51
|
Unveiling the Machinery behind Chromosome Folding by Polymer Physics Modeling. Int J Mol Sci 2023; 24:ijms24043660. [PMID: 36835064 PMCID: PMC9967178 DOI: 10.3390/ijms24043660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding the mechanisms underlying the complex 3D architecture of mammalian genomes poses, at a more fundamental level, the problem of how two or multiple genomic sites can establish physical contacts in the nucleus of the cells. Beyond stochastic and fleeting encounters related to the polymeric nature of chromatin, experiments have revealed specific, privileged patterns of interactions that suggest the existence of basic organizing principles of folding. In this review, we focus on two major and recently proposed physical processes of chromatin organization: loop-extrusion and polymer phase-separation, both supported by increasing experimental evidence. We discuss their implementation into polymer physics models, which we test against available single-cell super-resolution imaging data, showing that both mechanisms can cooperate to shape chromatin structure at the single-molecule level. Next, by exploiting the comprehension of the underlying molecular mechanisms, we illustrate how such polymer models can be used as powerful tools to make predictions in silico that can complement experiments in understanding genome folding. To this aim, we focus on recent key applications, such as the prediction of chromatin structure rearrangements upon disease-associated mutations and the identification of the putative chromatin organizing factors that orchestrate the specificity of DNA regulatory contacts genome-wide.
Collapse
|
52
|
Crickard JB. Single Molecule Imaging of DNA-Protein Interactions Using DNA Curtains. Methods Mol Biol 2023; 2599:127-139. [PMID: 36427147 PMCID: PMC10082465 DOI: 10.1007/978-1-0716-2847-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Direct observation of enzymes that work to promote nucleic acid metabolism is a powerful approach to understanding their biochemical and biological properties. Over several years, fluorescent optical microscopy has developed as a powerful tool for watching biological pathways as they occur in real time. Here we describe DNA curtains as an optical microscopy tool that combines engineering, biochemistry, and single molecule imaging to make direct observations of enzymes as they work on DNA in real time. We will provide a detailed methodology of this approach including information about the setup of a basic TIRF microscope, assembly of flow chambers for imaging, and the protocol for making DNA curtains. Our goal is to help the reader better understand the technical approaches to DNA curtains and to better understand the biochemical and biological applications of this approach.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
53
|
Gupta K, Wang G, Zhang S, Gao X, Zheng R, Zhang Y, Meng Q, Zhang L, Cao Q, Chen K. StripeDiff: Model-based algorithm for differential analysis of chromatin stripe. SCIENCE ADVANCES 2022; 8:eabk2246. [PMID: 36475785 PMCID: PMC9728969 DOI: 10.1126/sciadv.abk2246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/28/2022] [Indexed: 05/27/2023]
Abstract
Multiple recent studies revealed stripes as an architectural feature of three-dimensional chromatin and found stripes connected to epigenetic regulation of transcription. Whereas a couple of tools are available to define stripes in a single sample, there is yet no reported method to quantitatively measure the dynamic change of each stripe between samples. Here, we developed StripeDiff, a bioinformatics tool that delivers a set of statistical methods to detect differential stripes between samples. StripeDiff showed optimal performance in both simulation data analysis and real Hi-C data analysis. Applying StripeDiff to 12 sets of Hi-C data revealed new insights into the connection between change of chromatin stripe and change of chromatin modification, transcriptional regulation, and cell differentiation. StripeDiff will be a robust tool for the community to facilitate understanding of stripes and their function in numerous biological models.
Collapse
Affiliation(s)
- Krishan Gupta
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Guangyu Wang
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Shuo Zhang
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Xinlei Gao
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Rongbin Zheng
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Yanchun Zhang
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Qingshu Meng
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lili Zhang
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
- Broad Institute of MIT and Harvard, Boston, MA 02115, USA
- Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| |
Collapse
|
54
|
Ceccacci S, Roger K, Metatla I, Chhuon C, Tighanimine K, Fumagalli S, De Lucia A, Pranke I, Cordier C, Monti MC, Guerrera IC. Promitotic Action of Oenothera biennis on Senescent Human Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms232315153. [PMID: 36499490 PMCID: PMC9735661 DOI: 10.3390/ijms232315153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Accumulation of senescent dermal fibroblasts drives skin aging. The reactivation of proliferation is one strategy to modulate cell senescence. Recently, we reported the exact chemical composition of the hydrophilic extract of Oenothera biennis cell cultures (ObHEx) and we showed its skin anti-aging properties. The aim of this work is to assess its biological effect specifically on cell senescence. ObHEx action has been evaluated on normal human dermal fibroblasts subjected to stress-induced premature senescence (SIPS) through an ultra-deep proteomic analysis, leading to the most global senescence-associated proteome so far. Mass spectrometry data show that the treatment with ObHEx re-establishes levels of crucial mitotic proteins, strongly downregulated in senescent cells. To validate our proteomics findings, we proved that ObHEx can, in part, restore the activity of 'senescence-associated-ß-galactosidase', the most common hallmark of senescent cells. Furthermore, to assess if the upregulation of mitotic protein levels translates into a cell cycle re-entry, FACS experiments have been carried out, demonstrating a small but significative reactivation of senescent cell proliferation by ObHEx. In conclusion, the deep senescence-associated global proteome profiling published here provides a panel of hundreds of proteins deregulated by SIPS that can be used by the community to further understand senescence and the effect of new potential modulators. Moreover, proteomics analysis pointed to a specific promitotic effect of ObHEx on senescent cells. Thus, we suggest ObHEx as a powerful adjuvant against senescence associated with skin aging.
Collapse
Affiliation(s)
- Sara Ceccacci
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France
| | - Kévin Roger
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France
| | - Ines Metatla
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France
| | - Cerina Chhuon
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France
| | | | | | | | - Iwona Pranke
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France
| | - Corinne Cordier
- Cytometry Platform, Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, 75015 Paris, France
| | | | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015 Paris, France
- Correspondence:
| |
Collapse
|
55
|
Morao AK, Kim J, Obaji D, Sun S, Ercan S. Topoisomerases I and II facilitate condensin DC translocation to organize and repress X chromosomes in C. elegans. Mol Cell 2022; 82:4202-4217.e5. [PMID: 36302374 PMCID: PMC9837612 DOI: 10.1016/j.molcel.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/24/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Condensins are evolutionarily conserved molecular motors that translocate along DNA and form loops. To address how DNA topology affects condensin translocation, we applied auxin-inducible degradation of topoisomerases I and II and analyzed the binding and function of an interphase condensin that mediates X chromosome dosage compensation in C. elegans. TOP-2 depletion reduced long-range spreading of condensin-DC (dosage compensation) from its recruitment sites and shortened 3D DNA contacts measured by Hi-C. TOP-1 depletion did not affect long-range spreading but resulted in condensin-DC accumulation within expressed gene bodies. Both TOP-1 and TOP-2 depletion resulted in X chromosome derepression, indicating that condensin-DC translocation at both scales is required for its function. Together, the distinct effects of TOP-1 and TOP-2 suggest two distinct modes of condensin-DC association with chromatin: long-range DNA loop extrusion that requires decatenation/unknotting of DNA and short-range translocation across genes that requires resolution of transcription-induced supercoiling.
Collapse
Affiliation(s)
- Ana Karina Morao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| | - Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Daniel Obaji
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Siyu Sun
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
56
|
Gitchev T, Zala G, Meister P, Jost D. 3DPolyS-LE: an accessible simulation framework to model the interplay between chromatin and loop extrusion. Bioinformatics 2022; 38:5454-5456. [PMID: 36355469 PMCID: PMC9750120 DOI: 10.1093/bioinformatics/btac705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
SUMMARY Recent studies suggest that the loop extrusion activity of Structural Maintenance of Chromosomes complexes is central to proper organization of genomes in vivo. Polymer physics-based modeling of chromosome structure has been instrumental to assess which structures such extrusion can create. Only few laboratories however have the technical and computational expertise to create in silico models combining dynamic features of chromatin and loop extruders. Here, we present 3DPolyS-LE, a self-contained, easy to use modeling and simulation framework allowing non-specialists to ask how specific properties of loop extruders and boundary elements impact on 3D chromosome structure. 3DPolyS-LE also provides algorithms to compare predictions with experimental Hi-C data. AVAILABILITY AND IMPLEMENTATION Software available at https://gitlab.com/togop/3DPolyS-LE; implemented in Python and Fortran 2003 and supported on any Unix-based operating system (Linux and Mac OS). SUPPLEMENTARY INFORMATION Supplementary information are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Gabriel Zala
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | | | - Daniel Jost
- To whom correspondence should be addressed. or
| |
Collapse
|
57
|
Kim J, Jimenez DS, Ragipani B, Zhang B, Street LA, Kramer M, Albritton SE, Winterkorn LH, Morao AK, Ercan S. Condensin DC loads and spreads from recruitment sites to create loop-anchored TADs in C. elegans. eLife 2022; 11:e68745. [PMID: 36331876 PMCID: PMC9635877 DOI: 10.7554/elife.68745] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Condensins are molecular motors that compact DNA via linear translocation. In Caenorhabditis elegans, the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of recruitment elements on the X-chromosome (rex) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a 'super rex' composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to the formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.
