51
|
Abstract
Small RNAs are important regulators of gene expression. They were first identified in Caenorhabditis elegans, but it is now apparent that the main small RNA silencing pathways are functionally conserved across diverse organisms. Availability of genome data for an increasing number of parasitic nematodes has enabled bioinformatic identification of small RNA sequences. Expression of these in different lifecycle stages is revealed by small RNA sequencing and microarray analysis. In this review we describe what is known of the three main small RNA classes in parasitic nematodes – microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs) and small interfering RNAs (siRNAs) – and their proposed functions. miRNAs regulate development in C. elegans and the temporal expression of parasitic nematode miRNAs suggest modulation of target gene levels as parasites develop within the host. miRNAs are also present in extracellular vesicles released by nematodes in vitro, and in plasma from infected hosts, suggesting potential regulation of host gene expression. Roles of piRNAs and siRNAs in suppressing target genes, including transposable elements, are also reviewed. Recent successes in RNAi-mediated gene silencing, and application of small RNA inhibitors and mimics will continue to advance understanding of small RNA functions within the parasite and at the host–parasite interface.
Collapse
|
52
|
Ke M, Chong CM, Su H. Using induced pluripotent stem cells for modeling Parkinson’s disease. World J Stem Cells 2019; 11:634-649. [PMID: 31616540 PMCID: PMC6789186 DOI: 10.4252/wjsc.v11.i9.634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/26/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disease caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. As DA neurons degenerate, PD patients gradually lose their ability of movement. To date no effective therapies are available for the treatment of PD and its pathogenesis remains unknown. Experimental models that appropriately mimic the development of PD are certainly needed for gaining mechanistic insights into PD pathogenesis and identifying new therapeutic targets. Human induced pluripotent stem cells (iPSCs) could provide a promising model for fundamental research and drug screening. In this review, we summarize various iPSCs-based PD models either derived from PD patients through reprogramming technology or established by gene-editing technology, and the promising application of iPSC-based PD models for mechanistic studies and drug testing.
Collapse
Affiliation(s)
- Minjing Ke
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
53
|
Bhattacharjee S, Roche B, Martienssen RA. RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biol 2019; 16:1133-1146. [PMID: 31213126 DOI: 10.1080/15476286.2019.1621624] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatic regions of the genome are epigenetically regulated to maintain a heritable '"silent state"'. In fission yeast and other organisms, epigenetic silencing is guided by nascent transcripts, which are targeted by the RNA interference pathway. The key effector complex of the RNA interference pathway consists of small interfering RNA molecules (siRNAs) associated with Argonaute, assembled into the RNA-induced transcriptional silencing (RITS) complex. This review focuses on our current understanding of how RITS promotes heterochromatin formation, and in particular on the role of Argonaute-containing complexes in many other functions such as quelling, release of RNA polymerases, cellular quiescence and genome defense.
Collapse
Affiliation(s)
- Sonali Bhattacharjee
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Benjamin Roche
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Robert A Martienssen
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| |
Collapse
|
54
|
Sukthaworn S, Panyim S, Udomkit A. Functional characterization of a cDNA encoding Piwi protein in Penaeus monodon and its potential roles in controlling transposon expression and spermatogenesis. Comp Biochem Physiol A Mol Integr Physiol 2019; 229:60-68. [DOI: 10.1016/j.cbpa.2018.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/22/2023]
|
55
|
Abbaszadegan MR, Moghbeli M. Genetic and molecular origins of colorectal Cancer among the Iranians: an update. Diagn Pathol 2018; 13:97. [PMID: 30579343 PMCID: PMC6303916 DOI: 10.1186/s13000-018-0774-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one the leading causes of cancer related deaths among Iranians. Despite the various progresses in new therapeutic methods, it has still a low rate of survival. This high ratio of mortality is mainly related to the late diagnosis, in which the patients refer for treatment in advanced stages of tumor. MAIN BODY: colorectal cancer progression is largely associated with molecular and genetic bases. Although Iran has a high ratio of CRC mortality, there is not an efficient genetic panel for detection and prognosis. Therefore, it is critical to introduce new diagnostic markers with ability to detect in early stages. CONCLUSION Present review summarizes all of the genetic and epigenetic factors which are reported in CRC until now among the Iranian patients to pave the way of incorporation of new ethnic specific markers into the clinical practice and development of new targeted therapeutic methods.
Collapse
Affiliation(s)
| | - Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
56
|
Abstract
There are several RNA interference (RNAi) pathways in insects. The small interfering RNA pathway is considered to be the main antiviral mechanism of the innate immune system; however, virus-specific P-element-induced Wimpy testis gene (PIWI)-interacting RNAs (vpiRNAs) have also been described, especially in mosquitoes. Understanding the antiviral potential of the RNAi pathways is important, given that many human and animal pathogens are transmitted by mosquitoes, such as Zika virus, dengue virus and chikungunya virus. In recent years, significant progress has been made to characterize the piRNA pathway in mosquitoes (including the possible antiviral activity) and to determine the differences between mosquitoes and the model organism Drosophila melanogaster. The new findings, especially regarding vpiRNA in mosquitoes, as well as important questions that need to be tackled in the future, are discussed in this review.
Collapse
Affiliation(s)
- Margus Varjak
- 1MRC - University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Mayke Leggewie
- 2Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany.,3German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Hamburg 20359, Germany
| | - Esther Schnettler
- 2Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany.,3German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Hamburg 20359, Germany
| |
Collapse
|
57
|
Yan W. piRNA-independent PIWI function in spermatogenesis and male fertility. Biol Reprod 2018; 96:1121-1123. [PMID: 28595264 DOI: 10.1093/biolre/iox055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.,Department of Biology, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
58
|
Das A, Samidurai A, Salloum FN. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Front Cardiovasc Med 2018; 5:73. [PMID: 30013975 PMCID: PMC6036139 DOI: 10.3389/fcvm.2018.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
After being long considered as “junk” in the human genome, non-coding RNAs (ncRNAs) currently represent one of the newest frontiers in cardiovascular disease (CVD) since they have emerged in recent years as potential therapeutic targets. Different types of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides, which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in CVDs. This review will discuss our current knowledge concerning the roles of different types of ncRNAs in cardiovascular health and disease and provide some insight on the cardioprotective signaling pathways elicited by the non-coding genome. We will highlight important basic and clinical breakthroughs that support employing ncRNAs for treatment or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that challenge this novel therapeutic approach.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun Samidurai
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
59
|
Pei G, Li B, Ma A. Suppression of Hiwi inhibits the growth and epithelial-mesenchymal transition of cervical cancer cells. Oncol Lett 2018; 16:3874-3880. [PMID: 30128001 DOI: 10.3892/ol.2018.9056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 09/28/2017] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is a common gynecological malignancy. Hiwi exhibits a high level of expression in cervical cancer cells. However, the effects of Hiwi expression in cervical cancer cells remain unresolved. In the present study, the effects of Hiwi downregulation on the growth and epithelial-mesenchymal transition of cervical cancer cells were investigated. The results of the present study revealed that the suppression of Hiwi was able to inhibit the proliferation of cervical cancer cells and arrest cell cycle at G1 phase. The downregulation of Hiwi was also revealed to inhibit the epithelial-mesenchymal transition process of cervical cancer cells by regulating the expression of E-cadherin, N-cadherin, vimentin, and snail. The present study demonstrated that the suppression of Hiwi was able to inhibit the growth and epithelial-mesenchymal transition of cervical cancer cells. Therefore, the results suggest that Hiwi may function as an oncogene in cervical cancer cells and may become a potential target for cervical cancer therapy.
Collapse
Affiliation(s)
- Guangjun Pei
- Department of Radiotherapy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Baojian Li
- Department of Oncology, Zaozhuang Mining Group Center Hospital, Zaozhuang, Shandong 277800, P.R. China
| | - Anjun Ma
- Department of Gynecology, The Second People's Hospital of Liaocheng, Linqing, Shandong 252600, P.R. China
| |
Collapse
|
60
|
Hameed MS, Wang Z, Vasseur L, Yang G. Molecular Characterization and the Function of Argonaute3 in RNAi Pathway of Plutella xylostella. Int J Mol Sci 2018; 19:ijms19041249. [PMID: 29677157 PMCID: PMC5979473 DOI: 10.3390/ijms19041249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 01/30/2023] Open
Abstract
Argonaute (Ago) protein family plays a key role in the RNA interference (RNAi) process in different insects including Lepidopteran. However, the role of Ago proteins in the RNAi pathway of Plutella xylostella is still unknown. We cloned an Argonaute3 gene in P. xylostella (PxAgo3) with the complete coding sequence of 2832 bp. The encoded protein had 935 amino acids with an expected molecular weight of 108.9 kDa and an isoelectric point of 9.29. It contained a PAZ (PIWI/Argonaute/Zwile) domain and PIWI (P-element-induced whimpy testes) domain. PxAgo3 was classified into the Piwi subfamily of Ago proteins with a high similarity of 93.0% with Bombyx mori Ago3 (BmAgo3). The suppression of PxAgo3 by dsPxAgo3 was observed 3 h after treatment and was maintained until 24 h. Knockdown of PxAgo3 decreased the suppression level of PxActin by dsPxActin in P. xylostella cells, while overexpression of PxAgo3 increased the RNAi efficiency. Our results suggest that PxAgo3 play a key role in the double stranded RNA (dsRNA)-regulated RNAi pathway in P. xylostella.
Collapse
Affiliation(s)
- Muhammad Salman Hameed
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China.
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Zhengbing Wang
- Key Laboratory of Natural Pesticides and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada.
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China.
