51
|
Liu M, Mallinger A, Tortorici M, Newbatt Y, Richards M, Mirza A, van Montfort RLM, Burke R, Blagg J, Kaserer T. Evaluation of APOBEC3B Recognition Motifs by NMR Reveals Preferred Substrates. ACS Chem Biol 2018; 13:2427-2432. [PMID: 30130388 PMCID: PMC6430498 DOI: 10.1021/acschembio.8b00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022]
Abstract
APOBEC3B (A3B) deamination activity on ssDNA is considered a contributing factor to tumor heterogeneity and drug resistance in a number of human cancers. Despite its clinical impact, little is known about A3B ssDNA substrate preference. We have used nuclear magnetic resonance to monitor the catalytic turnover of A3B substrates in real-time. This study reports preferred nucleotide sequences for A3B substrates, including optimized 4-mer oligonucleotides, and reveals a breadth of substrate recognition that includes DNA sequences known to be mutated in drug-resistant cancer clones. Our results are consistent with available clinical and structural data and may inform the design of substrate-based A3B inhibitors.
Collapse
Affiliation(s)
- Manjuan Liu
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Aurélie Mallinger
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Marcello Tortorici
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Yvette Newbatt
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Meirion Richards
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Amin Mirza
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Rob L M van Montfort
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| | - Teresa Kaserer
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SM2 5NG , U.K
| |
Collapse
|
52
|
Jaguva Vasudevan AA, Kreimer U, Schulz WA, Krikoni A, Schumann GG, Häussinger D, Münk C, Goering W. APOBEC3B Activity Is Prevalent in Urothelial Carcinoma Cells and Only Slightly Affected by LINE-1 Expression. Front Microbiol 2018; 9:2088. [PMID: 30233553 PMCID: PMC6132077 DOI: 10.3389/fmicb.2018.02088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
The most common mutational signature in urothelial carcinoma (UC), the most common type of urinary bladder cancer is assumed to be caused by the misdirected activity of APOBEC3 (A3) cytidine deaminases, especially A3A or A3B, which are known to normally restrict the propagation of exogenous viruses and endogenous retroelements such as LINE-1 (L1). The involvement of A3 proteins in urothelial carcinogenesis is unexpected because, to date, UC is thought to be caused by chemical carcinogens rather than viral activity. Therefore, we explored the relationship between A3 expression and L1 activity, which is generally upregulated in UC. We found that UC cell lines highly express A3B and in some cases A3G, but not A3A, and exhibit corresponding cytidine deamination activity in vitro. While we observed evidence suggesting that L1 expression has a weak positive effect on A3B and A3G expression and A3B promoter activity, neither efficient siRNA-mediated knockdown nor overexpression of functional L1 elements affected catalytic activity of A3 proteins consistently. However, L1 knockdown diminished proliferation of a UC cell line exhibiting robust endogenous L1 expression, but had little impact on a cell line with low L1 expression levels. Our results indicate that UC cells express A3B at levels exceeding A3A levels by far, making A3B the prime candidate for causing genomic mutations. Our data provide evidence that L1 activation constitutes only a minor and negligible factor involved in induction or upregulation of endogenous A3 expression in UC.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Kreimer
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Aikaterini Krikoni
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Goering
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Pathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
53
|
Gonzalez-Cao M, Karachaliou N, Santarpia M, Viteri S, Meyerhans A, Rosell R. Activation of viral defense signaling in cancer. Ther Adv Med Oncol 2018; 10:1758835918793105. [PMID: 30181782 PMCID: PMC6116077 DOI: 10.1177/1758835918793105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/17/2018] [Indexed: 01/01/2023] Open
Abstract
A coordinated action of innate and adaptive immune responses is required to efficiently combat a microbial infection. It has now become clear that cancer therapies also largely benefit when both arms of the immune response are engaged. In this review, we will briefly describe the current knowledge of innate immunity and how this can be utilized to prime tumors for a better response to immune checkpoint inhibitors. Comments on compounds in development and ongoing clinical trials will be provided.
Collapse
Affiliation(s)
- Maria Gonzalez-Cao
- Rosell Oncology Institute (IOR), Dexeus
University Hospital, Quironsalud Group, C/ Sabino Arana, 5, Barcelona 08028,
Spain
| | - Niki Karachaliou
- Rosell Oncology Institute (IOR), Sagrat Cor
University Hospital, Quironsalud Group, Barcelona, Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human
Pathology ‘G. Barresi’, University of Messina, Messina, Italy
| | - Santiago Viteri
- Rosell Oncology Institute (IOR), Dexeus
University Hospital, Quironsalud Group, Barcelona, Spain Rosell Oncology
Institute (IOR), Teknon Medical Center, Quironsalud Group, Barcelona,
Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of
Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra,
Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA),
Barcelona, Spain
| | - Rafael Rosell
- Rosell Oncology Institute (IOR), Dexeus
University Hospital, Quironsalud Group, Barcelona, Spain Rosell Oncology
Institute (IOR), Sagrat Cor University Hospital, Quironsalud Group,
Barcelona, Spain Catalan Institute of Oncology, Germans Trias I Pujol
University Hospital, Badalona, Spain
| |
Collapse
|
54
|
Gao J, Choudhry H, Cao W. Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like family genes activation and regulation during tumorigenesis. Cancer Sci 2018; 109:2375-2382. [PMID: 29856501 PMCID: PMC6113426 DOI: 10.1111/cas.13658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer is currently viewed as a disease of evolving genomic instability and abnormal epigenomic modifications. Most solid cancers harbor oncogenic gene mutations driven by both extrinsic and intrinsic factors. Apolipoprotein B mRNA editing catalytic polypeptide‐like family (APOBEC) enzymes have an intrinsic deamination activity to convert cytosine to uracil during RNA editing and retrovirus or retrotransposon restriction. Beyond their natural defense in innate immunity, compelling evidence showed that a subclass of APOBEC3 can cause high mutation burden in various types of cancer genomes, and high expression subtypes of APOBEC3 may contribute to drug resistance and associate with clinical outcomes. The underlying molecular mechanisms of APOBEC‐mediated hypermutation phenotype are poorly understood. In this review, we discuss the linkage of activation‐induced deaminase (AID)/APOBEC3 enzymes to tumorigenesis, highlight the dysregulatory mechanisms of APOBEC3 activities during cancer development, and propose potential approaches to targeting APOBEC3‐mediated mutagenesis for cancer interventions.
