El-Sherbiny HR. Supplemental dietary zinc sulfate and folic acid combination improves testicular volume and hemodynamics, testosterone levels and semen quality in rams under heat stress conditions. Reprod Domest Anim 2022; 57:567-576. [PMID: 35147249 DOI: 10.1111/rda.14096] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
This study was aimed to investigate the combined effect of zinc sulfate and folic acid (ZnF) dietary supplementation on testicular hemodynamics (TH), testicular volume (TV), serum testosterone levels (T) and semen quality of rams under heat stress conditions. Fifteen Ossimi rams were allocated to three groups: (1) G0 (n=5) received only basic diet; (2) G1 (n=5) received basic diet + ZnF (Zn, 0.4 mg/kg bw; F, 0.02 mg/kg bw) and (3) G2 (n=5) received basic diet + ZnF (Zn, 0.8 mg/kg bw; F, 0.04 mg/kg bw) daily for 60 days. TH was evaluated using color (testicular coloration, TC) and spectral modes [resistive index (RI) and pulsatility index (PI)] Doppler of the supra testicular arteries (proximal and distal parts, STA). Semen traits including progressive motility (PM), alive sperm % (AS), sperm viability (SV), sperm abnormalities (SA) and acrosome integrity (AI) were also assessed. The examinations were carried out one month before (D -30), the beginning of ZnF inclusion in the diet (D 0), and continued for the successive two months (D 30 and D 60). TH was significantly (P < 0.05) improved at D 30 and D 60, evidenced by lowering both RI and PI and increasing of TC in G1 compared to G0 and G2. In addition, both TV and serum T levels were elevated (P < 0.05) at D 30 and D 60 in G1 compared to other groups. Semen quality parameters (PM, AS, SV and AI) were significantly (P < 0.05) augmented in the same trend as TH, TV and T in G1 versus G0 and G2. A marked decrease (P < 0.05) in SA % was noticed at Days 30 and 60 after ZnF inclusion in G1 compared to G0 and G2. In conclusion, supplementation of the summer diet with ZnF improved the whole reproductive functions such as testicular hemodynamics and semen quality of rams housed in heat stress conditions.
Collapse
Affiliation(s)
- Aya M Fadl
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Elshymaa A Abdelnaby
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Hossam R El-Sherbiny
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
92
|
Roufayel R, Younes K, Al-Sabi A, Murshid N. BH3-Only Proteins Noxa and Puma Are Key Regulators of Induced Apoptosis. Life (Basel) 2022; 12:life12020256. [PMID: 35207544 PMCID: PMC8875537 DOI: 10.3390/life12020256] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is an evolutionarily conserved and tightly regulated cell death pathway. Physiological cell death is important for maintaining homeostasis and optimal biological conditions by continuous elimination of undesired or superfluous cells. The BH3-only pro-apoptotic members are strong inducers of apoptosis. The pro-apoptotic BH3-only protein Noxa activates multiple death pathways by inhibiting the anti-apoptotic Bcl-2 family protein, Mcl-1, and other protein members leading to Bax and Bak activation and MOMP. On the other hand, Puma is induced by p53-dependent and p53-independent apoptotic stimuli in several cancer cell lines. Moreover, this protein is involved in several physiological and pathological processes, such as immunity, cancer, and neurodegenerative diseases. Future heat shock research could disclose the effect of hyperthermia on both Noxa and BH3-only proteins. This suggests post-transcriptional mechanisms controlling the translation of both Puma and Noxa mRNA in heat-shocked cells. This study was also the chance to recapitulate the different reactional mechanisms investigated for caspases.