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| |
Collapse
|
61
|
Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes. Cell Rep 2018; 19:1940-1952. [PMID: 28564610 DOI: 10.1016/j.celrep.2017.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/14/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
Dorsal root ganglia (DRG) relay sensory information to the brain, giving rise to the perception of pain, disorders of which are prevalent and burdensome. Here, we mapped expression quantitative trait loci (eQTLs) in a collection of human DRGs. DRG eQTLs were enriched within untranslated regions of coding genes of low abundance, with some overlapping with other brain regions and blood cell cis-eQTLs. We confirm functionality of identified eQTLs through their significant enrichment within open chromatin and highly deleterious SNPs, particularly at the exon level, suggesting substantial contribution of eQTLs to alternative splicing regulation. We illustrate pain-related genetic association results explained by DRG eQTLs, with the strongest evidence for contribution of the human leukocyte antigen (HLA) locus, confirmed using a mouse inflammatory pain model. Finally, we show that DRG eQTLs are found among hits in numerous genome-wide association studies, suggesting that this dataset will help address pain components of non-pain disorders.
Collapse
|
62
|
Zeng G, Zhang D, Liu X, Kang Q, Fu Y, Tang B, Guo W, Zhang Y, Wei G, He D. Co-expression of Piwil2/Piwil4 in nucleus indicates poor prognosis of hepatocellular carcinoma. Oncotarget 2018; 8:4607-4617. [PMID: 27894076 PMCID: PMC5354858 DOI: 10.18632/oncotarget.13491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023] Open
Abstract
Purpose This study aimed to explore the localization and expression of P-element-induced wimpy testis-like 2 (piwil2)/Piwil4 in hepatocellular carcinoma (HCC) tissues, and analyze the correlation between co-expression pattern and prognosis of HCC. Results Piwil2 showed 100% positive expression in the cell nucleus, with the intensity higher than in the cytoplasm. Piwil4 showed a lower intensity of expression in the cell nucleus than in the cytoplasm. The molecular chaperone Piwil2/Piwil4 had four co-expression patterns: nuclear co-expression, nuclear and cytoplasmic co-expression, cytoplasmic co-expression, and non-coexpression. The survival rate and the overall survival sequentially increased. The prognostic phenotype of the nuclear co-expression of Piwil2/Piwil4 was worse than that of non-coexpression, and the intracellular localization and expression of Piwil2 and Piwil4 were not significantly different. Methods HCC pathological tissue samples with follow-up information (90 cases) and 2 normal control liver tissues were collected and made into a 92-site microarray. The expression of Piwil2 and Piwil4 was detected using the immunofluorescence double staining method. The differences in the expression and location of Piwil2 and Piwil4 in tumor cells were explored, and the influence of such differences on the long-term survival rate of HCC was studied using Kaplan-Meier survival curve and log-rank test. The clinical staging was analyzed according to the HCC international TNM staging criteria. Conclusions The nuclear co-expression of Piwil2/Piwil4 indicated that patients with HCC had a worse prognostic phenotype. The molecular chaperone Piwil2/Piwil4 seems promising as a molecular marker for prognosis judgment; a single marker (Piwil2/Piwil4) cannot be used for prognosis judgment.
Collapse
Affiliation(s)
- Guangping Zeng
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Qing Kang
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Yiyao Fu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Bo Tang
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Wenhao Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27103, USA
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| |
Collapse
|
63
|
Guo Q, Xu L, Bi Y, Qiu L, Chen Y, Kong L, Pan R, Chang G. piRNA-19128 regulates spermatogenesis by silencing of KIT in chicken. J Cell Biochem 2018; 119:7998-8010. [PMID: 29384219 DOI: 10.1002/jcb.26695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/22/2018] [Indexed: 11/09/2022]
Abstract
Spermatogenesis is a complex process. Some studies have shown that Piwi-interacting RNAs (piRNAs) play an important role in spermatogenesis. To verify the evaluate between piRNAs and PIWI proteins in chicken and its possible role in spermatogenesis and reproductive stem cell proliferation and differentiation, we performed immunoprecipitation and deep sequencing analyses and determined the expression profiles of small RNAs in primordial germ cells (PGCs), spermatogonial stem cells (SSCs), spermatogonia (Sa) cells, and spermatozoa. Length analysis showed that piRNAs bound to PIWIL1 mainly contained 23-30 nt. Base preference analysis showed "1U-10A"; moreover, base preference of piRNAs was obvious in all of germline cells. Here we reported the TE family of gallus gallus, and targeted by piRNA. Target gene of piRNA annotation enrichment analysis identified candidate genes KIT, SRC, WNT4, and HMGB2. Kyoto Encyclopedia of Genes and Genomes analysis showed that these genes were associated with steroid hormone biosynthesis, Notch signaling pathway, and melanogenesis. These results indicate that chicken piRNAs perform important regulatory roles during spermatogenesis similar to mice piRNAs. Chicken piRNAs interacted with PIWI proteins and regulated spermatogenesis and germ cell proliferation and differentiation. Further, we observed a negative correlation between piRNA-19128 and KIT expression. Results of dual-luciferase reporter assay confirmed that piRNA-19128 directly interacted with KIT, suggesting that it plays a key role in the regulation spermatogenesis by inhibiting KIT expression. Thus, the present study provides information on the length and base preference of chicken piRNAs and suggests that piRNA-19128 regulates spermatogenesis in chicken by silencing KIT.
Collapse
Affiliation(s)
- Qixin Guo
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lu Xu
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China.,College of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yulin Bi
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingling Qiu
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yin Chen
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingling Kong
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Pan
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guobin Chang
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
64
|
Li C, Qin F, Hu F, Xu H, Sun G, Han G, Wang T, Guo M. Characterization and selective incorporation of small non-coding RNAs in non-small cell lung cancer extracellular vesicles. Cell Biosci 2018; 8:2. [PMID: 29344346 PMCID: PMC5763536 DOI: 10.1186/s13578-018-0202-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background Extracellular vesicles (EVs) play important roles in intercellular communication through the delivery of their cargoes, which include proteins, lipids, and RNAs. Increasingly, multiple studies have reported the association between EV small non-coding RNAs and cancer, due to their regulatory functions in gene expression. Hence, analysis of the features of small non-coding RNA expression and their incorporation into EVs is important for cancer research. Results We performed deep sequencing to investigate the expression of small RNAs in plasma EVs from lung adenocarcinoma (ADC) patients, lung squamous cell carcinoma (SQCC) patients, and healthy controls. Then, eighteen differently expressed miRNAs in plasma EVs was validated by QRT-PCR. The small RNA expression profiles of plasma EVs were different among lung ADC, SQCC patients, and healthy controls. And many small RNAs, including 5′ YRNA hY4-derived fragments, miR-451a, miR-122-5p, miR-20a-5p, miR-20b-5p, miR-30b-5p, and miR-665, were significantly upregulated in non-small cell lung cancer (NSCLC) EVs. And the cell viability assays indicated that hY4-derived fragments inhibited the proliferation of lung cancer cell A549. By comparing the cellular and EV expression levels of six miRNAs in NSCLC cells, we found that miR-451a and miR-122-5p were significantly downregulated in NSCLC cell lysates, while significantly upregulated in NSCLC EVs. Conclusions The differently expressed EV small RNAs may serve as potential circulating biomarkers for the diagnosis of NSCLC. Particularly, YRNA hY4-derived fragments can serve as a novel class of biomarkers, which function as tumor suppressors in NSCLC. Additionally, miR-451a and miR-122-5p may be sorted into NSCLC EVs in a selective manner. Electronic supplementary material The online version of this article (10.1186/s13578-018-0202-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuang Li
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People's Republic of China
| | - Fang Qin
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People's Republic of China
| | - Fen Hu
- 2Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People's Republic of China
| | - Hui Xu
- 2Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People's Republic of China
| | - Guihong Sun
- 3School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 Hubei People's Republic of China
| | - Guang Han
- 4Department of Radiation Oncology, Hubei Cancer Hospital, 116 Zhuodaoquan South Road, Wuhan, 430079 Hubei People's Republic of China.,5Department of Oncology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Street, Wuhan, 430060 Hubei People's Republic of China
| | - Tao Wang
- 2Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People's Republic of China
| | - Mingxiong Guo
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People's Republic of China
| |
Collapse
|
65
|
Fu Q, Liu CJ, Zhai ZS, Zhang X, Qin T, Zhang HW. Single-Cell Non-coding RNA in Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:19-32. [DOI: 10.1007/978-981-13-0502-3_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
66
|
Chen CC, Qian X, Yoon BJ. Effective computational detection of piRNAs using n-gram models and support vector machine. BMC Bioinformatics 2017; 18:517. [PMID: 29297285 PMCID: PMC5751586 DOI: 10.1186/s12859-017-1896-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Piwi-interacting RNAs (piRNAs) are a new class of small non-coding RNAs that are known to be associated with RNA silencing. The piRNAs play an important role in protecting the genome from invasive transposons in the germline. Recent studies have shown that piRNAs are linked to the genome stability and a variety of human cancers. Due to their clinical importance, there is a pressing need for effective computational methods that can be used for computational identification of piRNAs. However, piRNAs lack conserved structural motifs and show relatively low sequence similarity across different species, which makes accurate computational prediction of piRNAs challenging. Results In this paper, we propose a novel method, piRNAdetect, for reliable computational prediction of piRNAs in genome sequences. In the proposed method, we first classify piRNA sequences in the training dataset that share similar sequence motifs and extract effective predictive features through the use of n-gram models (NGMs). The extracted NGM-based features are then used to construct a support vector machine that can be used for accurate prediction of novel piRNAs. Conclusions We demonstrate the effectiveness of the proposed piRNAdetect algorithm through extensive performance evaluation based on piRNAs in three different species – H. sapiens, R. norvegicus, and M. musculus – obtained from the piRBase and show that piRNAdetect outperforms the current state-of-the-art methods in terms of efficiency and accuracy.