Collapse
Affiliation(s)
| | | | - Wei Cao
- Translational Medical Center, Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
55
|
Transient AID expression for in situ mutagenesis with improved cellular fitness. Sci Rep 2018; 8:9413. [PMID: 29925928 PMCID: PMC6010430 DOI: 10.1038/s41598-018-27717-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Activation induced cytidine deaminase (AID) in germinal center B cells introduces somatic DNA mutations in transcribed immunoglobulin genes to increase antibody diversity. Ectopic expression of AID coupled with selection has been successfully employed to develop proteins with desirable properties. However, this process is laborious and time consuming because many rounds of selection are typically required to isolate the target proteins. AID expression can also adversely affect cell viability due to off target mutagenesis. Here we compared stable and transient expression of AID mutants with different catalytic activities to determine conditions for maximum accumulation of mutations with minimal toxicity. We find that transient (3–5 days) expression of an AID upmutant in the presence of selection pressure could induce a high rate of mutagenesis in reporter genes without affecting cells growth and expansion. Our findings may help improve protein evolution by ectopic expression of AID and other enzymes that can induce DNA mutations.
Collapse
|
56
|
Bennett RP, Salter JD, Smith HC. A New Class of Antiretroviral Enabling Innate Immunity by Protecting APOBEC3 from HIV Vif-Dependent Degradation. Trends Mol Med 2018; 24:507-520. [PMID: 29609878 PMCID: PMC7362305 DOI: 10.1016/j.molmed.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022]
Abstract
The infectivity of HIV depends on overcoming APOBEC3 (A3) innate immunity, predominantly through the expression of the viral protein Vif, which induces A3 degradation in the proteasome. Disruption of the functional interactions of Vif enables A3 mutagenesis of the HIV genome during viral replication, which can result in a broadly neutralizing antiviral effect. Vif function requires self-association along with interactions with A3 proteins, protein chaperones, and factors of the ubiquitination machinery and these are described here as a potential platform for novel antiviral drug discovery. This Review will examine the current state of development of Vif inhibitors that we believe to have therapeutic and functional cure potential.
Collapse
Affiliation(s)
- Ryan P Bennett
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
57
|
Wang Y, Wang C, Zhang J, Zhu M, Zhang X, Li Z, Dai J, Ma H, Hu Z, Jin G, Shen H. Interaction analysis between germline susceptibility loci and somatic alterations in lung cancer. Int J Cancer 2018; 143:878-885. [PMID: 29492964 DOI: 10.1002/ijc.31351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 12/16/2022]
Abstract
Emerging evidence indicates that germline variations may interact with somatic events in carcinogenesis. However, the germline-somatic interaction in lung cancer remains largely unknown. We investigated whether lung cancer driver genes (CDGs) were more likely to locate within cancer susceptibility regions. Pathway analysis was performed to identify common pathways underlying CDGs and cancer susceptibility genes (CSGs). Next, we analyzed the associations between lung cancer risk SNPs and somatic alterations, including mutations and copy number alterations, in the level of genes, pathways, and overall burden of alterations. Enrichment analysis showed that lung CDGs are more likely to locate within cancer susceptibility regions (p = 8.40 × 10-3 ). Both of lung CSGs and CDGs showed significant enrichment in pathways such as cell cycle and p53 signaling pathway. Gene-based analysis showed that rs36600 (22q12.2) was associated with somatic mutations within ARID1A (OR = 2.45, 95%CI: 1.47-4.08, p = 5.78 × 10-4 ). Pathway-based analysis of somatic truncation mutations identified rs2395185 and rs3817963 at 6p22.1 was associated with cell cycle pathway (OR = 1.56, p = 3.61 × 10-4 for rs2395185; OR = 1.58, p = 4.15 × 10-4 for rs3817963), and rs3817963 was also associated with MAPK signaling pathway (OR = 1.54, p = 8.58 × 10-4 ). Further analysis associated rs2395185 at 6p22.1 (HLA class II genes) with increased APOBEC3A expression (p = 9.50 × 10-3 ) and elevated APOBEC mutagenesis (p = 3.58 × 10-3 ). These results indicate germline-somatic interactions in lung tumorigenesis, and help to uncover the molecular mechanisms underlying lung cancer risk SNPs.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jiahui Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xu Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhihua Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
58
|
Jaguva Vasudevan AA, Goering W, Häussinger D, Münk C. Detection of APOBEC3 Proteins and Catalytic Activity in Urothelial Carcinoma. Methods Mol Biol 2018; 1655:97-107. [PMID: 28889380 DOI: 10.1007/978-1-4939-7234-0_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Members of the APOBEC3 (A3) family of enzymes were shown to act in an oncogenic manner in several cancer types. Immunodetection of APOBEC3A (A3A), APOBEC3B (A3B), and APOBEC3G (A3G) proteins is particularly challenging due to the large sequence homology of these proteins and limited availability of antibodies. Here we combine independent immunoblotting with an in vitro activity assay technique, to detect and categorize specific A3s expressed in urothelial bladder cancer and other cancer cells.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Goering
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Pathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
59
|
Cao W, Wu W. Apolipoprotein B mRNA Editing Enzyme, Catalytic Polypeptide-Like Gene Expression, RNA Editing, and MicroRNAs Regulation. Methods Mol Biol 2018; 1699:75-81. [PMID: 29086369 DOI: 10.1007/978-1-4939-7435-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) protein family is encoded by eleven genes located in human genome. APOBECs are a family of evolutionarily conserved cytidine deaminases in vertebrates, and particularly in mammals. APOBECs play key roles in innate immunity against viral infection and retrotransposons. Subtypes of APOBEC3 can cause specific mutations in RNA and DNA at distinct preferred nucleotide contexts in human cancer. The pervasive APOBEC3s activation in the host genome converts cytosine to uracile on single-stranded DNA, which has been suggested to depend on ATR/chk1 pathways. In this chapter, we review the expression profiling of APOBEC expression in normal and disease states, discuss how microRNAs interact with APOBEC gene family, and post-transcriptionally regulate APOBEC gene expression in the APOBECA-B fusion allele and APOBEC-mediated RNA editing. It is reasonable to speculate targeting specific microRNAs may reduce host genome mutagenesis via inactivation of APOBEC deaminases.
Collapse
Affiliation(s)
- Wei Cao
- Translational Medical Center, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, 450007, People's Republic of China.
| | - Wei Wu
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California in San Francisco, 600 16th Street Mission Bay/Genentech Hall, Room N212, San Francisco, CA, 94143, USA
| |
Collapse
|
60
|
Lei L, Chen H, Xue W, Yang B, Hu B, Wei J, Wang L, Cui Y, Li W, Wang J, Yan L, Shang W, Gao J, Sha J, Zhuang M, Huang X, Shen B, Yang L, Chen J. APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks. Nat Struct Mol Biol 2018; 25:45-52. [PMID: 29323274 DOI: 10.1038/s41594-017-0004-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/02/2017] [Indexed: 01/17/2023]
Abstract
The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR-Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deamination of single-stranded oligodeoxynucleotides, which ultimately results in base substitution mutations in genomic DNA through homology-directed repair (HDR) of Cas9-generated double-strand breaks. In addition, the APOBEC3-catalyzed deamination in genomic single-stranded DNA formed during the repair of Cas9 nickase-generated single-strand breaks in human cells can be further processed to yield mutations mainly involving insertions or deletions (indels). Both APOBEC3-mediated deamination and DNA-repair proteins play important roles in the generation of these indels. Therefore, optimizing conditions for the repair of CRISPR-Cas9-generated DNA breaks, such as using double-stranded donors in HDR or temporarily suppressing endogenous APOBEC3s, can repress these unwanted mutations in genomic DNA.
