51
|
Nussinov R, Tsai CJ, Jang H. Oncogenic Ras Isoforms Signaling Specificity at the Membrane. Cancer Res 2018; 78:593-602. [PMID: 29273632 PMCID: PMC5811325 DOI: 10.1158/0008-5472.can-17-2727] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023]
Abstract
How do Ras isoforms attain oncogenic specificity at the membrane? Oncogenic KRas, HRas, and NRas (K-Ras, H-Ras, and N-Ras) differentially populate distinct cancers. How they selectively activate effectors and why is KRas4B the most prevalent are highly significant questions. Here, we consider determinants that may bias isoform-specific effector activation and signaling at the membrane. We merge functional data with a conformational view to provide mechanistic insight. Cell-specific expression levels, pathway cross-talk, and distinct interactions are the key, but conformational trends can modulate selectivity. There are two major pathways in oncogenic Ras-driven proliferation: MAPK (Raf/MEK/ERK) and PI3Kα/Akt/mTOR. All membrane-anchored, proximally located, oncogenic Ras isoforms can promote Raf dimerization and fully activate MAPK signaling. So why the differential statistics of oncogenic isoforms in distinct cancers and what makes KRas so highly oncogenic? Many cell-specific factors may be at play, including higher KRAS mRNA levels. As a key factor, we suggest that because only KRas4B binds calmodulin, only KRas can fully activate PI3Kα/Akt signaling. We propose that full activation of both MAPK and PI3Kα/Akt proliferative pathways by oncogenic KRas4B-but not by HRas or NRas-may help explain why the KRas4B isoform is especially highly populated in certain cancers. We further discuss pharmacologic implications. Cancer Res; 78(3); 593-602. ©2017 AACR.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| |
Collapse
|
52
|
Herrero A, Reis-Cardoso M, Jiménez-Gómez I, Doherty C, Agudo-Ibañez L, Pinto A, Calvo F, Kolch W, Crespo P, Matallanas D. Characterisation of HRas local signal transduction networks using engineered site-specific exchange factors. Small GTPases 2018; 11:371-383. [PMID: 29172991 DOI: 10.1080/21541248.2017.1406434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ras GTPases convey signals from different types of membranes. At these locations, different Ras isoforms, interactors and regulators generate different biochemical signals and biological outputs. The study of Ras localisation-specific signal transduction networks has been hampered by our inability to specifically activate each of these Ras pools. Here, we describe a new set of site-specific tethered exchange factors, engineered by fusing the RasGRF1 CDC25 domain to sub-localisation-defining cues, whereby Ras pools at specific locations can be precisely activated. We show that the CDC25 domain has a high specificity for activating HRas but not NRas and KRas. This unexpected finding means that our constructs mainly activate endogenous HRas. Hence, their use enabled us to identify distinct pathways regulated by HRas in endomembranes and plasma membrane microdomains. Importantly, these new constructs unveil different patterns of HRas activity specified by their subcellular localisation. Overall, the targeted GEFs described herein constitute ideal tools for dissecting spatially-defined HRas biochemical and biological functions.
Collapse
Affiliation(s)
- Ana Herrero
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| | | | - Iñaki Jiménez-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Carolanne Doherty
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| | - Lorena Agudo-Ibañez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Adán Pinto
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,Conway Institute, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain.,Centro de Investigación Biomédica en Red CIBERONC, Instituto de Salud Calos III , Madrid, Spain
| | - David Matallanas
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| |
Collapse
|
53
|
Nussinov R, Tsai CJ, Jang H. Is Nanoclustering essential for all oncogenic KRas pathways? Can it explain why wild-type KRas can inhibit its oncogenic variant? Semin Cancer Biol 2018; 54:114-120. [PMID: 29307569 DOI: 10.1016/j.semcancer.2018.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
Membrane-anchored oncogenic KRas can dimerize, form nanoclusters, and signal through the MAPK (Raf/MEK/ERK) and PI3Kα/Akt/mTOR. Both pathways are needed in KRAS-driven proliferation. Here we ask: Is oncogenic KRas nanoclustering (or dimerization) essential for all KRas signaling pathways? Raf kinase domain dimerization, thus MAPK activation, requires KRas nanoclusters. By contrast, the PI3Kα heterodimer acts as a monomeric unit; thus, does PI3Kα activation and PI3Kα/Akt/mTOR signaling require nanoclustering? Further, calmodulin binds only to oncogenic KRas4B. Here we ask: Does calmodulin downregulate KRas4B cancer development as suggested early on, or promote it? We also ask: Why is oncogenic KRas4B the most abundant isoform? Does wild-type Ras indeed inhibit its oncogenic variants as data appeared to suggest? And related to the last question, why is wild-type KRas a more potent inhibitor of its oncogenic form than wild-type NRas of its oncogenic form? Resolving these cardinal questions, and others, such as how exactly does RASSF5 (NORE1A) act as tumor suppressor, and why Ras isoforms tend to occur in distinct cancer types are crucial for effective pharmacology. In this review, we take a nanoclustering/dimerization-centric outlook and show that many questions can be explained by simply considering Ras nanoclustering.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
54
|
Furth N, Aylon Y, Oren M. p53 shades of Hippo. Cell Death Differ 2018; 25:81-92. [PMID: 28984872 PMCID: PMC5729527 DOI: 10.1038/cdd.2017.163] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/15/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
The three p53 family members, p53, p63 and p73, are structurally similar and share many biochemical activities. Yet, along with their common fundamental role in protecting genomic fidelity, each has acquired distinct functions related to diverse cell autonomous and non-autonomous processes. Similar to the p53 family, the Hippo signaling pathway impacts a multitude of cellular processes, spanning from cell cycle and metabolism to development and tumor suppression. The core Hippo module consists of the tumor-suppressive MST-LATS kinases and oncogenic transcriptional co-effectors YAP and TAZ. A wealth of accumulated data suggests a complex and delicate regulatory network connecting the p53 and Hippo pathways, in a highly context-specific manner. This generates multiple layers of interaction, ranging from interdependent and collaborative signaling to apparent antagonistic activity. Furthermore, genetic and epigenetic alterations can disrupt this homeostatic network, paving the way to genomic instability and cancer. This strengthens the need to better understand the nuances that control the molecular function of each component and the cross-talk between the different components. Here, we review interactions between the p53 and Hippo pathways within a subset of physiological contexts, focusing on normal stem cells and development, as well as regulation of apoptosis, senescence and metabolism in transformed cells.
Collapse
Affiliation(s)
- Noa Furth
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute, POB 26, 234 Herzl Street, Rehovot 7610001, Israel. Tel: +972 89342358; Fax: +972 89346004; E-mail: or
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute, POB 26, 234 Herzl Street, Rehovot 7610001, Israel. Tel: +972 89342358; Fax: +972 89346004; E-mail: or
| |
Collapse
|
55
|
Nelson N, Clark GJ. Rheb may complex with RASSF1A to coordinate Hippo and TOR signaling. Oncotarget 2017; 7:33821-31. [PMID: 27034171 PMCID: PMC5085121 DOI: 10.18632/oncotarget.8447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/19/2022] Open
Abstract
The TOR pathway is a vital component of cellular homeostasis that controls the synthesis of proteins, nucleic acids and lipids. Its core is the TOR kinase. Activation of the TOR pathway suppresses autophagy, which plays a vital but complex role in tumorigenesis. The TOR pathway is regulated by activation of the Ras-related protein Rheb, which can bind mTOR. The Hippo pathway is a major growth control module that regulates cell growth, differentiation and apoptosis. Its core consists of an MST/LATS kinase cascade that can be activated by the RASSF1A tumor suppressor. The TOR and Hippo pathways may be coordinately regulated to promote cellular homeostasis. However, the links between the pathways remain only partially understood. We now demonstrate that in addition to mTOR regulation, Rheb also impacts the Hippo pathway by forming a complex with RASSF1A. Using stable clones of two human lung tumor cell lines (NCI-H1792 and NCI-H1299) with shRNA-mediated silencing or ectopic overexpression of RASSF1A, we show that activated Rheb stimulates the Hippo pathway, but is suppressed in its ability to stimulate the TOR pathway. Moreover, by selectively labeling autophagic vacuoles we show that RASSF1A inhibits the ability of Rheb to suppress autophagy and enhance cell growth. Thus, we identify a new connection that impacts coordination of Hippo and TOR signaling. As RASSF1A expression is frequently lost in human tumors, the RASSF1A status of a tumor may impact not just its Hippo pathway status, but also its TOR pathway status.
Collapse
Affiliation(s)
- Nicholas Nelson
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Geoffrey J Clark
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
56
|
Abstract
In this issue of Cancer Cell, Mello et al. investigated how p53 suppresses pancreatic cancer and discovered a key role for the tyrosine phosphatase PTPN14, a p53 transcriptional target. PTPN14 restrains YAP, curbing its potential oncogenic effects. The p53-PTPN14-YAP axis highlights the importance of signaling pathway coordination in cancer prevention.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 76100, Israel.
