51
|
Woods JJ, Rodriguez MX, Tsai CW, Tsai MF, Wilson JJ. Cobalt amine complexes and Ru265 interact with the DIME region of the mitochondrial calcium uniporter. Chem Commun (Camb) 2021; 57:6161-6164. [PMID: 34042919 DOI: 10.1039/d1cc01623g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report our investigation into the MCU-inhibitory activity of Co3+ complexes in comparison to Ru265. These compounds reversibly inhibit the MCU with nanomolar potency. Mutagenesis studies and molecular docking simulations suggest that the complexes operate through interactions with the DIME motif of the MCU pore.
Collapse
Affiliation(s)
- Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA. and Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Madison X Rodriguez
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chen-Wei Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ming-Feng Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
52
|
Nakamura T, Ogawa M, Kojima K, Takayanagi S, Ishihara S, Hattori K, Naguro I, Ichijo H. The mitochondrial Ca 2+ uptake regulator, MICU1, is involved in cold stress-induced ferroptosis. EMBO Rep 2021; 22:e51532. [PMID: 33822458 PMCID: PMC8097382 DOI: 10.15252/embr.202051532] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis has recently attracted much interest because of its relevance to human diseases such as cancer and ischemia-reperfusion injury. We have reported that prolonged severe cold stress induces lipid peroxidation-dependent ferroptosis, but the upstream mechanism remains unknown. Here, using genome-wide CRISPR screening, we found that a mitochondrial Ca2+ uptake regulator, mitochondrial calcium uptake 1 (MICU1), is required for generating lipid peroxide and subsequent ferroptosis under cold stress. Furthermore, the gatekeeping activity of MICU1 through mitochondrial calcium uniporter (MCU) is suggested to be indispensable for cold stress-induced ferroptosis. MICU1 is required for mitochondrial Ca2+ increase, hyperpolarization of the mitochondrial membrane potential (MMP), and subsequent lipid peroxidation under cold stress. Collectively, these findings suggest that the MICU1-dependent mitochondrial Ca2+ homeostasis-MMP hyperpolarization axis is involved in cold stress-induced lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Toshitaka Nakamura
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Motoyuki Ogawa
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Kazuki Kojima
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Saki Takayanagi
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Shunya Ishihara
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Kazuki Hattori
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Isao Naguro
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Hidenori Ichijo
- Laboratory of Cell SignalingGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
53
|
Alevriadou BR, Patel A, Noble M, Ghosh S, Gohil VM, Stathopulos PB, Madesh M. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol 2021; 320:C465-C482. [PMID: 33296287 PMCID: PMC8260355 DOI: 10.1152/ajpcell.00502.2020] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) signaling is critical for cell function and cell survival. Mitochondria play a major role in regulating the intracellular Ca2+ concentration ([Ca2+]i). Mitochondrial Ca2+ uptake is an important determinant of cell fate and governs respiration, mitophagy/autophagy, and the mitochondrial pathway of apoptosis. Mitochondrial Ca2+ uptake occurs via the mitochondrial Ca2+ uniporter (MCU) complex. This review summarizes the present knowledge on the function of MCU complex, regulation of MCU channel, and the role of MCU in Ca2+ homeostasis and human disease pathogenesis. The channel core consists of four MCU subunits and essential MCU regulators (EMRE). Regulatory proteins that interact with them include mitochondrial Ca2+ uptake 1/2 (MICU1/2), MCU dominant-negative β-subunit (MCUb), MCU regulator 1 (MCUR1), and solute carrier 25A23 (SLC25A23). In addition to these proteins, cardiolipin, a mitochondrial membrane-specific phospholipid, has been shown to interact with the channel core. The dynamic interplay between the core and regulatory proteins modulates MCU channel activity after sensing local changes in [Ca2+]i, reactive oxygen species, and other environmental factors. Here, we highlight the structural details of the human MCU heteromeric assemblies and their known roles in regulating mitochondrial Ca2+ homeostasis. MCU dysfunction has been shown to alter mitochondrial Ca2+ dynamics, in turn eliciting cell apoptosis. Changes in mitochondrial Ca2+ uptake have been implicated in pathological conditions affecting multiple organs, including the heart, skeletal muscle, and brain. However, our structural and functional knowledge of this vital protein complex remains incomplete, and understanding the precise role for MCU-mediated mitochondrial Ca2+ signaling in disease requires further research efforts.
Collapse
Affiliation(s)
- B Rita Alevriadou
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences and School of Engineering and Applied Sciences, University at Buffalo-State University of New York, Buffalo, New York
| | - Akshar Patel
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences and School of Engineering and Applied Sciences, University at Buffalo-State University of New York, Buffalo, New York
| | - Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sagnika Ghosh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Muniswamy Madesh
- Department of Medicine/Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
54
|
Chronic metformin treatment decreases cardiac injury during ischemia-reperfusion by attenuating endoplasmic reticulum stress with improved mitochondrial function. Aging (Albany NY) 2021; 13:7828-7845. [PMID: 33746115 PMCID: PMC8034968 DOI: 10.18632/aging.202858] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
Aging impairs mitochondrial function that leads to greater cardiac injury during ischemia and reperfusion. Cardiac endoplasm reticulum (ER) stress increases with age and contributes to mitochondrial dysfunction. Metformin is an anti-diabetic drug that protects cardiac mitochondria during acute ER stress. We hypothesized that metformin treatment would improve preexisting mitochondrial dysfunction in aged hearts by attenuating ER stress, followed by a decrease in cardiac injury during subsequent ischemia and reperfusion. Male young (3 mo.) and aged mice (24 mo.) received metformin (300 mg/kg/day) dissolved in drinking water with sucrose (0.2 g/100 ml) as sweetener for two weeks versus sucrose vehicle alone. Cytosol, subsarcolemmal (SSM), and interfibrillar mitochondria (IFM) were isolated. In separate groups, cardioprotection was evaluated using ex vivo isolated heart perfusion with 25 min. global ischemia and 60 min. reperfusion. Infarct size was measured. The contents of CHOP and cleaved ATF6 were decreased in metformin-treated 24 mo. mice compared to vehicle, supporting a decrease in ER stress. Metformin treatment improved OXPHOS in IFM in 24 mo. using a complex I substrate. Metformin treatment decreased infarct size following ischemia-reperfusion. Thus, metformin feeding decreased cardiac injury in aged mice during ischemia-reperfusion by improving pre-ischemic mitochondrial function via inhibition of ER stress.
Collapse
|
55
|
Chen LT, Xu TT, Qiu YQ, Liu NY, Ke XY, Fang L, Yan JP, Zhu DY. Homocysteine induced a calcium-mediated disruption of mitochondrial function and dynamics in endothelial cells. J Biochem Mol Toxicol 2021; 35:e22737. [PMID: 33751715 DOI: 10.1002/jbt.22737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/03/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid that originated in methionine metabolism and the elevated level of Hcy in plasma is considered to be an independent risk factor for cardiovascular diseases (CVD). Endothelial dysfunction plays a major role in the development of CVD, while the potential mechanism of Hcy-induced endothelial dysfunction is still unclear. Here, in Hcy-treated endothelial cells, we observed the destruction of mitochondrial morphology and the decline of mitochondrial membrane potential. Meanwhile, the level of ATP was reduced and the reactive oxygen species was increased. The expressions of dynamin-related protein 1 (Drp1) and phosphate-Drp1 (Ser616) were upregulated, whereas the expression of mitofusin 2 was inhibited by Hcy treatment. These findings suggested that Hcy not only triggered mitochondrial dysfunction but also incurred an imbalance of mitochondrial dynamics in endothelial cells. The expression of mitochondrial calcium uniporter (MCU) was activated by Hcy, contributing to calcium transferring into mitochondria. Interestingly, the formation of mitochondria-associated membranes (MAMs) was increased in endothelial cells after Hcy administration. The inositol 1,4,5-triphosphate receptor (IP3R)-glucose-regulated protein 75 (Grp75)-voltage-dependent anion channel (VDAC) complex, which was enriched in MAMs, was also increased. The accumulation of mitochondrial calcium could be blocked by inhibiting with the IP3R inhibitor Xestospongin C (XeC) in Hcy-treated cells. Then, we confirmed that the mitochondrial dysfunction and the increased mitochondrial fission induced by Hcy could be attenuated after Hcy and XeC co-treatment. In conclusion, Hcy-induced mitochondrial dysfunction and dynamics disorder in endothelial cells were mainly related to the increase of calcium as a result of the upregulated expressions of the MCU and the IP3R-Grp75-VDAC complex in MAMs.