Collapse
Affiliation(s)
- Jun Kim
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - David S Jimenez
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Bhavana Ragipani
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Bo Zhang
- UCSF HSWSan FranciscoUnited States
| | - Lena A Street
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Maxwell Kramer
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Sarah E Albritton
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Lara H Winterkorn
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Ana K Morao
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Sevinc Ercan
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
58
|
Regulation of the mitotic chromosome folding machines. Biochem J 2022; 479:2153-2173. [PMID: 36268993 DOI: 10.1042/bcj20210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
Over the last several years enormous progress has been made in identifying the molecular machines, including condensins and topoisomerases that fold mitotic chromosomes. The discovery that condensins generate chromatin loops through loop extrusion has revolutionized, and energized, the field of chromosome folding. To understand how these machines fold chromosomes with the appropriate dimensions, while disentangling sister chromatids, it needs to be determined how they are regulated and deployed. Here, we outline the current understanding of how these machines and factors are regulated through cell cycle dependent expression, chromatin localization, activation and inactivation through post-translational modifications, and through associations with each other, with other factors and with the chromatin template itself. There are still many open questions about how condensins and topoisomerases are regulated but given the pace of progress in the chromosome folding field, it seems likely that many of these will be answered in the years ahead.
Collapse
|
59
|
Guo Y, Al-Jibury E, Garcia-Millan R, Ntagiantas K, King JWD, Nash AJ, Galjart N, Lenhard B, Rueckert D, Fisher AG, Pruessner G, Merkenschlager M. Chromatin jets define the properties of cohesin-driven in vivo loop extrusion. Mol Cell 2022; 82:3769-3780.e5. [PMID: 36182691 DOI: 10.1016/j.molcel.2022.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 01/01/2023]
Abstract
Complex genomes show intricate organization in three-dimensional (3D) nuclear space. Current models posit that cohesin extrudes loops to form self-interacting domains delimited by the DNA binding protein CTCF. Here, we describe and quantitatively characterize cohesin-propelled, jet-like chromatin contacts as landmarks of loop extrusion in quiescent mammalian lymphocytes. Experimental observations and polymer simulations indicate that narrow origins of loop extrusion favor jet formation. Unless constrained by CTCF, jets propagate symmetrically for 1-2 Mb, providing an estimate for the range of in vivo loop extrusion. Asymmetric CTCF binding deflects the angle of jet propagation as experimental evidence that cohesin-mediated loop extrusion can switch from bi- to unidirectional and is controlled independently in both directions. These data offer new insights into the physiological behavior of in vivo cohesin-mediated loop extrusion and further our understanding of the principles that underlie genome organization.
Collapse
Affiliation(s)
- Ya Guo
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; WLA Laboratories, Shanghai 201203, China
| | - Ediem Al-Jibury
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Department of Computing, Imperial College London, London SW7 2RH, UK
| | - Rosalba Garcia-Millan
- Department of Mathematics, Imperial College London, London SW7 2RH, UK; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK; St John's College, University of Cambridge, Cambridge CB2 1TP, UK
| | | | - James W D King
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Alex J Nash
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London SW7 2RH, UK; Chair for AI in Healthcare and Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Amanda G Fisher
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Gunnar Pruessner
- Department of Mathematics, Imperial College London, London SW7 2RH, UK.
| | - Matthias Merkenschlager
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
60
|
Pradhan B, Barth R, Kim E, Davidson IF, Bauer B, van Laar T, Yang W, Ryu JK, van der Torre J, Peters JM, Dekker C. SMC complexes can traverse physical roadblocks bigger than their ring size. Cell Rep 2022; 41:111491. [PMID: 36261017 DOI: 10.1101/2021.07.15.452501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 05/17/2023] Open
Abstract
Ring-shaped structural maintenance of chromosomes (SMC) complexes like condensin and cohesin extrude loops of DNA. It remains, however, unclear how they can extrude DNA loops in chromatin that is bound with proteins. Here, we use in vitro single-molecule visualization to show that nucleosomes, RNA polymerase, and dCas9 pose virtually no barrier to loop extrusion by yeast condensin. We find that even DNA-bound nanoparticles as large as 200 nm, much bigger than the SMC ring size, also translocate into DNA loops during extrusion by condensin and cohesin. This even occurs for a single-chain version of cohesin in which the ring-forming subunits are covalently linked and cannot open to entrap DNA. The data show that SMC-driven loop extrusion has surprisingly little difficulty in accommodating large roadblocks into the loop. The findings also show that the extruded DNA does not pass through the SMC ring (pseudo)topologically, hence pointing to a nontopological mechanism for DNA loop extrusion.
Collapse
Affiliation(s)
- Biswajit Pradhan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Eugene Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Benedikt Bauer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Theo van Laar
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands; Nynke Dekker Lab, Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Wayne Yang
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Je-Kyung Ryu
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
61
|
Ward JR, Khan A, Torres S, Crawford B, Nock S, Frisbie T, Moran J, Longworth M. Condensin I and condensin II proteins form a LINE-1 dependent super condensin complex and cooperate to repress LINE-1. Nucleic Acids Res 2022; 50:10680-10694. [PMID: 36169232 PMCID: PMC9561375 DOI: 10.1093/nar/gkac802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Condensin I and condensin II are multi-subunit complexes that are known for their individual roles in genome organization and preventing genomic instability. However, interactions between condensin I and condensin II subunits and cooperative roles for condensin I and condensin II, outside of their genome organizing functions, have not been reported. We previously discovered that condensin II cooperates with Gamma Interferon Activated Inhibitor of Translation (GAIT) proteins to associate with Long INterspersed Element-1 (LINE-1 or L1) RNA and repress L1 protein expression and the retrotransposition of engineered L1 retrotransposition in cultured human cells. Here, we report that the L1 3'UTR is required for condensin II and GAIT association with L1 RNA, and deletion of the L1 RNA 3'UTR results in increased L1 protein expression and retrotransposition. Interestingly, like condensin II, we report that condensin I also binds GAIT proteins, associates with the L1 RNA 3'UTR, and represses L1 retrotransposition. We provide evidence that the condensin I protein, NCAPD2, is required for condensin II and GAIT protein association with L1 RNA. Furthermore, condensin I and condensin II subunits interact to form a L1-dependent super condensin complex (SCC) which is located primarily within the cytoplasm of both transformed and primary epithelial cells. These data suggest that increases in L1 expression in epithelial cells promote cytoplasmic condensin protein associations that facilitate a feedback loop in which condensins may cooperate to mediate L1 repression.
Collapse
Affiliation(s)
- Jacqueline R Ward
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Afshin Khan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sabrina Torres
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bert Crawford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sarah Nock
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Trenton Frisbie
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Michelle S Longworth
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| |
Collapse
|
62
|
SMC complexes can traverse physical roadblocks bigger than their ring size. Cell Rep 2022; 41:111491. [DOI: 10.1016/j.celrep.2022.111491] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
|
63
|
Hallett ST, Campbell Harry I, Schellenberger P, Zhou L, Cronin N, Baxter J, Etheridge T, Murray J, Oliver A. Cryo-EM structure of the Smc5/6 holo-complex. Nucleic Acids Res 2022; 50:9505-9520. [PMID: 35993814 PMCID: PMC9458440 DOI: 10.1093/nar/gkac692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 01/06/2023] Open
Abstract
The Smc5/6 complex plays an essential role in the resolution of recombination intermediates formed during mitosis or meiosis, or as a result of the cellular response to replication stress. It also functions as a restriction factor preventing viral replication. Here, we report the cryogenic EM (cryo-EM) structure of the six-subunit budding yeast Smc5/6 holo-complex, reconstituted from recombinant proteins expressed in insect cells - providing both an architectural overview of the entire complex and an understanding of how the Nse1/3/4 subcomplex binds to the hetero-dimeric SMC protein core. In addition, we demonstrate that a region within the head domain of Smc5, equivalent to the 'W-loop' of Smc4 or 'F-loop' of Smc1, mediates an important interaction with Nse1. Notably, mutations that alter the surface-charge profile of the region of Nse1 which accepts the Smc5-loop, lead to a slow-growth phenotype and a global reduction in the chromatin-associated fraction of the Smc5/6 complex, as judged by single molecule localisation microscopy experiments in live yeast. Moreover, when taken together, our data indicates functional equivalence between the structurally unrelated KITE and HAWK accessory subunits associated with SMC complexes.