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|
57
|
Mello SS, Valente LJ, Raj N, Seoane JA, Flowers BM, McClendon J, Bieging-Rolett KT, Lee J, Ivanochko D, Kozak MM, Chang DT, Longacre TA, Koong AC, Arrowsmith CH, Kim SK, Vogel H, Wood LD, Hruban RH, Curtis C, Attardi LD. A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell 2017; 32:460-473.e6. [PMID: 29017057 PMCID: PMC5659188 DOI: 10.1016/j.ccell.2017.09.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/19/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p5353,54 TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Stephano S Mello
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liz J Valente
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nitin Raj
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jose A Seoane
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brittany M Flowers
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacob McClendon
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathryn T Bieging-Rolett
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonghyeob Lee
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Danton Ivanochko
- Princess Margaret Cancer Centre, Structural Genomics Consortium and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Margaret M Kozak
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Teri A Longacre
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Albert C Koong
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Structural Genomics Consortium and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Seung K Kim
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannes Vogel
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina Curtis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
58
|
Yin N, Lepp A, Ji Y, Mortensen M, Hou S, Qi XM, Myers CR, Chen G. The K-Ras effector p38γ MAPK confers intrinsic resistance to tyrosine kinase inhibitors by stimulating EGFR transcription and EGFR dephosphorylation. J Biol Chem 2017; 292:15070-15079. [PMID: 28739874 DOI: 10.1074/jbc.m117.779488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/21/2017] [Indexed: 01/01/2023] Open
Abstract
Mutations in K-Ras and epidermal growth factor receptor (EGFR) are mutually exclusive, but it is not known how K-Ras activation inactivates EGFR, leading to resistance of cancer cells to anti-EGFR therapy. Here, we report that the K-Ras effector p38γ MAPK confers intrinsic resistance to small molecular tyrosine kinase inhibitors (TKIs) by concurrently stimulating EGFR gene transcription and protein dephosphorylation. We found that p38γ increases EGFR transcription by c-Jun-mediated promoter binding and stimulates EGFR dephosphorylation via activation of protein-tyrosine phosphatase H1 (PTPH1). Silencing the p38γ/c-Jun/PTPH1 signaling network increased sensitivities to TKIs in K-Ras mutant cells in which EGFR knockdown inhibited growth. Similar results were obtained with the p38γ-specific pharmacological inhibitor pirfenidone. These results indicate that in K-Ras mutant cancers, EGFR activity is regulated by the p38γ/c-Jun/PTPH1 signaling network, whose disruption may be a novel strategy to restore the sensitivity to TKIs.
Collapse
Affiliation(s)
- Ning Yin
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Adrienne Lepp
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Yongsheng Ji
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Matthew Mortensen
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Songwang Hou
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Xiao-Mei Qi
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Charles R Myers
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Guan Chen
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and .,the Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
| |
Collapse
|
59
|
Abstract
Proper cellular functionality and homeostasis are maintained by the convergent integration of various signaling cascades, which enable cells to respond to internal and external changes. The Dbf2-related kinases LATS1 and LATS2 (LATS) have emerged as central regulators of cell fate, by modulating the functions of numerous oncogenic or tumor suppressive effectors, including the canonical Hippo effectors YAP/TAZ, the Aurora mitotic kinase family, estrogen signaling and the tumor suppressive transcription factor p53. While the basic functions of the LATS kinase module are strongly conserved over evolution, the genomic duplication event leading to the emergence of two closely related kinases in higher organisms has increased the complexity of this signaling network. Here, we review the LATS1 and LATS2 intrinsic features as well as their reported cellular activities, emphasizing unique characteristics of each kinase. While differential activities between the two paralogous kinases have been reported, many converge to similar pathways and outcomes. Interestingly, the regulatory networks controlling the mRNA expression pattern of LATS1 and LATS2 differ strongly, and may contribute to the differences in protein binding partners of each kinase and in the subcellular locations in which each kinase exerts its functions.
Collapse
Affiliation(s)
- Noa Furth
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, 234 Herzl St., Rehovot 7610001, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, 234 Herzl St., Rehovot 7610001, Israel
| |
Collapse
|
60
|
Doherty GJ, Kerr EM, Martins CP. KRAS Allelic Imbalance: Strengths and Weaknesses in Numbers. Trends Mol Med 2017; 23:377-378. [PMID: 28372922 DOI: 10.1016/j.molmed.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 01/10/2023]
Abstract
The identification of therapeutic vulnerabilities in mutant KRAS tumors has proven difficult to achieve. Burgess and colleagues recently reported in Cell that mutant/wild-type Kras allelic dosage determines clonal fitness and MEK inhibitor sensitivity in a leukemia model, demonstrating that KRAS allelic imbalance is likely an important and overlooked variable.
Collapse
Affiliation(s)
- Gary J Doherty
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK; Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Box 193, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Emma M Kerr
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Carla P Martins
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
61
|
|
62
|
Contribution of LATS1 and LATS2 promoter methylation in OSCC development. J Cell Commun Signal 2016; 11:49-55. [PMID: 27761802 DOI: 10.1007/s12079-016-0356-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/24/2016] [Indexed: 01/28/2023] Open
Abstract
The aberrant DNA methylation of the tumor suppressor genes involved in DNA Damage Response (DDR) signaling and cell cycle regulation may lead to the tumorigenesis. Our purpose here is to analyze the promoter methylation and mRNA expression levels of LATS1 and LATS2 (LATS1/2) genes in OSCC. Promoter methylation status of LATS1/2 genes was evaluated in 70 OSCC paraffin-embedded tissues and 70 normal oral samples, using Methylation Specific PCR (MSP). LATS1/2 mRNA expression profiles were also investigated in 14 OSCC patients and 14 normal samples, using real-time PCR. In both candidate genes, promoter methylation assessment revealed significant relationship between cases and controls (OR = 2.24, 95 % CI = 1.40-3.54, P = 0.001; LATS1 and OR = 15.5, 95%CI = 3.64-64.76, P < 0.001; LATS2). As well as, the evaluation of mRNA expression levels showed decreased expression in OSCC tissues in compare to control tissues. (Mean ± SD 1.74 ± 0.14 in OSCC versus 2.10 ± 0.24 in controls, P < 0.001; LATS1 and Mean ± SD 1.36 ± 0.077 in OSCC versus 1.96 ± 0.096 in controls, P < 0.001; LATS2). To the best our knowledge, this is the first report regarding the down-regulation of LATS1/2 through promoter methylation in OSCC. It is suggested to explore the down-stream transcription factors of both genes for finding the molecular mechanism of this deregulation in OSCC.
Collapse
|
63
|
Mutant allele specific imbalance in oncogenes with copy number alterations: Occurrence, mechanisms, and potential clinical implications. Cancer Lett 2016; 384:86-93. [PMID: 27725226 DOI: 10.1016/j.canlet.2016.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 01/16/2023]
Abstract
Mutant allele specific imbalance (MASI) was initially coined to describe copy number alterations associated with the mutant allele of an oncogene. The copy number gain (CNG) specific to the mutant allele can be readily observed in electropherograms. With the development of genome-wide analyses at base-pair resolution with copy number counts, we can now further differentiate MASI into those with CNG, with copy neutral alteration (also termed acquired uniparental disomy; UPD), or with loss of heterozygosity (LOH) due to the loss of the wild-type (WT) allele. Here we summarize the occurrence of MASI with CNG, aUPD, or MASI with LOH in some major oncogenes (such as EGFR, KRAS, PIK3CA, and BRAF). We also discuss how these various classifications of MASI have been demonstrated to impact tumorigenesis, progression, metastasis, prognosis, and potentially therapeutic responses in cancer, notably in lung, colorectal, and pancreatic cancers.
Collapse
|
64
|
Abstract
The MST1 and MST2 protein kinases comprise the GCK-II subfamily of protein kinases. In addition to their amino-terminal kinase catalytic domain, related to that of the Saccharomyces cerevisiae protein kinase Ste20, their most characteristic feature is the presence near the carboxy terminus of a unique helical structure called a SARAH domain; this segment allows MST1/MST2 to homodimerize and to heterodimerize with the other polypeptides that contain SARAH domains, the noncatalytic polypeptides RASSF1-6 and Sav1/WW45. Early studies emphasized the potent ability of MST1/MST2 to induce apoptosis upon being overexpressed, as well as the conversion of the endogenous MST1/MST2 polypeptides to constitutively active, caspase-cleaved catalytic fragments during apoptosis initiated by any stimulus. Later, the cleaved, constitutively active form of MST1 was identified in nonapoptotic, quiescent adult hepatocytes as well as in cells undergoing terminal differentiation, where its presence is necessary to maintain those cellular states. The physiologic regulation of full length MST1/MST2 is controlled by the availability of its noncatalytic SARAH domain partners. Interaction with Sav1/WW45 recruits MST1/MST2 into a tumor suppressor pathway, wherein it phosphorylates and activates the Sav1-bound protein kinases Lats1/Lats2, potent inhibitors of the Yap1 and TAZ oncogenic transcriptional regulators. A constitutive interaction with the Rap1-GTP binding protein RASSF5B (Nore1B/RAPL) in T cells recruits MST1 (especially) and MST2 as an effector of Rap1's control of T cell adhesion and migration, a program crucial to immune surveillance and response; loss of function mutation in human MST1 results in profound immunodeficiency. MST1 and MST2 are also regulated by other protein kinases, positively by TAO1 and negatively by Par1, SIK2/3, Akt, and cRaf1. The growing list of candidate MST1/MST2 substrates suggests that the full range of MST1/MST2's physiologic programs and contributions to pathophysiology remains to be elucidated.