Collapse
Affiliation(s)
- Li-Ting Chen
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Ting-Ting Xu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Ya-Qing Qiu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Nuo-Ya Liu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Xin-Yu Ke
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Lu Fang
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Jie-Ping Yan
- Department of Pharmacy, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Dan-Yan Zhu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| |
Collapse
|
56
|
Mitochondrial Calcium Signaling in Pancreatic β-Cell. Int J Mol Sci 2021; 22:ijms22052515. [PMID: 33802289 PMCID: PMC7959128 DOI: 10.3390/ijms22052515] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulation of calcium in energized mitochondria of pancreatic β-cells is emerging as a crucial process for pancreatic β-cell function. β-cell mitochondria sense and shape calcium signals, linking the metabolism of glucose and other secretagogues to the generation of signals that promote insulin secretion during nutrient stimulation. Here, we describe the role of mitochondrial calcium signaling in pancreatic β-cell function. We report the latest pharmacological and genetic findings, including the first mitochondrial calcium-targeted intervention strategies developed to modulate pancreatic β-cell function and their potential relevance in the context of diabetes.
Collapse
|
57
|
Tanwar J, Singh JB, Motiani RK. Molecular machinery regulating mitochondrial calcium levels: The nuts and bolts of mitochondrial calcium dynamics. Mitochondrion 2021; 57:9-22. [PMID: 33316420 PMCID: PMC7610953 DOI: 10.1016/j.mito.2020.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play vital role in regulating the cellular energetics and metabolism. Further, it is a signaling hub for cell survival and apoptotic pathways. One of the key determinants that calibrate both cellular energetics and survival functions is mitochondrial calcium (Ca2+) dynamics. Mitochondrial Ca2+ regulates three Ca2+-sensitive dehydrogenase enzymes involved in tricarboxylic acid cycle (TCA) cycle thereby directly controlling ATP synthesis. On the other hand, excessive Ca2+ concentration within the mitochondrial matrix elevates mitochondrial reactive oxygen species (mROS) levels and causes mitochondrial membrane depolarization. This leads to opening of the mitochondrial permeability transition pore (mPTP) and release of cytochrome c into cytosol eventually triggering apoptosis. Therefore, it is critical for cell to maintain mitochondrial Ca2+ concentration. Since cells can neither synthesize nor metabolize Ca2+, it is the dynamic interplay of Ca2+ handling proteins involved in mitochondrial Ca2+ influx and efflux that take the center stage. In this review we would discuss the key molecular machinery regulating mitochondrial Ca2+ concentration. We would focus on the channel complex involved in bringing Ca2+ into mitochondrial matrix i.e. Mitochondrial Ca2+ Uniporter (MCU) and its key regulators Mitochondrial Ca2+ Uptake proteins (MICU1, 2 and 3), MCU regulatory subunit b (MCUb), Essential MCU Regulator (EMRE) and Mitochondrial Ca2+ Uniporter Regulator 1 (MCUR1). Further, we would deliberate on major mitochondrial Ca2+ efflux proteins i.e. Mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) and Leucine zipper EF hand-containing transmembrane1 (Letm1). Moreover, we would highlight the physiological functions of these proteins and discuss their relevance in human pathophysiology. Finally, we would highlight key outstanding questions in the field.
Collapse
Affiliation(s)
- Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi 10025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jaya Bharti Singh
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India.
| |
Collapse
|
58
|
Abstract
Mitochondria are responsible for ATP production but are also known as regulators of cell death, and mitochondrial matrix Ca2+ is a key modulator of both ATP production and cell death. Although mitochondrial Ca2+ uptake and efflux have been studied for over 50 years, it is only in the past decade that the proteins responsible for mitochondrial Ca2+ uptake and efflux have been identified. The identification of the mitochondrial Ca2+ uniporter (MCU) led to an explosion of studies identifying regulators of the MCU. The levels of these regulators vary in a tissue- and disease-specific manner, providing new insight into how mitochondrial Ca2+ is regulated. This review focuses on the proteins responsible for mitochondrial transport and what we have learned from mouse studies with genetic alterations in these proteins.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
59
|
Boyman L, Greiser M, Lederer WJ. Calcium influx through the mitochondrial calcium uniporter holocomplex, MCU cx. J Mol Cell Cardiol 2021; 151:145-154. [PMID: 33147447 PMCID: PMC7880866 DOI: 10.1016/j.yjmcc.2020.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Ca2+ flux into the mitochondrial matrix through the MCU holocomplex (MCUcx) has recently been measured quantitatively and with milliseconds resolution for the first time under physiological conditions in both heart and skeletal muscle. Additionally, the dynamic levels of Ca2+ in the mitochondrial matrix ([Ca2+]m) of cardiomyocytes were measured as it was controlled by the balance between influx of Ca2+ into the mitochondrial matrix through MCUcx and efflux through the mitochondrial Na+ / Ca2+ exchanger (NCLX). Under these conditions [Ca2+]m was shown to regulate ATP production by the mitochondria at only a few critical sites. Additional functions attributed to [Ca2+]m continue to be reported in the literature. Here we review the new findings attributed to MCUcx function and provide a framework for understanding and investigating mitochondrial Ca2+ influx features, many of which remain controversial. The properties and functions of the MCUcx subunits that constitute the holocomplex are challenging to tease apart. Such distinct subunits include EMRE, MCUR1, MICUx (i.e. MICU1, MICU2, MICU3), and the pore-forming subunits (MCUpore). Currently, the specific set of functions of each subunit remains non-quantitative and controversial. The more contentious issues are discussed in the context of the newly measured native MCUcx Ca2+ flux from heart and skeletal muscle. These MCUcx Ca2+ flux measurements have been shown to be a highly-regulated, tissue-specific with femto-Siemens Ca2+ conductances and with distinct extramitochondrial Ca2+ ([Ca2+]i) dependencies. These data from cardiac and skeletal muscle mitochondria have been examined quantitatively for their threshold [Ca2+]i levels and for hypothesized gatekeeping function and are discussed in the context of model cell (e.g. HeLa, MEF, HEK293, COS7 cells) measurements. Our new findings on MCUcx dependent matrix [Ca2+]m signaling provide a quantitative basis for on-going and new investigations of the roles of MCUcx in cardiac function ranging from metabolic fuel selection, capillary blood-flow control and the pathological activation of the mitochondrial permeability transition pore (mPTP). Additionally, this review presents the use of advanced new methods that can be readily adapted by any investigator to enable them to carry out quantitative Ca2+ measurements in mitochondria while controlling the inner mitochondrial membrane potential, ΔΨm.
Collapse
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; The Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Maura Greiser
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; The Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; The Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
60
|
Márta K, Hasan P, Rodríguez-Prados M, Paillard M, Hajnóczky G. Pharmacological inhibition of the mitochondrial Ca 2+ uniporter: Relevance for pathophysiology and human therapy. J Mol Cell Cardiol 2021; 151:135-144. [PMID: 33035551 PMCID: PMC7880870 DOI: 10.1016/j.yjmcc.2020.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Mitochondrial Ca2+ uptake has long been considered crucial for meeting the fluctuating energy demands of cells in the heart and other tissues. Increases in mitochondrial matrix [Ca2+] drive mitochondrial ATP production via stimulation of Ca2+-sensitive dehydrogenases. Mitochondria-targeted sensors have revealed mitochondrial matrix [Ca2+] rises that closely follow the cytoplasmic [Ca2+] signals in many paradigms. Mitochondrial Ca2+ uptake is mediated by the Ca2+ uniporter (mtCU). Pharmacological manipulation of the mtCU is potentially key to understanding its physiological significance, but no specific, cell-permeable inhibitors were identified. In the past decade, as the molecular identity of the mtCU was brought to light, efforts have focused on genetic targeting. However, in the cells/animals that are able to survive impaired mtCU function, robust compensatory changes were found in the mtCU as well as other mechanisms. Thus, the discovery, through chemical library screens on normal and mtCU-deficient cells, of new small-molecule inhibitors with improved cell permeability and specificity might offer a better chance to test the relevance of mitochondrial Ca2+ uptake. Success with the development of small molecule mtCU inhibitors is also expected to have clinical impact, considering the growing evidence for the role of mitochondrial Ca2+ uptake in a variety of diseases, including heart attack, stroke and various neurodegenerative disorders. Here, we review the progress in pharmacological targeting of mtCU and illustrate the challenges in this field using data obtained with MCU-i11, a new small molecule inhibitor.
