51
|
Shen F, Sun L, Wang L, Peng R, Fan C, Liu Z. Framework Nucleic Acid Immune Adjuvant for Transdermal Delivery Based Chemo-immunotherapy for Malignant Melanoma Treatment. NANO LETTERS 2022; 22:4509-4518. [PMID: 35594186 DOI: 10.1021/acs.nanolett.2c01332] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the tremendous progresses of cancer immunotherapy, its current clinical responses rate in melanoma remains to be improved. Here, we have reported a skin penetrating tetrahedral framework nucleic acid immune adjuvant (FNAIA) to transdermally deliver chemotherapy drugs into melanoma to induce the immunogenic death of tumor cells and expose tumor antigens, which with assistance of CpG oligodeoxynucleotide incorporated in FNAIA could trigger systemic tumor-specific immune responses. Compared with free CpG, FNAIA could penetrate deeper into subcutaneous tumor tissues and more effectively stimulate dendritic cell maturation. Notably, doxorubicin-loaded FNAIA locally applied on the intact skin above the melanoma could effectively inhibit the growth of mouse B16F10 melanoma and increase tumor CD8+ T cell infiltration. Moreover, combined with immune checkpoint inhibitor, the growth of distant tumors could also be effectively inhibited, suggesting that this strategy could induce systemic immune responses. Therefore, this work provides a new idea for non-invasive treatment of skin cancer.
Collapse
Affiliation(s)
- Fengyun Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Rui Peng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 201240, China
| | - Zhuang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
52
|
Dane EL, Belessiotis-Richards A, Backlund C, Wang J, Hidaka K, Milling LE, Bhagchandani S, Melo MB, Wu S, Li N, Donahue N, Ni K, Ma L, Okaniwa M, Stevens MM, Alexander-Katz A, Irvine DJ. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. NATURE MATERIALS 2022; 21:710-720. [PMID: 35606429 PMCID: PMC9156412 DOI: 10.1038/s41563-022-01251-z] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/07/2022] [Indexed: 05/13/2023]
Abstract
Activation of the innate immune STimulator of INterferon Genes (STING) pathway potentiates antitumour immunity, but systemic delivery of STING agonists to tumours is challenging. We conjugated STING-activating cyclic dinucleotides (CDNs) to PEGylated lipids (CDN-PEG-lipids; PEG, polyethylene glycol) via a cleavable linker and incorporated them into lipid nanodiscs (LNDs), which are discoid nanoparticles formed by self-assembly. Compared to state-of-the-art liposomes, intravenously administered LNDs carrying CDN-PEG-lipid (LND-CDNs) exhibited more efficient penetration of tumours, exposing the majority of tumour cells to STING agonist. A single dose of LND-CDNs induced rejection of established tumours, coincident with immune memory against tumour rechallenge. Although CDNs were not directly tumoricidal, LND-CDN uptake by cancer cells correlated with robust T-cell activation by promoting CDN and tumour antigen co-localization in dendritic cells. LNDs thus appear promising as a vehicle for robust delivery of compounds throughout solid tumours, which can be exploited for enhanced immunotherapy.
Collapse
Affiliation(s)
- Eric L Dane
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexis Belessiotis-Richards
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
- Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Coralie Backlund
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jianing Wang
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Kousuke Hidaka
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Lauren E Milling
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Na Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nathan Donahue
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leyuan Ma
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Masanori Okaniwa
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
- Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Alfredo Alexander-Katz
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
53
|
Chen A, Wu L, Luo Y, Lu S, Wang Y, Zhou Z, Zhou D, Xie Z, Yue J. Deep Tumor Penetrating Gold Nano-Adjuvant for NIR-II-Triggered In Situ Tumor Vaccination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200993. [PMID: 35451111 DOI: 10.1002/smll.202200993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Local tumor photothermal treatment with the near-infrared light at the second window (NIR-II) is a promising strategy in triggering the in situ tumor vaccination (ISTV) for cancer therapy. However, limited penetration of photothermal agents within tumors seriously limits their spatial effect in generating sufficient tumor-associated antigens, a key factor to the success of ISTV. In this study, a nano-adjuvant system is fabricated based on the NIR-II-absorbable gold nanostars decorated with hyaluronidases and immunostimulatory oligodeoxynucleotides CpG for ISTV. The nano-adjuvant displays a deep tumor penetration capacity via loosening the dense extracellular matrix of tumors. Upon NIR-II light irradiation, the nano-adjuvant significantly inhibits the tumor growth, induces a cascade of immune responses, generates an obvious adaptive immunity against the re-challenged cancers, boosts the abscopal effect, and completely inhibits the pulmonary metastases. The study highlights an advanced nano-adjuvant formulation featuring deep tumor penetration for NIR-II-triggered ISTV.
Collapse
Affiliation(s)
- Anhong Chen
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Lei Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Yao Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Shaojin Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Yupeng Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhengzheng Zhou
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Dongfang Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jun Yue
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| |
Collapse
|
54
|
Jiang X, Wang J, Zheng X, Liu Z, Zhang X, Li Y, Wilhelm J, Cao J, Huang G, Zhang J, Sumer B, Lea J, Lu Z, Gao J, Luo M. Intratumoral administration of STING-activating nanovaccine enhances T cell immunotherapy. J Immunother Cancer 2022; 10:jitc-2021-003960. [PMID: 35623658 PMCID: PMC9150169 DOI: 10.1136/jitc-2021-003960] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer vaccines are able to achieve tumor-specific immune editing in early-phase clinical trials. However, the infiltration of cytotoxic T cells into immune-deserted tumors is still a major limiting factor. An optimized vaccine approach to induce antigen-specific T cells that can perform robust tumor infiltration is important to accelerate their clinical translation. We previously developed a STING-activating PC7A nanovaccine that produces a strong anti-tumor T cell response on subcutaneous injection. This study systematically investigated the impact of administration methods on the performance of nanovaccines. METHODS Tumor growth inhibition by intratumoral delivery and subcutaneous delivery of nanovaccine was investigated in TC-1 human papillomavirus-induced cancer model and B16-OVA melanoma model. Nanovaccine distribution in vivo was detected by clinical camera imaging, systemic T cell activation and tumor infiltration were tested by in vivo cytotoxicity killing assay and flow cytometry. For mechanism analysis, T cell recruitment was investigated by in vivo migration blocking assay, multiplex chemokine array, flow cytometry, RT-qPCR, chemotaxis assay and gene knockout mice. RESULTS Nanovaccine administration was found to alter T cell production and infiltration in tumors. Intratumoral delivery of nanovaccines displayed superior antitumor effects in multiple tumor models compared with subcutaneous delivery. Mechanistic investigation revealed that intratumoral administration of the nanovaccine significantly increased the infiltration of antigen-specific T cells in TC-1 tumors, despite the lower systemic levels of T cells compared with subcutaneous injection. The inhibition of tumor growth by nanovaccines is primarily dependent on CD8+ cytotoxic T cells. Nanovaccine accumulation in tumors upregulates CXCL9 expression in myeloid cells in a STING dependent manner, leading to increased recruitment of IFNγ-expressing CD8+ T cells from the periphery, and IFNγ reciprocally stimulates CXCL9 expression in myeloid cells, resulting in positive feedback between myeloid-CXCL9 and T cell-IFNγ to promote T cell recruitment. However, the STING agonist alone could not sustain this effect in the presence of a systemic deficiency in antigen-specific T cells. CONCLUSIONS Our results demonstrate that intratumoral administration of PC7A nanovaccine achieved stronger antitumor immunity and efficacy over subcutaneous injection. These data suggest intratumoral administration should be included in the therapeutic design in the clinical use of nanovaccine.