Collapse
Affiliation(s)
- Stephen T Hallett
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Isabella Campbell Harry
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Pascale Schellenberger
- Electron Microscopy Imaging Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Nora B Cronin
- London Consortium for CryoEM (LonCEM) Facility, The Francis Crick Institute, London, UK
| | - Jonathan Baxter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Thomas J Etheridge
- Correspondence may also be addressed to Thomas J. Etheridge. Tel: +44 1273 678123;
| | - Johanne M Murray
- Correspondence may also be addressed to Johanne M. Murray. Tel: +44 1273 877191;
| | - Antony W Oliver
- To whom correspondence should be addressed. Tel: +44 1273 678349;
| |
Collapse
|
64
|
Yoshida MM, Kinoshita K, Aizawa Y, Tane S, Yamashita D, Shintomi K, Hirano T. Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays. eLife 2022; 11:78984. [PMID: 35983835 PMCID: PMC9433093 DOI: 10.7554/elife.78984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
In vertebrates, condensin I and condensin II cooperate to assemble rod-shaped chromosomes during mitosis. Although the mechanism of action and regulation of condensin I have been studied extensively, our corresponding knowledge of condensin II remains very limited. By introducing recombinant condensin II complexes into Xenopus egg extracts, we dissect the roles of its individual subunits in chromosome assembly. We find that one of two HEAT subunits, CAP-D3, plays a crucial role in condensin II-mediated assembly of chromosome axes, whereas the other HEAT subunit, CAP-G2, has a very strong negative impact on this process. The structural maintenance of chromosomes ATPase and the basic amino acid clusters of the kleisin subunit CAP-H2 are essential for this process. Deletion of the C-terminal tail of CAP-D3 increases the ability of condensin II to assemble chromosomes and further exposes a hidden function of CAP-G2 in the lateral compaction of chromosomes. Taken together, our results uncover a multilayered regulatory mechanism unique to condensin II, and provide profound implications for the evolution of condensin II.
Collapse
Affiliation(s)
| | | | - Yuuki Aizawa
- Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
| | - Shoji Tane
- Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
| | | | | | | |
Collapse
|
65
|
KSHV RTA antagonizes SMC5/6 complex-induced viral chromatin compaction by hijacking the ubiquitin-proteasome system. PLoS Pathog 2022; 18:e1010744. [PMID: 35914008 PMCID: PMC9371351 DOI: 10.1371/journal.ppat.1010744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 08/11/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus with the capacity to establish life-long latent infection. During latent infection, the viral genome persists as a circular episome that associates with cellular histones and exists as a nonintegrated minichromosome in the nucleus of infected cells. Chromatin structure and epigenetic programming are required for the proper control of viral gene expression and stable maintenance of viral DNA. However, there is still limited knowledge regarding how the host regulates the chromatin structure and maintenance of episomal DNA. Here, we found that the cellular protein structural maintenance of chromosome (SMC) complex SMC5/6 recognizes and associates with the KSHV genome to inhibit its replication. The SMC5/6 complex can bind to the KSHV genome and suppress KSHV gene transcription by condensing the viral chromatin and creating a repressive chromatin structure. Correspondingly, KSHV employs an antagonistic strategy by utilizing the viral protein RTA to degrade the SMC5/6 complex and antagonize the inhibitory effect of this complex on viral gene transcription. Interestingly, this antagonistic mechanism of RTA is evolutionarily conserved among γ-herpesviruses. Our work suggests that the SMC5/6 complex is a new host factor that restricts KSHV replication. KSHV can establish life-long latent infection. During latency, the viral genome is maintained as an extrachromosomal episome in the infected cells. We demonstrated that the host protein SMC5/6 complex associates with the KSHV genome and results in direct transcriptional inhibition by creating a transcriptionally repressive chromatin structure of the viral genome. RTA, the master switch protein of KSHV, can hijack the ubiquitin-proteasome system to degrade the SMC5/6 complex to antagonize its inhibitory effect on viral gene transcription. Interestingly, this function of RTA is evolutionarily conserved among γ-herpesviruses.
Collapse
|
66
|
Shintomi K. Making Mitotic Chromosomes in a Test Tube. EPIGENOMES 2022; 6:20. [PMID: 35893016 PMCID: PMC9326633 DOI: 10.3390/epigenomes6030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mitotic chromosome assembly is an essential preparatory step for accurate transmission of the genome during cell division. During the past decades, biochemical approaches have uncovered the molecular basis of mitotic chromosomes. For example, by using cell-free assays of frog egg extracts, the condensin I complex central for the chromosome assembly process was first identified, and its functions have been intensively studied. A list of chromosome-associated proteins has been almost completed, and it is now possible to reconstitute structures resembling mitotic chromosomes with a limited number of purified factors. In this review, I introduce how far we have come in understanding the mechanism of chromosome assembly using cell-free assays and reconstitution assays, and I discuss their potential applications to solve open questions.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| |
Collapse
|
67
|
Mirny L, Dekker J. Mechanisms of Chromosome Folding and Nuclear Organization: Their Interplay and Open Questions. Cold Spring Harb Perspect Biol 2022; 14:a040147. [PMID: 34518339 PMCID: PMC9248823 DOI: 10.1101/cshperspect.a040147] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Microscopy and genomic approaches provide detailed descriptions of the three-dimensional folding of chromosomes and nuclear organization. The fundamental question is how activity of molecules at the nanometer scale can lead to complex and orchestrated spatial organization at the scale of chromosomes and the whole nucleus. At least three key mechanisms can bridge across scales: (1) tethering of specific loci to nuclear landmarks leads to massive reorganization of the nucleus; (2) spatial compartmentalization of chromatin, which is driven by molecular affinities, results in spatial isolation of active and inactive chromatin; and (3) loop extrusion activity of SMC (structural maintenance of chromosome) complexes can explain many features of interphase chromatin folding and underlies key phenomena during mitosis. Interestingly, many features of chromosome organization ultimately result from collective action and the interplay between these mechanisms, and are further modulated by transcription and topological constraints. Finally, we highlight some outstanding questions that are critical for our understanding of nuclear organization and function. We believe many of these questions can be answered in the coming years.
Collapse
Affiliation(s)
- Leonid Mirny
- Institute for Medical Engineering and Science, and Department of Physics, MIT, Cambridge, Massachusetts 02139, USA
| | - Job Dekker
- Howard Hughes Medical Institute, and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
68
|
Yamamoto T, Schiessel H. Loop extrusion driven volume phase transition of entangled chromosomes. Biophys J 2022; 121:2742-2750. [PMID: 35706364 DOI: 10.1016/j.bpj.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Experiments on reconstituted chromosomes have revealed that mitotic chromosomes are assembled even without nucleosomes. When topoisomerase II (topo II) is depleted from such reconstituted chromosomes, these chromosomes are not disentangled and form "sparklers," where DNA and linker histone are condensed in the core and condensin is localized at the periphery. To understand the mechanism of the assembly of sparklers, we here take into account the loop extrusion by condensin in an extension of the theory of entangled polymer gels. The loop extrusion stiffens an entangled DNA network because DNA segments in the elastically effective chains are translocated to loops, which are elastically ineffective. Our theory predicts that the loop extrusion by condensin drives the volume phase transition that collapses a swollen entangled DNA gel because the stiffening of the network destabilizes the swollen phase. This may be an important piece to understand the mechanism of the assembly of mitotic chromosomes.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan.
| | - Helmut Schiessel
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| |
Collapse
|
69
|
Yildirim A, Boninsegna L, Zhan Y, Alber F. Uncovering the Principles of Genome Folding by 3D Chromatin Modeling. Cold Spring Harb Perspect Biol 2022; 14:a039693. [PMID: 34400556 PMCID: PMC9248826 DOI: 10.1101/cshperspect.a039693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our understanding of how genomic DNA is tightly packed inside the nucleus, yet is still accessible for vital cellular processes, has grown dramatically over recent years with advances in microscopy and genomics technologies. Computational methods have played a pivotal role in the structural interpretation of experimental data, which helped unravel some organizational principles of genome folding. Here, we give an overview of current computational efforts in mechanistic and data-driven 3D chromatin structure modeling. We discuss strengths and limitations of different methods and evaluate the added value and benefits of computational approaches to infer the 3D structural and dynamic properties of the genome and its underlying mechanisms at different scales and resolution, ranging from the dynamic formation of chromatin loops and topological associated domains to nuclear compartmentalization of chromatin and nuclear bodies.