Collapse
Affiliation(s)
- Katalin Márta
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Prottoy Hasan
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Macarena Rodríguez-Prados
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Melanie Paillard
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Univ-Lyon, CarMeN Laboratory, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, HCL, 69500 Bron, France
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
61
|
Kohlschmidt N, Elbracht M, Czech A, Häusler M, Phan V, Töpf A, Huang KT, Bartok A, Eggermann K, Zippel S, Eggermann T, Freier E, Groß C, Lochmüller H, Horvath R, Hajnóczky G, Weis J, Roos A. Molecular pathophysiology of human MICU1 deficiency. Neuropathol Appl Neurobiol 2021; 47:840-855. [PMID: 33428302 DOI: 10.1111/nan.12694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
AIMS MICU1 encodes the gatekeeper of the mitochondrial Ca2+ uniporter, MICU1 and biallelic loss-of-function mutations cause a complex, neuromuscular disorder in children. Although the role of the protein is well understood, the precise molecular pathophysiology leading to this neuropaediatric phenotype has not been fully elucidated. Here we aimed to obtain novel insights into MICU1 pathophysiology. METHODS Molecular genetic studies along with proteomic profiling, electron-, light- and Coherent anti-Stokes Raman scattering microscopy and immuno-based studies of protein abundances and Ca2+ transport studies were employed to examine the pathophysiology of MICU1 deficiency in humans. RESULTS We describe two patients carrying MICU1 mutations, two nonsense (c.52C>T; p.(Arg18*) and c.553C>T; p.(Arg185*)) and an intragenic exon 2-deletion presenting with ataxia, developmental delay and early onset myopathy, clinodactyly, attention deficits, insomnia and impaired cognitive pain perception. Muscle biopsies revealed signs of dystrophy and neurogenic atrophy, severe mitochondrial perturbations, altered Golgi structure, vacuoles and altered lipid homeostasis. Comparative mitochondrial Ca2+ transport and proteomic studies on lymphoblastoid cells revealed that the [Ca2+ ] threshold and the cooperative activation of mitochondrial Ca2+ uptake were lost in MICU1-deficient cells and that 39 proteins were altered in abundance. Several of those proteins are linked to mitochondrial dysfunction and/or perturbed Ca2+ homeostasis, also impacting on regular cytoskeleton (affecting Spectrin) and Golgi architecture, as well as cellular survival mechanisms. CONCLUSIONS Our findings (i) link dysregulation of mitochondrial Ca2+ uptake with muscle pathology (including perturbed lipid homeostasis and ER-Golgi morphology), (ii) support the concept of a functional interplay of ER-Golgi and mitochondria in lipid homeostasis and (iii) reveal the vulnerability of the cellular proteome as part of the MICU1-related pathophysiology.
Collapse
Affiliation(s)
| | - Miriam Elbracht
- Institute of Human Genetics, RWTH Aachen University Hospital, Aachen, Germany
| | - Artur Czech
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Martin Häusler
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany
| | - Vietxuan Phan
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Ana Töpf
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Kai-Ting Huang
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam Bartok
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Katja Eggermann
- Institute of Human Genetics, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen University Hospital, Aachen, Germany
| | - Erik Freier
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Claudia Groß
- Institute of Clinical Genetics and Tumour Genetics, Bonn, Germany
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico, Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Rita Horvath
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Roos
- Department of Neuropediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
62
|
Zhang L, Wang Z, Lu T, Meng L, Luo Y, Fu X, Hou Y. Mitochondrial Ca 2+ Overload Leads to Mitochondrial Oxidative Stress and Delayed Meiotic Resumption in Mouse Oocytes. Front Cell Dev Biol 2020; 8:580876. [PMID: 33384990 PMCID: PMC7770107 DOI: 10.3389/fcell.2020.580876] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Overweight or obese women seeking pregnancy is becoming increasingly common. Human maternal obesity gives rise to detrimental effects during reproduction. Emerging evidence has shown that these abnormities are likely attributed to oocyte quality. Oxidative stress induces poor oocyte conditions, but whether mitochondrial calcium homeostasis plays a key role in oocyte status remains unresolved. Here, we established a mitochondrial Ca2+ overload model in mouse oocytes. Knockdown gatekeepers of the mitochondrial Ca2+ uniporters Micu1 and Micu2 as well as the mitochondrial sodium calcium exchanger NCLX in oocytes both increased oocytes mitochondrial Ca2+ concentration. The overload of mitochondria Ca2+ in oocytes impaired mitochondrial function, leaded to oxidative stress, and changed protein kinase A (PKA) signaling associated gene expression as well as delayed meiotic resumption. Using this model, we aimed to determine the mechanism of delayed meiosis caused by mitochondrial Ca2+ overload, and whether oocyte-specific inhibition of mitochondrial Ca2+ influx could improve the reproductive abnormalities seen within obesity. Germinal vesicle breakdown stage (GVBD) and extrusion of first polar body (PB1) are two indicators of meiosis maturation. As expected, the percentage of oocytes that successfully progress to the germinal vesicle breakdown stage and extrude the first polar body during in vitro culture was increased significantly, and the expression of PKA signaling genes and mitochondrial function recovered after appropriate mitochondrial Ca2+ regulation. Additionally, some indicators of mitochondrial performance-such as adenosine triphosphate (ATP) and reactive oxygen species (ROS) levels and mitochondrial membrane potential-recovered to normal. These results suggest that the regulation of mitochondrial Ca2+ uptake in mouse oocytes has a significant role during oocyte maturation as well as PKA signaling and that proper mitochondrial Ca2+ reductions in obese oocytes can recover mitochondrial performance and improve obesity-associated oocyte quality.
Collapse
Affiliation(s)
- Luyao Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zichuan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tengfei Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
63
|
Bertolini MS, Docampo R. Different Sensitivity of Control and MICU1- and MICU2-Ablated Trypanosoma cruzi Mitochondrial Calcium Uniporter Complex to Ruthenium-Based Inhibitors. Int J Mol Sci 2020; 21:ijms21239316. [PMID: 33297372 PMCID: PMC7730205 DOI: 10.3390/ijms21239316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial Ca2+ uptake in trypanosomatids shares biochemical characteristics with that of animals. However, the composition of the mitochondrial Ca2+ uniporter complex (MCUC) in these parasites is quite peculiar, suggesting lineage-specific adaptations. In this work, we compared the inhibitory activity of ruthenium red (RuRed) and Ru360, the most commonly used MCUC inhibitors, with that of the recently described inhibitor Ru265, on Trypanosoma cruzi, the agent of Chagas disease. Ru265 was more potent than Ru360 and RuRed in inhibiting mitochondrial Ca2+ transport in permeabilized cells. When dose-response effects were investigated, an increase in sensitivity for Ru360 and Ru265 was observed in TcMICU1-KO and TcMICU2-KO cells as compared with control cells. In the presence of RuRed, a significant increase in sensitivity was observed only in TcMICU2-KO cells. However, application of Ru265 to intact cells did not affect growth and respiration of epimastigotes, mitochondrial Ca2+ uptake in Rhod-2-labeled intact cells, or attachment to host cells and infection by trypomastigotes, suggesting a low permeability for this compound in trypanosomes.
Collapse
|
64
|
O'Rourke B, Ashok D, Liu T. Mitochondrial Ca 2+ in heart failure: Not enough or too much? J Mol Cell Cardiol 2020; 151:126-134. [PMID: 33290770 DOI: 10.1016/j.yjmcc.2020.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/18/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Ca2+ serves as a ubiquitous second messenger mediating a variety of cellular processes including electrical excitation, contraction, gene expression, secretion, cell death and others. The identification of the molecular components of the mitochondrial Ca2+ influx and efflux pathways has created a resurgent interest in the regulation of mitochondrial Ca2+ balance and its physiological and pathophysiological roles. While the pace of discovery has quickened with the availability of new cellular and animal models, many fundamental questions remain to be answered regarding the regulation and functional impact of mitochondrial Ca2+ in health and disease. This review highlights several experimental observations pertaining to key aspects of mitochondrial Ca2+ homeostasis that remain enigmatic, particularly whether mitochondrial Ca2+ signaling is depressed or excessive in heart failure, which will determine the optimal approach to therapeutic intervention.