Collapse
Affiliation(s)
- Xiaoyi Jiang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xichen Zheng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi, China
| | - Xinyu Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuwei Li
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jonathan Wilhelm
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Cao
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Gang Huang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jinlan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Baran Sumer
- Department of Otolaryngology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jayanthi Lea
- Department of Obstetrics and Gynecology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhigang Lu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China .,The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.,Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinming Gao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA .,Department of Otolaryngology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Min Luo
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
55
|
Okada H, Takahashi K, Yaku H, Kobiyama K, Iwaisako K, Zhao X, Shiokawa M, Uza N, Kodama Y, Ishii KJ, Seno H. In situ vaccination using unique TLR9 ligand K3-SPG induces long-lasting systemic immune response and synergizes with systemic and local immunotherapy. Sci Rep 2022; 12:2132. [PMID: 35136110 PMCID: PMC8825851 DOI: 10.1038/s41598-022-05702-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
Although checkpoint inhibitors (CPIs) have changed the paradigm of cancer therapy, low response rates and serious systemic adverse events remain challenging. In situ vaccine (ISV), intratumoral injection of immunomodulators that stimulate innate immunity at the tumor site, allows for the development of vaccines in patients themselves. K3-SPG, a second-generation nanoparticulate Toll-like receptor 9 (TLR9) ligand consisting of K-type CpG oligodeoxynucleotide (ODN) wrapped with SPG (schizophyllan), integrates the best of conventional CpG ODNs, making it an ideal cancer immunotherapy adjuvant. Focusing on clinical feasibility for pancreaticobiliary and gastrointestinal cancers, we investigated the antitumor activity of K3-SPG-ISV in preclinical models of pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). K3-SPG-ISV suppressed tumor growth more potently than K3-ISV or K3-SPG intravenous injections, prolonged survival, and enhanced the antitumor effect of CPIs. Notably, in PDAC model, K3-SPG-ISV alone induced systemic antitumor effect and immunological memory. ISV combination of K3-SPG and agonistic CD40 antibody further enhanced the antitumor effect. Our results imply that K3-SPG-based ISV can be applied as monotherapy or combined with CPIs to improve their response rate or, conversely, with CPI-free local immunotherapy to avoid CPI-related adverse events. In either strategy, the potency of K3-SPG-based ISV would provide the rationale for its clinical application to puncturable pancreaticobiliary and gastrointestinal malignancies.
Collapse
Affiliation(s)
- Hirokazu Okada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan.
| | - Hiroaki Yaku
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, 610-0394, Japan
| | - Xiangdong Zhao
- Division of HBP Surgery and Transplantation, Department of Surgery, Kyoto University, 54-Shogoin Kawahara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ken J Ishii
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| |
Collapse
|
56
|
Proskurina AS, Ruzanova VS, Ostanin AA, Chernykh ER, Bogachev SS. Theoretical premises of a "three in one" therapeutic approach to treat immunogenic and nonimmunogenic cancers: a narrative review. Transl Cancer Res 2022; 10:4958-4972. [PMID: 35116346 PMCID: PMC8797664 DOI: 10.21037/tcr-21-919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Objective We describe experimental and theoretical premises of a powerful cancer therapy based on the combination of three approaches. These include (I) in situ vaccination (intratumoral injections of CpG oligonucleotides and anti-OX40 antibody); (II) chronometric or metronomic low-dose cyclophosphamide (CMLD CP)-based chemotherapy; (III) cancer stem cell-eradicating therapy referred to as Karanahan (from the Sanskrit kāraṇa [“source”] + han [“to kill”]). Background In murine models, the first two approaches are particularly potent in targeting immunogenic tumors for destruction. In situ vaccination activates a fully fledged anticancer immune response via an intricate network of ligand–receptor–cytokine interactions. CMLD CP-based chemotherapy primarily targets the suppressive tumor microenvironment and activates tumor-infiltrating effectors. In contrast, Karanahan technology, being aimed at replicative machinery of tumor cells (both stem-like and committed), does not depend on tumor immunogenicity. With this technology, mice engrafted with ascites and/or solid tumors can be successfully cured. There is a significant degree of mechanistic and therapeutic overlap between these three approaches. For instance, the similarities shared between in situ vaccination and Karanahan technology include the therapeutic procedure, the cell target [antigen-presenting cells (APC) and dendritic cells (DC)], and the use of DNA-based preparations (CpG and DNAmix). Features shared between CMLD CP-based chemotherapy and Karanahan technology are the timing and the dose of the cytostatic drug administration, which lead to tumor regression. Methods The following keywords were used to search PubMed for the latest research reporting successful eradication of transplantable cancers in animal models that relied on approaches distinct from those used in the Karanahan technology: eradication of malignancy, cure cancer, complete tumor regression, permanently eradicating advanced mouse tumor, metronomic chemotherapy, in situ vaccination, immunotherapy, and others. Conclusion We hypothesize, therefore, that very potent anticancer activity can be achieved once these three therapeutic modalities are combined into a single approach. This multimodal approach is theoretically curative for any type of cancer that depends on the presence of tumor-inducing cancer stem cells, provided that the active therapeutic components are efficiently delivered into the tumor and the specific biological features of a given patient’s tumor are properly addressed. We expect this multimodal approach to be primarily applicable to late-stage or terminal cancer patients who have exhausted all treatment options as well as patients with inoperable tumors.