Collapse
Affiliation(s)
- Chun-Chi Chen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoning Qian
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
67
|
Mohanta TK, Bashir T, Hashem A, Abd Allah EF, Bae H. Genome Editing Tools in Plants. Genes (Basel) 2017; 8:E399. [PMID: 29257124 PMCID: PMC5748717 DOI: 10.3390/genes8120399] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022] Open
Abstract
Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs.
Collapse
Affiliation(s)
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza 12619, Egypt.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
68
|
Wang J, Samuels DC, Zhao S, Xiang Y, Zhao YY, Guo Y. Current Research on Non-Coding Ribonucleic Acid (RNA). Genes (Basel) 2017; 8:genes8120366. [PMID: 29206165 PMCID: PMC5748684 DOI: 10.3390/genes8120366] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022] Open
Abstract
Non-coding ribonucleic acid (RNA) has without a doubt captured the interest of biomedical researchers. The ability to screen the entire human genome with high-throughput sequencing technology has greatly enhanced the identification, annotation and prediction of the functionality of non-coding RNAs. In this review, we discuss the current landscape of non-coding RNA research and quantitative analysis. Non-coding RNA will be categorized into two major groups by size: long non-coding RNAs and small RNAs. In long non-coding RNA, we discuss regular long non-coding RNA, pseudogenes and circular RNA. In small RNA, we discuss miRNA, transfer RNA, piwi-interacting RNA, small nucleolar RNA, small nuclear RNA, Y RNA, single recognition particle RNA, and 7SK RNA. We elaborate on the origin, detection method, and potential association with disease, putative functional mechanisms, and public resources for these non-coding RNAs. We aim to provide readers with a complete overview of non-coding RNAs and incite additional interest in non-coding RNA research.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biostatistics, Vanderbilt University, Medical Center, Nashville, TN 37232, USA.
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University, Medical Center, Nashville, TN 37232, USA.
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Yan Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87102, USA.
| |
Collapse
|
69
|
Abstract
Extracellular RNAs consist of coding and non-coding transcripts released from all cell types, which are involved in multiple cellular processes, predominantly through regulation of gene expression. Recent advances have helped us better understand the functions of these molecules, particularly microRNAs (miRNAs). Numerous pre-clinical and human studies have demonstrated that miRNAs are dysregulated in cancer and contribute to tumorigenesis and metastasis. miRNA profiling has extensively been evaluated as a non-invasive method for cancer diagnosis, prognostication, and assessment of response to cancer therapies. Broader applications for miRNAs in these settings are currently under active development. Investigators have also moved miRNAs into the realm of cancer therapy. miRNA antagonists targeting miRNAs that silence tumor suppressor genes have shown promising pre-clinical activity. Alternatively, miRNA mimics that silence oncogenes are also under active investigation. These miRNA-based cancer therapies are in early development, but represent novel strategies for clinical management of human cancer.
Collapse
Affiliation(s)
- Jonathan R Thompson
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jing Zhu
- Department of Pathology and MCW Cancer Center, TBRC-C4970, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Deepak Kilari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Liang Wang
- Department of Pathology and MCW Cancer Center, TBRC-C4970, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
70
|
Zhang J, Griffith M, Miller CA, Griffith OL, Spencer DH, Walker JR, Magrini V, McGrath SD, Ly A, Helton NM, Trissal M, Link DC, Dang HX, Larson DE, Kulkarni S, Cordes MG, Fronick CC, Fulton RS, Klco JM, Mardis ER, Ley TJ, Wilson RK, Maher CA. Comprehensive discovery of noncoding RNAs in acute myeloid leukemia cell transcriptomes. Exp Hematol 2017; 55:19-33. [PMID: 28760689 DOI: 10.1016/j.exphem.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 01/29/2023]
Abstract
To detect diverse and novel RNA species comprehensively, we compared deep small RNA and RNA sequencing (RNA-seq) methods applied to a primary acute myeloid leukemia (AML) sample. We were able to discover previously unannotated small RNAs using deep sequencing of a library method using broader insert size selection. We analyzed the long noncoding RNA (lncRNA) landscape in AML by comparing deep sequencing from multiple RNA-seq library construction methods for the sample that we studied and then integrating RNA-seq data from 179 AML cases. This identified lncRNAs that are completely novel, differentially expressed, and associated with specific AML subtypes. Our study revealed the complexity of the noncoding RNA transcriptome through a combined strategy of strand-specific small RNA and total RNA-seq. This dataset will serve as an invaluable resource for future RNA-based analyses.
Collapse
Affiliation(s)
- Jin Zhang
- The McDonnell Genome Institute, Washington University, St. Louis, MO; Department of Medicine, Washington University, St. Louis, MO; Siteman Cancer Center, Washington University, St. Louis, MO
| | - Malachi Griffith
- The McDonnell Genome Institute, Washington University, St. Louis, MO; Siteman Cancer Center, Washington University, St. Louis, MO; Department of Genetics, Washington University, St. Louis, MO
| | - Christopher A Miller
- The McDonnell Genome Institute, Washington University, St. Louis, MO; Department of Medicine, Washington University, St. Louis, MO
| | - Obi L Griffith
- The McDonnell Genome Institute, Washington University, St. Louis, MO; Department of Medicine, Washington University, St. Louis, MO; Siteman Cancer Center, Washington University, St. Louis, MO; Department of Genetics, Washington University, St. Louis, MO
| | - David H Spencer
- Department of Medicine, Washington University, St. Louis, MO
| | - Jason R Walker
- The McDonnell Genome Institute, Washington University, St. Louis, MO
| | - Vincent Magrini
- Nationwide Children's Hospital, Institute for Genomic Medicine, Columbus, OH
| | - Sean D McGrath
- Nationwide Children's Hospital, Institute for Genomic Medicine, Columbus, OH
| | - Amy Ly
- The McDonnell Genome Institute, Washington University, St. Louis, MO
| | | | - Maria Trissal
- Department of Medicine, Washington University, St. Louis, MO
| | - Daniel C Link
- Department of Medicine, Washington University, St. Louis, MO
| | - Ha X Dang
- The McDonnell Genome Institute, Washington University, St. Louis, MO; Department of Medicine, Washington University, St. Louis, MO; Siteman Cancer Center, Washington University, St. Louis, MO
| | - David E Larson
- The McDonnell Genome Institute, Washington University, St. Louis, MO; Department of Genetics, Washington University, St. Louis, MO
| | | | - Matthew G Cordes
- The McDonnell Genome Institute, Washington University, St. Louis, MO
| | - Catrina C Fronick
- The McDonnell Genome Institute, Washington University, St. Louis, MO
| | - Robert S Fulton
- The McDonnell Genome Institute, Washington University, St. Louis, MO
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Elaine R Mardis
- Nationwide Children's Hospital, Institute for Genomic Medicine, Columbus, OH
| | - Timothy J Ley
- The McDonnell Genome Institute, Washington University, St. Louis, MO; Department of Medicine, Washington University, St. Louis, MO; Siteman Cancer Center, Washington University, St. Louis, MO; Department of Genetics, Washington University, St. Louis, MO
| | - Richard K Wilson
- Nationwide Children's Hospital, Institute for Genomic Medicine, Columbus, OH
| | - Christopher A Maher
- The McDonnell Genome Institute, Washington University, St. Louis, MO; Department of Medicine, Washington University, St. Louis, MO; Siteman Cancer Center, Washington University, St. Louis, MO; Department of Biomedical Engineering, Washington University, St. Louis, MO.
| |
Collapse
|
71
|
Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, Zhang S, Gong Z, Wei F, Yang L, He Y, Zhou M, Li X, Li G, Xiong W, Zeng Z. Role of long non-coding RNAs in glucose metabolism in cancer. Mol Cancer 2017; 16:130. [PMID: 28738810 PMCID: PMC5525357 DOI: 10.1186/s12943-017-0699-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
Long-noncoding RNAs (lncRNAs) are a group of transcripts that are longer than 200 nucleotides and do not code for proteins. However, this class of RNAs plays pivotal regulatory roles. The mechanism of their action is highly complex. Mounting evidence shows that lncRNAs can regulate cancer onset and progression in a variety of ways. They can not only regulate cancer cell proliferation, differentiation, invasion and metastasis, but can also regulate glucose metabolism in cancer cells through different ways, such as by directly regulating the glycolytic enzymes and glucose transporters (GLUTs), or indirectly modulating the signaling pathways. In this review, we summarized the role of lncRNAs in regulating glucose metabolism in cancer, which will help understand better the pathogenesis of malignant tumors. The understanding of the role of lncRNAs in glucose metabolism may help provide new therapeutic targets and novel diagnostic and prognosis markers for human cancer.
Collapse
Affiliation(s)
- Chunmei Fan
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Liting Yang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
72
|
Current epigenetic aspects the clinical kidney researcher should embrace. Clin Sci (Lond) 2017; 131:1649-1667. [DOI: 10.1042/cs20160596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD), affecting 10–12% of the world’s adult population, is associated with a considerably elevated risk of serious comorbidities, in particular, premature vascular disease and death. Although a wide spectrum of causative factors has been identified and/or suggested, there is still a large gap of knowledge regarding the underlying mechanisms and the complexity of the CKD phenotype. Epigenetic factors, which calibrate the genetic code, are emerging as important players in the CKD-associated pathophysiology. In this article, we review some of the current knowledge on epigenetic modifications and aspects on their role in the perturbed uraemic milieu, as well as the prospect of applying epigenotype-based diagnostics and preventive and therapeutic tools of clinical relevance to CKD patients. The practical realization of such a paradigm will require that researchers apply a holistic approach, including the full spectrum of the epigenetic landscape as well as the variability between and within tissues in the uraemic milieu.