Collapse
Affiliation(s)
- Liqun Lei
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongquan Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Wei Xue
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Bian Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing, China
| | - Jia Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lijie Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jianying Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Lei Yan
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Wanjing Shang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jimin Gao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Jia Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
61
|
Glaser AP, Fantini D, Wang Y, Yu Y, Rimar KJ, Podojil JR, Miller SD, Meeks JJ. APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, and immune response. Oncotarget 2017; 9:4537-4548. [PMID: 29435122 PMCID: PMC5796993 DOI: 10.18632/oncotarget.23344] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/26/2017] [Indexed: 12/20/2022] Open
Abstract
APOBEC enzymes are responsible for a mutation signature (TCW>T/G) implicated in a wide variety of tumors. We explore the APOBEC mutational signature in bladder cancer and the relationship with specific mutations, molecular subtype, gene expression, and survival using sequencing data from The Cancer Genome Atlas (n = 395), Beijing Genomics Institute (n = 99), and Cancer Cell Line Encyclopedia. Tumors were split into “APOBEC-high” and “APOBEC-low” based on APOBEC enrichment. Patients with APOBEC-high tumors have better overall survival compared to those with APOBEC-low tumors (38.2 vs. 18.5 months, p = 0.005). APOBEC-high tumors are more likely to have mutations in DNA damage response genes (TP53, ATR, BRCA2) and chromatin regulatory genes (ARID1A, MLL, MLL3), while APOBEC-low tumors are more likely to have mutations in FGFR3 and KRAS. APOBEC3A and APOBEC3B expression correlates with mutation burden, regardless of bladder tumor molecular subtype. APOBEC mutagenesis is associated with increased expression of immune signatures, including interferon signaling, and expression of APOBEC3B is increased after stimulation of APOBEC-high bladder cancer cell lines with IFNγ. In summary, APOBEC-high tumors are more likely to have mutations in DNA damage response and chromatin regulatory genes, potentially providing more substrate for APOBEC enzymes, leading to a hypermutational phenotype and the subsequent enhanced immune response.
Collapse
Affiliation(s)
- Alexander P Glaser
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Damiano Fantini
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Yiduo Wang
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Yanni Yu
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Kalen J Rimar
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Joseph R Podojil
- Interdepartmental Immunobiology Center, Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | - Stephen D Miller
- Interdepartmental Immunobiology Center, Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | - Joshua J Meeks
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
62
|
Li Z, Abraham BJ, Berezovskaya A, Farah N, Liu Y, Leon T, Fielding A, Tan SH, Sanda T, Weintraub AS, Li B, Shen S, Zhang J, Mansour MR, Young RA, Look AT. APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL. Leukemia 2017; 31:2057-2064. [PMID: 28260788 PMCID: PMC5629363 DOI: 10.1038/leu.2017.75] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/27/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Oncogenic driver mutations are those that provide a proliferative or survival advantage to neoplastic cells, resulting in clonal selection. Although most cancer-causing mutations have been detected in the protein-coding regions of the cancer genome; driver mutations have recently also been discovered within noncoding genomic sequences. Thus, a current challenge is to gain precise understanding of how these unique genomic elements function in cancer pathogenesis, while clarifying mechanisms of gene regulation and identifying new targets for therapeutic intervention. Here we report a C-to-T single nucleotide transition that occurs as a somatic mutation in noncoding sequences 4 kb upstream of the transcriptional start site of the LMO1 oncogene in primary samples from patients with T-cell acute lymphoblastic leukaemia. This single nucleotide alteration conforms to an APOBEC-like cytidine deaminase mutational signature, and generates a new binding site for the MYB transcription factor, leading to the formation of an aberrant transcriptional enhancer complex that drives high levels of expression of the LMO1 oncogene. Since APOBEC-signature mutations are common in a broad spectrum of human cancers, we suggest that noncoding nucleotide transitions such as the one described here may activate potent oncogenic enhancers not only in T-lymphoid cells but in other cell lineages as well.
Collapse
Affiliation(s)
- Z Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - B J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - A Berezovskaya
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - N Farah
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Y Liu
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - T Leon
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - A Fielding
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - S H Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - T Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - A S Weintraub
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - B Li
- Department of Hematology and Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Shen
- Department of Hematology and Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - M R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - R A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A T Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Children’s Hospital, Boston, MA, USA
| |
Collapse
|
63
|
Multi-modality analysis supports APOBEC as a major source of mutations in head and neck squamous cell carcinoma. Oral Oncol 2017; 74:8-14. [PMID: 29103756 DOI: 10.1016/j.oraloncology.2017.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/16/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The mutagenic processes underlying head and neck squamous cell carcinoma (HNSCC) are poorly understood. Pan-cancer mutational signature analyses have identified a signature for APOBEC, a cytosine deaminase, in a subset of cancers, including HNSCC. The role of APOBEC activity in HNSCC remains poorly understood. Therefore, we sought to determine the role of APOBEC in HNSCC pathogenesis. MATERIAL AND METHODS Utilizing bioinformatic approaches we explored the role of APOBEC mediated mutations in tumor exomes, transcriptomes and germline exomes from 511HNSCC patients in the TCGA. RESULTS 58% of HNSCC were statistically enriched for the APOBEC signature. APOBEC3A expression had the highest correlation coefficient with APOBEC mutation rate. Gene specific motif analysis revealed a slight predominance of APOBEC3A mutations. Canonical pathway analysis demonstrated immune pathway upregulation in APOBEC mutation rich samples. Overall mutational burden was positively correlated with APOBEC enrichment. CONCLUSIONS APOBEC mediated mutations are highly prevalent in HNSCC. APOBEC3A is the most likely gene to be active in HPV+ HNSCC. APOBEC activity correlates with upregulation of immune signaling pathways, supporting the hypothesis that APOBEC activity could be activated as part of the innate immune response.