Collapse
Affiliation(s)
- Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Vera S Ruzanova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Alexandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
57
|
Ren J, Li L, Yu B, Xu E, Sun N, Li X, Xing Z, Han X, Cui Y, Wang X, Zhang X, Wang G. Extracellular vesicles mediated proinflammatory macrophage phenotype induced by radiotherapy in cervical cancer. BMC Cancer 2022; 22:88. [PMID: 35062905 PMCID: PMC8781113 DOI: 10.1186/s12885-022-09194-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Background Radiotherapy is a highly effective treatment for cervical cancer. Recent studies focused on the radiotherapy induced anti-tumor immunity. Whether tumor-derived extracellular vesicles (EVs) play roles in radiotherapy induced tumor associated macrophage (TAM) polarization remains unclear. Materials and Methods This study analysed the phenotype of macrophages in cancer tissue and peripheral blood of cervical cancer patients using flow cytometry analysis. The role of EVs from plasma of post-irradiated patients on M2-like transformed macrophages was assessed. The M1- and M2-like macrophages were assessed by expression of cell surface markers (CCR7, CD163) and intracellular cytokines (IL-10, TNFα and iNOS). The capacity of phagocytosis was assessed by PD-1 expression and phagocytosis of pHrodo Red E. coli bioparticles. Results Our results demonstrated that radiotherapy of cervical cancer induced an increase in the number of TAMs and a change in their subtype from the M2-like to the M1-like phenotype (increased expression of CCR7 and decreased expression of CD163). The EVs from plasma of post-irradiated patients facilitated the M2-like to the M1-like phenotype transition (increased expression of CCR7, TNFα and iNOS, and decreased expression of CD163 and IL-10) and increased capacity of phagocytosis (decreased PD-1 expression and increased phagocytosis of pHrodo Red E. coli bioparticles). Conclusions Our data demonstrated that irradiation in cervical cancer patients facilitated a proinflammatory macrophage phenotype which could eventually able to mediate anti-tumor immune responses. Our findings highlight the importance of EV in the crosstalk of tumor cells and TAM upon irradiation, which potentially leading to an increased inflammatory response to cancer lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09194-z.
Collapse
|
58
|
Hartimath SV, Ramasamy B, Xuan TY, Rong TJ, Khanapur S, Cheng P, Hwang YY, Robins EG, Goggi JL. Granzyme B PET Imaging in Response to In Situ Vaccine Therapy Combined with αPD1 in a Murine Colon Cancer Model. Pharmaceutics 2022; 14:pharmaceutics14010150. [PMID: 35057046 PMCID: PMC8779135 DOI: 10.3390/pharmaceutics14010150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) block checkpoint receptors that tumours use for immune evasion, allowing immune cells to target and destroy cancer cells. Despite rapid advancements in immunotherapy, durable response rates to ICIs remains low. To address this, combination clinical trials are underway assessing whether adjuvants can enhance responsiveness by increasing tumour immunogenicity. CpG-oligodeoxynucleotides (CpG-ODN) are synthetic DNA fragments containing an unmethylated cysteine-guanosine motif that stimulate the innate and adaptive immune systems by engaging Toll-like receptor 9 (TLR9) present on the plasmacytoid dendritic cells (pDCs) and B cells. Here, we have assessed the ability of AlF-mNOTA-GZP, a peptide tracer targeting granzyme B, to serve as a PET imaging biomarker in response to CpG-ODN 1585 in situ vaccine therapy delivered intratumourally (IT) or intraperitoneally (IP) either as monotherapy or in combination with αPD1. [18F]AlF-mNOTA-GZP was able to differentiate treatment responders from non-responders based on tumour uptake. Furthermore, [18F]AlF-mNOTA-GZP showed positive associations with changes in tumour-associated lymphocytes expressing GZB, namely GZB+ CD8+ T cells, and decreases in suppressive F4/80+ cells. [18F]AlF-mNOTA-GZP tumour uptake was mediated by GZB expressing CD8+ cells and successfully stratifies therapy responders from non-responders, potentially acting as a non-invasive biomarker for ICIs and combination therapy evaluation in a clinical setting.
Collapse
Affiliation(s)
- Siddesh V. Hartimath
- Laboratory of Radiochemistry & Molecular Imaging (LRMI), Institute of Bioengineering and Bioimaging (IBB), A*STAR Research Entities, Helios, Singapore 138667, Singapore; (B.R.); (T.Y.X.); (T.J.R.); (S.K.); (P.C.); (E.G.R.)
- Correspondence: (S.V.H.); (J.L.G.)
| | - Boominathan Ramasamy
- Laboratory of Radiochemistry & Molecular Imaging (LRMI), Institute of Bioengineering and Bioimaging (IBB), A*STAR Research Entities, Helios, Singapore 138667, Singapore; (B.R.); (T.Y.X.); (T.J.R.); (S.K.); (P.C.); (E.G.R.)
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Tan Yun Xuan
- Laboratory of Radiochemistry & Molecular Imaging (LRMI), Institute of Bioengineering and Bioimaging (IBB), A*STAR Research Entities, Helios, Singapore 138667, Singapore; (B.R.); (T.Y.X.); (T.J.R.); (S.K.); (P.C.); (E.G.R.)
| | - Tang Jun Rong
- Laboratory of Radiochemistry & Molecular Imaging (LRMI), Institute of Bioengineering and Bioimaging (IBB), A*STAR Research Entities, Helios, Singapore 138667, Singapore; (B.R.); (T.Y.X.); (T.J.R.); (S.K.); (P.C.); (E.G.R.)
| | - Shivashankar Khanapur
- Laboratory of Radiochemistry & Molecular Imaging (LRMI), Institute of Bioengineering and Bioimaging (IBB), A*STAR Research Entities, Helios, Singapore 138667, Singapore; (B.R.); (T.Y.X.); (T.J.R.); (S.K.); (P.C.); (E.G.R.)
| | - Peter Cheng
- Laboratory of Radiochemistry & Molecular Imaging (LRMI), Institute of Bioengineering and Bioimaging (IBB), A*STAR Research Entities, Helios, Singapore 138667, Singapore; (B.R.); (T.Y.X.); (T.J.R.); (S.K.); (P.C.); (E.G.R.)
| | - You Yi Hwang
- FACS facility, Singapore Immunology Network (SIgN), A*STAR Research Entities, Immunos, Singapore 138665, Singapore;
| | - Edward G. Robins
- Laboratory of Radiochemistry & Molecular Imaging (LRMI), Institute of Bioengineering and Bioimaging (IBB), A*STAR Research Entities, Helios, Singapore 138667, Singapore; (B.R.); (T.Y.X.); (T.J.R.); (S.K.); (P.C.); (E.G.R.)