Collapse
|
93
|
Oviedo-Rouco S, Spedalieri C, Scocozza MF, Tomasina F, Tórtora V, Radi R, Murgida DH. Correlated electric field modulation of electron transfer parameters and the access to alternative conformations of multifunctional cytochrome c. Bioelectrochemistry 2022; 143:107956. [PMID: 34624727 DOI: 10.1016/j.bioelechem.2021.107956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022]
Abstract
Cytochrome c (Cytc) is a multifunctional protein that, in its native conformation, shuttles electrons in the mitochondrial respiratory chain. Conformational transitions that involve replacement of the heme distal ligand lead to the gain of alternative peroxidase activity, which is crucial for membrane permeabilization during apoptosis. Using a time-resolved SERR spectroelectrochemical approach, we found that the key physicochemical parameters that characterize the electron transfer (ET) canonic function and those that determine the transition to alternative conformations are strongly correlated and are modulated by local electric fields (LEF) of biologically meaningful magnitude. The electron shuttling function is optimized at moderate LEFs of around 1 V nm-1. A decrease of the LEF is detrimental for ET as it rises the reorganization energy. Moreover, LEF values below and above the optimal for ET favor alternative conformations with peroxidase activity and downshifted reduction potentials. The underlying proposed mechanism is the LEF modulation of the flexibility of crucial protein segments, which produces a differential effect on the kinetic ET and conformational parameters of Cytc. These findings might be related to variations in the mitochondrial membrane potential during apoptosis, as the basis for the switch between canonic and alternative functions of Cytc. Moreover, they highlight the possible role of variable LEFs in determining the function of other moonlighting proteins through modulation of the protein dynamics.
Collapse
Affiliation(s)
- Santiago Oviedo-Rouco
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Spedalieri
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magalí F Scocozza
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Tomasina
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
94
|
In vitro degradation, photo-dynamic and thermal antibacterial activities of Cu-bearing chlorophyllin-induced Ca–P coating on magnesium alloy AZ31. Bioact Mater 2022; 18:284-299. [PMID: 35387161 PMCID: PMC8961461 DOI: 10.1016/j.bioactmat.2022.01.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 12/20/2022] Open
|
95
|
Coffin JL, Kelley JL, Jeyasingh PD, Tobler M. Impacts of heavy metal pollution on the ionomes and transcriptomes of Western mosquitofish (Gambusia affinis). Mol Ecol 2022; 31:1527-1542. [PMID: 35000238 DOI: 10.1111/mec.16342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Our understanding of the mechanisms mediating the resilience of organisms to environmental change remains lacking. Heavy metals negatively affect processes at all biological scales, yet organisms inhabiting contaminated environments must maintain homeostasis to survive. Tar Creek in Oklahoma, USA, contains high concentrations of heavy metals and an abundance of Western mosquitofish (Gambusia affinis), though several fish species persist at lower frequency. To test hypotheses about the mechanisms mediating the persistence and abundance of mosquitofish in Tar Creek, we integrated ionomic data from seven resident fish species and transcriptomic data from mosquitofish to test hypotheses about the mechanisms mediating the persistence of mosquitofish in Tar Creek. We predicted that mosquitofish minimize uptake of heavy metals more than other Tar Creek fish inhabitants and induce transcriptional responses to detoxify metals that enter the body, allowing them to persist in Tar Creek at higher density than species that may lack these responses. Tar Creek populations of all seven fish species accumulated heavy metals, suggesting mosquitofish cannot block uptake more efficiently than other species. We found population-level gene expression changes between mosquitofish in Tar Creek and nearby unpolluted sites. Gene expression differences primarily occurred in the gill, where we found upregulation of genes involved with lowering transfer of metal ions from the blood into cells and mitigating free radicals. However, many differentially expressed genes were not in known metal response pathways, suggesting multifarious selective regimes and/or previously undocumented pathways could impact tolerance in mosquitofish. Our systems-level study identified well characterized and putatively new mechanisms that enable mosquitofish to inhabit heavy metal-contaminated environments.