Collapse
|
64
|
Chen TW, Lee CC, Liu H, Wu CS, Pickering CR, Huang PJ, Wang J, Chang IYF, Yeh YM, Chen CD, Li HP, Luo JD, Tan BCM, Chan TEH, Hsueh C, Chu LJ, Chen YT, Zhang B, Yang CY, Wu CC, Hsu CW, See LC, Tang P, Yu JS, Liao WC, Chiang WF, Rodriguez H, Myers JN, Chang KP, Chang YS. APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism. Nat Commun 2017; 8:465. [PMID: 28878238 PMCID: PMC5587710 DOI: 10.1038/s41467-017-00493-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 07/04/2017] [Indexed: 12/29/2022] Open
Abstract
Oral squamous cell carcinoma is a prominent cancer worldwide, particularly in Taiwan. By integrating omics analyses in 50 matched samples, we uncover in Taiwanese patients a predominant mutation signature associated with cytidine deaminase APOBEC, which correlates with the upregulation of APOBEC3A expression in the APOBEC3 gene cluster at 22q13. APOBEC3A expression is significantly higher in tumors carrying APOBEC3B-deletion allele(s). High-level APOBEC3A expression is associated with better overall survival, especially among patients carrying APOBEC3B-deletion alleles, as examined in a second cohort (n = 188; p = 0.004). The frequency of APOBEC3B-deletion alleles is ~50% in 143 genotyped oral squamous cell carcinoma -Taiwan samples (27A3B−/−:89A3B+/−:27A3B+/+), compared to the 5.8% found in 314 OSCC-TCGA samples. We thus report a frequent APOBEC mutational profile, which relates to a APOBEC3B-deletion germline polymorphism in Taiwanese oral squamous cell carcinoma that impacts expression of APOBEC3A, and is shown to be of clinical prognostic relevance. Our finding might be recapitulated by genomic studies in other cancer types. Oral squamous cell carcinoma is a prevalent malignancy in Taiwan. Here, the authors show that OSCC in Taiwanese show a frequent deletion polymorphism in the cytidine deaminases gene cluster APOBEC3 resulting in increased expression of A3A, which is shown to be of clinical prognostic relevance.
Collapse
Affiliation(s)
- Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Chi-Ching Lee
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department and Graduate Institute of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Biochemistry, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Chi-Sheng Wu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Curtis R Pickering
- Departments of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Po-Jung Huang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Jing Wang
- Departments of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Yuan-Ming Yeh
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Chih-De Chen
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Hsin-Pai Li
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Ji-Dung Luo
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Bertrand Chin-Ming Tan
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Timothy En Haw Chan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Chuen Hsueh
- Pathology Core of the Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Pathology, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Yi-Ting Chen
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Bing Zhang
- Department of Molecular and Human Genetics Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Chia-Yu Yang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Gueishan, Taoyuan, 33305, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Chih-Ching Wu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Chia-Wei Hsu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Lai-Chu See
- Department of Public Health, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Biostatistics Core Laboratory, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Petrus Tang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Bioinformatics Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Molecular Regulation and Bioinformatics Laboratory, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan.,Department of Cell and Molecular Biology, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Wei-Fan Chiang
- Department of Oral & Maxillofacial Surgery, Chi-Mei Medical Center, Liouying, 736, Taiwan.,School of Dentistry, National Yang Ming University, Taipei, 112, Taiwan
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jeffrey N Myers
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan. .,College of Medicine, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan.
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan. .,Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan. .,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, 33305, Taiwan.
| |
Collapse
|
65
|
Klonowska K, Kluzniak W, Rusak B, Jakubowska A, Ratajska M, Krawczynska N, Vasilevska D, Czubak K, Wojciechowska M, Cybulski C, Lubinski J, Kozlowski P. The 30 kb deletion in the APOBEC3 cluster decreases APOBEC3A and APOBEC3B expression and creates a transcriptionally active hybrid gene but does not associate with breast cancer in the European population. Oncotarget 2017; 8:76357-76374. [PMID: 29100317 PMCID: PMC5652711 DOI: 10.18632/oncotarget.19400] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/10/2017] [Indexed: 02/06/2023] Open
Abstract
APOBEC3B, in addition to other members of the APOBEC3 gene family, has recently been intensively studied due to its identification as a gene whose activation in cancer is responsible for a specific pattern of massively occurring somatic mutations. It was recently shown that a common large deletion in the APOBEC3 cluster (the APOBEC3B deletion) may increase the risk of breast cancer. However, conflicting evidence regarding this association was also reported. In the first step of our study, using different approaches, including an in-house designed multiplex ligation-dependent probe amplification assay, we analyzed the structure of the deletion and showed that although the breakpoints are located in highly homologous regions, which may generate recurrent occurrence of similar but not identical deletions, there is no sign of deletion heterogeneity. This knowledge allowed us to distinguish transcripts of all affected genes, including the highly homologous canonical APOBEC3A and APOBEC3B, and the hybrid APOBEC3A/APOBEC3B gene. We unambiguously confirmed the presence of the hybrid transcript and showed that the APOBEC3B deletion negatively correlates with APOBEC3A and APOBEC3B expression and positively correlates with APOBEC3A/APOBEC3B expression, whose mRNA level is >10-fold and >1500-fold lower than the level of APOBEC3A and APOBEC3B, respectively. In the next step, we performed a large-scale association study in three different cohorts (2972 cases and 3682 controls) and showed no association of the deletion with breast cancer, familial breast cancer or ovarian cancer. Further, we conducted a meta-analysis that confirmed the lack of the association of the deletion with breast cancer in non-Asian populations.
Collapse
Affiliation(s)
- Katarzyna Klonowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Wojciech Kluzniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Bogna Rusak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Magdalena Ratajska
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Natalia Krawczynska
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Danuta Vasilevska
- Department of Gynecology, Centre of Obstetrics and Gynecology, Vilnius University Hospital Santariskiu Klinikos, Vilnius, Lithuania
| | - Karol Czubak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marzena Wojciechowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
66
|
Chen Z, Eggerman TL, Bocharov AV, Baranova IN, Vishnyakova TG, Kurlander R, Patterson AP. Heat shock proteins stimulate APOBEC-3-mediated cytidine deamination in the hepatitis B virus. J Biol Chem 2017. [PMID: 28637869 DOI: 10.1074/jbc.m116.760637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic subunit 3 (APOBEC-3) enzymes are cytidine deaminases that are broadly and constitutively expressed. They are often up-regulated during carcinogenesis and candidate genes for causing the major single-base substitution in cancer-associated DNA mutations. Moreover, APOBEC-3s are involved in host innate immunity against many viruses. However, how APOBEC-3 mutational activity is regulated in normal and pathological conditions remains largely unknown. Heat shock protein levels are often elevated in both carcinogenesis and viral infection and are associated with DNA mutations. Here, using mutational analyses of hepatitis B virus (HBV), we found that Hsp90 stimulates deamination activity of APOBEC-3G (A3G), A3B, and A3C during co-expression in human liver HepG2 cells. Hsp90 directly stimulated A3G deamination activity when the purified proteins were used in in vitro reactions. Hsp40, -60, and -70 also had variable stimulatory effects in the cellular assay, but not in vitro Sequencing analyses further demonstrated that Hsp90 increased both A3G cytosine mutation efficiency on HBV DNA and total HBV mutation frequency. In addition, Hsp90 shifted A3G's cytosine region selection in HBV DNA and increased A3G's 5' nucleoside preference for deoxycytidine (5'-CC). Furthermore, the Hsp90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin dose dependently inhibited A3G and A3B mutational activity on HBV viral DNA. Hsp90 knockdown by siRNA or by Hsp90 active-site mutation also decreased A3G activity. These results indicate that heat shock proteins, in particular Hsp90, stimulate APOBEC-3-mediated DNA deamination activity, suggesting a potential physiological role in carcinogenesis and viral innate immunity.