Collapse
Affiliation(s)
- Asli Yildirim
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Lorenzo Boninsegna
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Yuxiang Zhan
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Frank Alber
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
70
|
Shaltiel IA, Datta S, Lecomte L, Hassler M, Kschonsak M, Bravo S, Stober C, Ormanns J, Eustermann S, Haering CH. A hold-and-feed mechanism drives directional DNA loop extrusion by condensin. Science 2022; 376:1087-1094. [PMID: 35653469 DOI: 10.1126/science.abm4012] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Structural maintenance of chromosomes (SMC) protein complexes structure genomes by extruding DNA loops, but the molecular mechanism that underlies their activity has remained unknown. We show that the active condensin complex entraps the bases of a DNA loop transiently in two separate chambers. Single-molecule imaging and cryo-electron microscopy suggest a putative power-stroke movement at the first chamber that feeds DNA into the SMC-kleisin ring upon adenosine triphosphate binding, whereas the second chamber holds on upstream of the same DNA double helix. Unlocking the strict separation of "motor" and "anchor" chambers turns condensin from a one-sided into a bidirectional DNA loop extruder. We conclude that the orientation of two topologically bound DNA segments during the SMC reaction cycle determines the directionality of DNA loop extrusion.
Collapse
Affiliation(s)
- Indra A Shaltiel
- Department of Biochemistry and Cell Biology, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Sumanjit Datta
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Léa Lecomte
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Markus Hassler
- Department of Biochemistry and Cell Biology, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Marc Kschonsak
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Sol Bravo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Catherine Stober
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jenny Ormanns
- Department of Biochemistry and Cell Biology, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | | | - Christian H Haering
- Department of Biochemistry and Cell Biology, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Structural and Computational Biology Unit, EMBL, 69117 Heidelberg, Germany
| |
Collapse
|
71
|
Nomidis SK, Carlon E, Gruber S, Marko JF. DNA tension-modulated translocation and loop extrusion by SMC complexes revealed by molecular dynamics simulations. Nucleic Acids Res 2022; 50:4974-4987. [PMID: 35474142 PMCID: PMC9122525 DOI: 10.1093/nar/gkac268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.
Collapse
Affiliation(s)
- Stefanos K Nomidis
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
- Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| | - Enrico Carlon
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Stephan Gruber
- Départment de Microbiologie Fondamentale, Université de Lausanne, 1015 Lausanne, Switzerland
| | - John F Marko
- Department of Physics and Astronomy, and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
72
|
A walk through the SMC cycle: From catching DNAs to shaping the genome. Mol Cell 2022; 82:1616-1630. [PMID: 35477004 DOI: 10.1016/j.molcel.2022.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
SMC protein complexes are molecular machines that provide structure to chromosomes. These complexes bridge DNA elements and by doing so build DNA loops in cis and hold together the sister chromatids in trans. We discuss how drastic conformational changes allow SMC complexes to build such intricate DNA structures. The tight regulation of these complexes controls fundamental chromosomal processes such as transcription, recombination, repair, and mitosis.
Collapse
|
73
|
Haase J, Chen R, Parker WM, Bonner MK, Jenkins LM, Kelly AE. The TFIIH complex is required to establish and maintain mitotic chromosome structure. eLife 2022; 11:e75475. [PMID: 35293859 PMCID: PMC8956287 DOI: 10.7554/elife.75475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Condensins compact chromosomes to promote their equal segregation during mitosis, but the mechanism of condensin engagement with and action on chromatin is incompletely understood. Here, we show that the general transcription factor TFIIH complex is continuously required to establish and maintain a compacted chromosome structure in transcriptionally silent Xenopus egg extracts. Inhibiting the DNA-dependent ATPase activity of the TFIIH complex subunit XPB rapidly and reversibly induces a complete loss of chromosome structure and prevents the enrichment of condensins I and II, but not topoisomerase II, on chromatin. In addition, inhibiting TFIIH prevents condensation of both mouse and Xenopus nuclei in Xenopus egg extracts, which suggests an evolutionarily conserved mechanism of TFIIH action. Reducing nucleosome density through partial histone depletion restores chromosome structure and condensin enrichment in the absence of TFIIH activity. We propose that the TFIIH complex promotes mitotic chromosome condensation by dynamically altering the chromatin environment to facilitate condensin loading and condensin-dependent loop extrusion.
Collapse
Affiliation(s)
- Julian Haase
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Richard Chen
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Wesley M Parker
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Mary Kate Bonner
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Alexander E Kelly
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| |
Collapse
|
74
|
Kinoshita K, Tsubota Y, Tane S, Aizawa Y, Sakata R, Takeuchi K, Shintomi K, Nishiyama T, Hirano T. A loop extrusion-independent mechanism contributes to condensin I-mediated chromosome shaping. J Cell Biol 2022; 221:212966. [PMID: 35045152 PMCID: PMC8932526 DOI: 10.1083/jcb.202109016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Condensin I is a five-subunit protein complex that is central to mitotic chromosome assembly in eukaryotic cells. Despite recent progress, its molecular mechanisms of action remain to be fully elucidated. By using Xenopus egg extracts as a functional assay, we find that condensin I complexes harboring mutations in its kleisin subunit CAP-H produce chromosomes with confined axes in the presence of topoisomerase IIα (topo IIα) and highly compact structures (termed “beans”) with condensin-positive central cores in its absence. The bean phenotype depends on the SMC ATPase cycle and can be reversed by subsequent addition of topo IIα. The HEAT repeat subunit CAP-D2, but not CAP-G, is essential for the bean formation. Notably, loop extrusion activities of the mutant complexes cannot explain the chromosomal defects they exhibit in Xenopus egg extracts, implying that a loop extrusion–independent mechanism contributes to condensin I–mediated chromosome assembly and shaping. We provide evidence that condensin–condensin interactions underlie these processes.
Collapse
Affiliation(s)
| | - Yuko Tsubota
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shoji Tane
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, Japan
| | - Yuuki Aizawa
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, Japan
| | - Ryota Sakata
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kozo Takeuchi
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, Japan
| | | | - Tomoko Nishiyama
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
75
|
Chiariello AM, Bianco S, Esposito A, Fiorillo L, Conte M, Irani E, Musella F, Abraham A, Prisco A, Nicodemi M. Physical mechanisms of chromatin spatial organization. FEBS J 2022; 289:1180-1190. [PMID: 33583147 DOI: 10.1111/febs.15762] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/22/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
In higher eukaryotes, chromosomes have a complex three-dimensional (3D) conformation in the cell nucleus serving vital functional purposes, yet their folding principles remain poorly understood at the single-molecule level. Here, we summarize recent approaches from polymer physics to comprehend the physical mechanisms underlying chromatin architecture. In particular, we focus on two models that have been supported by recent, growing experimental evidence, the Loop Extrusion model and the Strings&Binders phase separation model. We discuss their key ingredients, how they compare to experimental data and some insight they provide on chromatin architecture and gene regulation. Progress in that research field are opening the possibility to predict how genomic mutations alter the network of contacts between genes and their regulators and how that is linked to genetic diseases, such as congenital disorders and cancer.
Collapse
Affiliation(s)
- Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Ehsan Irani
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre (MDC) for Molecular Medicine, Berlin, Germany
| | - Francesco Musella
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | | | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre (MDC) for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), MDC-Berlin, Germany
| |
Collapse
|
76
|
Abstract
The centromere serves as the binding site for the kinetochore and is essential for the faithful segregation of chromosomes throughout cell division. The point centromere in yeast is encoded by a ∼115 bp specific DNA sequence, whereas regional centromeres range from 6-10 kbp in fission yeast to 5-10 Mbp in humans. Understanding the physical structure of centromere chromatin (pericentromere in yeast), defined as the chromatin between sister kinetochores, will provide fundamental insights into how centromere DNA is woven into a stiff spring that is able to resist microtubule pulling forces during mitosis. One hallmark of the pericentromere is the enrichment of the structural maintenance of chromosome (SMC) proteins cohesin and condensin. Based on studies from population approaches (ChIP-seq and Hi-C) and experimentally obtained images of fluorescent probes of pericentromeric structure, as well as quantitative comparisons between simulations and experimental results, we suggest a mechanism for building tension between sister kinetochores. We propose that the centromere is a chromatin bottlebrush that is organized by the loop-extruding proteins condensin and cohesin. The bottlebrush arrangement provides a biophysical means to transform pericentromeric chromatin into a spring due to the steric repulsion between radial loops. We argue that the bottlebrush is an organizing principle for chromosome organization that has emerged from multiple approaches in the field.