Collapse
Affiliation(s)
- Brian O'Rourke
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA.
| | - Deepthi Ashok
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA
| | - Ting Liu
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
65
|
Mechanisms of EMRE-Dependent MCU Opening in the Mitochondrial Calcium Uniporter Complex. Cell Rep 2020; 33:108486. [PMID: 33296646 PMCID: PMC7764451 DOI: 10.1016/j.celrep.2020.108486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/09/2020] [Accepted: 11/13/2020] [Indexed: 12/02/2022] Open
Abstract
The mitochondrial calcium uniporter is a multi-subunit Ca2+-activated Ca2+ channel, made up of the pore-forming MCU protein, a metazoan-specific EMRE subunit, and MICU1/MICU2, which mediate Ca2+ activation. It has been established that metazoan MCU requires EMRE binding to conduct Ca2+, but how EMRE promotes MCU opening remains unclear. Here, we demonstrate that EMRE controls MCU activity via its transmembrane helix, while using an N-terminal PKP motif to strengthen binding with MCU. Opening of MCU requires hydrophobic interactions mediated by MCU residues near the pore’s luminal end. Enhancing these interactions by single mutation allows human MCU to transport Ca2+ without EMRE. We further show that EMRE may facilitate MCU opening by stabilizing the open state in a conserved MCU gating mechanism, present also in non-metazoan MCU homologs. These results provide insights into the evolution of the uniporter machinery and elucidate the mechanism underlying the physiologically crucial EMRE-dependent MCU activation process. The mitochondrial calcium uniporter is a multi-subunit ion channel that imports cytoplasmic Ca2+ into mitochondria to regulate cell energy production and death. In this work, Van Keuren et al. report a key activation mechanism of the uniporter, mediated by an auxiliary EMRE subunit in the channel complex.
Collapse
|
66
|
Feno S, Rizzuto R, Raffaello A, Vecellio Reane D. The molecular complexity of the Mitochondrial Calcium Uniporter. Cell Calcium 2020; 93:102322. [PMID: 33264708 DOI: 10.1016/j.ceca.2020.102322] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
The role of mitochondria in regulating cellular Ca2+ homeostasis is crucial for the understanding of different cellular functions in physiological and pathological conditions. Nevertheless, the study of this aspect was severely limited by the lack of the molecular identity of the proteins responsible for mitochondrial Ca2+ uptake. In 2011, the discovery of the gene encoding for the Mitochondrial Calcium Uniporter (MCU), the selective channel responsible for mitochondrial Ca2+ uptake, gave rise to an explosion of studies aimed to characterize the composition, the regulation of the channel and its pathophysiological roles. Here, we summarize the recent discoveries on the molecular structure and composition of the MCU complex by providing new insights into the mechanisms that regulate MCU channel activity.
Collapse
Affiliation(s)
- Simona Feno
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy
| | - Anna Raffaello
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy; Myology Center, University of Padua, via G. Colombo 3, 35100 Padova, Italy.
| | - Denis Vecellio Reane
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy.
| |
Collapse
|
67
|
Chen Y, Guo S, Tang Y, Mou C, Hu X, Shao F, Yan W, Wu Q. Mitochondrial Fusion and Fission in Neuronal Death Induced by Cerebral Ischemia-Reperfusion and Its Clinical Application: A Mini-Review. Med Sci Monit 2020; 26:e928651. [PMID: 33156817 PMCID: PMC7654336 DOI: 10.12659/msm.928651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are highly dynamic organelles which are joined by mitochondrial fusion and divided by mitochondrial fission. The balance of mitochondrial fusion and fission plays a critical role in maintaining the normal function of neurons, of which the processes are both mediated by several proteins activated by external stimulation. Cerebral ischemia-reperfusion (I/R) injury can disrupt the balance of mitochondrial fusion and fission through regulating the expression and post-translation modification of fusion- and fission-related proteins, thereby destroying homeostasis of the intracellular environment and causing neuronal death. Furthermore, human intervention in fusion- and fission-related proteins can influence the function of neurons and change the outcomes of cerebral I/R injury. In recent years, researchers have found that mitochondrial dysfunction was one of the main factors involved in I/R, and mitochondria is an attractive target in I/R neuroprotection. Therefore, mitochondrial-targeted therapy of the nervous system for I/R gradually started from basic study to clinical application. In the present review, we highlight recent progress in mitochondria fusion and fission in neuronal death induced by cerebral I/R to help understanding the regulatory factors and signaling networks of aberrant mitochondrial fusion and fission contributing to neuronal death during I/R, as well as the potential neuroprotective therapeutics targeting mitochondrial dynamics, which may help clinical treatment and development of relevant dugs.
Collapse
Affiliation(s)
- Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yajuan Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chaohui Mou
- Department of Neurosurgery, Taizhou First People's Hospital, Taizhou, Zhejiang, China (mainland)
| | - Xinben Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Fangjie Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Wei Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
68
|
Mitochondrial Ca 2+ regulation in the etiology of heart failure: physiological and pathophysiological implications. Acta Pharmacol Sin 2020; 41:1301-1309. [PMID: 32694759 PMCID: PMC7608470 DOI: 10.1038/s41401-020-0476-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) represents one of the leading causes of cardiovascular diseases with high rates of hospitalization, morbidity and mortality worldwide. Ample evidence has consolidated a crucial role for mitochondrial injury in the progression of HF. It is well established that mitochondrial Ca2+ participates in the regulation of a wide variety of biological processes, including oxidative phosphorylation, ATP synthesis, reactive oxygen species (ROS) generation, mitochondrial dynamics and mitophagy. Nonetheless, mitochondrial Ca2+ overload stimulates mitochondrial permeability transition pore (mPTP) opening and mitochondrial swelling, resulting in mitochondrial injury, apoptosis, cardiac remodeling, and ultimately development of HF. Moreover, mitochondria possess a series of Ca2+ transport influx and efflux channels, to buffer Ca2+ in the cytoplasm. Interaction at mitochondria-associated endoplasmic reticulum membranes (MAMs) may also participate in the regulation of mitochondrial Ca2+ homeostasis and plays an essential role in the progression of HF. Here, we provide an overview of regulation of mitochondrial Ca2+ homeostasis in maintenance of cardiac function, in an effort to identify novel therapeutic strategies for the management of HF.
Collapse
|
69
|
Boyman L, Lederer WJ. How the mitochondrial calcium uniporter complex (MCU cx) works. Proc Natl Acad Sci U S A 2020; 117:22634-22636. [PMID: 32879002 PMCID: PMC7502774 DOI: 10.1073/pnas.2015886117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201;
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
70
|
Vais H, Payne R, Paudel U, Li C, Foskett JK. Coupled transmembrane mechanisms control MCU-mediated mitochondrial Ca 2+ uptake. Proc Natl Acad Sci U S A 2020; 117:21731-21739. [PMID: 32801213 PMCID: PMC7474680 DOI: 10.1073/pnas.2005976117] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ca2+ uptake by mitochondria regulates bioenergetics, apoptosis, and Ca2+ signaling. The primary pathway for mitochondrial Ca2+ uptake is the mitochondrial calcium uniporter (MCU), a Ca2+-selective ion channel in the inner mitochondrial membrane. MCU-mediated Ca2+ uptake is driven by the sizable inner-membrane potential generated by the electron-transport chain. Despite the large thermodynamic driving force, mitochondrial Ca2+ uptake is tightly regulated to maintain low matrix [Ca2+] and prevent opening of the permeability transition pore and cell death, while meeting dynamic cellular energy demands. How this is accomplished is controversial. Here we define a regulatory mechanism of MCU-channel activity in which cytoplasmic Ca2+ regulation of intermembrane space-localized MICU1/2 is controlled by Ca2+-regulatory mechanisms localized across the membrane in the mitochondrial matrix. Ca2+ that permeates through the channel pore regulates Ca2+ affinities of coupled inhibitory and activating sensors in the matrix. Ca2+ binding to the inhibitory sensor within the MCU amino terminus closes the channel despite Ca2+ binding to MICU1/2. Conversely, disruption of the interaction of MICU1/2 with the MCU complex disables matrix Ca2+ regulation of channel activity. Our results demonstrate how Ca2+ influx into mitochondria is tuned by coupled Ca2+-regulatory mechanisms on both sides of the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Riley Payne
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Usha Paudel
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Carmen Li
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
71
|
Jegal HG, Park HJ, Kim JW, Yang SG, Kim MJ, Koo DB. Ruthenium red improves blastocyst developmental competence by regulating mitochondrial Ca 2+ and mitochondrial functions in fertilized porcine oocytes in vitro. J Reprod Dev 2020; 66:377-386. [PMID: 32321875 PMCID: PMC7470902 DOI: 10.1262/jrd.2020-013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ruthenium red (RR) inhibits calcium (Ca2+) entry from the cytoplasm to the mitochondria, and is involved in maintenance of Ca2+ homeostasis in mammalian
cells. Ca2+ homeostasis is very important for further embryonic development of fertilized oocytes. However, the effect of RR on mitochondria-Ca2+
(mito-Ca2+) levels during in vitro fertilization (IVF) on subsequent blastocyst developmental capacity in porcine is unclear. The present study
explored the regulation of mito-Ca2+ levels using RR and/or histamine in fertilized oocytes and their influence on blastocyst developmental capacity in pigs. Red
fluorescence intensity by the mito-Ca2+ detection dye Rhod-2 was significantly increased (P < 0.05) in zygotes 6 h after IVF compared to mature oocytes. Based on
these results, we investigated the changes in mito-Ca2+ by RR (10 and 20 μM) in presumptive zygotes using Rhod-2 staining and mito-Ca2+ uptake 1 (MICU1)
protein levels as an indicator of mito-Ca2+ uptake using western blot analysis. As expected, RR-treated zygotes displayed decreased protein levels of MICU1 and Rhod-2
red fluorescence intensity compared to non-treated zygotes 6 h after IVF. Blastocyst development rate of 20 μM RR-treated zygotes was significantly increased 6 h after IVF (P <
0.05) due to improved mitochondrial functions. Conversely, the blastocyst development rate was significantly decreased in histamine (mito-Ca2+ inhibitor, 100 nM) treated
zygotes (P < 0.05). The collective results demonstrate that RR improves blastocyst development in porcine embryos by regulating mito-Ca2+ and MICU1 expression
following IVF.