Collapse
Affiliation(s)
- John L Coffin
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
96
|
Levi H, Bar E, Cohen-Adiv S, Sweitat S, Kanner S, Galron R, Mitiagin Y, Barzilai A. Dysfunction of cerebellar microglia in Ataxia-telangiectasia. Glia 2021; 70:536-557. [PMID: 34854502 DOI: 10.1002/glia.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
Collapse
Affiliation(s)
- Hadar Levi
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Suzan Sweitat
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
97
|
Mao J. Aptamer-engineered gold nanorod driven an absorbance enhanced strategy for sensitive biomacromolecule profiling. Talanta 2021; 239:123116. [PMID: 34864534 DOI: 10.1016/j.talanta.2021.123116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/28/2022]
Abstract
Gold nanorods (AuNRs)-based plasmonic biosensor offers new opportunity for quantification of biomacromolecules due to their high designability and low technical demands. However, existing methods for the optical detection of biomacromolecule require the targets to induce the aggregation or etching of AuNRs. This limits the range of targets that can be detected, because molecules at extremely low concentration are difficult to arouse aggregation or etching of AuNRs. Thus, it is still challenge to design a scheme for the biomacromolecules at extremely low concentration which can't arouse aggregation or etching of AuNRs based on their plasmonic property. This study proposes a universal absorbance enhanced strategy for biomacromolecule detection with aptamers engineered AuNRs. The biosensor assay (Apts/AuNRs) is designed through assembly of two aptamers on AuNRs to specified recognize the target biomacromolecules, forming closed-loop conformation based on the proximity-dependent ligation, producing absorbance enhancement in the plasmonic peak of AuNRs. It is interesting that the absorbance enhancement increases gradually with increasing protein concentration within a certain range, whereas no aggregation or etching of AuNRs was observed compared with the typical AuNRs based LSPR sensor. Taking advantage of the excellent near infrared light absorption of AuNRs, Apts/AuNRs could be utilized to detect red protein such as cytochrome C, which exhibited better performance than AuNPs based plasmonic sensor. On this basis, the selectivity detection of cytochrome C with the detection of limit down to picomole level was demonstrated. By changing the type of aptamers on AuNRs, the sensitive and credible method was also utilized for the analysis of telomerase activity in nerve cell lysate. Telomerase activity in 4 × 104 neuroblastoma cell was determined to be about 3.575 U/L, which was close to the result of ELISA kit. Good recovery was achieved using standard samples recovery. This study broadens the scope of AuNRs based plasmonic property and offer a simple, sensitive and selective strategy for biomacromolecules detection in complexed biofluid.
Collapse
Affiliation(s)
- Jinpeng Mao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
98
|
Delinois LJ, De León-Vélez O, Vázquez-Medina A, Vélez-Cabrera A, Marrero-Sánchez A, Nieves-Escobar C, Alfonso-Cano D, Caraballo-Rodríguez D, Rodriguez-Ortiz J, Acosta-Mercado J, Benjamín-Rivera JA, González-González K, Fernández-Adorno K, Santiago-Pagán L, Delgado-Vergara R, Torres-Ávila X, Maser-Figueroa A, Grajales-Avilés G, Miranda Méndez GI, Santiago-Pagán J, Nieves-Santiago M, Álvarez-Carrillo V, Griebenow K, Tinoco AD. Cytochrome c: Using Biological Insight toward Engineering an Optimized Anticancer Biodrug. INORGANICS 2021; 9:83. [PMID: 35978717 PMCID: PMC9380692 DOI: 10.3390/inorganics9110083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The heme protein cytochrome c (Cyt c) plays pivotal roles in cellular life and death processes. In the respiratory chain of mitochondria, it serves as an electron transfer protein, contributing to the proliferation of healthy cells. In the cell cytoplasm, it activates intrinsic apoptosis to terminate damaged cells. Insight into these mechanisms and the associated physicochemical properties and biomolecular interactions of Cyt c informs on the anticancer therapeutic potential of the protein, especially in its ability to subvert the current limitations of small molecule-based chemotherapy. In this review, we explore the development of Cyt c as an anticancer drug by identifying cancer types that would be receptive to the cytotoxicity of the protein and factors that can be finetuned to enhance its apoptotic potency. To this end, some information is obtained by characterizing known drugs that operate, in part, by triggering Cyt c induced apoptosis. The application of different smart drug delivery systems is surveyed to highlight important features for maintaining Cyt c stability and activity and improving its specificity for cancer cells and high drug payload release while recognizing the continuing limitations. This work serves to elucidate on the optimization of the strategies to translate Cyt c to the clinical market.