Collapse
Affiliation(s)
- Zhigang Chen
- From the Department of Laboratory Medicine, Clinical Center
| | - Thomas L Eggerman
- From the Department of Laboratory Medicine, Clinical Center.,the Division of Diabetes, Endocrinology, and Metabolic Diseases, NIDDK, and
| | | | | | | | | | - Amy P Patterson
- From the Department of Laboratory Medicine, Clinical Center, .,NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
67
|
Molecular mechanisms of human papillomavirus-related carcinogenesis in head and neck cancer. Microbes Infect 2017; 19:464-475. [PMID: 28619685 DOI: 10.1016/j.micinf.2017.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/04/2023]
Abstract
This review examines the general cellular and molecular underpinnings of human papillomavirus (HPV)-related carcinogenesis in the context of head and neck squamous cell carcinoma (HNSCC) and focuses on HPV-positive oropharyngeal squamous cell carcinoma in areas for which specific data is available. It covers the major pathways dysregulated in HPV-positive HNSCC and the genome-wide changes associated with this disease.
Collapse
|
68
|
Iizuka T, Wakae K, Nakamura M, Kitamura K, Ono M, Fujiwara H, Muramatsu M. APOBEC3G is increasingly expressed on the human uterine cervical intraepithelial neoplasia along with disease progression. Am J Reprod Immunol 2017; 78. [PMID: 28590025 DOI: 10.1111/aji.12703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/14/2017] [Indexed: 12/15/2022] Open
Abstract
PROBLEM APOBEC3G (A3G) is a cytidine deaminase that exhibits antiviral activity by introducing C-to-T hypermutation in viral DNA. We recently observed the distinct presence of C-to-T hypermutation of human papillomavirus DNA in uterine cervical intraepithelial neoplasia (CIN), suggesting the possible involvement of A3G in the mutation-inducing process. Consequently, we investigated the association of A3G expression with CIN progression in this study. METHOD OF STUDY Patients who had undergone cervical conization due to CIN1 (n=11), CIN2 (n=9), CIN3 (n=12), and micro-invasive squamous cell carcinoma (n=2) were included. The expression profiles of A3G and p16 proteins in cervical lesions and A3G-positive immune cells around the lesions were examined by immunohistochemistry. RESULTS Immunoreactive A3G protein was detected in the CIN and squamous cell carcinoma lesions. Its expression intensity and positive areas were increased and spread in accordance with the progression of CIN, respectively. The co-expression of p16 was observed on the A3G-positive atypical cells. The numbers of A3G-positive immune cells in CIN3 lesions were significantly higher than those of CIN1-2 lesions. CONCLUSION These findings indicate that A3G is associated with CIN, suggesting its important roles in human papillomavirus-induced pathophysiological processes such as CIN progression and viral elimination.
Collapse
Affiliation(s)
- Takashi Iizuka
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kousho Wakae
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Koichi Kitamura
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
69
|
Zou J, Wang C, Ma X, Wang E, Peng G. APOBEC3B, a molecular driver of mutagenesis in human cancers. Cell Biosci 2017; 7:29. [PMID: 28572915 PMCID: PMC5450379 DOI: 10.1186/s13578-017-0156-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
Human cancers results in large part from the accumulation of multiple mutations. The progression of premalignant cells is an evolutionary process in which mutations provide the fundamental driving force for genetic diversity. The increased mutation rate in premalignant cells allows selection for increased proliferation and survival and ultimately leads to invasion, metastasis, recurrence, and therapeutic resistance. Therefore, it is important to understand the molecular determinants of the mutational processes. Recent genome-wide sequencing data showed that apolipoprotein B mRNA editing catalytic polypeptide-like 3B (APOBEC3B) is a key molecular driver inducing mutations in multiple human cancers. APOBEC3B, a DNA cytosine deaminase, is overexpressed in a wide spectrum of human cancers. Its overexpression and aberrant activation lead to unexpected clusters of mutations in the majority of cancers. This phenomenon of clustered mutations, termed kataegis (from the Greek word for showers), forms unique mutation signatures. In this review, we will discuss the biological function of APOBEC3B, its tumorigenic role in promoting mutational processes in cancer development and the clinical potential to develop novel therapeutics by targeting APOBEC3B.
Collapse
Affiliation(s)
- Jun Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Chen Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Edward Wang
- OncoMed Pharmaceuticals, 800 Chesapeake Dr., Redwood City, CA 94063 USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030 USA
| |
Collapse
|
70
|
Leal SM, Gulley ML. Current and Emerging Molecular Tests for Human Papillomavirus-Related Neoplasia in the Genomic Era. J Mol Diagn 2017; 19:366-377. [PMID: 28325688 PMCID: PMC5417044 DOI: 10.1016/j.jmoldx.2017.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
Laboratory tests have a key role in preventing human papillomavirus (HPV)-driven carcinomas and in guiding therapeutic interventions. An understanding of the virology, immunology, and carcinogenesis of HPV is essential for choosing appropriate diagnostic test modalities and developing new and even more effective cancer prevention strategies. HPV infects basal epithelial cells on multiple surfaces and induces carcinoma primarily in the cervix and the oropharynx. HPV types are stratified as high risk or low risk based on their carcinogenic potential. During oncogenesis, HPV interferes with cell cycle regulation and incites DNA damage responses that thwart apoptosis and enable mutations to accumulate. Such mutations are an adverse effect of innate and adaptive antiviral immune responses that up-regulate DNA-editing enzymes, with natural selection of cells having a chromosomally integrated viral genome lacking expression of viral proteins targeted by the immune system. Infected cancers share a similar mutation signature, reflecting the effect of apolipoprotein B mRNA-editing catalytic polypeptide enzyme DNA-editing enzymes. It is feasible that genomic tests for characteristic mutations or methylation signatures, along with tests for dysregulated HPV gene expression, add value in predicting behavior of premalignant lesions. Furthermore, these tumor markers in cell-free DNA of plasma or body fluids may one day assist in early detection or monitoring cancer burden during treatment.