Collapse
Affiliation(s)
- Jacob A. Galan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
65
|
Ostrem JML, Shokat KM. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat Rev Drug Discov 2016; 15:771-785. [PMID: 27469033 DOI: 10.1038/nrd.2016.139] [Citation(s) in RCA: 423] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
KRAS is the most frequently mutated oncogene in human cancer. In addition to holding this distinction, unsuccessful attempts to target this protein have led to the characterization of RAS as 'undruggable'. However, recent advances in technology and novel approaches to drug discovery have renewed hope that a direct KRAS inhibitor may be on the horizon. In this Review, we provide an in-depth analysis of the structure, dynamics, mutational activation and inactivation, and signalling mechanisms of RAS. From this perspective, we then consider potential mechanisms of action for effective RAS inhibitors. Finally, we examine each of the many recent reports of direct RAS inhibitors and discuss promising avenues for further development.
Collapse
Affiliation(s)
- Jonathan M L Ostrem
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
66
|
Zhou B, Der CJ, Cox AD. The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol 2016; 58:60-9. [PMID: 27422332 DOI: 10.1016/j.semcdb.2016.07.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/03/2023]
Abstract
Mutationally activated RAS proteins are critical oncogenic drivers in nearly 30% of all human cancers. As with mutant RAS, the role of wild type RAS proteins in oncogenesis, tumour maintenance and metastasis is context-dependent. Complexity is introduced by the existence of multiple RAS genes (HRAS, KRAS, NRAS) and protein "isoforms" (KRAS4A, KRAS4B), by the ever more complicated network of RAS signaling, and by the increasing identification of numerous genetic aberrations in cancers that do and do not harbour mutant RAS. Numerous mouse model carcinogenesis studies and examination of patient tumours reveal that, in RAS-mutant cancers, wild type RAS proteins are likely to serve as tumour suppressors when the mutant RAS is of the same isoform. This evidence is particularly robust in KRAS mutant cancers, which often display suppression or loss of wild type KRAS, but is not as strong for NRAS. In contrast, although not yet fully elucidated, the preponderance of evidence indicates that wild type RAS proteins play a tumour promoting role when the mutant RAS is of a different isoform. In non-RAS mutant cancers, wild type RAS is recognized as a mediator of oncogenic signaling due to chronic activation of upstream receptor tyrosine kinases that feed through RAS. Additionally, in the absence of mutant RAS, activation of wild type RAS may drive cancer upon the loss of negative RAS regulators such as NF1 GAP or SPRY proteins. Here we explore the current state of knowledge with respect to the roles of wild type RAS proteins in human cancers.
Collapse
Affiliation(s)
- Bingying Zhou
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| | - Channing J Der
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| | - Adrienne D Cox
- Department of Pharmacology, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| |
Collapse
|
67
|
LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4α expression during liver development. Nat Commun 2016; 7:11961. [PMID: 27358050 PMCID: PMC4931324 DOI: 10.1038/ncomms11961] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/13/2016] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway regulates the self-renewal and differentiation of various adult stem cells, but its role in cell fate determination and differentiation during liver development remains unclear. Here we report that the Hippo pathway controls liver cell lineage specification and proliferation separately from Notch signalling, using mice and primary hepatoblasts with liver-specific knockout of Lats1 and Lats2 kinase, the direct upstream regulators of YAP and TAZ. During and after liver development, the activation of YAP/TAZ induced by loss of Lats1/2 forces hepatoblasts or hepatocytes to commit to the biliary epithelial cell (BEC) lineage. It increases BEC and fibroblast proliferation by up-regulating TGFβ signalling, but suppresses hepatoblast to hepatocyte differentiation by repressing Hnf4α expression. Notably, oncogenic YAP/TAZ activation in hepatocytes induces massive p53-dependent cell senescence/death. Together, our results reveal that YAP/TAZ activity levels govern liver cell differentiation and proliferation in a context-dependent manner. The Hippo pathway regulates the differentiation of stem and progenitor cells, but it is unclear how it acts in liver development. Here, the authors knockout Hippo pathway components Lats1 and 2 in the liver, causing suppression of hepatocyte differentiation but promoting biliary cell differentiation.
Collapse
|
68
|
Fey D, Matallanas D, Rauch J, Rukhlenko OS, Kholodenko BN. The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells. Semin Cell Dev Biol 2016; 58:96-107. [PMID: 27350026 DOI: 10.1016/j.semcdb.2016.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/18/2016] [Indexed: 12/19/2022]
Abstract
The intricate dynamic control and plasticity of RAS to ERK mitogenic, survival and apoptotic signalling has mystified researches for more than 30 years. Therapeutics targeting the oncogenic aberrations within this pathway often yield unsatisfactory, even undesired results, as in the case of paradoxical ERK activation in response to RAF inhibition. A direct approach of inhibiting single oncogenic proteins misses the dynamic network context governing the network signal processing. In this review, we discuss the signalling behaviour of RAS and RAF proteins in normal and in cancer cells, and the emerging systems-level properties of the RAS-to-ERK signalling network. We argue that to understand the dynamic complexities of this control system, mathematical models including mechanistic detail are required. Looking into the future, these dynamic models will build the foundation upon which more effective, rational approaches to cancer therapy will be developed.
Collapse
Affiliation(s)
- Dirk Fey
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jens Rauch
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
69
|
Fallahi E, O'Driscoll NA, Matallanas D. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair. Genes (Basel) 2016; 7:genes7060028. [PMID: 27322327 PMCID: PMC4929427 DOI: 10.3390/genes7060028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023] Open
Abstract
The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Fallahi
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
| | - Niamh A O'Driscoll
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
70
|
Donninger H, Schmidt ML, Mezzanotte J, Barnoud T, Clark GJ. Ras signaling through RASSF proteins. Semin Cell Dev Biol 2016; 58:86-95. [PMID: 27288568 DOI: 10.1016/j.semcdb.2016.06.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/16/2022]
Abstract
There are six core RASSF family proteins that contain conserved Ras Association domains and may serve as Ras effectors. They lack intrinsic enzymatic activity and appear to function as scaffolding and localization molecules. While initially being associated with pro-apoptotic signaling pathways such as Bax and Hippo, it is now clear that they can also connect Ras to a surprisingly broad range of signaling pathways that control senescence, inflammation, autophagy, DNA repair, ubiquitination and protein acetylation. Moreover, they may be able to impact the activation status of pro-mitogenic Ras effector pathways, such as the Raf pathway. The frequent epigenetic inactivation of RASSF genes in human tumors disconnects Ras from pro-death signaling systems, enhancing Ras driven transformation and metastasis. The best characterized members are RASSF1A and RASSF5 (NORE1A).
Collapse
Affiliation(s)
- Howard Donninger
- Department of Medicine, University of Louisville, KY, 40202, USA
| | - M Lee Schmidt
- Department of Pharmacoloxy and Toxicology, University of Louisville, KY, 40202, USA
| | - Jessica Mezzanotte
- Department of Biochemistry and Molecular Genetics, Molecular Targets Program, J.G Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Genetics, Molecular Targets Program, J.G Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Geoffrey J Clark
- Department of Pharmacoloxy and Toxicology, University of Louisville, KY, 40202, USA.
| |
Collapse
|
71
|
H-ras Inhibits the Hippo Pathway by Promoting Mst1/Mst2 Heterodimerization. Curr Biol 2016; 26:1556-1563. [PMID: 27238285 DOI: 10.1016/j.cub.2016.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 12/23/2022]
Abstract
The protein kinases Mst1 and Mst2 have tumor suppressor activity, but their mode of regulation is not well established. Mst1 and Mst2 are broadly expressed and may have certain overlapping functions in mammals, as deletions of both Mst1 and Mst2 together are required for tumorigenesis in mouse models [1-3]. These kinases act via a three-component signaling cascade comprising Mst1 and Mst2, the protein kinases Lats1 and Lats2, and the transcriptional coactivators Yap and Taz [4-6]. Mst1 and Mst2 contain C-terminal SARAH domains that mediate their homodimerization as well as heterodimerization with other SARAH domain-containing proteins, which may regulate Mst1/Mst2 activity. Here we show that, in addition to forming homodimers, Mst1 and Mst2 heterodimerize in cells, this interaction is mediated by their SARAH domains and is favored over homodimers, and these heterodimers have much-reduced protein kinase activity compared to Mst1 or Mst2 homodimers. Mst1/Mst2 heterodimerization is strongly promoted by oncogenic H-ras, and this effect requires activation of the Erk pathway. Cells lacking Mst1, in which Mst1/Mst2 heterodimers are not possible, are resistant to H-ras-mediated transformation and maintain active hippo pathway signaling compared to wild-type cells or cells lacking both Mst1 and Mst2. Our results suggest that H-ras, via an Erk-dependent mechanism, downregulates Mst1/Mst2 activity by inducing the formation of inactive Mst1/Mst2 heterodimers.