Collapse
Affiliation(s)
- Louis J. Delinois
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Omar De León-Vélez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Adriana Vázquez-Medina
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Alondra Vélez-Cabrera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Amanda Marrero-Sánchez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Daniela Alfonso-Cano
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Jael Rodriguez-Ortiz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Jemily Acosta-Mercado
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Josué A. Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kiara González-González
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kysha Fernández-Adorno
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lisby Santiago-Pagán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Rafael Delgado-Vergara
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Xaiomy Torres-Ávila
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Andrea Maser-Figueroa
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | | | - Javier Santiago-Pagán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Miguel Nieves-Santiago
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Vanessa Álvarez-Carrillo
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| |
Collapse
|
99
|
Kabel AM, Salama SA. Effect of taxifolin/dapagliflozin combination on colistin-induced nephrotoxicity in rats. Hum Exp Toxicol 2021; 40:1767-1780. [PMID: 33882723 DOI: 10.1177/09603271211010906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Colistin is an antimicrobial agent that is used in resistant gram-negative infections. Its most common dose-limiting adverse effect is nephrotoxicity. The objective of our study was to explore the possible effects of each of taxifolin and dapagliflozin alone and in combination on colistin-induced nephrotoxicity in rats. Sixty male rats were randomized into six groups: Control; colistin; colistin + taxifolin; colistin + dapagliflozin; colistin + carboxymethyl cellulose (CMC) and colistin + taxifolin + dapagliflozin. Dapagliflozin, taxifolin, and CMC were given daily for 7 days, 4 hours before colistin injection. Kidney weight/body weight ratio and renal function tests were determined. Renal tissue nerve growth factor-β (NGF-β), transforming growth factor beta 1 (TGF-β1), proinflammatory cytokines, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB) p65, signal transducer and activator of transcription 3 (STAT3), oxidative stress parameters, beclin-1 and c-Jun NH2-terminal kinase (JNK) activities were measured. Kidneys were examined histopathologically and immunohistochemically. Taxifolin and/or dapagliflozin induced significant improvement in the renal functions and oxidative stress parameters with significant increase in tissue Nrf2, STAT3 and NGF-β accompanied with significant decrease in kidney weight/body weight ratio, tissue proinflammatory cytokines, TGF-β1, NF-κB (p65), TLR4, beclin-1 and JNK activities and improved the histopathological picture when compared to rats treated with colistin alone. This improvement was significant with taxifolin/dapagliflozin combination compared to rats treated with each of these agents alone. So, we concluded that the combined use of taxifolin and dapagliflozin may confer a therapeutic tool for attenuation of colistin-induced nephrotoxicity.
Collapse
Affiliation(s)
- A M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - S A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
100
|
Chiu YH, Lin SCA, Kuo CH, Li CJ. Molecular Machinery and Pathophysiology of Mitochondrial Dynamics. Front Cell Dev Biol 2021; 9:743892. [PMID: 34604240 PMCID: PMC8484900 DOI: 10.3389/fcell.2021.743892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/31/2021] [Indexed: 01/28/2023] Open
Abstract
Mitochondria are double-membraned organelles that exhibit fluidity. They are the main site of cellular aerobic respiration, providing energy for cell proliferation, migration, and survival; hence, they are called "powerhouses." Mitochondria play an important role in biological processes such as cell death, cell senescence, autophagy, lipid synthesis, calcium homeostasis, and iron balance. Fission and fusion are active processes that require many specialized proteins, including mechanical enzymes that physically alter mitochondrial membranes, and interface proteins that regulate the interaction of these mechanical proteins with organelles. This review discusses the molecular mechanisms of mitochondrial fusion, fission, and physiopathology, emphasizing the biological significance of mitochondrial morphology and dynamics. In particular, the regulatory mechanisms of mitochondria-related genes and proteins in animal cells are discussed, as well as research trends in mitochondrial dynamics, providing a theoretical reference for future mitochondrial research.
Collapse
Affiliation(s)
- Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Shu-Chuan Amy Lin
- Department of Nursing, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
- School of Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Hsin Kuo
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|