Collapse
|
73
|
Boissière A, Gala A, Ferrières-Hoa A, Mullet T, Baillet S, Petiton A, Torre A, Hamamah S. Cell-free and intracellular nucleic acids: new non-invasive biomarkers to explore male infertility. Basic Clin Androl 2017; 27:7. [PMID: 28439417 PMCID: PMC5399401 DOI: 10.1186/s12610-017-0052-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
Male infertility is a devastating problem that affects many couples worldwide. However, the molecular mechanisms and causes of idiopathic male infertility remain unclear. Circulating cell-free nucleic acids have an important role in human physiology and emerging evidence suggests that they play a role in male infertility. This review summarizes recent results on cell-free and intracellular nucleic acids in male infertility and discusses their potential use as biomarkers of male infertility in the clinical practice.
Collapse
Affiliation(s)
- Anne Boissière
- Unité INSERM U1203, Hôpital Saint Eloi, CHRU Montpellier, 80, avenue Fliche, 34295 Montpellier, France
| | - Anna Gala
- Unité INSERM U1203, Hôpital Saint Eloi, CHRU Montpellier, 80, avenue Fliche, 34295 Montpellier, France.,Département de biologie de la reproduction, Hôpital Arnaud de Villeneuve, CHRU Montpellier, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier, France
| | - Alice Ferrières-Hoa
- Unité INSERM U1203, Hôpital Saint Eloi, CHRU Montpellier, 80, avenue Fliche, 34295 Montpellier, France.,Département de biologie de la reproduction, Hôpital Arnaud de Villeneuve, CHRU Montpellier, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier, France
| | - Tiffany Mullet
- Unité INSERM U1203, Hôpital Saint Eloi, CHRU Montpellier, 80, avenue Fliche, 34295 Montpellier, France.,Département de biologie de la reproduction, Hôpital Arnaud de Villeneuve, CHRU Montpellier, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier, France
| | - Solenne Baillet
- Département de biologie de la reproduction, Hôpital Arnaud de Villeneuve, CHRU Montpellier, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier, France
| | - Amaël Petiton
- Département de biologie de la reproduction, Hôpital Arnaud de Villeneuve, CHRU Montpellier, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier, France
| | - Antoine Torre
- Département de biologie de la reproduction, Hôpital Arnaud de Villeneuve, CHRU Montpellier, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier, France
| | - Samir Hamamah
- Unité INSERM U1203, Hôpital Saint Eloi, CHRU Montpellier, 80, avenue Fliche, 34295 Montpellier, France.,Département de biologie de la reproduction, Hôpital Arnaud de Villeneuve, CHRU Montpellier, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier, France
| |
Collapse
|
74
|
HILI destabilizes microtubules by suppressing phosphorylation and Gigaxonin-mediated degradation of TBCB. Sci Rep 2017; 7:46376. [PMID: 28393858 PMCID: PMC5385498 DOI: 10.1038/srep46376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
Human PIWIL2, aka HILI, is a member of PIWI protein family and overexpresses in various tumors. However, the underlying mechanisms of HILI in tumorigenesis remain largely unknown. TBCB has a critical role in regulating microtubule dynamics and is overexpressed in many cancers. Here we report that HILI inhibits Gigaxonin-mediated TBCB ubiquitination and degradation by interacting with TBCB, promoting the binding between HSP90 and TBCB, and suppressing the interaction between Gigaxonin and TBCB. Meanwhile, HILI can also reduce phosphorylation level of TBCB induced by PAK1. Our results showed that HILI suppresses microtubule polymerization and promotes cell proliferation, migration and invasion via TBCB for the first time, revealing a novel mechanism for HILI in tumorigenesis.
Collapse
|
75
|
Farley BM, Collins K. Transgenerational function of Tetrahymena Piwi protein Twi8p at distinctive noncoding RNA loci. RNA (NEW YORK, N.Y.) 2017; 23:530-545. [PMID: 28053272 PMCID: PMC5340916 DOI: 10.1261/rna.060012.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Transgenerational transmission of genome-regulatory epigenetic information can determine phenotypes in the progeny of sexual reproduction. Sequence specificity of transgenerational regulation derives from small RNAs assembled into Piwi-protein complexes. Known targets of transgenerational regulation are primarily transposons and transposon-derived sequences. Here, we extend the scope of Piwi-mediated transgenerational regulation to include unique noncoding RNA loci. Ciliates such as Tetrahymena have a phenotypically silent germline micronucleus and an expressed somatic macronucleus, which is differentiated anew from a germline genome copy in sexual reproduction. We show that the nuclear-localized Tetrahymena Piwi protein Twi8p shuttles from parental to zygotic macronuclei. Genetic elimination of Twi8p has no phenotype for cells in asexual growth. On the other hand, cells lacking Twi8p arrest in sexual reproduction with zygotic nuclei that retain the germline genome structure, without the DNA elimination and fragmentation required to generate a functional macronucleus. Twi8p-bound small RNAs originate from long-noncoding RNAs with a terminal hairpin, which become detectable in the absence of Twi8p. Curiously, the loci that generate Twi8p-bound small RNAs are essential for asexual cell growth, even though Twi8 RNPs are essential only in sexual reproduction. Our findings suggest the model that Twi8 RNPs act on silent germline chromosomes to permit their conversion to expressed macronuclear chromosomes. Overall this work reveals that a Piwi protein carrying small RNAs from long-noncoding RNA loci has transgenerational function in establishing zygotic nucleus competence for gene expression.
Collapse
MESH Headings
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Chromosomes
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- Gene Rearrangement
- Genome, Protozoan
- Macronucleus/genetics
- Macronucleus/metabolism
- Micronucleus, Germline/genetics
- Micronucleus, Germline/metabolism
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Reproduction, Asexual/genetics
- Tetrahymena/genetics
- Tetrahymena/growth & development
- Tetrahymena/metabolism
Collapse
Affiliation(s)
- Brian M Farley
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3202, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3202, USA
| |
Collapse
|
76
|
Bouckenheimer J, Assou S, Riquier S, Hou C, Philippe N, Sansac C, Lavabre-Bertrand T, Commes T, Lemaître JM, Boureux A, De Vos J. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum Reprod Update 2016; 23:19-40. [PMID: 27655590 DOI: 10.1093/humupd/dmw035] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/20/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human long non-coding RNAs (lncRNAs) are an emerging category of transcripts with increasingly documented functional roles during development. LncRNAs and roles during human early embryo development have recently begun to be unravelled. OBJECTIVE AND RATIONALE This review summarizes the most recent knowledge on lncRNAs and focuses on their expression patterns and role during early human embryo development and in pluripotent stem cells (PSCs). Public mRNA sequencing (mRNA-seq) data were used to illustrate these expression signatures. SEARCH METHODS The PubMed and EMBASE databases were first interrogated using specific terms, such as 'lncRNAs', to get an extensive overview on lncRNAs up to February 2016, and then using 'human lncRNAs' and 'embryo', 'development', or 'PSCs' to focus on lncRNAs involved in human embryo development or in PSC.Recently published RNA-seq data from human oocytes and pre-implantation embryos (including single-cell data), PSC and a panel of normal and malignant adult tissues were used to describe the specific expression patterns of some lncRNAs in early human embryos. OUTCOMES The existence and the crucial role of lncRNAs in many important biological phenomena in each branch of the life tree are now well documented. The number of identified lncRNAs is rapidly increasing and has already outnumbered that of protein-coding genes. Unlike small non-coding RNAs, a variety of mechanisms of action have been proposed for lncRNAs. The functional role of lncRNAs has been demonstrated in many biological and developmental processes, including cell pluripotency induction, X-inactivation or gene imprinting. Analysis of RNA-seq data highlights that lncRNA abundance changes significantly during human early embryonic development. This suggests that lncRNAs could represent candidate biomarkers for developing non-invasive tests for oocyte or embryo quality. Finally, some of these lncRNAs are also expressed in human cancer tissues, suggesting that reactivation of an embryonic lncRNA program may contribute to human malignancies. WIDER IMPLICATIONS LncRNAs are emerging potential key players in gene expression regulation. Analysis of RNA-seq data from human pre-implantation embryos identified lncRNA signatures that are specific to this critical step. We anticipate that further studies will show that these new transcripts are major regulators of embryo development. These findings might also be used to develop new tests/treatments for improving the pregnancy success rate in IVF procedures or for regenerative medicine applications involving PSC.