Collapse
|
72
|
Drug-induced RAF dimerization is independent of RAS mutation status and does not lead to universal MEK dependence for cell survival in head and neck cancers. Anticancer Drugs 2015; 26:835-42. [PMID: 26053277 DOI: 10.1097/cad.0000000000000251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Treatments for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) have limited efficacy. One potential therapeutic target for HNSCC is the RAS/RAF/MEK/ERK cascade, which is one of the major signaling pathways for HNSCC cell survival. In HNSCC, RAS can be activated either by HRAS mutation or by upstream signaling. The ABL inhibitor nilotinib acts as a weak RAF inhibitor that induces RAF dimerization and subsequent activation of MEK/ERK in other cancer cell lines with activated RAS, leading to an unexpected dependence on MEK/ERK for cell survival. We hypothesized that nilotinib and the MEK inhibitor MEK162 would be synergistic in HNSCC cell lines owing to the frequent activation of RAS. We treated HNSCC cell lines with nilotinib and performed immunoblotting and cell-viability experiments. We used an orthotopic mouse model to assess synergistic effects in vivo. Nilotinib induced significant BRAF-CRAF heterodimerization and ERK activation irrespective of RAS mutation status. In cell-viability assays, nilotinib synergized with MEK162. MEK162 alone induced G1 arrest that was minimally enhanced by nilotinib. In the mouse model, treatment with MEK162 alone or combined with nilotinib led to tumor growth inhibition. In HNSCC, nilotinib-induced RAF dimerization is independent of RAS mutation status, but this dimerization does not lead to MEK dependence for cell survival in all HNSCC cell lines. MEK inhibition alone leads to decreased proliferation both in vitro and in vivo. Although nilotinib has some synergistic effects with MEK162, other agents may be more effective against HNSCC when combined with MEK162.
Collapse
|
73
|
Sánchez-Sanz G, Matallanas D, Nguyen LK, Kholodenko BN, Rosta E, Kolch W, Buchete NV. MST2-RASSF protein-protein interactions through SARAH domains. Brief Bioinform 2015; 17:593-602. [PMID: 26443615 DOI: 10.1093/bib/bbv070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 12/14/2022] Open
Abstract
The detailed, atomistic-level understanding of molecular signaling along the tumor-suppressive Hippo signaling pathway that controls tissue homeostasis by balancing cell proliferation and death through apoptosis is a promising avenue for the discovery of novel anticancer drug targets. The activation of kinases such as Mammalian STE20-Like Protein Kinases 1 and 2 (MST1 and MST2)-modulated through both homo- and heterodimerization (e.g. interactions with Ras association domain family, RASSF, enzymes)-is a key upstream event in this pathway and remains poorly understood. On the other hand, RASSFs (such as RASSF1A or RASSF5) act as important apoptosis activators and tumor suppressors, although their exact regulatory roles are also unclear. We present recent molecular studies of signaling along the Ras-RASSF-MST pathway, which controls growth and apoptosis in eukaryotic cells, including a variety of modern molecular modeling and simulation techniques. Using recently available structural information, we discuss the complex regulatory scenario according to which RASSFs perform dual signaling functions, either preventing or promoting MST2 activation, and thus control cell apoptosis. Here, we focus on recent studies highlighting the special role being played by the specific interactions between the helical Salvador/RASSF/Hippo (SARAH) domains of MST2 and RASSF1a or RASSF5 enzymes. These studies are crucial for integrating atomistic-level mechanistic information about the structures and conformational dynamics of interacting proteins, with information available on their system-level functions in cellular signaling.
Collapse
|
74
|
Nguyen LK, Matallanas DG, Romano D, Kholodenko BN, Kolch W. Competing to coordinate cell fate decisions: the MST2-Raf-1 signaling device. Cell Cycle 2015; 14:189-99. [PMID: 25607644 PMCID: PMC4353221 DOI: 10.4161/15384101.2014.973743] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
How do biochemical signaling pathways generate biological specificity? This question is fundamental to modern biology, and its enigma has been accentuated by the discovery that most proteins in signaling networks serve multifunctional roles. An answer to this question may lie in analyzing network properties rather than individual traits of proteins in order to elucidate design principles of biochemical networks that enable biological decision-making. We discuss how this is achieved in the MST2/Hippo-Raf-1 signaling network with the help of mathematical modeling and model-based analysis, which showed that competing protein interactions with affinities controlled by dynamic protein modifications can function as Boolean computing devices that determine cell fate decisions. In addition, we discuss areas of interest for future research and highlight how systems approaches would be of benefit.
Collapse
Affiliation(s)
- Lan K Nguyen
- a Systems Biology Ireland ; University College Dublin ; Belfield , Dublin , Ireland
| | | | | | | | | |
Collapse
|
75
|
Sebio A, Lenz HJ. Molecular Pathways: Hippo Signaling, a Critical Tumor Suppressor. Clin Cancer Res 2015; 21:5002-7. [PMID: 26384319 DOI: 10.1158/1078-0432.ccr-15-0411] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/10/2015] [Indexed: 01/15/2023]
Abstract
The Salvador-Warts-Hippo pathway controls cell fate and tissue growth. The main function of the Hippo pathway is to prevent YAP and TAZ translocation to the nucleus where they induce the transcription of genes involved in cell proliferation, survival, and stem cell maintenance. Hippo signaling is, thus, a complex tumor suppressor, and its deregulation is a key feature in many cancers. Recent mounting evidence suggests that the overexpression of Hippo components can be useful prognostic biomarkers. Moreover, Hippo signaling appears to be intimately linked to some of the most important signaling pathways involved in cancer development and progression. A better understanding of the Hippo pathway is thus essential to untangle tumor biology and to develop novel anticancer therapies. Here, we comment on the progress made in understanding Hippo signaling and its connections, and also on how new drugs modulating this pathway, such as Verteporfin and C19, are highly promising cancer therapeutics.
Collapse
Affiliation(s)
- Ana Sebio
- Medical Oncology Department, Santa Creu I Sant Pau Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain. Sharon A. Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Heinz-Josef Lenz
- Sharon A. Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California. Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California. Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
76
|
Kolch W, Halasz M, Granovskaya M, Kholodenko BN. The dynamic control of signal transduction networks in cancer cells. Nat Rev Cancer 2015; 15:515-27. [PMID: 26289315 DOI: 10.1038/nrc3983] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is often considered a genetic disease. However, much of the enormous plasticity of cancer cells to evolve different phenotypes, to adapt to challenging microenvironments and to withstand therapeutic assaults is encoded by the structure and spatiotemporal dynamics of signal transduction networks. In this Review, we discuss recent concepts concerning how the rich signalling dynamics afforded by these networks are regulated and how they impinge on cancer cell proliferation, survival, invasiveness and drug resistance. Understanding this dynamic circuitry by mathematical modelling could pave the way to new therapeutic approaches and personalized treatments.
Collapse
Affiliation(s)
- Walter Kolch
- Systems Biology Ireland, University College Dublin
- Conway Institute of Biomolecular &Biomedical Research, University College Dublin
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Marina Granovskaya
- Roche Moscow Limited, Business Center Neglinnaya Plaza, Building 2, Trubnaya Square, 107031 Moscow, Russia
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin
- Conway Institute of Biomolecular &Biomedical Research, University College Dublin
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
77
|
Milewska M, Romano D, Herrero A, Guerriero ML, Birtwistle M, Quehenberger F, Hatzl S, Kholodenko BN, Segatto O, Kolch W, Zebisch A. Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation. PLoS One 2015; 10:e0129859. [PMID: 26065894 PMCID: PMC4466796 DOI: 10.1371/journal.pone.0129859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/13/2015] [Indexed: 01/15/2023] Open
Abstract
BRAF functions in the RAS-extracellular signal-regulated kinase (ERK) signaling cascade. Activation of this pathway is necessary to mediate the transforming potential of oncogenic BRAF, however, it may also cause a negative feedback that inhibits the epidermal growth factor receptor (EGFR). Mitogen-inducible gene-6 (MIG-6) is a potent inhibitor of the EGFR and has been demonstrated to function as a tumor suppressor. As MIG-6 can be induced via RAS-ERK signaling, we investigated its potential involvement in this negative regulatory loop. Focus formation assays were performed and demonstrated that MIG-6 significantly reduces malignant transformation induced by oncogenic BRAF. Although this genetic interaction was mirrored by a physical interaction between MIG-6 and BRAF, we did not observe a direct regulation of BRAF kinase activity by MIG-6. Interestingly, a selective chemical EGFR inhibitor suppressed transformation to a similar degree as MIG-6, whereas combining these approaches had no synergistic effect. By analyzing a range of BRAF mutated and wildtype cell line models, we could show that BRAF V600E causes a strong upregulation of MIG-6, which was mediated at the transcriptional level via the RAS-ERK pathway and resulted in downregulation of EGFR activation. This feedback loop is operational in tumors, as shown by the analysis of almost 400 patients with papillary thyroid cancer (PTC). Presence of BRAF V600E correlated with increased MIG-6 expression on the one hand, and with inactivation of the EGFR and of PI3K/AKT signaling on the other hand. Importantly, we also observed a more aggressive disease phenotype when BRAF V600E coexisted with low MIG-6 expression. Finally, analysis of methylation data was performed and revealed that higher methylation of MIG-6 correlated to its decreased expression. Taken together, we demonstrate that MIG-6 efficiently reduces cellular transformation driven by oncogenic BRAF by orchestrating a negative feedback circuit directed towards the EGFR.