- Clinical Imaging Research Centre (CIRC), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Julian L. Goggi
- Laboratory of Radiochemistry & Molecular Imaging (LRMI), Institute of Bioengineering and Bioimaging (IBB), A*STAR Research Entities, Helios, Singapore 138667, Singapore; (B.R.); (T.Y.X.); (T.J.R.); (S.K.); (P.C.); (E.G.R.)
- Correspondence: (S.V.H.); (J.L.G.)
| |
Collapse
|
59
|
Cai T, Liu H, Zhang S, Hu J, Zhang L. Delivery of nanovaccine towards lymphoid organs: recent strategies in enhancing cancer immunotherapy. J Nanobiotechnology 2021; 19:389. [PMID: 34823541 PMCID: PMC8620195 DOI: 10.1186/s12951-021-01146-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/14/2021] [Indexed: 01/15/2023] Open
Abstract
With the in-depth exploration on cancer therapeutic nanovaccines, increasing evidence shows that the poor delivery of nanovaccines to lymphoid organs has become the culprit limiting the rapid induction of anti-tumor immune response. Unlike the conventional prophylactic vaccines that mainly form a depot at the injection site to gradually trigger durable immune response, the rapid proliferation of tumors requires an efficient delivery of nanovaccines to lymphoid organs for rapid induction of anti-tumor immunity. Optimization of the physicochemical properties of nanovaccine (e.g., size, shape, charge, colloidal stability and surface ligands) is an effective strategy to enhance their accumulation in lymphoid organs, and nanovaccines with dynamic structures are also designed for precise targeted delivery of lymphoid organs or their subregions. The recent progress of these nanovaccine delivery strategies is highlighted in this review, and the challenges and future direction are also discussed. ![]()
Collapse
Affiliation(s)
- Ting Cai
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| | - Huina Liu
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| | - Shun Zhang
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| | - Jing Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 211200, China.
| | - Lingxiao Zhang
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China. .,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China. .,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China. .,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
60
|
Technical Feasibility and Safety of Repeated Computed Tomography-Guided Transthoracic Intratumoral Injection of Gene-Modified Cellular Immunotherapy in Metastatic NSCLC. JTO Clin Res Rep 2021; 2:100242. [PMID: 34806054 PMCID: PMC8581369 DOI: 10.1016/j.jtocrr.2021.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/01/2022] Open
Abstract
Introduction To assess the technical feasibility and safety of repeated percutaneous computed tomography (CT)–guided transthoracic biopsies and intratumoral injections of gene-modified dendritic cells in metastatic NSCLC. Methods A total of 15 patients with 15 NSCLC lesions measuring greater than 1.0 cm underwent two cycles of intratumoral biopsies and CCL21 dendritic cell injections separated by 7 days. All needle placements and injections were done under CT guidance. Clinical and imaging follow-up was done approximately 4 weeks after the first procedure. Safety and feasibility were determined as: (1) safety and feasibility similar to that of single-needle biopsy, and (2) an absence of serious adverse events defined as grade greater than or equal to three according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 5.0. Results A total of 30 percutaneous, transthoracic intratumoral biopsies and injections into the lung cancer were performed, two cycles (at d 0 and 7) received by each patient (311 biopsies and 96 intratumoral injections). All percutaneous cases achieved technical success with respect to needle placement for both biopsy and injection of CCL21 dendritic cells. Only minor complications were observed (grade <3), including pneumothorax (n = 10, 33%) and small postbiopsy hemorrhage (n = 2, 7%). Pneumothorax was moderate (n = 1) or trace (n = 9), with resolution of the moderate pneumothorax after manual aspiration without chest tube placement. No patient required chest tube placement. No other complications or serious adverse effects related to the biopsy or dendritic cell injection were noted. All patients were in stable condition after up to 4 hours in the recovery unit and were discharged home on the same day. No procedure-related complications were observed on imaging or clinical follow-up at 4 weeks. Conclusions Repeated percutaneous, transthoracic CT-guided biopsies and intratumoral gene-modified cell-based immunotherapy injections into lung cancers are technically feasible, safe, and reproducible. There were no procedure-related serious (defined as grade ≥3) adverse events.
Collapse
|
61
|
Abstract
After a long period of endeavor, immunotherapy has become the mainstream of cancer therapies. This success is mostly ascribed to immune checkpoint blockade, chimeric antigen receptor-transduced T cell therapies, and bispecific antibodies. However, these methods have been effective or applicable to only a limited proportion of patients so far. Thus, further development of broadly applicable and effective immunotherapies is eagerly anticipated. Given that innate immunity is key to the induction of robust adaptive immunity and that the immunosuppressive tumor microenvironment is a major hurdle to overcome, intratumoral immunotherapy in which delivery of immunostimulatory microbial agents to the tumor site triggers innate immunity in situ is a rational strategy. There has been a plethora of preclinical and clinical trials conducted involving the delivery of either mimetics of viral nucleic acids or oncolytic viruses intratumorally to trigger innate immunity via various nucleic acid sensors in the tumor site. Many of these have shown significant antitumor effects in mice, particularly in combination with immune checkpoint blockade. Oncolytic herpes simplex virus type 1 has been approved for the treatment of advanced melanoma in the United States and Europe and of glioblastoma in Japan. Whereas direct intratumoral administration has mainly been chosen as a delivery route, several promising compounds amenable to systemic administration have been developed. Intratumoral delivery of immunostimulatory agents will become an important option for cancer immunotherapy as an off-the-shelf, broadly applicable, and rational strategy that exploits the physiology of immunity, namely anti-microbial immunity.