Collapse
Affiliation(s)
- Julien Bouckenheimer
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Sébastien Riquier
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Cyrielle Hou
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - Nicolas Philippe
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France.,Coretec, Montpellier, France
| | - Caroline Sansac
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | | | - Thérèse Commes
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France.,Institut de Biologie Computationnelle, Montpellier F 34000, France
| | - Jean-Marc Lemaître
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France .,INSERM, U1183, Montpellier F 34000, France.,Stem Cell Core Facility SAFE-iPSC, INGESTEM, Saint-Eloi Hospital, Montpellier F 34000, France
| | - Anthony Boureux
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France.,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France .,INSERM, U1183, Montpellier F 34000, France.,Université de Montpellier, Montpellier F 34000, France.,Institut de Biologie Computationnelle, Montpellier F 34000, France.,Stem Cell Core Facility SAFE-iPSC, INGESTEM, Saint-Eloi Hospital, Montpellier F 34000, France.,Department of Cell and Tissue Engineering, CHU Montpellier, Saint-Eloi Hospital, Montpellier F 34000, France
| |
Collapse
|
77
|
Veneziano D, Di Bella S, Nigita G, Laganà A, Ferro A, Croce CM. Noncoding RNA: Current Deep Sequencing Data Analysis Approaches and Challenges. Hum Mutat 2016; 37:1283-1298. [PMID: 27516218 DOI: 10.1002/humu.23066] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
One of the most significant biological discoveries of the last decade is represented by the reality that the vast majority of the transcribed genomic output comprises diverse classes of noncoding RNAs (ncRNAs) that may play key roles and/or be affected by many biochemical cellular processes (i.e., RNA editing), with implications in human health and disease. With 90% of the human genome being transcribed and novel classes of ncRNA emerging (tRNA-derived small RNAs and circular RNAs among others), the great majority of the human transcriptome suggests that many important ncRNA functions/processes are yet to be discovered. An approach to filling such vast void of knowledge has been recently provided by the increasing application of next-generation sequencing (NGS), offering the unprecedented opportunity to obtain a more accurate profiling with higher resolution, increased throughput, sequencing depth, and low experimental complexity, concurrently posing an increasing challenge in terms of efficiency, accuracy, and usability of data analysis software. This review provides an overview of ncRNAs, NGS technology, and the most recent/popular computational approaches and the challenges they attempt to solve, which are essential to a more sensitive and comprehensive ncRNA annotation capable of furthering our understanding of this still vastly uncharted genomic territory.
Collapse
Affiliation(s)
- Dario Veneziano
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| | | | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| | - Alessandro Laganà
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, 10029
| | - Afredo Ferro
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, 95125, Italy
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
78
|
Li D, Luo L, Zhang W, Liu F, Luo F. A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs. BMC Bioinformatics 2016; 17:329. [PMID: 27578422 PMCID: PMC5006569 DOI: 10.1186/s12859-016-1206-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/24/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Predicting piwi-interacting RNA (piRNA) is an important topic in the small non-coding RNAs, which provides clues for understanding the generation mechanism of gamete. To the best of our knowledge, several machine learning approaches have been proposed for the piRNA prediction, but there is still room for improvements. RESULTS In this paper, we develop a genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs. We construct datasets for three species: Human, Mouse and Drosophila. For each species, we compile the balanced dataset and imbalanced dataset, and thus obtain six datasets to build and evaluate prediction models. In the computational experiments, the genetic algorithm-based weighted ensemble method achieves 10-fold cross validation AUC of 0.932, 0.937 and 0.995 on the balanced Human dataset, Mouse dataset and Drosophila dataset, respectively, and achieves AUC of 0.935, 0.939 and 0.996 on the imbalanced datasets of three species. Further, we use the prediction models trained on the Mouse dataset to identify piRNAs of other species, and the models demonstrate the good performances in the cross-species prediction. CONCLUSIONS Compared with other state-of-the-art methods, our method can lead to better performances. In conclusion, the proposed method is promising for the transposon-derived piRNA prediction. The source codes and datasets are available in https://github.com/zw9977129/piRNAPredictor .
Collapse
Affiliation(s)
- Dingfang Li
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072 China
| | - Longqiang Luo
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072 China
| | - Wen Zhang
- State Key Lab of Software Engineering, Wuhan University, Wuhan, 430072 China
- School of Computer, Wuhan University, Wuhan, 430072 China
| | - Feng Liu
- International School of Software, Wuhan University, Wuhan, 430072 China
| | - Fei Luo
- State Key Lab of Software Engineering, Wuhan University, Wuhan, 430072 China
- School of Computer, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
79
|
Li D, Luo Y, Gao Y, Yang Y, Wang Y, Xu Y, Tan S, Zhang Y, Duan J, Yang Y. piR-651 promotes tumor formation in non-small cell lung carcinoma through the upregulation of cyclin D1 and CDK4. Int J Mol Med 2016; 38:927-36. [PMID: 27431575 DOI: 10.3892/ijmm.2016.2671] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/10/2016] [Indexed: 11/05/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs or piRs) are a novel class of non-coding RNAs that participate in germline development by silencing transposable elements and regulating gene expression. To date, the association between piRNAs and non‑small cell lung carcinoma (NSCLC) has not yet been elucidated. In the present study, we have demonstrated that a significant increase in piR-651 expression occurs in NSCLC. Furthermore, the abnormal expression of piR-651 was associated with cancer progression in the patients with NSCLC. The upregulation of piR-651 in A549 cells caused a significant increase in cell viability and metastasis. The percentage of arrested cells in the G0/G1 phase was lower after piR-651 overexpression compared with the controls. We also examined the expression of oncogenes and cancer suppressor genes following piR-651 overexpression in NSCLC cells. Only the expression levels of cyclin D1 and CDK4 significantly correlated with piR-651 expression both in vivo and in vitro. Furthermore, by injecting nude mice with A549 cells transfected with piR-651 plasmids to establish a xenograft model, we demonstrated that there was a correlation between piR-651 overexpression and tumor growth, which was mediated by cyclin D1 and CDK4. These findings strongly support the notion that piR-651 induces NSCLC progression through the cyclin D1 and CDK4 pathway and it may have applications as a potential diagnostic indicator and therapeutic target in the management of NSCLC.
Collapse
Affiliation(s)
- Dan Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yingquan Luo
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yawen Gao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yue Yang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yina Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yan Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Shengyu Tan
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuwei Zhang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu Yang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
80
|
Śliwińska EB, Martyka R, Tryjanowski P. Evolutionary interaction between W/Y chromosome and transposable elements. Genetica 2016; 144:267-78. [PMID: 27000053 PMCID: PMC4879163 DOI: 10.1007/s10709-016-9895-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/13/2016] [Indexed: 11/28/2022]
Abstract
The W/Y chromosome is unique among chromosomes as it does not recombine in its mature form. The main side effect of cessation of recombination is evolutionary instability and degeneration of the W/Y chromosome, or frequent W/Y chromosome turnovers. Another important feature of W/Y chromosome degeneration is transposable element (TEs) accumulation. Transposon accumulation has been confirmed for all W/Y chromosomes that have been sequenced so far. Models of W/Y chromosome instability include the assemblage of deleterious mutations in protein coding genes, but do not include the influence of transposable elements that are accumulated gradually in the non-recombining genome. The multiple roles of genomic TEs, and the interactions between retrotransposons and genome defense proteins are currently being studied intensively. Small RNAs originating from retrotransposon transcripts appear to be, in some cases, the only mediators of W/Y chromosome function. Based on the review of the most recent publications, we present knowledge on W/Y evolution in relation to retrotransposable element accumulation.
Collapse
Affiliation(s)
- Ewa B Śliwińska
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland.
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland.
| | - Rafał Martyka
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland
| | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| |
Collapse
|
81
|
Kneitz S, Mishra RR, Chalopin D, Postlethwait J, Warren WC, Walter RB, Schartl M. Germ cell and tumor associated piRNAs in the medaka and Xiphophorus melanoma models. BMC Genomics 2016; 17:357. [PMID: 27183847 PMCID: PMC4869193 DOI: 10.1186/s12864-016-2697-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background A growing number of studies report an abnormal expression of Piwi-interacting RNAs (piRNAs) and the piRNA processing enzyme Piwi in many cancers. Whether this finding is an epiphenomenon of the chaotic molecular biology of the fast dividing, neoplastically transformed cells or is functionally relevant to tumorigenesisis is difficult to discern at present. To better understand the role of piRNAs in cancer development small laboratory fish models can make a valuable contribution. However, little is known about piRNAs in somatic and neoplastic tissues of fish. Results To identify piRNA clusters that might be involved in melanoma pathogenesis, we use several transgenic lines of medaka, and platyfish/swordtail hybrids, which develop various types of melanoma. In these tumors Piwi, is expressed at different levels, depending on tumor type. To quantify piRNA levels, whole piRNA populations of testes and melanomas of different histotypes were sequenced. Because no reference piRNA cluster set for medaka or Xiphophorus was yet available we developed a software pipeline to detect piRNA clusters in our samples and clusters were selected that were enriched in one or more samples. We found several loci to be overexpressed or down-regulated in different melanoma subtypes as compared to hyperpigmented skin. Furthermore, cluster analysis revealed a clear distinction between testes, low-grade and high-grade malignant melanoma in medaka. Conclusions Our data imply that dysregulation of piRNA expression may be associated with development of melanoma. Our results also reinforce the importance of fish as a suitable model system to study the role of piRNAs in tumorigenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2697-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Kneitz
- Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Rasmi R Mishra
- Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | | | - John Postlethwait
- Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR, 97403, USA
| | - Wesley C Warren
- Genome Sequencing Center, Washington University School of Medicine, 4444 Forest Park Blvd., St Louis, MO, 63108, USA
| | - Ronald B Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Manfred Schartl
- Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Josef Schneider Straße 6, D-97074, Würzburg, Germany.,Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
82
|
PIWI-interacting RNA (piRNA) signatures in human cardiac progenitor cells. Int J Biochem Cell Biol 2016; 76:1-11. [PMID: 27131603 DOI: 10.1016/j.biocel.2016.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/01/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
Cardiac progenitors, such as cardiospheres and cardiosphere-derived cells, represent an attractive cell source for cardiac regeneration. The PIWI-interacting RNAs, piRNAs, are an intriguing class of small non-coding RNAs, implicated in the regulation of epigenetic state, maintenance of genomic integrity and stem cell functions. Although non-coding RNAs are an exploiting field in cardiovascular research, the piRNA signatures of cardiac progenitors has not been evaluated yet.We profiled, through microarrays, 15,311 piRNAs expressed in cardiospheres, cardiosphere-derived cells and cardiac fibroblasts. Results showed a set of differentially expressed piRNAs (fold change ≥2, p<0.01): 641 piRNAs were upregulated and 1,301 downregulated in the cardiospheres compared to cardiosphere-derived cells, while 255 and 708 piRNAs resulted up- and down-regulated, respectively, if compared to cardiac fibroblasts. We also identified 181 piRNAs that are overexpressed and 129 are downregulated in cardiosphere-derived cells respect to cardiac fibroblasts.Bioinformatics analysis showed that the deregulated piRNAs were mainly distributed on few chromosomes, suggesting that piRNAs are organized in discrete genomic clusters.Furthermore, the bioinformatics search showed that the most upregulated piRNAs target transposons, especially belonged to LINE-1 class, as validated by qRT-PCR. This reduction is also associated to an activation of AKT signaling, which is beneficial for cardiac regeneration.The present study is the first to show a highly consistent piRNA expression pattern for human cardiac progenitors, likely responsible of their different regenerative power. Moreover, this piRNome analysis may provide new methods for characterize cardiac progenitors and may shed new light on the understanding the complex molecular mechanisms of cardiac regeneration.