Collapse
|
77
|
Higashi TL, Uhlmann F. SMC complexes: Lifting the lid on loop extrusion. Curr Opin Cell Biol 2022; 74:13-22. [PMID: 35016058 PMCID: PMC9089308 DOI: 10.1016/j.ceb.2021.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023]
Abstract
Loop extrusion has emerged as a prominent hypothesis for how SMC complexes shape chromosomes - single molecule in vitro observations have yielded fascinating images of this process. When not extruding loops, SMC complexes are known to topologically entrap one or more DNAs. Here, we review how structural insight into the SMC complex cohesin has led to a molecular framework for both activities: a Brownian ratchet motion, associated with topological DNA entry, might repeat itself to elicit loop extrusion. After contrasting alternative loop extrusion models, we explore whether topological loading or loop extrusion is more adept at explaining in vivo SMC complex function. SMC variants that experimentally separate topological loading from loop extrusion will in the future probe their respective contributions to chromosome biology.
Collapse
Affiliation(s)
- Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Department of Cellular Biochemistry, Kyushu University, Fukuoka, 812-8582, Japan
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
78
|
Breimann L, Morao AK, Kim J, Sebastian Jimenez D, Maryn N, Bikkasani K, Carrozza MJ, Albritton SE, Kramer M, Street LA, Cerimi K, Schumann VF, Bahry E, Preibisch S, Woehler A, Ercan S. The histone H4 lysine 20 demethylase DPY-21 regulates the dynamics of condensin DC binding. J Cell Sci 2022; 135:jcs258818. [PMID: 34918745 PMCID: PMC8917352 DOI: 10.1242/jcs.258818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
Condensin is a multi-subunit structural maintenance of chromosomes (SMC) complex that binds to and compacts chromosomes. Here, we addressed the regulation of condensin binding dynamics using Caenorhabditis elegans condensin DC, which represses X chromosomes in hermaphrodites for dosage compensation. We established fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes DPY-27 binding to X chromosomes. Next, we performed FRAP in the background of several chromatin modifier mutants that cause varying degrees of X chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of condensin DC reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C sequencing data from the dpy-21 null mutant showed little change compared to wild-type data, uncoupling Hi-C-measured long-range DNA contacts from transcriptional repression of the X chromosomes. Taken together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.
Collapse
Affiliation(s)
- Laura Breimann
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
- Institute for Biology, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Ana Karina Morao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - David Sebastian Jimenez
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Nina Maryn
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Krishna Bikkasani
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Michael J. Carrozza
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sarah E. Albritton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Maxwell Kramer
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Lena Annika Street
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Kustrim Cerimi
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Vic-Fabienne Schumann
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Ella Bahry
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Stephan Preibisch
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| |
Collapse
|
79
|
Ryu JK, Rah SH, Janissen R, Kerssemakers JWJ, Bonato A, Michieletto D, Dekker C. Condensin extrudes DNA loops in steps up to hundreds of base pairs that are generated by ATP binding events. Nucleic Acids Res 2021; 50:820-832. [PMID: 34951453 PMCID: PMC8789078 DOI: 10.1093/nar/gkab1268] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
The condensin SMC protein complex organizes chromosomal structure by extruding loops of DNA. Its ATP-dependent motor mechanism remains unclear but likely involves steps associated with large conformational changes within the ∼50 nm protein complex. Here, using high-resolution magnetic tweezers, we resolve single steps in the loop extrusion process by individual yeast condensins. The measured median step sizes range between 20–40 nm at forces of 1.0–0.2 pN, respectively, comparable with the holocomplex size. These large steps show that, strikingly, condensin typically reels in DNA in very sizeable amounts with ∼200 bp on average per single extrusion step at low force, and occasionally even much larger, exceeding 500 bp per step. Using Molecular Dynamics simulations, we demonstrate that this is due to the structural flexibility of the DNA polymer at these low forces. Using ATP-binding-impaired and ATP-hydrolysis-deficient mutants, we find that ATP binding is the primary step-generating stage underlying DNA loop extrusion. We discuss our findings in terms of a scrunching model where a stepwise DNA loop extrusion is generated by an ATP-binding-induced engagement of the hinge and the globular domain of the SMC complex.
Collapse
Affiliation(s)
- Je-Kyung Ryu
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Sang-Hyun Rah
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jacob W J Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Andrea Bonato
- University of Edinburgh, SUPA, School of Physics and Astronomy, EH9 3FD, Edinburgh, UK
| | - Davide Michieletto
- University of Edinburgh, SUPA, School of Physics and Astronomy, EH9 3FD, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
80
|
Bonato A, Michieletto D. Three-dimensional loop extrusion. Biophys J 2021; 120:5544-5552. [PMID: 34793758 PMCID: PMC8715238 DOI: 10.1016/j.bpj.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Loop extrusion convincingly describes how certain structural maintenance of chromosome (SMC) proteins mediate the formation of large DNA loops. Yet most of the existing computational models cannot reconcile recent in vitro observations showing that condensins can traverse each other, bypass large roadblocks, and perform steps longer than their own size. To fill this gap, we propose a three-dimensional (3D) "trans-grabbing" model for loop extrusion, which not only reproduces the experimental features of loop extrusion by one SMC complex but also predicts the formation of so-called Z-loops via the interaction of two or more SMCs extruding along the same DNA substrate. By performing molecular dynamics simulations of this model, we discover that the experimentally observed asymmetry in the different types of Z-loops is a natural consequence of the DNA tethering in vitro. Intriguingly, our model predicts this bias to disappear in the absence of tethering and a third type of Z-loop, which has not yet been identified in experiments, to appear. Our model naturally explains roadblock bypassing and the appearance of steps larger than the SMC size as a consequence of non-contiguous DNA grabbing. Finally, this study is the first, to our knowledge, to address how Z-loops and bypassing might occur in a way that is broadly consistent with existing cis-only 1D loop extrusion models.
Collapse
Affiliation(s)
- Andrea Bonato
- University of Edinburgh, SUPA, School of Physics and Astronomy, Peter Guthrie Road, Edinburgh, UK
| | - Davide Michieletto
- University of Edinburgh, SUPA, School of Physics and Astronomy, Peter Guthrie Road, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
81
|
Houlard M, Cutts EE, Shamim MS, Godwin J, Weisz D, Presser Aiden A, Lieberman Aiden E, Schermelleh L, Vannini A, Nasmyth K. MCPH1 inhibits Condensin II during interphase by regulating its SMC2-Kleisin interface. eLife 2021; 10:e73348. [PMID: 34850681 PMCID: PMC8673838 DOI: 10.7554/elife.73348] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Dramatic change in chromosomal DNA morphology between interphase and mitosis is a defining features of the eukaryotic cell cycle. Two types of enzymes, namely cohesin and condensin confer the topology of chromosomal DNA by extruding DNA loops. While condensin normally configures chromosomes exclusively during mitosis, cohesin does so during interphase. The processivity of cohesin's loop extrusion during interphase is limited by a regulatory factor called WAPL, which induces cohesin to dissociate from chromosomes via a mechanism that requires dissociation of its kleisin from the neck of SMC3. We show here that a related mechanism may be responsible for blocking condensin II from acting during interphase. Cells derived from patients affected by microcephaly caused by mutations in the MCPH1 gene undergo premature chromosome condensation. We show that deletion of Mcph1 in mouse embryonic stem cells unleashes an activity of condensin II that triggers formation of compact chromosomes in G1 and G2 phases, accompanied by enhanced mixing of A and B chromatin compartments, and this occurs even in the absence of CDK1 activity. Crucially, inhibition of condensin II by MCPH1 depends on the binding of a short linear motif within MCPH1 to condensin II's NCAPG2 subunit. MCPH1's ability to block condensin II's association with chromatin is abrogated by the fusion of SMC2 with NCAPH2, hence may work by a mechanism similar to cohesin. Remarkably, in the absence of both WAPL and MCPH1, cohesin and condensin II transform chromosomal DNAs of G2 cells into chromosomes with a solenoidal axis.