Collapse
Affiliation(s)
| | - David Romano
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Ana Herrero
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Marc Birtwistle
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Franz Quehenberger
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Boris N. Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Oreste Segatto
- Laboratory of Immunology, Regina Elena Cancer Institute, Rome, Italy
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
78
|
Cisowski J, Sayin VI, Liu M, Karlsson C, Bergo MO. Oncogene-induced senescence underlies the mutual exclusive nature of oncogenic KRAS and BRAF. Oncogene 2015; 35:1328-33. [PMID: 26028035 DOI: 10.1038/onc.2015.186] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 03/06/2015] [Accepted: 04/12/2015] [Indexed: 01/02/2023]
Abstract
KRAS and BRAF are among the most commonly mutated oncogenes in human cancer that contribute to tumorigenesis in both distinct and overlapping tissues. However, KRAS and BRAF mutations are mutually exclusive; they never occur in the same tumor cell. The reason for the mutual exclusivity is unknown, but there are several possibilities. The two mutations could be functionally redundant and not create a selective advantage to tumor cells. Alternatively, they could be deleterious for the tumor cell and induce apoptosis or senescence. To distinguish between these possibilities, we activated the expression of BRAF(V600E) and KRAS(G12D) from their endogenous promoters in mouse lungs. Although the tumor-forming ability of BRAF(V600E) was higher than KRAS(G12D), KRAS(G12D) tumors were larger and more advanced. Coactivation of BRAF(V600E) and KRAS(G12D) markedly reduced lung tumor numbers and overall tumor burden compared with activation of BRAF(V600E) alone. Moreover, several tumors expressed only one oncogene, suggesting negative selection against expression of both. Similarly, expression of both oncogenes in mouse embryonic fibroblasts essentially stopped proliferation. The expression of both oncogenes hyperactivated the MEK-ERK-cyclin D pathway but reduced proliferation by increasing the production of p15, p16 and p19 proteins encoded by the Ink4/Arf locus and thereby increased senescence-associated β-galactosidase-positive cells. The data suggest that coexpression of BRAF(V600E) and KRAS(G12D) in early tumorigenesis leads to negative selection due to oncogene-induced senescence.
Collapse
Affiliation(s)
- J Cisowski
- Department of Molecular and Clinical Medicine, Sahlgrenska Cancer Center, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - V I Sayin
- Department of Molecular and Clinical Medicine, Sahlgrenska Cancer Center, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - M Liu
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - C Karlsson
- Department of Molecular and Clinical Medicine, Sahlgrenska Cancer Center, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - M O Bergo
- Department of Molecular and Clinical Medicine, Sahlgrenska Cancer Center, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
79
|
Donninger H, Calvisi DF, Barnoud T, Clark J, Schmidt ML, Vos MD, Clark GJ. NORE1A is a Ras senescence effector that controls the apoptotic/senescent balance of p53 via HIPK2. ACTA ACUST UNITED AC 2015; 208:777-89. [PMID: 25778922 PMCID: PMC4362463 DOI: 10.1083/jcb.201408087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NORE1A is a Ras senescence effector that modulates HIPK2-dependent posttranslational modifications of p53. The Ras oncoprotein is a key driver of cancer. However, Ras also provokes senescence, which serves as a major barrier to Ras-driven transformation. Ras senescence pathways remain poorly characterized. NORE1A is a novel Ras effector that serves as a tumor suppressor. It is frequently inactivated in tumors. We show that NORE1A is a powerful Ras senescence effector and that down-regulation of NORE1A suppresses senescence induction by Ras and enhances Ras transformation. We show that Ras induces the formation of a complex between NORE1A and the kinase HIPK2, enhancing HIPK2 association with p53. HIPK2 is a tumor suppressor that can induce either proapoptotic or prosenescent posttranslational modifications of p53. NORE1A acts to suppress its proapoptotic phosphorylation of p53 but enhance its prosenescent acetylation of p53. Thus, we identify a major new Ras signaling pathway that links Ras to the control of specific protein acetylation and show how NORE1A allows Ras to qualitatively modify p53 function to promote senescence.
Collapse
Affiliation(s)
- Howard Donninger
- Department of Medicine, Department of Biochemistry and Molecular Biology, Department of Pharmacology and Toxicology, J.G. Brown Cancer Center, Molecular Targets Group, University of Louisville, Louisville, KY 40202
| | | | - Thibaut Barnoud
- Department of Medicine, Department of Biochemistry and Molecular Biology, Department of Pharmacology and Toxicology, J.G. Brown Cancer Center, Molecular Targets Group, University of Louisville, Louisville, KY 40202
| | - Jennifer Clark
- Department of Medicine, Department of Biochemistry and Molecular Biology, Department of Pharmacology and Toxicology, J.G. Brown Cancer Center, Molecular Targets Group, University of Louisville, Louisville, KY 40202
| | - M Lee Schmidt
- Department of Medicine, Department of Biochemistry and Molecular Biology, Department of Pharmacology and Toxicology, J.G. Brown Cancer Center, Molecular Targets Group, University of Louisville, Louisville, KY 40202
| | - Michele D Vos
- Research Analysis and Evaluation Branch, National Cancer Institute, Rockville, MD 20850
| | - Geoffrey J Clark
- Department of Medicine, Department of Biochemistry and Molecular Biology, Department of Pharmacology and Toxicology, J.G. Brown Cancer Center, Molecular Targets Group, University of Louisville, Louisville, KY 40202
| |
Collapse
|
80
|
One Hippo and many masters: differential regulation of the Hippo pathway in cancer. Biochem Soc Trans 2015; 42:816-21. [PMID: 25109963 DOI: 10.1042/bst20140030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Hippo/MST2 (mammalian sterile 20-like kinase 2) pathway is a signalling cascade evolutionarily conserved in its structure. Originally described in Drosophila melanogaster as a regulator of organ size, this pathway has greater functions in mammals. Disturbance of mammalian MST2 pathway is associated with tumorigenesis by affecting apoptosis, cell cycle and polarity. In addition, this pathway has been shown to cross-talk with mitogenic pathways at multiple levels. In the present mini-review, we discuss our contribution highlighting the regulation of MST2 signalling by frequently observed oncogenic perturbations affecting mitogenic pathways. In particular, we review the role of RAS isoforms and PI3K (phosphoinositide 3-kinase)/Akt in the regulation of MST2 activity by phosphorylation. We also put the emphasis on RAF-induced control of MST2 signalling by protein-protein interactions. Finally, we recapitulate some of the direct mechanisms, such as ubiquitin-dependent degradation or gene silencing by promoter hypermethylation, involved in MST2 pathway component down-regulation in cancers.
Collapse
|
81
|
Qi X, Xie C, Hou S, Li G, Yin N, Dong L, Lepp A, Chesnik MA, Mirza SP, Szabo A, Tsai S, Basir Z, Wu S, Chen G. Identification of a ternary protein-complex as a therapeutic target for K-Ras-dependent colon cancer. Oncotarget 2015; 5:4269-82. [PMID: 24962213 PMCID: PMC4147322 DOI: 10.18632/oncotarget.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A cancer phenotype is driven by several proteins and targeting a cluster of functionally interdependent molecules should be more effective for therapeutic intervention. This is specifically important for Ras-dependent cancer, as mutated (MT) Ras is non-druggable and targeting its interaction with effectors may be essential for therapeutic intervention. Here, we report that a protein-complex activated by the Ras effector p38γ MAPK is a novel therapeutic target for K-Ras-dependent colon cancer. Unbiased proteomic screening and immune-precipitation analyses identified p38γ interaction with heat shock protein 90 (Hsp90) and K-Ras in K-Ras MT, but not wild-type (WT), colon cancer cells, indicating a role of this complex in Ras-dependent growth. Further experiments showed that this complex requires p38γ and Hsp90 activity to maintain MT, but not WT, K-Ras protein expression. Additional studies demonstrated that this complex is activated by p38γ-induced Hsp90 phosphorylation at S595, which is important for MT K-Ras stability and for K-Ras dependent growth. Of most important, pharmacologically inhibition of Hsp90 or p38γ activity disrupts the complex, decreases K-Ras expression, and selectively inhibits the growth of K-Ras MT colon cancer in vitro and in vivo. These results demonstrated that the p38γ-activated ternary complex is a novel therapeutic target for K-Ras-dependent colon cancer.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | | - Shixiu Wu
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin; Research Services, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
82
|
Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S. PLoS One 2015; 10:e0123918. [PMID: 25902334 PMCID: PMC4406447 DOI: 10.1371/journal.pone.0123918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/09/2015] [Indexed: 11/19/2022] Open
Abstract
In many different human cancers, one of the HRAS, NRAS, or KRAS genes in the RAS family of small GTPases acquires an oncogenic mutation that renders the encoded protein constitutively GTP-bound and thereby active, which is well established to promote tumorigenesis. In addition to oncogenic mutations, accumulating evidence suggests that the wild-type isoforms may also be activated and contribute to oncogenic RAS-driven tumorigenesis. In this regard, redox-dependent reactions with cysteine 118 (C118) have been found to promote activation of wild-type HRAS and NRAS. We sought to determine if this residue is also important for the activation of wild-type KRAS and promotion of tumorigenesis. Thus, we mutated C118 to serine (C118S) in wild-type KRAS to block redox-dependent reactions at this site. We now report that this mutation reduced the level of GTP-bound KRAS and impaired RAS signaling stimulated by the growth factor EGF. With regards to tumorigenesis, we also report that oncogenic HRAS-transformed human cells in which endogenous KRAS was knocked down and replaced with KRASC118S exhibited reduced xenograft tumor growth, as did oncogenic HRAS-transformed KrasC118S/C118S murine cells in which the C118S mutation was knocked into the endogenous Kras gene. Taken together, these data suggest a role for redox-dependent activation of wild-type KRAS through C118 in oncogenic HRAS-driven tumorigenesis.