Collapse
|
83
|
Luo L, Li D, Zhang W, Tu S, Zhu X, Tian G. Accurate Prediction of Transposon-Derived piRNAs by Integrating Various Sequential and Physicochemical Features. PLoS One 2016; 11:e0153268. [PMID: 27074043 PMCID: PMC4830532 DOI: 10.1371/journal.pone.0153268] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/25/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA molecules. The transposon-derived piRNA prediction can enrich the research contents of small ncRNAs as well as help to further understand generation mechanism of gamete. METHODS In this paper, we attempt to differentiate transposon-derived piRNAs from non-piRNAs based on their sequential and physicochemical features by using machine learning methods. We explore six sequence-derived features, i.e. spectrum profile, mismatch profile, subsequence profile, position-specific scoring matrix, pseudo dinucleotide composition and local structure-sequence triplet elements, and systematically evaluate their performances for transposon-derived piRNA prediction. Finally, we consider two approaches: direct combination and ensemble learning to integrate useful features and achieve high-accuracy prediction models. RESULTS We construct three datasets, covering three species: Human, Mouse and Drosophila, and evaluate the performances of prediction models by 10-fold cross validation. In the computational experiments, direct combination models achieve AUC of 0.917, 0.922 and 0.992 on Human, Mouse and Drosophila, respectively; ensemble learning models achieve AUC of 0.922, 0.926 and 0.994 on the three datasets. CONCLUSIONS Compared with other state-of-the-art methods, our methods can lead to better performances. In conclusion, the proposed methods are promising for the transposon-derived piRNA prediction. The source codes and datasets are available in S1 File.
Collapse
Affiliation(s)
- Longqiang Luo
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China
| | - Dingfang Li
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China
| | - Wen Zhang
- School of Computer, Wuhan University, Wuhan, 430072, China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, China
| | - Shikui Tu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts, 01605, United States of America
| | - Xiaopeng Zhu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts, 01605, United States of America
| | - Gang Tian
- School of Computer, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
84
|
Abstract
Chronic lymphocytic leukemia (CLL) is the most common human leukemia, and transgenic mouse studies indicate that activation of the T-cell leukemia/lymphoma 1 (TCL1) oncogene is a contributing event in the pathogenesis of the aggressive form of this disease. While studying the regulation of TCL1 expression, we identified the microRNA cluster miR-4521/3676 and discovered that these two microRNAs are associated with tRNA sequences and that this region can produce two small RNAs, members of a recently identified class of small noncoding RNAs, tRNA-derived small RNAs (tsRNAs). We further proved that miR-3676 and miR-4521 are tsRNAs using Northern blot analysis. We found that, like ts-3676, ts-4521 is down-regulated and mutated in CLL. Analysis of lung cancer samples revealed that both ts-3676 and ts-4521 are down-regulated and mutated in patient tumor samples. Because tsRNAs are similar in nature to piRNAs [P-element-induced wimpy testis (Piwi)-interacting small RNAs], we investigated whether ts-3676 and ts-4521 can interact with Piwi proteins and found these two tsRNAs in complexes containing Piwi-like protein 2 (PIWIL2). To determine whether other tsRNAs are involved in cancer, we generated a custom microarray chip containing 120 tsRNAs 16 bp or more in size. Microarray hybridization experiments revealed tsRNA signatures in CLL and lung cancer, indicating that, like microRNAs, tsRNAs may have an oncogenic and/or tumor-suppressor function in hematopoietic malignancies and solid tumors. Thus, our results show that tsRNAs are dysregulated in human cancer.
Collapse
|
85
|
Du WW, Yang W, Xuan J, Gupta S, Krylov SN, Ma X, Yang Q, Yang BB. Reciprocal regulation of miRNAs and piRNAs in embryonic development. Cell Death Differ 2016; 23:1458-70. [PMID: 26990662 DOI: 10.1038/cdd.2016.27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/13/2015] [Accepted: 12/17/2015] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) and piwi-interacting RNAs (piRNAs) are two classes of small noncoding RNAs, both of which play roles in regulating tissue development. It is unknown whether these distinct classes of noncoding RNAs can regulate one another. Here we show that ectopic expression of miR-17 inhibited mouse fertility and early embryonic development. Specifically, we found that the piRNA amplification loop was repressed by miR-17-5p, leading to increased levels of transposition mutagenesis. This occurred by suppressing the amplification loop of piRNAs with an identical 5' sequence and by targeting Mili/Miwi2, an essential component of the piRNA amplification loop, and the DNA methyltransferase, Dnmt3a. We also found that increased levels of piRNAs could compete with miRNAs for target binding, resulting in increased expression of Dnmt3a and Mili. Increased Dnmt3a levels could in turn block miR-17-5p expression, while increased Mili expression could accelerate piRNA amplification and inhibit transposon generation, favoring embryonic development. We report for the first time the reciprocal regulation between miRNAs and piRNAs in mouse embryonic development.
Collapse
Affiliation(s)
- W W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - W Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - J Xuan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - S Gupta
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - S N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - X Ma
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Q Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - B B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
86
|
Cao J, Xu G, Lan J, Huang Q, Tang Z, Tian L. High expression of piwi-like RNA-mediated gene silencing 1 is associated with poor prognosis via regulating transforming growth factor-β receptors and cyclin-dependent kinases in breast cancer. Mol Med Rep 2016; 13:2829-35. [PMID: 26847393 DOI: 10.3892/mmr.2016.4842] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/19/2015] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that abnormal expression levels of PIWI may serve a crucial role in tumorigenesis. However, the pathological role and its association with prognosis remains to be fully elucidated. In the present study, the expression levels of piwi‑like RNA‑mediated gene silencing 1 (HIWI) and piwi‑like RNA‑mediated gene silencing 2 (HILI) in breast cancer tissues were reported to be high. The high expression levels of HIWI are correlated with poor prognosis in detected patients. In addition, by overexpression and interference, it was demonstrated that HIWI promotes the activity of breast cancer cells while depression of HIWI may induce apoptosis of breast cancer cells. It was additionally identified that suppression of HIWI may arrest the cells at the G2/M stage. The expression levels of transforming growth factor‑β receptor (TβR)I, TβRII, cyclin‑dependent kinase (CDK)4, CDK6 and CDK8 were observed to be regulated by HIWI, which indicated a novel mechanism of HIWI in the regulation of breast cancer progression. The present study provides novel insight into the HIWI expression in breast cancer, providing a potential biomarker for assessment of prognosis and therapy of breast cancer.
Collapse
Affiliation(s)
- Jiwei Cao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Gang Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jing Lan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Qingqing Huang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Zuxiong Tang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Liping Tian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
87
|
Plasma extracellular RNA profiles in healthy and cancer patients. Sci Rep 2016; 6:19413. [PMID: 26786760 PMCID: PMC4726401 DOI: 10.1038/srep19413] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/11/2015] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles are selectively enriched in RNA that has potential as disease biomarkers. To systemically characterize circulating extracellular RNA (exRNA) profiles, we performed RNA sequencing analysis on plasma extracellular vesicles derived from 50 healthy individuals and 142 cancer patients. Of ~12.6 million raw reads for each individual, the number of mappable reads aligned to RNA references was ~5.4 million including miRNAs (~40.4%), piwiRNAs (~40.0%), pseudo-genes (~3.7%), lncRNAs (~2.4%), tRNAs (~2.1%), and mRNAs (~2.1%). By expression stability testing, we identified a set of miRNAs showing relatively consistent expression, which may serve as reference control for exRNA quantification. By performing multivariate analysis of covariance, we identified significant associations of these exRNAs with age, sex and different types of cancers. In particular, down-regulation of miR-125a-5p and miR-1343-3p showed an association with all cancer types tested (false discovery rate <0.05). We developed multivariate statistical models to predict cancer status with an area under the curve from 0.68 to 0.92 depending cancer type and staging. This is the largest RNA-seq study to date for profiling exRNA species, which has not only provided a baseline reference profile for circulating exRNA, but also revealed a set of RNA candidates for reference controls and disease biomarkers.