Collapse
Affiliation(s)
- Martin Houlard
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Erin E Cutts
- Division of Structural Biology, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Muhammad S Shamim
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of Medicine, Department of Bioengineering, Rice UniversityHoustonUnited States
- Center for Theoretical Biological Physics, Rice UniversityHoustonUnited States
| | - Jonathan Godwin
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Theoretical Biological Physics, Rice UniversityHoustonUnited States
| | - Aviva Presser Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Theoretical Biological Physics, Rice UniversityHoustonUnited States
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Theoretical Biological Physics, Rice UniversityHoustonUnited States
| | | | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer ResearchLondonUnited Kingdom
- Human TechnopoleMilanItaly
| | - Kim Nasmyth
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
82
|
Chiang M, Brackley CA, Marenduzzo D, Gilbert N. Predicting genome organisation and function with mechanistic modelling. Trends Genet 2021; 38:364-378. [PMID: 34857425 DOI: 10.1016/j.tig.2021.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Fitting-free mechanistic models based on polymer simulations predict chromatin folding in 3D by focussing on the underlying biophysical mechanisms. This class of models has been increasingly used in conjunction with experiments to study the spatial organisation of eukaryotic chromosomes. Feedback from experiments to models leads to successive model refinement and has previously led to the discovery of new principles for genome organisation. Here, we review the basis of mechanistic polymer simulations, explain some of the more recent approaches and the contexts in which they have been useful to explain chromosome biology, and speculate on how they might be used in the future.
Collapse
Affiliation(s)
- Michael Chiang
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
83
|
Yang XW, Liu J. Observing Protein One-Dimensional Sliding: Methodology and Biological Significance. Biomolecules 2021; 11:1618. [PMID: 34827616 PMCID: PMC8615959 DOI: 10.3390/biom11111618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/28/2022] Open
Abstract
One-dimensional (1D) sliding of DNA-binding proteins has been observed by numerous kinetic studies. It appears that many of these sliding events play important roles in a wide range of biological processes. However, one challenge is to determine the physiological relevance of these motions in the context of the protein's biological function. Here, we discuss methods of measuring protein 1D sliding by highlighting the single-molecule approaches that are capable of visualizing particle movement in real time. We also present recent findings that show how protein sliding contributes to function.
Collapse
Affiliation(s)
| | - Jiaquan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
84
|
Takaki R, Dey A, Shi G, Thirumalai D. Theory and simulations of condensin mediated loop extrusion in DNA. Nat Commun 2021; 12:5865. [PMID: 34620869 PMCID: PMC8497514 DOI: 10.1038/s41467-021-26167-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022] Open
Abstract
Condensation of hundreds of mega-base-pair-long human chromosomes in a small nuclear volume is a spectacular biological phenomenon. This process is driven by the formation of chromosome loops. The ATP consuming motor, condensin, interacts with chromatin segments to actively extrude loops. Motivated by real-time imaging of loop extrusion (LE), we created an analytically solvable model, predicting the LE velocity and step size distribution as a function of external load. The theory fits the available experimental data quantitatively, and suggests that condensin must undergo a large conformational change, induced by ATP binding, bringing distant parts of the motor to proximity. Simulations using a simple model confirm that the motor transitions between an open and a closed state in order to extrude loops by a scrunching mechanism, similar to that proposed in DNA bubble formation during bacterial transcription. Changes in the orientation of the motor domains are transmitted over ~50 nm, connecting the motor head and the hinge, thus providing an allosteric basis for LE.
Collapse
Affiliation(s)
- Ryota Takaki
- Department of Physics, The University of Texas at Austin, Austin, 78712, USA
| | - Atreya Dey
- Department of Chemistry, The University of Texas at Austin, Austin, 78712, USA
| | - Guang Shi
- Department of Chemistry, The University of Texas at Austin, Austin, 78712, USA
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, 78712, USA.
| |
Collapse
|
85
|
Yan H, Surovtsev I, Williams JF, Bailey MLP, King MC, Mochrie SGJ. Extrusion of chromatin loops by a composite loop extrusion factor. Phys Rev E 2021; 104:024414. [PMID: 34525654 DOI: 10.1103/physreve.104.024414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022]
Abstract
Chromatin loop extrusion by structural maintenance of chromosome (SMC) complexes is thought to underlie intermediate-scale chromatin organization inside cells. Motivated by a number of experiments suggesting that nucleosomes may block loop extrusion by SMCs, such as cohesin and condensin complexes, we introduce and characterize theoretically a composite loop extrusion factor (composite LEF) model. In addition to an SMC complex that creates a chromatin loop by encircling two threads of DNA, this model includes a remodeling complex that relocates or removes nucleosomes as it progresses along the chromatin, and nucleosomes that block SMC translocation along the DNA. Loop extrusion is enabled by SMC motion along nucleosome-free DNA, created in the wake of the remodeling complex, while nucleosome rebinding behind the SMC acts as a ratchet, holding the SMC close to the remodeling complex. We show that, for a wide range of parameter values, this collection of factors constitutes a composite LEF that extrudes loops with a velocity, comparable to the velocity of remodeling complex translocation on chromatin in the absence of SMC, and much faster than loop extrusion by an isolated SMC that is blocked by nucleosomes.
Collapse
Affiliation(s)
- Hao Yan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA.,Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Mary Lou P Bailey
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA.,Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Megan C King
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Simon G J Mochrie
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA.,Department of Physics, Yale University, New Haven, Connecticut 06511, USA.,Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
86
|
Abstract
The specialized two-stage meiotic cell division program halves a cell's chromosome complement in preparation for sexual reproduction. This reduction in ploidy requires that in meiotic prophase, each pair of homologous chromosomes (homologs) identify one another and form physical links through DNA recombination. Here, we review recent advances in understanding the complex morphological changes that chromosomes undergo during meiotic prophase to promote homolog identification and crossing over. We focus on the structural maintenance of chromosomes (SMC) family cohesin complexes and the meiotic chromosome axis, which together organize chromosomes and promote recombination. We then discuss the architecture and dynamics of the conserved synaptonemal complex (SC), which assembles between homologs and mediates local and global feedback to ensure high fidelity in meiotic recombination. Finally, we discuss exciting new advances, including mechanisms for boosting recombination on particular chromosomes or chromosomal domains and the implications of a new liquid crystal model for SC assembly and structure. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah N Ur
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; ,
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
87
|
Choppakatla P, Dekker B, Cutts EE, Vannini A, Dekker J, Funabiki H. Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization. eLife 2021; 10:e68918. [PMID: 34406118 PMCID: PMC8416026 DOI: 10.7554/elife.68918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
DNA loop extrusion by condensins and decatenation by DNA topoisomerase II (topo II) are thought to drive mitotic chromosome compaction and individualization. Here, we reveal that the linker histone H1.8 antagonizes condensins and topo II to shape mitotic chromosome organization. In vitro chromatin reconstitution experiments demonstrate that H1.8 inhibits binding of condensins and topo II to nucleosome arrays. Accordingly, H1.8 depletion in Xenopus egg extracts increased condensins and topo II levels on mitotic chromatin. Chromosome morphology and Hi-C analyses suggest that H1.8 depletion makes chromosomes thinner and longer through shortening the average loop size and reducing the DNA amount in each layer of mitotic loops. Furthermore, excess loading of condensins and topo II to chromosomes by H1.8 depletion causes hyper-chromosome individualization and dispersion. We propose that condensins and topo II are essential for chromosome individualization, but their functions are tuned by the linker histone to keep chromosomes together until anaphase.
Collapse
Affiliation(s)
- Pavan Choppakatla
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Bastiaan Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Erin E Cutts
- Division of Structural Biology, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer ResearchLondonUnited Kingdom
- Fondazione Human Technopole, Structural Biology Research Centre, 20157MilanItaly
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
88
|
Starkov D, Parfenyev V, Belan S. Conformational statistics of non-equilibrium polymer loops in Rouse model with active loop extrusion. J Chem Phys 2021; 154:164106. [PMID: 33940823 DOI: 10.1063/5.0048942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Motivated by the recent experimental observations of the DNA loop extrusion by protein motors, in this paper, we investigate the statistical properties of the growing polymer loops within the ideal chain model. The loop conformation is characterized statistically by the mean gyration radius and the pairwise contact probabilities. It turns out that a single dimensionless parameter, which is given by the ratio of the loop relaxation time over the time elapsed since the start of extrusion, controls the crossover between near-equilibrium and highly non-equilibrium asymptotics in the statistics of the extruded loop, regardless of the specific time dependence of the extrusion velocity. In addition, we show that two-sided and one-sided loop extruding motors produce the loops with almost identical properties. Our predictions are based on two rigorous semi-analytical methods accompanied by asymptotic analysis of slow and fast extrusion limits.