Collapse
Affiliation(s)
- Norimitsu Kadowaki
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
62
|
Vannini A, Parenti F, Bressanin D, Barboni C, Zaghini A, Campadelli-Fiume G, Gianni T. Towards a Precision Medicine Approach and In Situ Vaccination against Prostate Cancer by PSMA-Retargeted oHSV. Viruses 2021; 13:v13102085. [PMID: 34696515 PMCID: PMC8541339 DOI: 10.3390/v13102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022] Open
Abstract
Prostate specific membrane antigen (PSMA) is a specific high frequency cell surface marker of prostate cancers. Theranostic approaches targeting PSMA show no major adverse effects and rule out off-tumor toxicity. A PSMA-retargeted oHSV (R-405) was generated which both infected and was cytotoxic exclusively for PSMA-positive cells, including human prostate cancer LNCaP and 22Rv1 cells, and spared PSMA-negative cells. R-405 in vivo efficacy against LLC1-PSMA and Renca-PSMA tumors consisted of inhibiting primary tumor growth, establishing long-term T immune response, immune heating of the microenvironment, de-repression of the anti-tumor immune phenotype, and sensitization to checkpoint blockade. The in situ vaccination protected from distant challenge tumors, both PSMA-positive and PSMA-negative, implying that it was addressed also to LLC1 tumor antigens. PSMA-retargeted oHSVs are a precision medicine tool worth being additionally investigated in the immunotherapeutic and in situ vaccination landscape against prostate cancers.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
| | - Federico Parenti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
| | - Daniela Bressanin
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (C.B.); (A.Z.)
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
- Correspondence: (G.C.-F.); (T.G.); Tel.: +39-0512094733 (G.C.-F.); +39-0512094750 (T.G.)
| | - Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (A.V.); (F.P.); (D.B.)
- Correspondence: (G.C.-F.); (T.G.); Tel.: +39-0512094733 (G.C.-F.); +39-0512094750 (T.G.)
| |
Collapse
|
63
|
Monocytes Exposed to Immune Complexes Reduce pDC Type 1 Interferon Response to Vidutolimod. Vaccines (Basel) 2021; 9:vaccines9090982. [PMID: 34579220 PMCID: PMC8473335 DOI: 10.3390/vaccines9090982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
Vidutolimod, also known as CMP-001, is a virus-like particle composed of the Qβ bacteriophage coat protein encasing a TLR9 agonist. Vidutolimod injected intratumorally is showing promise in early phase clinical trials based on its ability to alter the tumor microenvironment and induce an anti-tumor immune response. We previously demonstrated that the in vivo efficacy of vidutolimod is dependent on the presence of anti-Qβ antibodies that enhance opsonization and uptake of vidutolimod by TLR9-expressing plasmacytoid dendritic cells (pDCs). Here, we evaluated the effect of immune complexes, including anti-Qβ-coated vidutolimod, on induction of Type 1 Interferon production by peripheral blood mononuclear cells in response to vidutolimod and soluble TLR9 agonists. Immune complexes, including but not limited to anti-Qβ-coated vidutolimod, indirectly suppressed TLR9-mediated Type 1 Interferon production by pDCs in a monocyte-dependent manner. These findings indicate that anti-Qβ-coated vidutolimod has effects in addition to those mediated by TLR9 that could have important clinical implications for understanding the mechanism of action of this exciting new approach to in situ immunization and cancer immunotherapy.
Collapse
|
64
|
Vuppugalla R, Sane R, Wichroski M, Gavai AK, Boyanapalli S, Yang Z. Prospective prediction of plasma pharmacokinetics of a novel immune-modulating agent in cancer patients after intra-tumoral administration: translation from non-clinical species to humans. Xenobiotica 2021; 51:1255-1263. [PMID: 34461800 DOI: 10.1080/00498254.2021.1934606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Intra-tumoral (I-TUMOUR) delivery is being widely explored for novel anti-cancer agents. This route is anticipated to result in high tumour concentrations leading to better efficacy and safety. Prediction of human systemic pharmacokinetics (PK) from non-clinical species facilitates understanding of pharmacokinetic-pharmacodynamic relationships, efficient dose selection, and risk assessment of novel drugs. However, there is limited knowledge on the predictability of human pharmacokinetics following I-TUMOUR delivery.In this publication, we present a case study wherein human systemic PK of a novel agent administered intra-tumourally was prospectively predicted and compared with observed human PK.Simple allometry was used to project the human clearance (10.5 mL/min/kg) and steady-state volume of distribution (1.4 L/kg) after intravenous (IV) dosing. Using these IV PK parameters and assuming rapid absorption and complete I-TUMOUR bioavailability, human plasma PK profile was simulated. The projected 30 min concentrations and AUC(0-6h) were within 1.9 to 2.5-fold and 1 to 1.4-fold of the observed PK indicating a reasonable concordance between predicted and observed PK.To our knowledge, this is the first article that prospectively projected human pharmacokinetics after I-TUMOUR dosing. The results from this study indicate that similar approaches can be used to project the human PK of other I-TUMOUR agents.
Collapse
Affiliation(s)
- Ragini Vuppugalla
- Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Lawrenceville, NJ, USA
| | - Ramola Sane
- Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Cambridge, MA, USA
| | - Michael Wichroski
- Drug Discovery Biology, Bristol-Myers Squibb Co., Cambridge, MA, USA
| | | | | | - Zheng Yang
- Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Lawrenceville, NJ, USA
| |
Collapse
|
65
|
Jahan N, Ghouse SM, Martuza RL, Rabkin SD. In Situ Cancer Vaccination and Immunovirotherapy Using Oncolytic HSV. Viruses 2021; 13:v13091740. [PMID: 34578321 PMCID: PMC8473045 DOI: 10.3390/v13091740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus (HSV) can be genetically altered to acquire oncolytic properties so that oncolytic HSV (oHSV) preferentially replicates in and kills cancer cells, while sparing normal cells, and inducing anti-tumor immune responses. Over the last three decades, a better understanding of HSV genes and functions, and improved genetic-engineering techniques led to the development of oHSV as a novel immunovirotherapy. The concept of in situ cancer vaccination (ISCV) was first introduced when oHSV was found to induce a specific systemic anti-tumor immune response with an abscopal effect on non-injected tumors, in the process of directly killing tumor cells. Thus, the use of oHSV for tumor vaccination in situ is antigen-agnostic. The research and development of oHSVs have moved rapidly, with the field of oncolytic viruses invigorated by the FDA/EMA approval of oHSV talimogene laherparepvec in 2015 for the treatment of advanced melanoma. Immunovirotherapy can be enhanced by arming oHSV with immunomodulatory transgenes and/or using them in combination with other chemotherapeutic and immunotherapeutic agents. This review offers an overview of the development of oHSV as an agent for ISCV against solid tumors, describing the multitude of different oHSVs and their efficacy in immunocompetent mouse models and in clinical trials.