Collapse
Affiliation(s)
- Sixto M Leal
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Margaret L Gulley
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
71
|
Jaguva Vasudevan AA, Hofmann H, Willbold D, Häussinger D, Koenig BW, Münk C. Enhancing the Catalytic Deamination Activity of APOBEC3C Is Insufficient to Inhibit Vif-Deficient HIV-1. J Mol Biol 2017; 429:1171-1191. [DOI: 10.1016/j.jmb.2017.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
|
72
|
Green AM, Landry S, Budagyan K, Avgousti DC, Shalhout S, Bhagwat AS, Weitzman MD. APOBEC3A damages the cellular genome during DNA replication. Cell Cycle 2017; 15:998-1008. [PMID: 26918916 DOI: 10.1080/15384101.2016.1152426] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors.
Collapse
Affiliation(s)
- Abby M Green
- a Division of Oncology , Department of Pediatrics , Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine , Philadelphia , PA , USA.,b Center for Childhood Cancer Research, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Sébastien Landry
- c Faculty of Pharmacy, Université de Montréal , Montréal , QC , Canada
| | - Konstantin Budagyan
- d Division of Cancer Pathobiology , Department of Pathology and Laboratory Medicine , Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine , Philadelphia , PA , USA
| | - Daphne C Avgousti
- d Division of Cancer Pathobiology , Department of Pathology and Laboratory Medicine , Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine , Philadelphia , PA , USA
| | - Sophia Shalhout
- e Department of Chemistry , Wayne State University , Detroit , MI , USA
| | - Ashok S Bhagwat
- e Department of Chemistry , Wayne State University , Detroit , MI , USA.,f Department of Immunology and Microbiology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Matthew D Weitzman
- b Center for Childhood Cancer Research, Children's Hospital of Philadelphia , Philadelphia , PA , USA.,d Division of Cancer Pathobiology , Department of Pathology and Laboratory Medicine , Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine , Philadelphia , PA , USA
| |
Collapse
|
73
|
Tokunaga E, Yamashita N, Tanaka K, Inoue Y, Akiyoshi S, Saeki H, Oki E, Kitao H, Maehara Y. Expression of APOBEC3B mRNA in Primary Breast Cancer of Japanese Women. PLoS One 2016; 11:e0168090. [PMID: 27977754 PMCID: PMC5158016 DOI: 10.1371/journal.pone.0168090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/25/2016] [Indexed: 12/19/2022] Open
Abstract
Recent studies have identified the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3B (APOBEC3B) as a source of mutations in various malignancies. APOBEC3B is overexpressed in several human cancer types, including breast cancer. In this study, we analyzed APOBEC3B mRNA expression in 305 primary breast cancers of Japanese women using quantitative reverse transcription-PCR, and investigated the relationships between the APOBEC3B mRNA expression and clinicopathological characteristics, prognosis, and TP53 mutations. The expression of APOBEC3B mRNA was detected in 277 tumors and not detected in 28 tumors. High APOBEC3B mRNA expression was significantly correlated with ER- and PR-negativity, high grade and high Ki67 index. The APOBEC3B mRNA expression was highest in the triple-negative and lowest in the hormone receptor-positive/HER2-negative subtypes. The TP53 gene was more frequently mutated in the tumors with high APOBEC3B mRNA expression. High APOBEC3B mRNA expression was significantly associated with poor recurrence-free survival in all cases and the ER-positive cases. These findings were almost consistent with the previous reports from the Western countries. In conclusion, high APOBEC3B mRNA expression was related to the aggressive phenotypes of breast cancer, high frequency of TP53 mutation and poor prognosis, especially in ER-positive tumors.
Collapse
Affiliation(s)
- Eriko Tokunaga
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
- * E-mail: ,
| | - Nami Yamashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Kimihiro Tanaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yuka Inoue
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Sayuri Akiyoshi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Hiroyuki Kitao
- Department of Molecular Oncology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
74
|
Abstract
Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 1 or APOBEC1 was discovered in 1993 as the zinc-dependent cytidine deaminase responsible for the production of an in frame stop codon in apoB mRNA through modification of cytidine at nucleotide position 6666 to uridine. At the time of this discovery there was much speculation concerning the mechanism of base modification RNA editing which has been rekindled by the discovery of multiple C to U RNA editing events in the 3′ UTRs of mRNAs and the finding that other members of the APOBEC family while able to bind RNA, have the biological function of being DNA mutating enzymes. Current research is addressing the mechanism for these nucleotide modification events that appear not to adhere to the mooring sequence-dependent model for APOBEC1 involving the assembly of a multi protein containing editosome. This review will summarize our current understanding of the structure and function of APOBEC proteins and examine how RNA binding to them may be a regulatory mechanism.
Collapse
Affiliation(s)
- Harold C Smith
- a University of Rochester, School of Medicine and Dentistry , Department of Biochemistry and Biophysics , Rochester , NY , USA
| |
Collapse
|
75
|
Han Y, Qi Q, He Q, Sun M, Wang S, Zhou G, Sun Y. APOBEC3 deletion increases the risk of breast cancer: a meta-analysis. Oncotarget 2016; 7:74979-74986. [PMID: 27602762 PMCID: PMC5342716 DOI: 10.18632/oncotarget.11792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/11/2016] [Indexed: 12/01/2022] Open
Abstract
Recently, a deletion in the human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) gene cluster has been associated with a modest increased risk of breast cancer, but studies yielded inconsistent results. Therefore we performed a meta-analysis to derive a more precise conclusion. Six studies including 18241 subjects were identified by searching PubMed and Embase databases from inception to April 2016. Pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were evaluated under allele contrast, dominant, recessive, homozygous, and heterozygous models. All the analyses suggested a correlation of APOBEC3 deletion with increased breast cancer risk (D vs I: OR = 1.29, 95% CI = 1.23-1.36; D/D+I/D vs I/I: OR = 1.34, 95% CI = 1.26-1.43; D/D vs I/D+ I/I: OR = 1.51, 95% CI = 1.36-1.68; D/D vs I/I: OR = 1.75, 95% CI= 1.56-1.95; I/D vs I/I: OR = 1.28, 95% CI = 1.19-1.36). Stratified analysis by ethnicity showed that the relationship is stronger and more stable in Asians. In summary, our current work indicated that APOBEC3 copy number variations might have a good screening accuracy for breast cancer.