Collapse
Affiliation(s)
- Ho-Geun Jegal
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Hyo-Jin Park
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Jin-Woo Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Seul-Gi Yang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Min-Ji Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| |
Collapse
|
72
|
Zhang B, Jia K, Tian J, Du H. Cyclophilin D counterbalances mitochondrial calcium uniporter-mediated brain mitochondrial calcium uptake. Biochem Biophys Res Commun 2020; 529:314-320. [PMID: 32703429 PMCID: PMC7481651 DOI: 10.1016/j.bbrc.2020.05.204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
Mitochondria play an essential role in maintaining intraneuronal calcium homeostasis. Mitochondrial calcium uniporter (MCU) is a determined major brain mitochondrial calcium entry pathway. Activated MCU-mediated mitochondrial calcium overloading has been linked with brain mitochondrial pathology in disease conditions. Cyclophilin D (CypD)-mediated mitochondrial permeability transition (mPT) favors mitochondrial calcium efflux. The physiological function of CypD-mediated mPT has received increasing recognition. However, the regulatory role of CypD-mediated mPT in brain mitochondrial calcium dynamics in response to mitochondrial calcium accumulation via MCU has not been comprehensively studied. Here, by adopting purified brain mitochondria, we have determined an effect of CypD and CypD-mediated mPT against mitochondrial calcium overloading. In addition, blockade of CypD pharmaceutically or genetically blunts brain mitochondrial MCU's sensitivity to its inhibitor. Therefore, our findings suggest that CypD-mediated mPT is a mitochondrial compensatory response to MCU-mediated excess mitochondrial calcium accumulation. Moreover, CypD may potentially modulate MCU function in calcium-stressed mitochondria.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Kun Jia
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Jing Tian
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Heng Du
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
73
|
Wu W, Shen Q, Zhang R, Qiu Z, Wang Y, Zheng J, Jia Z. The structure of the MICU1-MICU2 complex unveils the regulation of the mitochondrial calcium uniporter. EMBO J 2020; 39:e104285. [PMID: 32790952 DOI: 10.15252/embj.2019104285] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
The MICU1-MICU2 heterodimer regulates the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake. Herein, we present two crystal structures of the MICU1-MICU2 heterodimer, in which Ca2+ -free and Ca2+ -bound EF-hands are observed in both proteins, revealing both electrostatic and hydrophobic interfaces. Furthermore, we show that MICU1 interacts with EMRE, another regulator of MCU, through a Ca2+ -dependent alkaline groove. Ca2+ binding strengthens the MICU1-EMRE interaction, which in turn facilitates Ca2+ uptake. Conversely, the MICU1-MCU interaction is favored in the absence of Ca2+ , thus inhibiting the channel activity. This Ca2+ -dependent switch illuminates how calcium signals are transmitted from regulatory subunits to the calcium channel and the transition between gatekeeping and activation channel functions. Furthermore, competition with an EMRE peptide alters the uniporter threshold in resting conditions and elevates Ca2+ accumulation in stimulated mitochondria, confirming the gatekeeper role of the MICU1-MICU2 heterodimer. Taken together, these structural and functional data provide new insights into the regulation of mitochondrial calcium uptake.
Collapse
Affiliation(s)
- Wenping Wu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Qingya Shen
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Ruiling Zhang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhiyu Qiu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
74
|
Wang Y, Han Y, She J, Nguyen NX, Mootha VK, Bai XC, Jiang Y. Structural insights into the Ca 2+-dependent gating of the human mitochondrial calcium uniporter. eLife 2020; 9:e60513. [PMID: 32762847 PMCID: PMC7442490 DOI: 10.7554/elife.60513] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial Ca2+ uptake is mediated by an inner mitochondrial membrane protein called the mitochondrial calcium uniporter. In humans, the uniporter functions as a holocomplex consisting of MCU, EMRE, MICU1 and MICU2, among which MCU and EMRE form a subcomplex and function as the conductive channel while MICU1 and MICU2 are EF-hand proteins that regulate the channel activity in a Ca2+-dependent manner. Here, we present the EM structures of the human mitochondrial calcium uniporter holocomplex (uniplex) in the presence and absence of Ca2+, revealing distinct Ca2+ dependent assembly of the uniplex. Our structural observations suggest that Ca2+ changes the dimerization interaction between MICU1 and MICU2, which in turn determines how the MICU1-MICU2 subcomplex interacts with the MCU-EMRE channel and, consequently, changes the distribution of the uniplex assemblies between the blocked and unblocked states.
Collapse
Affiliation(s)
- Yan Wang
- Department of Physiology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Yan Han
- Department of Physiology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Ji She
- Department of Physiology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nam X Nguyen
- Department of Physiology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Broad InstituteCambridgeUnited States
| | - Xiao-chen Bai
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
75
|
Wang C, Jacewicz A, Delgado BD, Baradaran R, Long SB. Structures reveal gatekeeping of the mitochondrial Ca 2+ uniporter by MICU1-MICU2. eLife 2020; 9:e59991. [PMID: 32667285 PMCID: PMC7434445 DOI: 10.7554/elife.59991] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial calcium uniporter is a Ca2+-gated ion channel complex that controls mitochondrial Ca2+ entry and regulates cell metabolism. MCU and EMRE form the channel while Ca2+-dependent regulation is conferred by MICU1 and MICU2 through an enigmatic process. We present a cryo-EM structure of an MCU-EMRE-MICU1-MICU2 holocomplex comprising MCU and EMRE subunits from the beetle Tribolium castaneum in complex with a human MICU1-MICU2 heterodimer at 3.3 Å resolution. With analogy to how neuronal channels are blocked by protein toxins, a uniporter interaction domain on MICU1 binds to a channel receptor site comprising MCU and EMRE subunits to inhibit ion flow under resting Ca2+ conditions. A Ca2+-bound structure of MICU1-MICU2 at 3.1 Å resolution indicates how Ca2+-dependent changes enable dynamic response to cytosolic Ca2+ signals.
Collapse
Affiliation(s)
- Chongyuan Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Agata Jacewicz
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Bryce D Delgado
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical SciencesNew YorkUnited States
| | - Rozbeh Baradaran
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Stephen Barstow Long
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
76
|
Liu Z, Zhao W, Yuan P, Zhu P, Fan K, Xia Z, Xu S. The mechanism of CaMK2α-MCU-mitochondrial oxidative stress in bupivacaine-induced neurotoxicity. Free Radic Biol Med 2020; 152:363-374. [PMID: 32275945 DOI: 10.1016/j.freeradbiomed.2020.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
Ca2+/calmodulin dependent protein kinase2α (CaMK2α) is a serine/threonine protein kinase in neurons and leads to neuronal injury when it is activated abnormally. Bupivacaine, a local anesthetic commonly used in regional nerve block, could induce neurotoxicity via apoptotic injury. Whether or not CaMK2α is involved in bupivacaine-induced neurotoxicity and it is regulated remains unclear. In this study, bupivacaine was administered for intrathecal injection in C57BL/6 mice for building vivo injury model and was used to culture human neuroblastoma (SH-SY5Y) cells for building vitro injury model. The results showed that bupivacaine induced mitochondrial oxidative stress and neurons apoptotic injury, promoted phosphorylation of CaMK2α and cAMP-response element binding protein (CREB), and elevated mitochondrial Ca2+ uniporter (MCU) expression. Furthermore, it induced CaMK2α phosphorylation at Thr286 which phosphorylated CREB at Ser133 and up-regulated MCU transcriptional expression. Inhibition of CaMK2α-MCU signaling with knock-down of CaMK2α and MCU or with inhibitors (KN93 and Ru360) significantly mitigated bupivacaine-induced neurotoxic injury. Over-expression of CaMK2α significantly enhanced above oxidative injury. Activated MCU with agonist (spermine) reversed protective effect of siCaMK2α on bupivacaine-induced mitochondrial oxidative stress. Our data revealed that CaMK2α-MCU-mitochondrial oxidative stress pathway is a major mechanism whereby bupivacaine induces neurotoxicity and inhibition of above signaling could be a therapeutic strategy in the treatment of bupivacaine-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhongjie Liu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Pengfei Yuan
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Pian Zhu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Keke Fan
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China; Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA, 95817, USA.