Collapse
Affiliation(s)
- Nusrat Jahan
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Shanawaz M. Ghouse
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Robert L. Martuza
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
66
|
Zhu H, Liu X. Advances of Tumorigenesis, Diagnosis at Early Stage, and Cellular Immunotherapy in Gastrointestinal Malignancies. Front Oncol 2021; 11:666340. [PMID: 34434889 PMCID: PMC8381364 DOI: 10.3389/fonc.2021.666340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Globally, in 2018, 4.8 million new patients have a diagnosis of gastrointestinal (GI) cancers, while 3.4 million people died of such disorders. GI malignancies are tightly relevant to 26% of the world-wide cancer incidence and occupies 35% of all cancer-associated deaths. In this article, we principally investigated molecular and cellular mechanisms of tumorigenesis in five major GI cancers occurring at esophagus, stomach, liver, pancreas, and colorectal region that illustrate high morbidity in Eastern and Western countries. Moreover, through this investigation, we not only emphasize importance of the tumor microenvironment in development and treatment of malignant tumors but also identify significance of M2PK, miRNAs, ctDNAs, circRNAs, and CTCs in early detection of GI cancers, as well as systematically evaluate contribution of personalized precision medicine including cellular immunotherapy, new antigen and vaccine therapy, and oncolytic virotherapy in treatment of GI cancers.
Collapse
Affiliation(s)
- Haipeng Zhu
- Precision and Personalized Cancer Treatment Center, Division of Cancer Diagnosis & Therapy, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China.,Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical College, Xinxiang, China
| | - Xiaojun Liu
- Division of Cellular & Biomedical Science, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China
| |
Collapse
|
67
|
Yang S, Sun IC, Hwang HS, Shim MK, Yoon HY, Kim K. Rediscovery of nanoparticle-based therapeutics: boosting immunogenic cell death for potential application in cancer immunotherapy. J Mater Chem B 2021; 9:3983-4001. [PMID: 33909000 DOI: 10.1039/d1tb00397f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunogenic cell death (ICD) occurring by chemical and physical stimuli has shown the potential to activate an adaptive immune response in the immune-competent living body through the release of danger-associated molecular patterns (DAMPs) into the tumor microenvironment (TME). However, limitations to the long-term immune responses and systemic toxicity of conventional ICD inducers have led to unsatisfactory therapeutic efficacy in ICD-based cancer immunotherapy. Until now, various nanoparticle-based ICD-inducers have been developed to induce an antitumor immune response without severe toxicity, and to efficiently elicit an anticancer immune response against target cancer cells. In this review, we introduce a recent advance in the designs and applications of nanoparticle-based therapeutics to elicit ICD for effective cancer immunotherapy. In particular, combination strategies of nanoparticle-based ICD inducers with typical theranostic modalities are introduced intensively. Subsequently, we discuss the expected challenges and future direction of nanoparticle-based ICD inducers to provide strategies for boosting ICD in cancer immunotherapy. These versatile designs and applications of nanoparticle-based therapeutics for ICD can provide advantages to improve the therapeutic efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Suah Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. and Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. and Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
68
|
Ager CR, Boda A, Rajapakshe K, Lea ST, Di Francesco ME, Jayaprakash P, Slay RB, Morrow B, Prasad R, Dean MA, Duffy CR, Coarfa C, Jones P, Curran MA. High potency STING agonists engage unique myeloid pathways to reverse pancreatic cancer immune privilege. J Immunother Cancer 2021; 9:jitc-2021-003246. [PMID: 34341132 PMCID: PMC8330562 DOI: 10.1136/jitc-2021-003246] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Intratumoral injection of cyclic dinucleotide (CDN) agonists of the stimulator of interferon genes (STING) pathway engages innate immune activation and priming of adaptive immune effectors to foster local and distal tumor clearance. Despite proven therapeutic efficacy in preclinical models, a thorough understanding of how CDNs reprogram suppressive myeloid stroma in mouse and man is lacking. METHODS Here, we perform deep transcript-level and protein-level profiling of myeloid-derived suppressor cells and M2 macrophages following stimulation with CDNs of ascending potency. Additionally, we leverage orthotopic Kras+/G12DTP53+/R172HPdx1-Cre (KPC) derived models of pancreatic adenocarcinoma (PDAC) to determine the capacity for locally administered CDNs to sensitize PDAC to immune checkpoint blockade. We use bioluminescent in vivo imaging and 30-parameter flow cytometry to profile growth kinetics and remodeling of the tumor stroma post-therapy. RESULTS Highly potent synthetic STING agonists repolarize suppressive myeloid populations of human and murine origin in part through inhibition of Myc signaling, metabolic modulation, and antagonism of cell cycle. Surprisingly, high-potency synthetic agonists engage qualitatively unique pathways as compared with natural CDNs. Consistent with our mechanistic observations, we find that intratumoral injection of the highest activity STING agonist, IACS-8803, into orthotopic pancreatic adenocarcinoma lesions unmasks sensitivity to checkpoint blockade immunotherapy. Dimensionality reduction analyses of high parameter flow cytometry data reveals substantial contributions of both myeloid repolarization and T cell activation underlying the in vivo therapeutic benefit of this approach. CONCLUSIONS This study defines the molecular basis of STING-mediated myeloid reprogramming, revealing previously unappreciated and qualitatively unique pathways engaged by CDNs of ascending potency during functional repolarization. Furthermore, we demonstrate the potential for high potency CDNs to overcome immunotherapy resistance in an orthotopic, multifocal model of PDAC.