Collapse
|
88
|
Maragkakis M, Alexiou P, Nakaya T, Mourelatos Z. CLIPSeqTools--a novel bioinformatics CLIP-seq analysis suite. RNA (NEW YORK, N.Y.) 2016; 22:1-9. [PMID: 26577377 PMCID: PMC4691824 DOI: 10.1261/rna.052167.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/18/2015] [Indexed: 05/22/2023]
Abstract
Immunoprecipitation of RNA binding proteins (RBPs) after in vivo crosslinking, coupled with sequencing of associated RNA footprints (HITS-CLIP, CLIP-seq), is a method of choice for the identification of RNA targets and binding sites for RBPs. Compared with RNA-seq, CLIP-seq analysis is widely diverse and depending on the RBPs that are analyzed, the approaches vary significantly, necessitating the development of flexible and efficient informatics tools. In this study, we present CLIPSeqTools, a novel, highly flexible computational suite that can perform analysis from raw sequencing data with minimal user input. It contains a wide array of tools to provide an in-depth view of CLIP-seq data sets. It supports extensive customization and promotes improvization, a critical virtue, since CLIP-seq analysis is rarely well defined a priori. To highlight CLIPSeqTools capabilities, we used the suite to analyze Ago-miRNA HITS-CLIP data sets that we prepared from human brains.
Collapse
Affiliation(s)
- Manolis Maragkakis
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Panagiotis Alexiou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tadashi Nakaya
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
89
|
Abstract
Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration.
Collapse
Affiliation(s)
- Florence Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, 10461, USA
| |
Collapse
|
90
|
Luo LF, Hou CC, Yang WX. Small non-coding RNAs and their associated proteins in spermatogenesis. Gene 2015; 578:141-57. [PMID: 26692146 DOI: 10.1016/j.gene.2015.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/30/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022]
Abstract
The importance of the gene regulation roles of small non-coding RNAs and their protein partners is of increasing focus. In this paper, we reviewed three main small RNA species which appear to affect spermatogenesis. MicroRNAs (miRNAs) are single stand RNAs derived from transcripts containing stem-loops and hairpins which target corresponding mRNAs and affect their stability or translation. Many miRNA species have been found to be related to normal male germ cell development. The biogenesis of piRNAs is still largely unknown but several models have been proposed. Some piRNAs and PIWIs target transposable elements and it is these that may be active in regulating translation or stem cell maintenance. endo-siRNAs may also participate in sperm development. Some possible interactions between different kinds of small RNAs have even been suggested. We also show that male germ granules are seen to have a close relationship with a considerable number of mRNAs and small RNAs. Those special structures may also participate in sperm development.
Collapse
Affiliation(s)
- Ling-Feng Luo
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
91
|
Stalker L, Russell SJ, Co C, Foster RA, LaMarre J. PIWIL1 Is Expressed in the Canine Testis, Increases with Sexual Maturity, and Binds Small RNAs. Biol Reprod 2015; 94:17. [PMID: 26658707 DOI: 10.1095/biolreprod.115.131854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/02/2015] [Indexed: 01/23/2023] Open
Abstract
Spermatogenesis is a highly regulated process leading to the development of functional spermatozoa through meiotic division and subsequent maturation. Recent studies have suggested that a novel class of Argonaute proteins, known as the PIWI clade, plays important roles in multiple stages of spermatogenesis. PIWI proteins bind specific small noncoding RNAs, called PIWI-interacting RNAs (piRNAs). These piRNAs guide the PIWI-piRNA complex to retrotransposon targets that become expressed during meiosis. Retrotransposons are subsequently silenced, either through PIWI "slicer" activity or through PIWI-directed methylation of the retrotransposon locus. Most mammalian studies have employed mouse models where sterility follows PIWI inactivation. The goal of this study was to characterize canine PIWIL1 to determine whether expression pattern and functional characteristics support a similar function in that species. Canine PIWIL1 cDNA is a 2.6-kb transcript that encodes an 861-amino acid protein showing high homology to other mammalian PIWIL1 proteins and containing features consistent with PIWI family members (PAZ, PIWI domains). Analysis of PIWIL1 protein and transcript levels revealed that PIWIL1 expression is limited to the testes and is associated with sexual maturity, with mature dogs showing higher levels of PIWIL1 expression. Immunohistochemistry demonstrated expression primarily in seminiferous tubules and confirmed higher levels of PIWIL1 in mature dogs. Functional characterization by RNA immunoprecipitation demonstrated that canine PIWIL1 binds short RNAs consistent in size with piRNAs (27-32 nucleotides). Together, these studies represent the first characterization of a PIWI protein in the dog and suggest that it is a functional piRNA-binding protein most highly expressed in the mature testes.
Collapse
Affiliation(s)
- Leanne Stalker
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Stewart J Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Carmon Co
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
92
|
Chen Z, Che Q, He X, Wang F, Wang H, Zhu M, Sun J, Wan X. Stem cell protein Piwil1 endowed endometrial cancer cells with stem-like properties via inducing epithelial-mesenchymal transition. BMC Cancer 2015; 15:811. [PMID: 26506848 PMCID: PMC4624602 DOI: 10.1186/s12885-015-1794-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Stem cell protein Piwil1 functions as an oncogene in various tumor types. However, the exact function and mechanism of Piwil1 in endometrial cancer remains unclear. METHODS The expression of Piwil1 and its relationships with clinicopathological factors were investigated using immunohistochemistry. Up- or down-regulation of Piwil1 were achieved by stable or transient transfection with plasmids or short hairpin RNA (shRNA). Effects of Piwil1 on cancer cells viability, invasion and migration were evaluated by MTT, plate colony formation, transwell assay and nude mouse tumor xenograft assay. The stem-like properties of endometrial cancer cells was detected by spheroid formation assay. Effects of Piwil1 on expression levels of target genes were detected by qRT-PCR, western blotting and Immunofluorescence. RESULTS Compared with atypical hyperplasia and normal tissues, Piwil1 was much higher in endometrial carcinoma tissues. We found that Piwil1 expression was significantly correlated with FIGO stage, lymphovascular space involvement, lymph node metastasis and level of myometrial invasion. Overexpression of Piwil1 functioned to maintain stem-like characteristics, including enhancing tumor cell viability, migration, invasion and sphere-forming activity. Conversely, Piwil1 knockdown inhibited cell viability, migration, invasion, sphere-forming activity in vitro and tumor formation in xenograft model in vivo. Furthermore, study of the expression of epithelial and mesenchymal markers showed that Piwil1 was responsible for an EMT-like phenotype associated with an increase in mesenchymal markers and suppression of E-cadherin. Moreover, Piwil1 augmented expression levels of CD44 and ALDH1 expression, two known endometrial CSC markers, as well as other stemness-associated genes. CONCLUSIONS Our results suggested that stem cell protein Piwil1 play important roles in regulating EMT and the acquisition of stem-like properties of endometrial cancer cells. Therefore, it indicated that Piwil1 may represent a promising target for developing a novel treatment strategy for endometrial cancer.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Qi Che
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaoying He
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fangyuan Wang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Huihui Wang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Minjiao Zhu
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Jing Sun
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, No. 536, Changle Road, Shanghai, 200080, China.
| | - Xiaoping Wan
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, No. 536, Changle Road, Shanghai, 200080, China.
| |
Collapse
|
93
|
Yang XZ, Chen JY, Liu CJ, Peng J, Wee YR, Han X, Wang C, Zhong X, Shen QS, Liu H, Cao H, Chen XW, Tan BCM, Li CY. Selectively Constrained RNA Editing Regulation Crosstalks with piRNA Biogenesis in Primates. Mol Biol Evol 2015; 32:3143-57. [PMID: 26341297 PMCID: PMC4652623 DOI: 10.1093/molbev/msv183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although millions of RNA editing events have been reported to modify hereditary information across the primate transcriptome, evidence for their functional significance remains largely elusive, particularly for the vast majority of editing sites in noncoding regions. Here, we report a new mechanism for the functionality of RNA editing—a crosstalk with PIWI-interacting RNA (piRNA) biogenesis. Exploiting rhesus macaque as an emerging model organism closely related to human, in combination with extensive genome and transcriptome sequencing in seven tissues of the same animal, we deciphered accurate RNA editome across both long transcripts and the piRNA species. Superimposing and comparing these two distinct RNA editome profiles revealed 4,170 editing-bearing piRNA variants, or epiRNAs, that primarily derived from edited long transcripts. These epiRNAs represent distinct entities that evidence an intersection between RNA editing regulations and piRNA biogenesis. Population genetics analyses in a macaque population of 31 independent animals further demonstrated that the epiRNA-associated RNA editing is maintained by purifying selection, lending support to the functional significance of this crosstalk in rhesus macaque. Correspondingly, these findings are consistent in human, supporting the conservation of this mechanism during the primate evolution. Overall, our study reports the earliest lines of evidence for a crosstalk between selectively constrained RNA editing regulation and piRNA biogenesis, and further illustrates that such an interaction may contribute substantially to the diversification of the piRNA repertoire in primates.
Collapse
Affiliation(s)
- Xin-Zhuang Yang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jia-Yu Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chu-Jun Liu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jiguang Peng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yin Rei Wee
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Xiaorui Han
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chenqu Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China Peking-Tsinghua Center for Life Sciences, Beijing, China Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaoming Zhong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Sunny Shen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Hsuan Liu
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Huiqing Cao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiao-Wei Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China Peking-Tsinghua Center for Life Sciences, Beijing, China Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chuan-Yun Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
94
|
Lomberk GA, Urrutia R. The Triple-Code Model for Pancreatic Cancer: Cross Talk Among Genetics, Epigenetics, and Nuclear Structure. Surg Clin North Am 2015; 95:935-52. [PMID: 26315515 DOI: 10.1016/j.suc.2015.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic adenocarcinoma is painful, generally incurable, and frequently lethal. The current progression model indicates that this cancer evolves by mutations and deletions in key oncogenes and tumor suppressor genes. This article describes an updated, more comprehensive model that includes concepts from the fields of epigenetics and nuclear architecture. Widespread use of next-generation sequencing for identifying genetic and epigenetic changes genome-wide will help identify and validate more and better markers for this disease. Epigenetic alterations are amenable to pharmacologic manipulations, thus this new integrated paradigm will contribute to advance this field from a mechanistic and translational point of view.