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| |
Collapse
|
77
|
Structure and mechanism of the mitochondrial Ca 2+ uniporter holocomplex. Nature 2020; 582:129-133. [PMID: 32494073 DOI: 10.1038/s41586-020-2309-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria take up Ca2+ through the mitochondrial calcium uniporter complex to regulate energy production, cytosolic Ca2+ signalling and cell death1,2. In mammals, the uniporter complex (uniplex) contains four core components: the pore-forming MCU protein, the gatekeepers MICU1 and MICU2, and an auxiliary subunit, EMRE, essential for Ca2+ transport3-8. To prevent detrimental Ca2+ overload, the activity of MCU must be tightly regulated by MICUs, which sense changes in cytosolic Ca2+ concentrations to switch MCU on and off9,10. Here we report cryo-electron microscopic structures of the human mitochondrial calcium uniporter holocomplex in inhibited and Ca2+-activated states. These structures define the architecture of this multicomponent Ca2+-uptake machinery and reveal the gating mechanism by which MICUs control uniporter activity. Our work provides a framework for understanding regulated Ca2+ uptake in mitochondria, and could suggest ways of modulating uniporter activity to treat diseases related to mitochondrial Ca2+ overload.
Collapse
|
78
|
Payne R, Li C, Foskett JK. Variable Assembly of EMRE and MCU Creates Functional Channels with Distinct Gatekeeping Profiles. iScience 2020; 23:101037. [PMID: 32315830 PMCID: PMC7170992 DOI: 10.1016/j.isci.2020.101037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/24/2020] [Accepted: 04/01/2020] [Indexed: 10/29/2022] Open
Abstract
MCU is a Ca2+-selective channel that mediates mitochondrial Ca2+ influx. The human channel contains tetrameric pore-forming MCU, regulatory subunits MICU1/2, and EMRE that is required both for channel function and MICU1/2-mediated Ca2+ regulation. A structure of MCU with EMRE revealed a 4:4 stoichiometry, but the stoichiometry in vivo is unknown. Expression of tagged EMRE and MCU at a 1:10 ratio in cells lacking EMRE and MCU restored channel activity but not full channel gatekeeping. Increasing EMRE expression enhanced gatekeeping, raising the cytoplasmic Ca2+ concentration ([Ca2+]c) threshold for channel activation. MCU-EMRE concatemers creating channels with 1EMRE:4MCU restored Ca2+ uptake in cells, whereas cells expressing concatemers that enforced a 4EMRE:4MCU stoichiometry demonstrated enhanced channel gatekeeping. Concatemers enforcing 2EMRE/4MCU recapitulated the activity, gatekeeping, and size of endogenous channels. Thus, MCU does not require four EMRE, with most endogenous channels containing two, but complexes with 1-4 EMRE have activity with full or partial gatekeeping.
Collapse
Affiliation(s)
- Riley Payne
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carmen Li
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
79
|
Lambert JP, Murray EK, Elrod JW. MCUB and mitochondrial calcium uptake - modeling, function, and therapeutic potential. Expert Opin Ther Targets 2020; 24:163-169. [PMID: 32093523 PMCID: PMC7078044 DOI: 10.1080/14728222.2020.1732926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
Affiliation(s)
| | - Emma K Murray
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
80
|
Park J, Lee Y, Park T, Kang JY, Mun SA, Jin M, Yang J, Eom SH. Structure of the MICU1-MICU2 heterodimer provides insights into the gatekeeping threshold shift. IUCRJ 2020; 7:355-365. [PMID: 32148862 PMCID: PMC7055370 DOI: 10.1107/s2052252520001840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Mitochondrial calcium uptake proteins 1 and 2 (MICU1 and MICU2) mediate mitochondrial Ca2+ influx via the mitochondrial calcium uniporter (MCU). Its molecular action for Ca2+ uptake is tightly controlled by the MICU1-MICU2 heterodimer, which comprises Ca2+ sensing proteins which act as gatekeepers at low [Ca2+] or facilitators at high [Ca2+]. However, the mechanism underlying the regulation of the Ca2+ gatekeeping threshold for mitochondrial Ca2+ uptake through the MCU by the MICU1-MICU2 heterodimer remains unclear. In this study, we determined the crystal structure of the apo form of the human MICU1-MICU2 heterodimer that functions as the MCU gatekeeper. MICU1 and MICU2 assemble in the face-to-face heterodimer with salt bridges and me-thio-nine knobs stabilizing the heterodimer in an apo state. Structural analysis suggests how the heterodimer sets a higher Ca2+ threshold than the MICU1 homodimer. The structure of the heterodimer in the apo state provides a framework for understanding the gatekeeping role of the MICU1-MICU2 heterodimer.
Collapse
Affiliation(s)
- Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
| | - Youngjin Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Taein Park
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
| | - Jung Youn Kang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
| | - Sang A Mun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
| | - Minwoo Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
| | - Jihyeong Yang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
81
|
Abstract
Adult cardiomyocytes are postmitotic cells that undergo very limited cell division. Thus, cardiomyocyte death as occurs during myocardial infarction has very detrimental consequences for the heart. Mitochondria have emerged as an important regulator of cardiovascular health and disease. Mitochondria are well established as bioenergetic hubs for generating ATP but have also been shown to regulate cell death pathways. Indeed many of the same signals used to regulate metabolism and ATP production, such as calcium and reactive oxygen species, are also key regulators of mitochondrial cell death pathways. It is widely hypothesized that an increase in calcium and reactive oxygen species activate a large conductance channel in the inner mitochondrial membrane known as the PTP (permeability transition pore) and that opening of this pore leads to necroptosis, a regulated form of necrotic cell death. Strategies to reduce PTP opening either by inhibition of PTP or inhibiting the rise in mitochondrial calcium or reactive oxygen species that activate PTP have been proposed. A major limitation of inhibiting the PTP is the lack of knowledge about the identity of the protein(s) that form the PTP and how they are activated by calcium and reactive oxygen species. This review will critically evaluate the candidates for the pore-forming unit of the PTP and discuss recent data suggesting that assumption that the PTP is formed by a single molecular identity may need to be reconsidered.
Collapse
Affiliation(s)
- Tyler M Bauer
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD
| |
Collapse
|
82
|
Woods JJ, Wilson JJ. Inhibitors of the mitochondrial calcium uniporter for the treatment of disease. Curr Opin Chem Biol 2019; 55:9-18. [PMID: 31869674 DOI: 10.1016/j.cbpa.2019.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023]
Abstract
The mitochondrial calcium uniporter (MCU) is a protein located in the inner mitochondrial membrane that is responsible for mitochondrial Ca2+ uptake. Under certain pathological conditions, dysregulation of Ca2+ uptake through the MCU results in cellular dysfunction and apoptotic cell death. Given the role of the MCU in human disease, researchers have developed compounds capable of inhibiting mitochondrial calcium uptake as tools for understanding the role of this protein in cell death. In this article, we describe recent findings on the role of the MCU in mediating pathological conditions and the search for small-molecule inhibitors of this protein for potential therapeutic applications.
Collapse
Affiliation(s)
- Joshua J Woods
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14583, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14583, USA.
| |
Collapse
|
83
|
Tarasova NV, Vishnyakova PA, Logashina YA, Elchaninov AV. Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease. Int J Mol Sci 2019; 20:ijms20194823. [PMID: 31569359 PMCID: PMC6801532 DOI: 10.3390/ijms20194823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+ currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement into normal and pathological molecular pathways started from the moment of discovery of its molecular components. A crucial role of mtCU in the control of these pathways is now recognized in both health and disease. In particular, impairments of mtCU function have been demonstrated for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in health and disease.