Collapse
Affiliation(s)
- Dmitry Starkov
- Landau Institute for Theoretical Physics, Russian Academy of Sciences, 1-A Akademika Semenova av., 142432 Chernogolovka, Russia and National Research University Higher School of Economics, Faculty of Physics, Myasnitskaya 20, 101000 Moscow, Russia
| | - Vladimir Parfenyev
- Landau Institute for Theoretical Physics, Russian Academy of Sciences, 1-A Akademika Semenova av., 142432 Chernogolovka, Russia and National Research University Higher School of Economics, Faculty of Physics, Myasnitskaya 20, 101000 Moscow, Russia
| | - Sergey Belan
- Landau Institute for Theoretical Physics, Russian Academy of Sciences, 1-A Akademika Semenova av., 142432 Chernogolovka, Russia and National Research University Higher School of Economics, Faculty of Physics, Myasnitskaya 20, 101000 Moscow, Russia
| |
Collapse
|
89
|
Câmara AS, Schubert V, Mascher M, Houben A. A simple model explains the cell cycle-dependent assembly of centromeric nucleosomes in holocentric species. Nucleic Acids Res 2021; 49:9053-9065. [PMID: 34352103 PMCID: PMC8450114 DOI: 10.1093/nar/gkab648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/24/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
Centromeres are essential for chromosome movement. In independent taxa, species with holocentric chromosomes exist. In contrast to monocentric species, where no obvious dispersion of centromeres occurs during interphase, the organization of holocentromeres differs between condensed and decondensed chromosomes. During interphase, centromeres are dispersed into a large number of CENH3-positive nucleosome clusters in a number of holocentric species. With the onset of chromosome condensation, the centromeric nucleosomes join and form line-like holocentromeres. Using polymer simulations, we propose a mechanism relying on the interaction between centromeric nucleosomes and structural maintenance of chromosomes (SMC) proteins. Different sets of molecular dynamic simulations were evaluated by testing four parameters: (i) the concentration of Loop Extruders (LEs) corresponding to SMCs, (ii) the distribution and number of centromeric nucleosomes, (iii) the effect of centromeric nucleosomes on interacting LEs and (iv) the assembly of kinetochores bound to centromeric nucleosomes. We observed the formation of a line-like holocentromere, due to the aggregation of the centromeric nucleosomes when the chromosome was compacted into loops. A groove-like holocentromere structure formed after a kinetochore complex was simulated along the centromeric line. Similar mechanisms may also organize a monocentric chromosome constriction, and its regulation may cause different centromere types during evolution.
Collapse
Affiliation(s)
- Amanda Souza Câmara
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| |
Collapse
|
90
|
Higashi TL, Pobegalov G, Tang M, Molodtsov MI, Uhlmann F. A Brownian ratchet model for DNA loop extrusion by the cohesin complex. eLife 2021; 10:e67530. [PMID: 34309513 PMCID: PMC8313234 DOI: 10.7554/elife.67530] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex topologically encircles DNA to promote sister chromatid cohesion. Alternatively, cohesin extrudes DNA loops, thought to reflect chromatin domain formation. Here, we propose a structure-based model explaining both activities. ATP and DNA binding promote cohesin conformational changes that guide DNA through a kleisin N-gate into a DNA gripping state. Two HEAT-repeat DNA binding modules, associated with cohesin's heads and hinge, are now juxtaposed. Gripping state disassembly, following ATP hydrolysis, triggers unidirectional hinge module movement, which completes topological DNA entry by directing DNA through the ATPase head gate. If head gate passage fails, hinge module motion creates a Brownian ratchet that, instead, drives loop extrusion. Molecular-mechanical simulations of gripping state formation and resolution cycles recapitulate experimentally observed DNA loop extrusion characteristics. Our model extends to asymmetric and symmetric loop extrusion, as well as z-loop formation. Loop extrusion by biased Brownian motion has important implications for chromosomal cohesin function.
Collapse
Affiliation(s)
- Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Georgii Pobegalov
- Mechanobiology and Biophysics Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Minzhe Tang
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Maxim I Molodtsov
- Mechanobiology and Biophysics Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
91
|
Brandão HB, Ren Z, Karaboja X, Mirny LA, Wang X. DNA-loop-extruding SMC complexes can traverse one another in vivo. Nat Struct Mol Biol 2021; 28:642-651. [PMID: 34312537 DOI: 10.1038/s41594-021-00626-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Chromosome organization mediated by structural maintenance of chromosomes (SMC) complexes is vital in many organisms. SMC complexes act as motors that extrude DNA loops, but it remains unclear what happens when multiple complexes encounter one another on the same DNA in living cells and how these interactions may help to organize an active genome. We therefore created a crash-course track system to study SMC complex encounters in vivo by engineering defined SMC loading sites in the Bacillus subtilis chromosome. Chromosome conformation capture (Hi-C) analyses of over 20 engineered strains show an amazing variety of chromosome folding patterns. Through three-dimensional polymer simulations and theory, we determine that these patterns require SMC complexes to bypass each other in vivo, as recently seen in an in vitro study. We posit that the bypassing activity enables SMC complexes to avoid traffic jams while spatially organizing the genome.
Collapse
Affiliation(s)
- Hugo B Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Xheni Karaboja
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Leonid A Mirny
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
92
|
Daban JR. Soft-matter properties of multilayer chromosomes. Phys Biol 2021; 18. [PMID: 34126606 DOI: 10.1088/1478-3975/ac0aff] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
This perspective aims to identify the relationships between the structural and dynamic properties of chromosomes and the fundamental properties of soft-matter systems. Chromatin is condensed into metaphase chromosomes during mitosis. The resulting structures are elongated cylinders having micrometer-scale dimensions. Our previous studies, using transmission electron microscopy, atomic force microscopy, and cryo-electron tomography, suggested that metaphase chromosomes have a multilayered structure, in which each individual layer has the width corresponding to a mononucleosome sheet. The self-assembly of multilayer chromatin plates from small chromatin fragments suggests that metaphase chromosomes are self-organized hydrogels (in which a single DNA molecule crosslinks the whole structure) with an internal liquid-crystal order produced by the stacking of chromatin layers along the chromosome axis. This organization of chromatin was unexpected, but the spontaneous assembly of large structures has been studied in different soft-matter systems and, according to these studies, the self-organization of chromosomes could be justified by the interplay between weak interactions of repetitive nucleosome building blocks and thermal fluctuations. The low energy of interaction between relatively large building blocks also justifies the easy deformation and structural fluctuations of soft-matter structures and the changes of phase caused by diverse external factors. Consistent with these properties of soft matter, different experimental results show that metaphase chromosomes are easily deformable. Furthermore, at the end of mitosis, condensed chromosomes undergo a phase transition into a more fluid structure, which can be correlated to the decrease in the Mg2+concentration and to the dissociation of condensins from chromosomes. Presumably, the unstacking of layers and chromatin fluctuations driven by thermal energy facilitate gene expression during interphase.
Collapse
Affiliation(s)
- Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193-Bellaterra (Barcelona), Spain
| |
Collapse
|
93
|
Davidson IF, Peters JM. Genome folding through loop extrusion by SMC complexes. Nat Rev Mol Cell Biol 2021; 22:445-464. [PMID: 33767413 DOI: 10.1038/s41580-021-00349-7] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/02/2023]
Abstract
Genomic DNA is folded into loops and topologically associating domains (TADs), which serve important structural and regulatory roles. It has been proposed that these genomic structures are formed by a loop extrusion process, which is mediated by structural maintenance of chromosomes (SMC) protein complexes. Recent single-molecule studies have shown that the SMC complexes condensin and cohesin are indeed able to extrude DNA into loops. In this Review, we discuss how the loop extrusion hypothesis can explain key features of genome architecture; cellular functions of loop extrusion, such as separation of replicated DNA molecules, facilitation of enhancer-promoter interactions and immunoglobulin gene recombination; and what is known about the mechanism of loop extrusion and its regulation, for example, by chromatin boundaries that depend on the DNA binding protein CTCF. We also discuss how the loop extrusion hypothesis has led to a paradigm shift in our understanding of both genome architecture and the functions of SMC complexes.