Collapse
Affiliation(s)
- Gwen A Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Guggenheim 10-24A, Rochester, MN 55905, USA.
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Guggenheim 10-42C, Rochester, MN 55905, USA; Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Guggenheim 10-42C, Rochester, MN 55905, USA; Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Guggenheim 10-42C, Rochester, MN 55905, USA.
| |
Collapse
|
95
|
Gebert D, Ketting RF, Zischler H, Rosenkranz D. piRNAs from Pig Testis Provide Evidence for a Conserved Role of the Piwi Pathway in Post-Transcriptional Gene Regulation in Mammals. PLoS One 2015; 10:e0124860. [PMID: 25950437 PMCID: PMC4423968 DOI: 10.1371/journal.pone.0124860] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
Piwi-interacting (pi-) RNAs guide germline-expressed Piwi proteins in order to suppress the activity of transposable elements (TEs). But notably, the majority of pachytene piRNAs in mammalian testes is not related to TEs. This raises the question of whether the Piwi/piRNA pathway exerts functions beyond TE silencing. Although gene-derived piRNAs were described many times, a possible gene-regulatory function was doubted due to the absence of antisense piRNAs. Here we sequenced and analyzed piRNAs expressed in the adult testis of the pig, as this taxon possesses the full set of mammalian Piwi paralogs while their spermatozoa are marked by an extreme fitness due to selective breeding. We provide an exhaustive characterization of porcine piRNAs and genomic piRNA clusters. Moreover, we reveal that both sense and antisense piRNAs derive from protein-coding genes, while exhibiting features that clearly show that they originate from the Piwi/piRNA-mediated post-transcriptional silencing pathway, commonly referred to as ping-pong cycle. We further show that the majority of identified piRNA clusters in the porcine genome spans exonic sequences of protein-coding genes or pseudogenes, which reveals a mechanism by which primary antisense piRNAs directed against mRNA can be generated. Our data provide evidence that spliced mRNAs, derived from such loci, are not only targeted by piRNAs but are also subject to ping-pong cycle processing. Finally, we demonstrate that homologous genes are targeted and processed by piRNAs in pig, mouse and human. Altogether, this strongly suggests a conserved role for the mammalian Piwi/piRNA pathway in post-transcriptional regulation of protein-coding genes, which did not receive much attention so far.
Collapse
Affiliation(s)
- Daniel Gebert
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Germany
| | | | - Hans Zischler
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Germany
| | - David Rosenkranz
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Germany
- * E-mail:
| |
Collapse
|
96
|
Tan Y, Liu L, Liao M, Zhang C, Hu S, Zou M, Gu M, Li X. Emerging roles for PIWI proteins in cancer. Acta Biochim Biophys Sin (Shanghai) 2015; 47:315-24. [PMID: 25854579 DOI: 10.1093/abbs/gmv018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/13/2015] [Indexed: 12/18/2022] Open
Abstract
It is generally accepted that PIWI proteins are predominately expressed in the germline but absent in somatic tissues. Their best-characterized role is to suppress transposon expression, which ensures genomic stability in the germline. However, increasing evidence has suggested that PIWI proteins are linked to the hallmarks of cancer defined by Weinberg and Hanahan, such as cell proliferation, anti-apoptosis, genomic instability, invasion and metastasis. This provides new possibilities for anticancer therapies through the targeting of PIWI proteins, which may have fewer side effects due to their potential classification as a CTA (cancer/testis antigen). Furthermore, PIWI has been proposed to act as a diagnostic and prognostic marker for many types of cancer, and even to differentiate early- and late-stage cancers. We herein summarize the latest progress in this exciting field, hoping to encourage new investigations of PIWIs in cancer biology that will help to develop new therapeutics for clinical application.
Collapse
Affiliation(s)
- Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Lianyong Liu
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Mingan Liao
- College of Horticulture, Sichuan Agricultural University, Ya'an 625014, China
| | - Chaobao Zhang
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Shuanggang Hu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Mei Zou
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Mingjun Gu
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Xiangqi Li
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| |
Collapse
|
97
|
Formal genetic maps. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2014.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
98
|
Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci U S A 2015; 112:3146-51. [PMID: 25713378 DOI: 10.1073/pnas.1418918112] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maize anthers, the male reproductive floral organs, express two classes of phased small-interfering RNAs (phasiRNAs). PhasiRNA precursors are transcribed by RNA polymerase II and map to low-copy, intergenic regions similar to PIWI-interacting RNAs (piRNAs) in mammalian testis. From 10 sequential cohorts of staged maize anthers plus mature pollen we find that 21-nt phased siRNAs from 463 loci appear abruptly after germinal and initial somatic cell fate specification and then diminish, whereas 24-nt phasiRNAs from 176 loci coordinately accumulate during meiosis and persist as anther somatic cells mature and haploid gametophytes differentiate into pollen. Male-sterile ocl4 anthers defective in epidermal signaling lack 21-nt phasiRNAs. Male-sterile mutants with subepidermal defects--mac1 (excess meiocytes), ms23 (defective pretapetal cells), and msca1 (no normal soma or meiocytes)--lack 24-nt phasiRNAs. ameiotic1 mutants (normal soma, no meiosis) accumulate both 21-nt and 24-nt phasiRNAs, ruling out meiotic cells as a source or regulator of phasiRNA biogenesis. By in situ hybridization, miR2118 triggers of 21-nt phasiRNA biogenesis localize to epidermis; however, 21-PHAS precursors and 21-nt phasiRNAs are abundant subepidermally. The miR2275 trigger, 24-PHAS precursors, and 24-nt phasiRNAs all accumulate preferentially in tapetum and meiocytes. Therefore, each phasiRNA type exhibits independent spatiotemporal regulation with 21-nt premeiotic phasiRNAs dependent on epidermal and 24-nt meiotic phasiRNAs dependent on tapetal cell differentiation. Maize phasiRNAs and mammalian piRNAs illustrate putative convergent evolution of small RNAs in male reproduction.
Collapse
|
99
|
Prediction of mature microRNA and piwi-interacting RNA without a genome reference or precursors. Int J Mol Sci 2015; 16:1466-81. [PMID: 25580537 PMCID: PMC4307313 DOI: 10.3390/ijms16011466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/05/2015] [Indexed: 11/17/2022] Open
Abstract
The discovery of novel microRNA (miRNA) and piwi-interacting RNA (piRNA) is an important task for the understanding of many biological processes. Most of the available miRNA and piRNA identification methods are dependent on the availability of the organism's genome sequence and the quality of its annotation. Therefore, an efficient prediction method based solely on the short RNA reads and requiring no genomic information is highly desirable. In this study, we propose an approach that relies primarily on the nucleotide composition of the read and does not require reference genomes of related species for prediction. Using an empirical Bayesian kernel method and the error correcting output codes framework, compact models suitable for large-scale analyses are built on databases of known mature miRNAs and piRNAs. We found that the usage of an L1-based Gaussian kernel can double the true positive rate compared to the standard L2-based Gaussian kernel. Our approach can increase the true positive rate by at most 60% compared to the existing piRNA predictor based on the analysis of a hold-out test set. Using experimental data, we also show that our approach can detect about an order of magnitude or more known miRNAs than the mature miRNA predictor, miRPlex.
Collapse
|
100
|
Dritsou V, Deligianni E, Dialynas E, Allen J, Poulakakis N, Louis C, Lawson D, Topalis P. Non-coding RNA gene families in the genomes of anopheline mosquitoes. BMC Genomics 2014; 15:1038. [PMID: 25432596 PMCID: PMC4300560 DOI: 10.1186/1471-2164-15-1038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/19/2014] [Indexed: 12/12/2022] Open
Abstract
Background Only a small fraction of the mosquito species of the genus Anopheles are able to transmit malaria, one of the biggest killer diseases of poverty, which is mostly prevalent in the tropics. This diversity has genetic, yet unknown, causes. In a further attempt to contribute to the elucidation of these variances, the international “Anopheles Genomes Cluster Consortium” project (a.k.a. “16 Anopheles genomes project”) was established, aiming at a comprehensive genomic analysis of several anopheline species, most of which are malaria vectors. In the frame of the international consortium carrying out this project our team studied the genes encoding families of non-coding RNAs (ncRNAs), concentrating on four classes: microRNA (miRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and in particular small nucleolar RNA (snoRNA) and, finally, transfer RNA (tRNA). Results Our analysis was carried out using, exclusively, computational approaches, and evaluating both the primary NGS reads as well as the respective genome assemblies produced by the consortium and stored in VectorBase; moreover, the results of RNAseq surveys in cases in which these were available and meaningful were also accessed in order to obtain supplementary data, as were “pre-genomic era” sequence data stored in nucleic acid databases. The investigation included the identification and analysis, in most species studied, of ncRNA genes belonging to several families, as well as the analysis of the evolutionary relations of some of those genes in cross-comparisons to other members of the genus Anopheles. Conclusions Our study led to the identification of members of these gene families in the majority of twenty different anopheline taxa. A set of tools for the study of the evolution and molecular biology of important disease vectors has, thus, been obtained. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1038) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece.
| |
Collapse
|