Collapse
Affiliation(s)
- Nadezhda V Tarasova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Yulia A Logashina
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| |
Collapse
|
84
|
Wu W, Shen Q, Lei Z, Qiu Z, Li D, Pei H, Zheng J, Jia Z. The crystal structure of MICU2 provides insight into Ca 2+ binding and MICU1-MICU2 heterodimer formation. EMBO Rep 2019; 20:e47488. [PMID: 31397067 PMCID: PMC6726906 DOI: 10.15252/embr.201847488] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/12/2019] [Accepted: 07/12/2019] [Indexed: 11/09/2022] Open
Abstract
The mitochondrial calcium uniporter (MCU) complex mediates the uptake of Ca2+ into mitochondria. Its activity is regulated by a heterodimer of MICU1 and MICU2, two EF-hand-containing proteins that act as the main gatekeeper of the uniporter. Herein we report the crystal structure of human MICU2 at 1.96 Å resolution. Our structure reveals a dimeric architecture of MICU2, in which each monomer adopts the canonical two-lobe structure with a pair of EF-hands in each lobe. Both Ca2+ -bound and Ca2+ -free EF-hands are observed in our structure. Moreover, we characterize the interaction sites within the MICU2 homodimer, as well as the MICU1-MICU2 heterodimer in both Ca2+ -free and Ca2+ -bound conditions. Glu242 in MICU1 and Arg352 in MICU2 are crucial for apo heterodimer formation, while Phe383 in MICU1 and Glu196 in MICU2 significantly contribute to the interaction in the Ca2+ -bound state. Based on our structural and biochemical analyses, we propose a model for MICU1-MICU2 heterodimer formation and its conformational transition from apo to a more compact Ca2+ -bound state, which expands our understanding of this co-regulatory mechanism critical for MCU's mitochondrial calcium uptake function.
Collapse
Affiliation(s)
- Wenping Wu
- College of ChemistryBeijing Normal UniversityBeijingChina
| | - Qingya Shen
- College of ChemistryBeijing Normal UniversityBeijingChina
| | - Zhen Lei
- College of ChemistryBeijing Normal UniversityBeijingChina
| | - Zhiyu Qiu
- College of ChemistryBeijing Normal UniversityBeijingChina
| | - Dan Li
- College of ChemistryBeijing Normal UniversityBeijingChina
| | - Hairun Pei
- College of ChemistryBeijing Normal UniversityBeijingChina
| | - Jimin Zheng
- College of ChemistryBeijing Normal UniversityBeijingChina
| | - Zongchao Jia
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonONCanada
| |
Collapse
|
85
|
Hutto RA, Bisbach CM, Abbas F, Brock DC, Cleghorn WM, Parker ED, Bauer BH, Ge W, Vinberg F, Hurley JB, Brockerhoff SE. Increasing Ca 2+ in photoreceptor mitochondria alters metabolites, accelerates photoresponse recovery, and reveals adaptations to mitochondrial stress. Cell Death Differ 2019; 27:1067-1085. [PMID: 31371786 PMCID: PMC7206026 DOI: 10.1038/s41418-019-0398-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 11/09/2022] Open
Abstract
Photoreceptors are specialized neurons that rely on Ca2+ to regulate phototransduction and neurotransmission. Photoreceptor dysfunction and degeneration occur when intracellular Ca2+ homeostasis is disrupted. Ca2+ homeostasis is maintained partly by mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU), which can influence cytosolic Ca2+ signals, stimulate energy production, and trigger apoptosis. Here we discovered that zebrafish cone photoreceptors express unusually low levels of MCU. We expected that this would be important to prevent mitochondrial Ca2+ overload and consequent cone degeneration. To test this hypothesis, we generated a cone-specific model of MCU overexpression. Surprisingly, we found that cones tolerate MCU overexpression, surviving elevated mitochondrial Ca2+ and disruptions to mitochondrial ultrastructure until late adulthood. We exploited the survival of MCU overexpressing cones to additionally demonstrate that mitochondrial Ca2+ uptake alters the distributions of citric acid cycle intermediates and accelerates recovery kinetics of the cone response to light. Cones adapt to mitochondrial Ca2+ stress by decreasing MICU3, an enhancer of MCU-mediated Ca2+ uptake, and selectively transporting damaged mitochondria away from the ellipsoid toward the synapse. Our findings demonstrate how mitochondrial Ca2+ can influence physiological and metabolic processes in cones and highlight the remarkable ability of cone photoreceptors to adapt to mitochondrial stress.
Collapse
Affiliation(s)
- Rachel A Hutto
- Biochemistry Department, University of Washington, Seattle, WA, 98109, USA
| | - Celia M Bisbach
- Biochemistry Department, University of Washington, Seattle, WA, 98109, USA
| | - Fatima Abbas
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - Daniel C Brock
- Biochemistry Department, University of Washington, Seattle, WA, 98109, USA
| | - Whitney M Cleghorn
- Biochemistry Department, University of Washington, Seattle, WA, 98109, USA
| | - Edward D Parker
- Opthalmology Department, University of Washington, Seattle, WA, 98109, USA
| | - Benjamin H Bauer
- Biochemistry Department, University of Washington, Seattle, WA, 98109, USA
| | - William Ge
- Biochemistry Department, University of Washington, Seattle, WA, 98109, USA
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - James B Hurley
- Biochemistry Department, University of Washington, Seattle, WA, 98109, USA.,Opthalmology Department, University of Washington, Seattle, WA, 98109, USA
| | - Susan E Brockerhoff
- Biochemistry Department, University of Washington, Seattle, WA, 98109, USA. .,Opthalmology Department, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
86
|
Wang JQ, Zhu S, Wang Y, Wang F, An C, Jiang D, Gao L, Tu Y, Zhu X, Wang Y, Liu H, Gong J, Sun Z, Wang X, Liu L, Yang K, Guo C, Tang TS. Miro2 supplies a platform for Parkin translocation to damaged mitochondria. Sci Bull (Beijing) 2019; 64:730-747. [PMID: 36659543 DOI: 10.1016/j.scib.2019.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/21/2023]
Abstract
PINK1/Parkin-mediated mitophagy is an important process in selective removal of damaged mitochondria, in which translocation of Parkin to damaged mitochondria is recognized as an initiation step. At present, how the damaged mitochondria are selectively recognized and targeted by Parkin is not fully understood. Here we show that Miro2, an outer mitochondrial membrane protein, undergoes demultimerization from a tetramer to a monomer and alteration in mitochondrial localization upon CCCP treatment, suggesting a CCCP-induced realignment of Miro2. The realignment of Miro2 is tightly regulated by PINK1-mediated phosphorylation at Ser325/Ser430 and by Ca2+ binding to EF2 domain, which are both essential for the subsequent Parkin translocation. Interestingly, ablation of Miro2 in mouse causes delayed reticulocyte maturation, lactic acidosis and cardiac disorders. Furthermore, several Miro2 mutations found in the congenital lactic acidosis patients also disable its realignment and Parkin translocation. These findings reveal an important role of Miro2 to mediate Parkin translocation by sensing both depolarization and Ca2+ release from damaged mitochondria to ensure the accuracy of mitophagy.
Collapse
Affiliation(s)
- Jiu-Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu Zhu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Department of Foresight and Evaluation Research, Chinese Academy of Science and Technology for Development, Beijing 100038, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihan Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengli Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaoqiang An
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongfang Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijie Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingfeng Tu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuefei Zhu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Juanjuan Gong
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongshuai Sun
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Leimei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Keyan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
87
|
Belosludtsev KN, Dubinin MV, Belosludtseva NV, Mironova GD. Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells. BIOCHEMISTRY. BIOKHIMIIA 2019; 84:593-607. [PMID: 31238859 DOI: 10.1134/s0006297919060026] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/29/2023]
Abstract
Mitochondria are among the most important cell organelles involved in the regulation of intracellular calcium homeostasis. During the last decade, a number of molecular structures responsible for the mitochondrial calcium transport have been identified including the mitochondrial Ca2+ uniporter (MCU), Na+/Ca2+ exchanger (NCLX), and Ca2+/H+ antiporter (Letm1). The review summarizes the data on the structure, regulation, and physiological role of such structures. The pathophysiological mechanism of Ca2+ transport through the cyclosporine A-sensitive mitochondrial permeability transition pore is discussed. An alternative mechanism for the mitochondrial pore opening, namely, formation of the lipid pore induced by saturated fatty acids, and its role in Ca2+ transport are described in detail.