Collapse
Affiliation(s)
- Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
94
|
Hallett ST, Schellenberger P, Zhou L, Beuron F, Morris E, Murray JM, Oliver AW. Nse5/6 is a negative regulator of the ATPase activity of the Smc5/6 complex. Nucleic Acids Res 2021; 49:4534-4549. [PMID: 33849072 PMCID: PMC8096239 DOI: 10.1093/nar/gkab234] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in the cellular response to replication stress. Using recombinant proteins, we have reconstituted a series of defined Saccharomyces cerevisiae Smc5/6 complexes, visualised them by negative stain electron microscopy, and tested their ability to function as an ATPase. We find that only the six protein ‘holo-complex’ is capable of turning over ATP and that its activity is significantly increased by the addition of double-stranded DNA to reaction mixes. Furthermore, stimulation is wholly dependent on functional ATP-binding pockets in both Smc5 and Smc6. Importantly, we demonstrate that budding yeast Nse5/6 acts as a negative regulator of Smc5/6 ATPase activity, binding to the head-end of the complex to suppress turnover, irrespective of the DNA-bound status of the complex.
Collapse
Affiliation(s)
- Stephen T Hallett
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Pascale Schellenberger
- Electron Microscopy Imaging Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | | | - Ed Morris
- The Institute of Cancer Research, London, UK
| | - Johanne M Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| |
Collapse
|
95
|
Peters JM. How DNA loop extrusion mediated by cohesin enables V(D)J recombination. Curr Opin Cell Biol 2021; 70:75-83. [PMID: 33422934 DOI: 10.1016/j.ceb.2020.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
'Structural maintenance of chromosomes' (SMC) complexes are required for the folding of genomic DNA into loops. Theoretical considerations and single-molecule experiments performed with the SMC complexes cohesin and condensin indicate that DNA folding occurs via loop extrusion. Recent work indicates that this process is essential for the assembly of antigen receptor genes by V(D)J recombination in developing B and T cells of the vertebrate immune system. Here, I review how recent studies of the mouse immunoglobulin heavy chain locus Igh have provided evidence for this hypothesis and how the formation of chromatin loops by cohesin and regulation of this process by CTCF and Wapl might ensure that all variable gene segments in this locus (VH segments) participate in recombination with a re-arranged DJH segment, to ensure generation of a maximally diverse repertoire of B-cell receptors and antibodies.
Collapse
Affiliation(s)
- Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
96
|
Shintomi K, Hirano T. Guiding functions of the C-terminal domain of topoisomerase IIα advance mitotic chromosome assembly. Nat Commun 2021; 12:2917. [PMID: 34006877 PMCID: PMC8131626 DOI: 10.1038/s41467-021-23205-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Topoisomerase II (topo II) is one of the six proteins essential for mitotic chromatid reconstitution in vitro. It is not fully understood, however, mechanistically how this enzyme regulates this process. In an attempt to further refine the reconstitution assay, we have found that chromosomal binding of Xenopus laevis topo IIα is sensitive to buffer conditions and depends on its C-terminal domain (CTD). Enzymological assays using circular DNA substrates supports the idea that topo IIα first resolves inter-chromatid entanglements to drive individualization and then generates intra-chromatid entanglements to promote thickening. Importantly, only the latter process requires the CTD. By using frog egg extracts, we also show that the CTD contributes to proper formation of nucleosome-depleted chromatids by competing with a linker histone for non-nucleosomal DNA. Our results demonstrate that topo IIα utilizes its CTD to deliver the enzymatic core to crowded environments created during mitotic chromatid assembly, thereby fine-tuning this process. Topoisomerase IIα (topo IIα) is critical for mitotic chromatid assembly. Here the authors report a refinement of the mitotic chromatid reconstitution assay and provide novel insights into the C-terminal domain (CTD) of topo IIα.
Collapse
Affiliation(s)
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
97
|
Yu Y, Li S, Ser Z, Sanyal T, Choi K, Wan B, Kuang H, Sali A, Kentsis A, Patel DJ, Zhao X. Integrative analysis reveals unique structural and functional features of the Smc5/6 complex. Proc Natl Acad Sci U S A 2021; 118:e2026844118. [PMID: 33941673 PMCID: PMC8126833 DOI: 10.1073/pnas.2026844118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes are critical chromatin modulators. In eukaryotes, the cohesin and condensin SMC complexes organize chromatin, while the Smc5/6 complex directly regulates DNA replication and repair. The molecular basis for the distinct functions of Smc5/6 is poorly understood. Here, we report an integrative structural study of the budding yeast Smc5/6 holo-complex using electron microscopy, cross-linking mass spectrometry, and computational modeling. We show that the Smc5/6 complex possesses several unique features, while sharing some architectural characteristics with other SMC complexes. In contrast to arm-folded structures of cohesin and condensin, Smc5 and Smc6 arm regions do not fold back on themselves. Instead, these long filamentous regions interact with subunits uniquely acquired by the Smc5/6 complex, namely the Nse2 SUMO ligase and the Nse5/Nse6 subcomplex, with the latter also serving as a linchpin connecting distal parts of the complex. Our 3.0-Å resolution cryoelectron microscopy structure of the Nse5/Nse6 core further reveals a clasped-hand topology and a dimeric interface important for cell growth. Finally, we provide evidence that Nse5/Nse6 uses its SUMO-binding motifs to contribute to Nse2-mediated sumoylation. Collectively, our integrative study identifies distinct structural features of the Smc5/6 complex and functional cooperation among its coevolved unique subunits.
Collapse
Affiliation(s)
- You Yu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shibai Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Zheng Ser
- Molecular Pharmacology Program, Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Bingbing Wan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Huihui Kuang
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Alex Kentsis
- Molecular Pharmacology Program, Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| |
Collapse
|
98
|
Biology on track: single-molecule visualisation of protein dynamics on linear DNA substrates. Essays Biochem 2021; 65:5-16. [PMID: 33236762 DOI: 10.1042/ebc20200019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Single-molecule fluorescence imaging techniques have become important tools in biological research to gain mechanistic insights into cellular processes. These tools provide unique access to the dynamic and stochastic behaviour of biomolecules. Single-molecule tools are ideally suited to study protein-DNA interactions in reactions reconstituted from purified proteins. The use of linear DNA substrates allows for the study of protein-DNA interactions with observation of the movement and behaviour of DNA-translocating proteins over long distances. Single-molecule studies using long linear DNA substrates have revealed unanticipated insights on the dynamics of multi-protein systems. In this review, we provide an overview of recent methodological advances, including the construction of linear DNA substrates. We highlight the versatility of these substrates by describing their application in different single-molecule fluorescence techniques, with a focus on in vitro reconstituted systems. We discuss insights from key experiments on DNA curtains, DNA-based molecular motor proteins, and multi-protein systems acting on DNA that relied on the use of long linear substrates and single-molecule visualisation. The quality and customisability of linear DNA substrates now allows the insertion of modifications, such as nucleosomes, to create conditions mimicking physiologically relevant crowding and complexity. Furthermore, the current technologies will allow future studies on the real-time visualisation of the interfaces between DNA maintenance processes such as replication and transcription.
Collapse
|
99
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
100
|
Rivosecchi J, Jost D, Vachez L, Gautier FD, Bernard P, Vanoosthuyse V. RNA polymerase backtracking results in the accumulation of fission yeast condensin at active genes. Life Sci Alliance 2021; 4:4/6/e202101046. [PMID: 33771877 PMCID: PMC8046420 DOI: 10.26508/lsa.202101046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/23/2022] Open
Abstract
Using both experiments and mathematical modelling, the authors show that RNA polymerase backtracking contributes to the accumulation of condensin in the termination zone of active genes. The mechanisms leading to the accumulation of the SMC complexes condensins around specific transcription units remain unclear. Observations made in bacteria suggested that RNA polymerases (RNAPs) constitute an obstacle to SMC translocation, particularly when RNAP and SMC travel in opposite directions. Here we show in fission yeast that gene termini harbour intrinsic condensin-accumulating features whatever the orientation of transcription, which we attribute to the frequent backtracking of RNAP at gene ends. Consistent with this, to relocate backtracked RNAP2 from gene termini to gene bodies was sufficient to cancel the accumulation of condensin at gene ends and to redistribute it evenly within transcription units, indicating that RNAP backtracking may play a key role in positioning condensin. Formalization of this hypothesis in a mathematical model suggests that the inclusion of a sub-population of RNAP with longer dwell-times is essential to fully recapitulate the distribution profiles of condensin around active genes. Taken together, our data strengthen the idea that dense arrays of proteins tightly bound to DNA alter the distribution of condensin on chromosomes.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - Laetitia Vachez
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - François Dr Gautier
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - Pascal Bernard
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| | - Vincent Vanoosthuyse
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5239, Lyon, France
| |
Collapse
|