Collapse
|
83
|
Abstract
Mutations in the KRAS oncogene represent one of the most prevalent genetic alterations in colorectal cancer (CRC), the third leading cause of cancer-related death in the US. In addition to their well-characterized function in driving tumor progression, KRAS mutations have been recognized as a critical determinant of the therapeutic response of CRC. Recent studies demonstrate that KRAS-mutant tumors are intrinsically insensitive to clinically-used epidermal growth factor receptor (EGFR) targeting antibodies, including cetuximab and panitumumab. Acquired resistance to the anti-EGFR therapy was found to be associated with enrichment of KRAS-mutant tumor cells. However, the underlying molecular mechanism of mutant-KRAS-mediated therapeutic resistance has remained unclear. Despite intensive efforts, directly targeting mutant KRAS has been largely unsuccessful. This review summarizes the recent advances in understanding the biological function of KRAS mutations in determining the therapeutic response of CRC, highlighting several recently developed agents and strategies for targeting mutant KRAS, such as synthetic lethal interactions.
Collapse
|
84
|
Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 2014; 94:1287-312. [PMID: 25287865 DOI: 10.1152/physrev.00005.2014] [Citation(s) in RCA: 1256] [Impact Index Per Article: 114.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The transcriptional regulators YAP and TAZ are the focus of intense interest given their remarkable biological properties in development, tissue homeostasis and cancer. YAP and TAZ activity is key for the growth of whole organs, for amplification of tissue-specific progenitor cells during tissue renewal and regeneration, and for cell proliferation. In tumors, YAP/TAZ can reprogram cancer cells into cancer stem cells and incite tumor initiation, progression and metastasis. As such, YAP/TAZ are appealing therapeutic targets in cancer and regenerative medicine. Just like the function of YAP/TAZ offers a molecular entry point into the mysteries of tissue biology, their regulation by upstream cues is equally captivating. YAP/TAZ are well known for being the effectors of the Hippo signaling cascade, and mouse mutants in Hippo pathway components display remarkable phenotypes of organ overgrowth, enhanced stem cell content and reduced cellular differentiation. YAP/TAZ are primary sensors of the cell's physical nature, as defined by cell structure, shape and polarity. YAP/TAZ activation also reflects the cell "social" behavior, including cell adhesion and the mechanical signals that the cell receives from tissue architecture and surrounding extracellular matrix (ECM). At the same time, YAP/TAZ entertain relationships with morphogenetic signals, such as Wnt growth factors, and are also regulated by Rho, GPCRs and mevalonate metabolism. YAP/TAZ thus appear at the centerpiece of a signaling nexus by which cells take control of their behavior according to their own shape, spatial location and growth factor context.
Collapse
Affiliation(s)
- Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | | |
Collapse
|
85
|
Pershing NLK, Lampson BL, Belsky JA, Kaltenbrun E, MacAlpine DM, Counter CM. Rare codons capacitate Kras-driven de novo tumorigenesis. J Clin Invest 2014; 125:222-33. [PMID: 25437878 DOI: 10.1172/jci77627] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/30/2014] [Indexed: 12/27/2022] Open
Abstract
The KRAS gene is commonly mutated in human cancers, rendering the encoded small GTPase constitutively active and oncogenic. This gene has the unusual feature of being enriched for rare codons, which limit protein expression. Here, to determine the effect of the rare codon bias of the KRAS gene on de novo tumorigenesis, we introduced synonymous mutations that converted rare codons into common codons in exon 3 of the Kras gene in mice. Compared with control animals, mice with at least 1 copy of this Kras(ex3op) allele had fewer tumors following carcinogen exposure, and this allele was mutated less often, with weaker oncogenic mutations in these tumors. This reduction in tumorigenesis was attributable to higher expression of the Kras(ex3op) allele, which induced growth arrest when oncogenic and exhibited tumor-suppressive activity when not mutated. Together, our data indicate that the inherent rare codon bias of KRAS plays an integral role in tumorigenesis.
Collapse
|
86
|
Wild-type KRAS inhibits oncogenic KRAS-induced T-ALL in mice. Leukemia 2014; 29:1032-40. [PMID: 25371176 DOI: 10.1038/leu.2014.315] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/22/2014] [Accepted: 10/16/2014] [Indexed: 01/23/2023]
Abstract
The role of hyperactive RAS signaling is well established in myeloid malignancies but less clear in T-cell malignancies. The Kras2(LSL)Mx1-Cre (KM) mouse model expresses endogenous KRAS(G12D) in hematopoietic cells and is widely used to study mechanisms and treatment of myeloproliferative neoplasms (MPN). The model displays an intriguing shift from MPN to acute T-cell leukemia (T-ALL) after transplantation to wild-type mice, but the mechanisms underlying this lineage shift is unknown. Here, we show that KRAS(G12D) increases proliferation of both myeloid and T-cell progenitors, but whereas myeloid cells differentiate, T-cell differentiation is inhibited at early stages. Secondary mutations in the expanded pool of T-cell progenitors accompany T-ALL development, and our results indicate that the shift from myeloid to T-lymphoid malignancy after transplantation is explained by the increased likelihood for secondary mutations when the tumor lifespan is increased. We demonstrate that tumor lifespan increases after transplantation because primary KM mice die rapidly, not from MPN, but from KRAS(G12D) expression in nonhematopoietic cells, which causes intestinal bleeding and severe anemia. We also identify loss of the wild-type KRAS allele as a secondary mutation in all T-ALL cells and provide evidence that wild-type KRAS acts as a tumor suppressor in the T-cell lineage in mice.
Collapse
|
87
|
Abstract
RASSF1A may be the most frequently inactivated tumor suppressor identified in human cancer so far. It is a proapoptotic Ras effector and plays an important role in the apoptotic DNA damage response (DDR). We now show that in addition to DDR regulation, RASSF1A also plays a key role in the DNA repair process itself. We show that RASSF1A forms a DNA damage-regulated complex with the key DNA repair protein xeroderma pigmentosum A (XPA). XPA requires RASSF1A to exert full repair activity, and RASSF1A-deficient cells exhibit an impaired ability to repair DNA. Moreover, a cancer-associated RASSF1A single-nucleotide polymorphism (SNP) variant exhibits differential XPA binding and inhibits DNA repair. The interaction of XPA with other components of the repair complex, such as replication protein A (RPA), is controlled in part by a dynamic acetylation/deacetylation cycle. We found that RASSF1A and its SNP variant differentially regulate XPA protein acetylation, and the SNP variant hyperstabilizes the XPA-RPA70 complex. Thus, we identify two novel functions for RASSF1A in the control of DNA repair and protein acetylation. As RASSF1A modulates both apoptotic DDR and DNA repair, it may play an important and unanticipated role in coordinating the balance between repair and death after DNA damage.
Collapse
|
88
|
Bcl-2 stabilization by paxillin confers 5-fluorouracil resistance in colorectal cancer. Cell Death Differ 2014; 22:779-89. [PMID: 25323586 DOI: 10.1038/cdd.2014.170] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/25/2014] [Accepted: 09/12/2014] [Indexed: 01/10/2023] Open
Abstract
5-Fluorouracil (5-FU) is chemotherapeutic agent widely used for the treatment of colorectal cancer. Unfortunately, advanced colorectal cancer is often resistance to such chemotherapy and poor outcome. An adaptor protein paxillin (PXN) is phosphorylated at Y31/Y118 (pPXN-Y31/Y118) by Src contributes to cell mobility and Ser (S)272 of PXN in LD4 domain is important to the interaction between PXN and Bcl-2. We thus hypothesized that pPXN-Y31/Y118 may be required for Bcl-2 protein stability via PXN interacting with Bcl-2 to confer 5-FU resistance in colorectal cancer. Mechanistically, pPXN-S272 is phosphorylated through pPXN-Y31/Y118-mediated p21 protein-activated kinase 1 (PAK1) activation and pPXN-S272 is required for PXN to interact with Bcl-2. The interaction between PXN and Bcl-2 is essential for Bcl-2 protein stability through phosphorylation of Bcl-2 at S87 (pBcl-2-S87) by pPXN-Y31/Y118-mediated ERK activation. An increase in Bcl-2 expression by PXN is responsible for resistance to 5-FU. The resistance to 5-FU can be abolished by inhibitor of Src and PAK1 or Bcl-2 antagonist in cell and animal models. Among patients, Bcl-2 expression is positively correlated with expression of PXN and pPXN-S272, respectively. Patients with high PXN/high Bcl-2 or high pPXN-S272/high Bcl-2 tumors are commonly to have an unfavorable response to 5-FU-based chemotherapy, compared with patients who have high PXN, high pPXN-S272 or high Bcl-2 tumors alone. Therefore, we suggest that Src, PAK1 or Bcl-2 inhibitor may potentially overcome the resistance of 5-FU-based chemotherapy and consequently to improve outcomes in patients with PXN/Bcl-2 and pPXN-S272/Bcl-2-positive tumors.