Collapse
Affiliation(s)
- Yali Han
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, China
| | - Qin He
- Department of Endocrine and Metabolism, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China
| | - Shuyun Wang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China
| | - Guanzhou Zhou
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China
| |
Collapse
|
76
|
Land AM, Wang J, Law EK, Aberle R, Kirmaier A, Krupp A, Johnson WE, Harris RS. Degradation of the cancer genomic DNA deaminase APOBEC3B by SIV Vif. Oncotarget 2016; 6:39969-79. [PMID: 26544511 PMCID: PMC4741873 DOI: 10.18632/oncotarget.5483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022] Open
Abstract
APOBEC3B is a newly identified source of mutation in many cancers, including breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B degradation, with SIVmac239 Vif proving the most potent. This likely occurs through the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural APOBEC3 antagonist may benefit cancer therapy.
Collapse
Affiliation(s)
- Allison M Land
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Present address: Department of Biological Sciences, Minnesota State University Mankato, Mankato, Minnesota, USA
| | - Jiayi Wang
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan Aberle
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrea Kirmaier
- Department of Biology, Boston College, Boston, Massachusetts, USA
| | - Annabel Krupp
- Department of Biology, Boston College, Boston, Massachusetts, USA.,Present address: Biogen Idec, Cambridge, Massachusetts, USA
| | - Welkin E Johnson
- Department of Biology, Boston College, Boston, Massachusetts, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
77
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
78
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|
79
|
Abstract
Understanding the molecular mechanisms behind the capacity of cancer cells to adapt to the tumor microenvironment and to anticancer therapies is a major challenge. In this context, cancer is believed to be an evolutionary process where random mutations and the selection process shape the mutational pattern and phenotype of cancer cells. This article challenges the notion of randomness of some cancer-associated mutations by describing molecular mechanisms involving stress-mediated biogenesis of mRNA-derived small RNAs able to target and increase the local mutation rate of the genomic loci they originate from. It is proposed that the probability of some mutations at specific loci could be increased in a stress-specific and RNA-depending manner. This would increase the probability of generating mutations that could alleviate stress situations, such as those triggered by anticancer drugs. Such a mechanism is made possible because tumor- and anticancer drug-associated stress situations trigger both cellular reprogramming and inflammation, which leads cancer cells to express molecular tools allowing them to “attack” and mutate their own genome in an RNA-directed manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, Lyon, France
| |
Collapse
|
80
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
81
|
The APOBEC Protein Family: United by Structure, Divergent in Function. Trends Biochem Sci 2016; 41:578-594. [PMID: 27283515 DOI: 10.1016/j.tibs.2016.05.001] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein. We are beginning to understand that the activity of APOBEC proteins is regulated through genetic alterations, changes in their transcription and mRNA processing, and through their interactions with other macromolecules in the cell. Loss of cellular control of APOBEC activities leads to DNA hypermutation and promiscuous RNA editing associated with the development of cancer or viral drug resistance, underscoring the importance of understanding how APOBEC proteins are regulated.
Collapse
|
82
|
Akre MK, Starrett GJ, Quist JS, Temiz NA, Carpenter MA, Tutt ANJ, Grigoriadis A, Harris RS. Mutation Processes in 293-Based Clones Overexpressing the DNA Cytosine Deaminase APOBEC3B. PLoS One 2016; 11:e0155391. [PMID: 27163364 PMCID: PMC4862684 DOI: 10.1371/journal.pone.0155391] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022] Open
Abstract
Molecular, cellular, and clinical studies have combined to demonstrate a contribution from the DNA cytosine deaminase APOBEC3B (A3B) to the overall mutation load in breast, head/neck, lung, bladder, cervical, ovarian, and other cancer types. However, the complete landscape of mutations attributable to this enzyme has yet to be determined in a controlled human cell system. We report a conditional and isogenic system for A3B induction, genomic DNA deamination, and mutagenesis. Human 293-derived cells were engineered to express doxycycline-inducible A3B-eGFP or eGFP constructs. Cells were subjected to 10 rounds of A3B-eGFP exposure that each caused 80–90% cell death. Control pools were subjected to parallel rounds of non-toxic eGFP exposure, and dilutions were done each round to mimic A3B-eGFP induced population fluctuations. Targeted sequencing of portions of TP53 and MYC demonstrated greater mutation accumulation in the A3B-eGFP exposed pools. Clones were generated and microarray analyses were used to identify those with the greatest number of SNP alterations for whole genome sequencing. A3B-eGFP exposed clones showed global increases in C-to-T transition mutations, enrichments for cytosine mutations within A3B-preferred trinucleotide motifs, and more copy number aberrations. Surprisingly, both control and A3B-eGFP clones also elicited strong mutator phenotypes characteristic of defective mismatch repair. Despite this additional mutational process, the 293-based system characterized here still yielded a genome-wide view of A3B-catalyzed mutagenesis in human cells and a system for additional studies on the compounded effects of simultaneous mutation mechanisms in cancer cells.
Collapse
Affiliation(s)
- Monica K. Akre
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Gabriel J. Starrett
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Jelmar S. Quist
- Breast Cancer Now Research Unit, Research Oncology, Guy’s Hospital, King’s College London, London, United Kingdom
| | - Nuri A. Temiz
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Michael A. Carpenter
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Andrew N. J. Tutt
- Breast Cancer Now Research Unit, Research Oncology, Guy’s Hospital, King’s College London, London, United Kingdom
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, Research Oncology, Guy’s Hospital, King’s College London, London, United Kingdom
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
83
|
Lechner M, Fenton TR. The Genomics, Epigenomics, and Transcriptomics of HPV-Associated Oropharyngeal Cancer--Understanding the Basis of a Rapidly Evolving Disease. ADVANCES IN GENETICS 2016; 93:1-56. [PMID: 26915269 DOI: 10.1016/bs.adgen.2015.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human papillomavirus (HPV) has been shown to represent a major independent risk factor for head and neck squamous cell cancer, in particular for oropharyngeal carcinoma. This type of cancer is rapidly evolving in the Western world, with rising trends particularly in the young, and represents a distinct epidemiological, clinical, and molecular entity. It is the aim of this review to give a detailed description of genomic, epigenomic, transcriptomic, and posttranscriptional changes that underlie the phenotype of this deadly disease. The review will also link these changes and examine what is known about the interactions between the host genome and viral genome, and investigate changes specific for the viral genome. These data are then integrated into an updated model of HPV-induced head and neck carcinogenesis.