Collapse
Affiliation(s)
- Casey R Ager
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA,Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Akash Boda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Kimal Rajapakshe
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Spencer Thomas Lea
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Maria Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyamvada Jayaprakash
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ravaen B Slay
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brittany Morrow
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Rishika Prasad
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Meghan A Dean
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Colm R Duffy
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
69
|
Gorbet MJ, Singh A, Mao C, Fiering S, Ranjan A. Using nanoparticles for in situ vaccination against cancer: mechanisms and immunotherapy benefits. Int J Hyperthermia 2021; 37:18-33. [PMID: 33426995 DOI: 10.1080/02656736.2020.1802519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy to treat cancer is now an established clinical approach. Immunotherapy can be applied systemically, as done with checkpoint blockade antibodies, but it can also be injected directly into identified tumors, in a strategy of in situ vaccination (ISV). ISV is designed to stimulate a strong local antitumor immune response involving both innate and adaptive immune cells, and through this generate a systemic antitumor immune response against metastatic tumors. A variety of ISVs have been utilized to generate an immunostimulatory tumor microenvironment (TME). These include attenuated microorganisms, recombinant proteins, small molecules, physical disruptors of TME (alternating magnetic and focused ultrasound heating, photothermal therapy, and radiotherapy), and more recently nanoparticles (NPs). NPs are attractive and unique since they can load multiple drugs or other reagents to influence immune and cancer cell functions in the TME, affording a unique opportunity to stimulate antitumor immunity. Here, we describe the NP-ISV therapeutic mechanisms, review chemically synthesized NPs (i.e., liposomes, polymeric, chitosan-based, inorganic NPs, etc.), biologically derived NPs (virus and bacteria-based NPs), and energy-activated NP-ISVs in the context of their use as local ISV. Data suggests that NP-ISVs can enhance outcomes of immunotherapeutic regimens including those utilizing tumor hyperthermia and checkpoint blockade therapies.
Collapse
Affiliation(s)
| | - Akansha Singh
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center at Dartmouth and Dartmouth Hitchcock, Lebanon, NH, USA
| | - Ashish Ranjan
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
70
|
Mao C, Gorbet MJ, Singh A, Ranjan A, Fiering S. In situ vaccination with nanoparticles for cancer immunotherapy: understanding the immunology. Int J Hyperthermia 2021; 37:4-17. [PMID: 33455477 DOI: 10.1080/02656736.2020.1810333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
FDA approval of anti-CTLA4 in 2011 for melanoma immunotherapy was paradigm shifting and dramatically accelerated cancer immunotherapy research. The investment and effort have been exceptionally large, with a commensurate impressive pace of discovery. Historical and current research has validated the following key points: tumors are recognized by the immune system; tumors develop an immunosuppressive environment which suppresses the antitumor immune response; successful immunotherapy must overcome that tumor-mediated immunosuppression. While cancer immunotherapy research expanded, a parallel effort developing nanoparticles (NP) for cancer diagnosis and therapy also received major investment and expanded. Initially the two efforts appeared to have minimal synergy. Systemically administered nanoparticles are rapidly ingested by phagocytic leukocytes, and therefore nanotechnologists developed strategies to avoid NP ingestion by leukocytes in order to accomplish nanoparticle accumulation in tumors rather than liver and spleen. Recently, nanotechnology and cancer immunotherapy have increasingly merged since phagocytic leukocytes are the key to reversing the local tumor immunosuppression and the tendency of NP to be phagocytosed can be exploited to manipulate phagocytes for immunotherapy. This review focuses on in situ vaccination (ISV), an immunotherapy approach that can utilize direct injection of immunostimulatory reagents, including NPs, into tumors to disrupt the local immunosuppression, stimulate effective immune response against the treated tumor, and most importantly, generate a systemic antitumor immune response to eliminate metastatic tumors. While there are many specific options for using NP for ISV (reviewed further in this special issue), this review focuses on immunology concepts needed to understand and design successful NP ISV approaches.
Collapse
Affiliation(s)
- Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Michael-Joseph Gorbet
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Akansha Singh
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Geisel School of Medicine and Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
71
|
Mao C, Beiss V, Fields J, Steinmetz NF, Fiering S. Cowpea mosaic virus stimulates antitumor immunity through recognition by multiple MYD88-dependent toll-like receptors. Biomaterials 2021; 275:120914. [PMID: 34126409 DOI: 10.1016/j.biomaterials.2021.120914] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Cowpea mosaic virus (CPMV), a non-enveloped plant virus, and empty CPMV (eCPMV), a virus-like particle (VLP) composed of CPMV capsid without nucleic acids, are potent in situ cancer vaccines when administered intratumorally (I.T.). However, it is unclear how immune cells recognize these nanoparticles and why they are immunogenic, which was investigated in this study. CPMV generated stronger selective induction of cytokines and chemokines in naïve mouse splenocytes and exhibited more potent anti-tumor efficacy than eCPMV. MyD88 is required for both CPMV- and eCPMV-elicited immune responses. Screening with human embryonic kidney (HEK)-293 cell toll-like receptor (TLR) reporter assays along with experiments in corresponding TLR-/- mice indicated CPMV and eCPMV capsids are recognized by MyD88-dependent TLR2 and TLR4. CPMV, but not eCPMV, is additionally recognized by TLR7. Secretion of type I interferons (IFNs), which requires the interaction between TLR7 and encapsulated single-stranded RNAs (ssRNAs), is critical to CPMV's better efficacy. The same recognition mechanisms are also functional in human peripheral blood mononuclear cells (PBMCs). Overall, these findings link CPMV immunotherapy efficacy with molecular recognition, provide rationale for how to develop more potent viral particles, accentuate the value of multi-TLR agonists as in situ cancer vaccines, and highlight the functional importance of type I IFNs for in situ vaccination.