Collapse
|
89
|
Pefani DE, Latusek R, Pires I, Grawenda AM, Yee KS, Hamilton G, van der Weyden L, Esashi F, Hammond EM, O’Neill E. RASSF1A-LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2. Nat Cell Biol 2014; 16:962-71, 1-8. [PMID: 25218637 PMCID: PMC4861244 DOI: 10.1038/ncb3035] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/05/2014] [Indexed: 02/07/2023]
Abstract
Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting RAD51 nucleofilament formation at stalled replication forks. CDK2 phosphorylates BRCA2 (pS3291-BRCA2) to limit stabilizing contacts with polymerized RAD51; however, how replication stress modulates CDK2 activity and whether loss of pS3291-BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase LATS1 interacts with CDK2 in response to genotoxic stress to constrain pS3291-BRCA2 and support RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that LATS1 forms part of an ATR-mediated response to replication stress that requires the tumour suppressor RASSF1A. Importantly, perturbation of the ATR-RASSF1A-LATS1 signalling axis leads to genomic defects associated with loss of BRCA2 function and contributes to genomic instability and 'BRCA-ness' in lung cancers.
Collapse
Affiliation(s)
| | - Robert Latusek
- CRUK/MRC Oxford Institute, Dept. of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Isabel Pires
- CRUK/MRC Oxford Institute, Dept. of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Anna M. Grawenda
- CRUK/MRC Oxford Institute, Dept. of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Karen S. Yee
- CRUK/MRC Oxford Institute, Dept. of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Garth Hamilton
- CRUK/MRC Oxford Institute, Dept. of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Fumiko Esashi
- Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| | - Ester M. Hammond
- CRUK/MRC Oxford Institute, Dept. of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Eric O’Neill
- CRUK/MRC Oxford Institute, Dept. of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
90
|
Chen KH, He J, Wang DL, Cao JJ, Li MC, Zhao XM, Sheng X, Li WB, Liu WJ. Methylation‑associated inactivation of LATS1 and its effect on demethylation or overexpression on YAP and cell biological function in human renal cell carcinoma. Int J Oncol 2014; 45:2511-21. [PMID: 25270913 DOI: 10.3892/ijo.2014.2687] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/16/2014] [Indexed: 11/05/2022] Open
Abstract
Large tumor suppressor 1 (LATS1) gene is one of the key factors in Hippo signaling pathway. Inactivation of LATS1 by promoter methylation was found in colorectal cancer (CRC), head and neck squamous cell carcinoma (HNSCC), astrocytoma, breast cancer and it was proved to be a tumor suppressor. However, its role is unclear in renal cell carcinoma (RCC). In this study, the expression of LATS1 was determined by reverse transcription polymerase chain reaction (RT‑PCR) and immunohistochemistry in 30 pairs of RCC tissues and matched normal kidney tissues and RCC cells. We found that the expression of LATS1 was markedly reduced in RCC tissues and cells, in the RCC tissue in 46.7% (14/30), while in the normal kidney tissues in 76.7% (23/30), and was associated with pathological grade and clinical stage of RCC. We detected methylation status of LATS1 by bisulfite sequence-PCR (BSP) in renal cancer cell line 786-O which lowers expression of LATS1, and we found it hypermethy-lated (in 97.5%). In addition, pharmacological demethylation using 5-Aza-2'-deoxycytidine (5-Aza) restored the expression of LATS1 mRNA and protein in 786-O cells, both LATS1 demethylation and overexpression of LATS1 downregulated the expression of Yes-associated protein (YAP), inhibited cell proliferation, induced cell apoptosis and cell cycle G1 arrest in 786-O cells. Thus, this report for the first time demonstrates the inactivation of LATS1 by promoter methy-lation and it is a tumor suppressor in kidney cancer. LATS1 may serve as a biomarker for possible early diagnosis and as a potential therapeutic target for human RCC.
Collapse
Affiliation(s)
- Ke-Hong Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jiang He
- Gastroenterology and Neurology Center, University‑Town Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - De-Lin Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jian-Jia Cao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Mei-Cai Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiu-Min Zhao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xia Sheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Wen-Bin Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Wu-Jiang Liu
- Institute of Urology, Peking University First Hospital, Beijing, P.R. China
| |
Collapse
|
91
|
Donninger H, Clark JA, Monaghan MK, Schmidt ML, Vos M, Clark GJ. Cell cycle restriction is more important than apoptosis induction for RASSF1A protein tumor suppression. J Biol Chem 2014; 289:31287-95. [PMID: 25225292 DOI: 10.1074/jbc.m114.609537] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Ras association domain family protein 1A (RASSF1A) is arguably one of the most frequently inactivated tumor suppressors in human cancer. RASSF1A modulates apoptosis via the Hippo and Bax pathways but also modulates the cell cycle. In part, cell cycle regulation appears to be dependent upon the ability of RASSF1A to complex with microtubules and regulate their dynamics. Which property of RASSF1A, apoptosis induction or microtubule regulation, is responsible for its tumor suppressor function is not known. We have identified a short conserved motif that is essential for the binding of RASSF family proteins with microtubule-associated proteins. By making a single point mutation in the motif, we were able to generate a RASSF1A variant that retains wild-type apoptotic properties but completely loses the ability to bind microtubule-associated proteins and complex with microtubules. Comparison of this mutant to wild-type RASSF1A showed that, despite retaining its proapoptotic properties, the mutant was completely unable to induce cell cycle arrest or suppress the tumorigenic phenotype. Therefore, it appears that the cell cycle/microtubule effects of RASSF1A are key to its tumor suppressor function rather than its apoptotic effects.
Collapse
Affiliation(s)
| | | | | | | | - Michele Vos
- the Cell and Cancer Biology Branch, NCI, National Institutes of Health, Rockville, Maryland 20850
| | - Geoffrey J Clark
- Pharmacology and Toxicology, James Graham Brown Cancer Center, Molecular Targets Program, University of Louisville, Louisville, Kentucky 40202 and
| |
Collapse
|
92
|
Hong X, Nguyen HT, Chen Q, Zhang R, Hagman Z, Voorhoeve PM, Cohen SM. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover. EMBO J 2014; 33:2447-57. [PMID: 25180228 PMCID: PMC4283404 DOI: 10.15252/embj.201489385] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer genomes accumulate numerous genetic and epigenetic modifications. Yet, human cellular transformation can be accomplished by a few genetically defined elements. These elements activate key pathways required to support replicative immortality and anchorage independent growth, a predictor of tumorigenesis in vivo. Here, we provide evidence that the Hippo tumor suppressor pathway is a key barrier to Ras-mediated cellular transformation. The Hippo pathway targets YAP1 for degradation via the βTrCP-SCF ubiquitin ligase complex. In contrast, the Ras pathway acts oppositely, to promote YAP1 stability through downregulation of the ubiquitin ligase complex substrate recognition factors SOCS5/6. Depletion of SOCS5/6 or upregulation of YAP1 can bypass the requirement for oncogenic Ras in anchorage independent growth in vitro and tumor formation in vivo. Through the YAP1 target, Amphiregulin, Ras activates the endogenous EGFR pathway, which is required for transformation. Thus, the oncogenic activity of RasV12 depends on its ability to counteract Hippo pathway activity, creating a positive feedback loop, which depends on stabilization of YAP1.