Collapse
Affiliation(s)
- M Lechner
- Head and Neck Centre, University College London Hospital, London, UK; UCL Cancer Institute, University College London, London, United Kingdom
| | - T R Fenton
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
84
|
Seplyarskiy VB, Soldatov RA, Popadin KY, Antonarakis SE, Bazykin GA, Nikolaev SI. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome Res 2016; 26:174-82. [PMID: 26755635 PMCID: PMC4728370 DOI: 10.1101/gr.197046.115] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
Abstract
APOBEC3A and APOBEC3B, cytidine deaminases of the APOBEC family, are among the main factors causing mutations in human cancers. APOBEC deaminates cytosines in single-stranded DNA (ssDNA). A fraction of the APOBEC-induced mutations occur as clusters ("kataegis") in single-stranded DNA produced during repair of double-stranded breaks (DSBs). However, the properties of the remaining 87% of nonclustered APOBEC-induced mutations, the source and the genomic distribution of the ssDNA where they occur, are largely unknown. By analyzing genomic and exomic cancer databases, we show that >33% of dispersed APOBEC-induced mutations occur on the lagging strand during DNA replication, thus unraveling the major source of ssDNA targeted by APOBEC in cancer. Although methylated cytosine is generally more mutation-prone than nonmethylated cytosine, we report that methylation reduces the rate of APOBEC-induced mutations by a factor of roughly two. Finally, we show that in cancers with extensive APOBEC-induced mutagenesis, there is almost no increase in mutation rates in late replicating regions (contrary to other cancers). Because late-replicating regions are depleted in exons, this results in a 1.3-fold higher fraction of mutations residing within exons in such cancers. This study provides novel insight into the APOBEC-induced mutagenesis and describes the peculiarity of the mutational processes in cancers with the signature of APOBEC-induced mutations.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 127051; Lomonosov Moscow State University, Moscow, Russia, 119991; Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Ruslan A Soldatov
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 127051; Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Konstantin Y Popadin
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland
| | - Georgii A Bazykin
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 127051; Lomonosov Moscow State University, Moscow, Russia, 119991; Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
85
|
Knisbacher BA, Gerber D, Levanon EY. DNA Editing by APOBECs: A Genomic Preserver and Transformer. Trends Genet 2016; 32:16-28. [PMID: 26608778 DOI: 10.1016/j.tig.2015.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/18/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Information warfare is not limited to the cyber world because it is waged within our cells as well. The unique AID (activation-induced cytidine deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide) family comprises proteins that alter DNA sequences by converting deoxycytidines to deoxyuridines through deamination. This C-to-U DNA editing enables them to inhibit parasitic viruses and retrotransposons by disrupting their genomic content. In addition to attacking genomic invaders, APOBECs can target their host genome, which can be beneficial by initiating processes that create antibody diversity needed for the immune system or by accelerating the rate of evolution. AID can also alter gene regulation by removing epigenetic modifications from genomic DNA. However, when uncontrolled, these powerful agents of change can threaten genome stability and eventually lead to cancer.
Collapse
Affiliation(s)
- Binyamin A Knisbacher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel.
| |
Collapse
|
86
|
Warren CJ, Pyeon D. APOBEC3 in papillomavirus restriction, evolution and cancer progression. Oncotarget 2015; 6:39385-6. [PMID: 26574726 PMCID: PMC4741827 DOI: 10.18632/oncotarget.6324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 02/03/2023] Open
Affiliation(s)
- Cody J Warren
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Dohun Pyeon
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
87
|
Shi K, Carpenter MA, Kurahashi K, Harris RS, Aihara H. Crystal Structure of the DNA Deaminase APOBEC3B Catalytic Domain. J Biol Chem 2015; 290:28120-28130. [PMID: 26416889 DOI: 10.1074/jbc.m115.679951] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 11/06/2022] Open
Abstract
Functional and deep sequencing studies have combined to demonstrate the involvement of APOBEC3B in cancer mutagenesis. APOBEC3B is a single-stranded DNA cytosine deaminase that functions normally as a nuclear-localized restriction factor of DNA-based pathogens. However, it is overexpressed in cancer cells and elicits an intrinsic preference for 5'-TC motifs in single-stranded DNA, which is the most frequently mutated dinucleotide in breast, head/neck, lung, bladder, cervical, and several other tumor types. In many cases, APOBEC3B mutagenesis accounts for the majority of both dispersed and clustered (kataegis) cytosine mutations. Here, we report the first structures of the APOBEC3B catalytic domain in multiple crystal forms. These structures reveal a tightly closed active site conformation and suggest that substrate accessibility is regulated by adjacent flexible loops. Residues important for catalysis are identified by mutation analyses, and the results provide insights into the mechanism of target site selection. We also report a nucleotide (dCMP)-bound crystal structure that informs a multistep model for binding single-stranded DNA. Overall, these high resolution crystal structures provide a framework for further mechanistic studies and the development of novel anti-cancer drugs to inhibit this enzyme, dampen tumor evolution, and minimize adverse outcomes such as drug resistance and metastasis.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics; Institute for Molecular Virology; Masonic Cancer Center.
| | - Michael A Carpenter
- Department of Biochemistry, Molecular Biology, and Biophysics; Institute for Molecular Virology; Masonic Cancer Center
| | - Kayo Kurahashi
- Department of Biochemistry, Molecular Biology, and Biophysics; Institute for Molecular Virology; Masonic Cancer Center
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology, and Biophysics; Institute for Molecular Virology; Masonic Cancer Center; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics; Institute for Molecular Virology; Masonic Cancer Center
| |
Collapse
|
88
|
Swanton C, McGranahan N, Starrett GJ, Harris RS. APOBEC Enzymes: Mutagenic Fuel for Cancer Evolution and Heterogeneity. Cancer Discov 2015; 5:704-12. [PMID: 26091828 PMCID: PMC4497973 DOI: 10.1158/2159-8290.cd-15-0344] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
UNLABELLED Deep sequencing technologies are revealing the complexities of cancer evolution, casting light on mutational processes fueling tumor adaptation, immune escape, and treatment resistance. Understanding mechanisms driving cancer diversity is a critical step toward developing strategies to attenuate tumor evolution and adaptation. One emerging mechanism fueling tumor diversity and subclonal evolution is genomic DNA cytosine deamination catalyzed by APOBEC3B and at least one other APOBEC family member. Deregulation of APOBEC3 enzymes causes a general mutator phenotype that manifests as diverse and heterogeneous tumor subclones. Here, we summarize knowledge of the APOBEC DNA deaminase family in cancer, and their role as driving forces for intratumor heterogeneity and a therapeutic target to limit tumor adaptation. SIGNIFICANCE APOBEC mutational signatures may be enriched in tumor subclones, suggesting APOBEC cytosine deaminases fuel subclonal expansions and intratumor heterogeneity. APOBEC family members might represent a new class of drug target aimed at limiting tumor evolution, adaptation, and drug resistance.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, United Kingdom. UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London, United Kingdom.
| | - Nicholas McGranahan
- The Francis Crick Institute, London, United Kingdom. Centre for Mathematics & Physics in the Life Sciences & Experimental Biology (CoMPLEX), University College London, London, United Kingdom
| | - Gabriel J Starrett
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|