Collapse
Affiliation(s)
- K N Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
- Mari State University, Yoshkar-Ola, 424000, Russia
| | - M V Dubinin
- Mari State University, Yoshkar-Ola, 424000, Russia
| | - N V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - G D Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
88
|
Marchi S, Vitto VAM, Danese A, Wieckowski MR, Giorgi C, Pinton P. Mitochondrial calcium uniporter complex modulation in cancerogenesis. Cell Cycle 2019; 18:1068-1083. [PMID: 31032692 DOI: 10.1080/15384101.2019.1612698] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrations in mitochondrial Ca2+ homeostasis have been associated with different pathological conditions, including neurological defects, cardiovascular diseases, and, in the last years, cancer. With the recent molecular identification of the mitochondrial calcium uniporter (MCU) complex, the channel that allows Ca2+ accumulation into the mitochondrial matrix, alterations in the expression levels or functioning in one or more MCU complex members have been linked to different cancers and cancer-related phenotypes. In this review, we will analyze the role of the uniporter and mitochondrial Ca2+ derangements in modulating cancer cell sensitivity to death, invasiveness, and migratory capacity, as well as cancer progression in vivo. We will also discuss some critical points and contradictory results to highlight the consequence of MCU complex modulation in tumor development.
Collapse
Affiliation(s)
- Saverio Marchi
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy.,b Department of Clinical and Molecular Sciences, Polytechnical University of Marche , Ancona , Italy
| | - Veronica Angela Maria Vitto
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | - Alberto Danese
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | | | - Carlotta Giorgi
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy
| | - Paolo Pinton
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology , Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara , Ferrara , Italy.,d Maria Cecilia Hospital, GVM Care & Research, 48033 , Cotignola , Ravenna , Italy
| |
Collapse
|
89
|
MICU1 and MICU2 Play an Essential Role in Mitochondrial Ca 2+ Uptake, Growth, and Infectivity of the Human Pathogen Trypanosoma cruzi. mBio 2019; 10:mBio.00348-19. [PMID: 31064825 PMCID: PMC6509184 DOI: 10.1128/mbio.00348-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial Ca2+ uptake in trypanosomatids, which belong to the eukaryotic supergroup Excavata, shares biochemical characteristics with that of animals, which, together with fungi, belong to the supergroup Opisthokonta. However, the composition of the mitochondrial calcium uniporter (MCU) complex in trypanosomatids is quite peculiar, suggesting lineage-specific adaptations. In this work, we used Trypanosoma cruzi to study the role of orthologs for mitochondrial calcium uptake 1 (MICU1) and MICU2 in mitochondrial Ca2+ uptake. T. cruzi MICU1 (TcMICU1) and TcMICU2 have mitochondrial targeting signals, two canonical EF-hand calcium-binding domains, and localize to the mitochondria. Using the CRISPR/Cas9 system (i.e., clustered regularly interspaced short palindromic repeats with Cas9), we generated TcMICU1 and TcMICU2 knockout (-KO) cell lines. Ablation of either TcMICU1 or TcMICU2 showed a significantly reduced mitochondrial Ca2+ uptake in permeabilized epimastigotes without dissipation of the mitochondrial membrane potential or effects on the AMP/ATP ratio or citrate synthase activity. However, none of these proteins had a gatekeeper function at low cytosolic Ca2+ concentrations ([Ca2+]cyt), as occurs with their mammalian orthologs. TcMICU1-KO and TcMICU2-KO epimastigotes had a lower growth rate and impaired oxidative metabolism, while infective trypomastigotes have a reduced capacity to invade host cells and to replicate within them as amastigotes. The findings of this work, which is the first to study the role of MICU1 and MICU2 in organisms evolutionarily distant from animals, suggest that, although these components were probably present in the last eukaryotic common ancestor (LECA), they developed different roles during evolution of different eukaryotic supergroups. The work also provides new insights into the adaptations of trypanosomatids to their particular life styles.IMPORTANCE Trypanosoma cruzi is the etiologic agent of Chagas disease and belongs to the early-branching eukaryotic supergroup Excavata. Its mitochondrial calcium uniporter (MCU) subunit shares similarity with the animal ortholog that was important to discover its encoding gene. In animal cells, the MICU1 and MICU2 proteins act as Ca2+ sensors and gatekeepers of the MCU, preventing Ca2+ uptake under resting conditions and favoring it at high cytosolic Ca2+ concentrations ([Ca2+]cyt). Using the CRISPR/Cas9 technique, we generated TcMICU1 and TcMICU2 knockout cell lines and showed that MICU1 and -2 do not act as gatekeepers at low [Ca2+]cyt but are essential for normal growth, host cell invasion, and intracellular replication, revealing lineage-specific adaptations.
Collapse
|
90
|
Crosstalk between Calcium and ROS in Pathophysiological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9324018. [PMID: 31178978 PMCID: PMC6507098 DOI: 10.1155/2019/9324018] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
Calcium ions are highly versatile intracellular signals that regulate many cellular processes. The key to achieving this pleiotropic role is the spatiotemporal control of calcium concentration evoked by an extensive molecular repertoire of signalling components. Among these, reactive oxygen species (ROS) signalling, together with calcium signalling, plays a crucial role in controlling several physiopathological events. Although initially considered detrimental by-products of aerobic metabolism, it is now widely accepted that ROS, in subtoxic levels, act as signalling molecules. However, dysfunctions in the mechanisms controlling the physiological ROS concentration affect cellular homeostasis, leading to the pathogenesis of various disorders.
Collapse
|
91
|
Cao JL, Adaniya SM, Cypress MW, Suzuki Y, Kusakari Y, Jhun BS, O-Uchi J. Role of mitochondrial Ca 2+ homeostasis in cardiac muscles. Arch Biochem Biophys 2019; 663:276-287. [PMID: 30684463 PMCID: PMC6469710 DOI: 10.1016/j.abb.2019.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Recent discoveries of the molecular identity of mitochondrial Ca2+ influx/efflux mechanisms have placed mitochondrial Ca2+ transport at center stage in views of cellular regulation in various cell-types/tissues. Indeed, mitochondria in cardiac muscles also possess the molecular components for efficient uptake and extraction of Ca2+. Over the last several years, multiple groups have taken advantage of newly available molecular information about these proteins and applied genetic tools to delineate the precise mechanisms for mitochondrial Ca2+ handling in cardiomyocytes and its contribution to excitation-contraction/metabolism coupling in the heart. Though mitochondrial Ca2+ has been proposed as one of the most crucial secondary messengers in controlling a cardiomyocyte's life and death, the detailed mechanisms of how mitochondrial Ca2+ regulates physiological mitochondrial and cellular functions in cardiac muscles, and how disorders of this mechanism lead to cardiac diseases remain unclear. In this review, we summarize the current controversies and discrepancies regarding cardiac mitochondrial Ca2+ signaling that remain in the field to provide a platform for future discussions and experiments to help close this gap.
Collapse
Affiliation(s)
- Jessica L Cao
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, USA; Department of Medicine, Division of Cardiology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Stephanie M Adaniya
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, USA; Department of Medicine, Division of Cardiology, The Warren Alpert Medical School of Brown University, Providence, RI, USA; Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Michael W Cypress
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Yuta Suzuki
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Bong Sook Jhun
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Jin O-Uchi
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
92
|
Phillips CB, Tsai CW, Tsai MF. The conserved aspartate ring of MCU mediates MICU1 binding and regulation in the mitochondrial calcium uniporter complex. eLife 2019; 8:41112. [PMID: 30638448 PMCID: PMC6347451 DOI: 10.7554/elife.41112] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/07/2019] [Indexed: 01/09/2023] Open
Abstract
The mitochondrial calcium uniporter is a Ca2+ channel that regulates intracellular Ca2+ signaling, oxidative phosphorylation, and apoptosis. It contains the pore-forming MCU protein, which possesses a DIME sequence thought to form a Ca2+ selectivity filter, and also regulatory EMRE, MICU1, and MICU2 subunits. To properly carry out physiological functions, the uniporter must stay closed in resting conditions, becoming open only when stimulated by intracellular Ca2+ signals. This Ca2+-dependent activation, known to be mediated by MICU subunits, is not well understood. Here, we demonstrate that the DIME-aspartate mediates a Ca2+-modulated electrostatic interaction with MICU1, forming an MICU1 contact interface with a nearby Ser residue at the cytoplasmic entrance of the MCU pore. A mutagenesis screen of MICU1 identifies two highly-conserved Arg residues that might contact the DIME-Asp. Perturbing MCU-MICU1 interactions elicits unregulated, constitutive Ca2+ flux into mitochondria. These results indicate that MICU1 confers Ca2+-dependent gating of the uniporter by blocking/unblocking MCU.
Collapse
Affiliation(s)
| | - Chen-Wei Tsai
- Department of Biochemistry, Brandeis University, Waltham, United States.,Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Ming-Feng Tsai
- Department of Biochemistry, Brandeis University, Waltham, United States.,Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, United States
| |
Collapse
|