Collapse
Affiliation(s)
- Xin Hong
- Institute of Molecular and Cell Biology, Singapore City, Singapore Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | | | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Singapore City, Singapore Singapore-MIT Alliance for Research, and Technology, Singapore City, Singapore
| | - Rui Zhang
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | - Zandra Hagman
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Stephen M Cohen
- Institute of Molecular and Cell Biology, Singapore City, Singapore Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
93
|
Luo SY, Sit KY, Sihoe ADL, Suen WS, Au WK, Tang X, Ma ESK, Chan WK, Wistuba II, Minna JD, Tsao GSW, Lam DCL. Aberrant large tumor suppressor 2 (LATS2) gene expression correlates with EGFR mutation and survival in lung adenocarcinomas. Lung Cancer 2014; 85:282-92. [PMID: 24976335 DOI: 10.1016/j.lungcan.2014.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/14/2014] [Accepted: 05/30/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Large tumor suppressor 2 (LATS2) gene is a putative tumor suppressor gene with potential roles in regulation of cell proliferation and apoptosis in lung cancer. The aim of this study is to explore the association of aberrant LATS2 expression with EGFR mutation and survival in lung adenocarcinoma (AD), and the effects of LATS2 silencing in both lung AD cell lines. METHODS LATS2 mRNA and protein expression in resected lung AD were correlated with demographic characteristics, EGFR mutation and survival. LATS2-specific siRNA was transfected into four EGFR wild-type (WT) and three EGFR mutant AD cell lines and the changes in LATS2 expression and relevant signaling molecules before and after LATS2 knockdown were assayed. RESULTS Fifty resected lung AD were included (M:F=23:27, smokers:non-smokers=19:31, EGFR mutant:wild-type=21:29) with LATS2 mRNA levels showed no significant difference between gender, age, smoking and pathological stages while LATS2 immunohistochemical staining on an independent set of 79 lung AD showed similar trend. LATS2 mRNA level was found to be a significant independent predictor for survival status (disease-free survival RR=0.217; p=0.003; Overall survival RR=0.238; p=0.036). siRNA-mediated suppression of LATS2 expression resulted in augmentation of ERK phosphorylation in EGFR wild-type AD cell lines with high basal LATS2 expression, discriminatory modulation of Akt signaling between EGFR wild-type and mutant cells, and induction of p53 accumulation in AD cell lines with low baseline p53 levels. CONCLUSIONS LATS2 expression level is predictive of survival in patients with resected lung AD. LATS2 may modulate and contribute to tumor growth via different signaling pathways in EGFR mutant and wild-type tumors.
Collapse
Affiliation(s)
- Susan Y Luo
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Ko-Yung Sit
- Department of Cardiothoracic Surgery, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Alan D L Sihoe
- Department of Cardiothoracic Surgery, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Wai-Sing Suen
- Department of Cardiothoracic Surgery, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Wing-Kuk Au
- Department of Cardiothoracic Surgery, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - Ximing Tang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, USA
| | - Edmond S K Ma
- Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong
| | - Wai-Kong Chan
- Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - George S W Tsao
- Department of Anatomy, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | - David C L Lam
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong.
| |
Collapse
|
94
|
Romano D, Nguyen LK, Matallanas D, Halasz M, Doherty C, Kholodenko BN, Kolch W. Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling. Nat Cell Biol 2014; 16:673-84. [DOI: 10.1038/ncb2986] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/08/2014] [Indexed: 12/19/2022]
|
95
|
Legrain P, Rain JC. Twenty years of protein interaction studies for biological function deciphering. J Proteomics 2014; 107:93-7. [PMID: 24709640 DOI: 10.1016/j.jprot.2014.03.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 03/25/2014] [Indexed: 12/31/2022]
Abstract
Intensive methodological developments and technology innovation have been devoted to protein-protein interaction studies over 20years. Genetic indirect assays and sophisticated large scale biochemical analyses have jointly contributed to the elucidation of protein-protein interactions, still with a lot of drawbacks despite heavy investment in human resources and technologies. With the most recent developments in mass spectrometry and computational tools for studying protein content of complex samples, the initial goal of deciphering molecular bases of biological functions is now within reach. Here, we described the various steps of this process and gave examples of key milestones in this scientific story line. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.
Collapse
|
96
|
Abstract
Mutant RAS-driven tumorigenesis was thought for decades to arise independently of wild-type RAS isoforms, but recent evidence indicates wild-type isoforms are involved. In this issue of Cancer Cell, Grabocka and colleagues report how the loss of wild-type RAS alters oncogenic signaling and dampens the DNA-damage response, thereby affecting tumor progression and chemosensitivity.
Collapse
Affiliation(s)
- Theonie Anastassiadis
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Eric J Brown
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
97
|
Grabocka E, Pylayeva-Gupta Y, Jones MJK, Lubkov V, Yemanaberhan E, Taylor L, Jeng HH, Bar-Sagi D. Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response. Cancer Cell 2014; 25:243-56. [PMID: 24525237 PMCID: PMC4063560 DOI: 10.1016/j.ccr.2014.01.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 11/25/2013] [Accepted: 01/10/2014] [Indexed: 02/07/2023]
Abstract
Mutations in KRAS are prevalent in human cancers and universally predictive of resistance to anticancer therapeutics. Although it is widely accepted that acquisition of an activating mutation endows RAS genes with functional autonomy, recent studies suggest that the wild-type forms of Ras may contribute to mutant Ras-driven tumorigenesis. Here, we show that downregulation of wild-type H-Ras or N-Ras in mutant K-Ras cancer cells leads to hyperactivation of the Erk/p90RSK and PI3K/Akt pathways and, consequently, the phosphorylation of Chk1 at an inhibitory site, Ser 280. The resulting inhibition of ATR/Chk1 signaling abrogates the activation of the G2 DNA damage checkpoint and confers specific sensitization of mutant K-Ras cancer cells to DNA damage chemotherapeutic agents in vitro and in vivo.
Collapse
Affiliation(s)
- Elda Grabocka
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Yuliya Pylayeva-Gupta
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Mathew J K Jones
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Veronica Lubkov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Eyoel Yemanaberhan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Laura Taylor
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Hao Hsuan Jeng
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
98
|
Ras. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
99
|
Iwasa H, Kudo T, Maimaiti S, Ikeda M, Maruyama J, Nakagawa K, Hata Y. The RASSF6 tumor suppressor protein regulates apoptosis and the cell cycle via MDM2 protein and p53 protein. J Biol Chem 2013; 288:30320-30329. [PMID: 24003224 DOI: 10.1074/jbc.m113.507384] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ras association domain family (RASSF) 6 is a member of the C-terminal RASSF proteins such as RASSF1A and RASSF3. RASSF6 is involved in apoptosis in various cells under miscellaneous conditions, but it remains to be clarified how RASSF6 exerts tumor-suppressive roles. We reported previously that RASSF3 facilitates the degradation of MDM2, a major E3 ligase of p53, and stabilizes p53 to function as a tumor suppressor. In this study, we demonstrate that RASSF6 overexpression induces G1/S arrest in p53-positive cells. Its depletion prevents UV- and VP-16-induced apoptosis and G1/S arrest in HCT116 and U2OS cells. RASSF6-induced apoptosis partially depends on p53. RASSF6 binds MDM2 and facilitates its ubiquitination. RASSF6 depletion blocks the increase of p53 in response to UV exposure and up-regulation of p53 target genes. RASSF6 depletion delays DNA repair in UV- and VP-16-treated cells and increases polyploid cells after VP-16 treatment. These findings indicate that RASSF6 stabilizes p53, regulates apoptosis and the cell cycle, and functions as a tumor suppressor. Together with the previous reports regarding RASSF1A and RASSF3, the stabilization of p53 may be the common function of the C-terminal RASSF proteins.
Collapse
Affiliation(s)
| | - Takumi Kudo
- From the Department of Medical Biochemistry and; Department of Neurosurgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan and
| | - Sainawaer Maimaiti
- From the Department of Medical Biochemistry and; the Department of Psychotherapy, The Fourth People's Hospital of Urumqi, Urumqi 830000, China
| | | | | | | | - Yutaka Hata
- From the Department of Medical Biochemistry and.
| |
Collapse
|
100
|
Hergovich A. Regulation and functions of mammalian LATS/NDR kinases: looking beyond canonical Hippo signalling. Cell Biosci 2013; 3:32. [PMID: 23985307 PMCID: PMC3849777 DOI: 10.1186/2045-3701-3-32] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/30/2013] [Indexed: 02/08/2023] Open
Abstract
The metazoan Hippo pathway is an essential tumour suppressor signalling cascade that ensures normal tissue growth by co-ordinating cell proliferation, cell death and cell differentiation. Over the past years, various genetic and biochemical studies in Drosophila and mammals have defined a conserved core Hippo signalling module, composed of members of the Ste20-like kinase, the MOB co-activator and the AGC kinase families. In Drosophila, stimulated Hippo kinase phosphorylates and thereby activates the Mats/Warts complex, which consequently phosphorylates and inactivates the transcriptional co-activator Yorkie. In mammals, the counterparts of the Hippo/Mats/Warts/Yorkie cascade, namely MST1/2, MOB1A/B, LATS1/2 and YAP/TAZ, function in a similar fashion. These canonical Hippo pathways are so highly conserved that human MST2, hMOB1A and LATS1 can compensate for the loss of Hippo, Mats and Warts in flies. However, recent reports have shown that Hippo signalling is more diverse and complex, in particular in mammals. In this review, we summarize our current understanding of mammalian LATS1/2 kinases together with their closest relatives, the NDR1/2 kinases. The regulation of the LATS/NDR family of kinases will be discussed, followed by a summary of all currently known LATS/NDR substrates. Last, but not least, the biological roles of LATS/NDR kinases will be reviewed with specific emphasis on recent discoveries of canonical and non-canonical LATS/NDR functions in the extended Hippo pathway.
Collapse
Affiliation(s)
- Alexander Hergovich
- Tumour Suppressor Signalling Networks laboratory, UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| |
Collapse
|