Collapse
Affiliation(s)
- Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States
| | - Veronique Beiss
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Jennifer Fields
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States; Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth Hitchcock Medical System, Lebanon, NH, 03756, United States
| | - Nicole F Steinmetz
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, United States; Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, United States; Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute for Materials Design and Discovery, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States; Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth Hitchcock Medical System, Lebanon, NH, 03756, United States.
| |
Collapse
|
72
|
Spicer J, Marabelle A, Baurain JF, Jebsen NL, Jøssang DE, Awada A, Kristeleit R, Loirat D, Lazaridis G, Jungels C, Brunsvig P, Nicolaisen B, Saunders A, Patel H, Galon J, Hermitte F, Camilio KA, Mauseth B, Sundvold V, Sveinbjørnsson B, Rekdal Ø. Safety, Antitumor Activity, and T-cell Responses in a Dose-Ranging Phase I Trial of the Oncolytic Peptide LTX-315 in Patients with Solid Tumors. Clin Cancer Res 2021; 27:2755-2763. [PMID: 33542073 DOI: 10.1158/1078-0432.ccr-20-3435] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/07/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE LTX-315 is a first-in-class, 9-mer membranolytic peptide that has shown potent immunomodulatory properties in preclinical models. We conducted a phase I dose-escalating study of intratumoral LTX-315 administration in patients with advanced solid tumors. PATIENTS AND METHODS Thirty-nine patients were enrolled, receiving LTX-315 injections into accessible tumors. The primary objective was to assess the safety and tolerability of this approach, with antitumor and immunomodulatory activity as secondary objectives. Tumor biopsies were collected at baseline and posttreatment for analysis of immunologic parameters. RESULTS The most common treatment-related grade 1-2 adverse events were vascular disorders including transient hypotension (18 patients, 46%), flushing (11 patients, 28%), and injection site reactions in 38% of patients. The most common grade 3 LTX-315-related toxicities were hypersensitivity or anaphylaxis (4 patients, 10%). Analysis of immune endpoints in serial biopsies indicated that LTX-315 induces necrosis and CD8+ T-cell infiltration into the tumor microenvironment. Sequencing of the T-cell receptor repertoire in peripheral blood identified significant expansion of T-cell clones after treatment, of which 49% were present in available tumor biopsies after treatment, suggesting that they were tumor associated. Substantial volume reduction (≥30%) of injected tumors occurred in 29% of the patients, and 86% (12/14 biopsies) had an increase in intralesional CD8+ T cells posttreatment. No partial responses by immune-related response criteria were seen, but evidence of abscopal effect was demonstrated following treatment with LTX-315. CONCLUSIONS LTX-315 has an acceptable safety profile, is clinically active, induces changes in the tumor microenvironment and contributes to immune-mediated anticancer activity.
Collapse
Affiliation(s)
- James Spicer
- King's College London, Guy's Hospital, United Kingdom.
| | - Aurélien Marabelle
- DITEP, INSERM U1015 & CIC1428, Université Paris Saclay, Gustave Roussy, France
| | | | - Nina Louise Jebsen
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway.,Haukeland University Hospital, Bergen, Norway
| | | | - Ahmad Awada
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | - Jérôme Galon
- INSERM Laboratory of Integrative Cancer Immunology, Paris, France
| | | | | | | | | | - Baldur Sveinbjørnsson
- Lytix Biopharma, Oslo, Norway.,Department of Medical Biology, Arctic University of Norway, Tromsø, Norway
| | - Øystein Rekdal
- Lytix Biopharma, Oslo, Norway.,Department of Medical Biology, Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
73
|
Han L, Peng K, Qiu LY, Li M, Ruan JH, He LL, Yuan ZX. Hitchhiking on Controlled-Release Drug Delivery Systems: Opportunities and Challenges for Cancer Vaccines. Front Pharmacol 2021; 12:679602. [PMID: 34040536 PMCID: PMC8141731 DOI: 10.3389/fphar.2021.679602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines represent among the most promising strategies in the battle against cancers. However, the clinical efficacy of current cancer vaccines is largely limited by the lack of optimized delivery systems to generate strong and persistent antitumor immune responses. Moreover, most cancer vaccines require multiple injections to boost the immune responses, leading to poor patient compliance. Controlled-release drug delivery systems are able to address these issues by presenting drugs in a controlled spatiotemporal manner, which allows co-delivery of multiple drugs, reduction of dosing frequency and avoidance of significant systemic toxicities. In this review, we outline the recent progress in cancer vaccines including subunit vaccines, genetic vaccines, dendritic cell-based vaccines, tumor cell-based vaccines and in situ vaccines. Furthermore, we highlight the efforts and challenges of controlled or sustained release drug delivery systems (e.g., microparticles, scaffolds, injectable gels, and microneedles) in ameliorating the safety, effectiveness and operability of cancer vaccines. Finally, we briefly discuss the correlations of vaccine release kinetics and the immune responses to enlighten the rational design of the next-generation platforms for cancer therapy.
Collapse
Affiliation(s)
- Lu Han
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Ke Peng
- School of pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Li-Ying Qiu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Meng Li
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jing-Hua Ruan
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Li-Li He
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
74
|
Lurje I, Werner W, Mohr R, Roderburg C, Tacke F, Hammerich L. In Situ Vaccination as a Strategy to Modulate the Immune Microenvironment of Hepatocellular Carcinoma. Front Immunol 2021; 12:650486. [PMID: 34025657 PMCID: PMC8137829 DOI: 10.3389/fimmu.2021.650486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is a highly prevalent malignancy that develops in patients with chronic liver diseases and dysregulated systemic and hepatic immunity. The tumor microenvironment (TME) contains tumor-associated macrophages (TAM), cancer-associated fibroblasts (CAF), regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) and is central to mediating immune evasion and resistance to therapy. The interplay between these cells types often leads to insufficient antigen presentation, preventing effective anti-tumor immune responses. In situ vaccines harness the tumor as the source of antigens and implement sequential immunomodulation to generate systemic and lasting antitumor immunity. Thus, in situ vaccines hold the promise to induce a switch from an immunosuppressive environment where HCC cells evade antigen presentation and suppress T cell responses towards an immunostimulatory environment enriched for activated cytotoxic cells. Pivotal steps of in situ vaccination include the induction of immunogenic cell death of tumor cells, a recruitment of antigen-presenting cells with a focus on dendritic cells, their loading and maturation and a subsequent cross-priming of CD8+ T cells to ensure cytotoxic activity against tumor cells. Several in situ vaccine approaches have been suggested, with vaccine regimens including oncolytic viruses, Flt3L, GM-CSF and TLR agonists. Moreover, combinations with checkpoint inhibitors have been suggested in HCC and other tumor entities. This review will give an overview of various in situ vaccine strategies for HCC, highlighting the potentials and pitfalls of in situ vaccines to treat liver cancer.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
75
|
Chen J, Qiu M, Ye Z, Nyalile T, Li Y, Glass Z, Zhao X, Yang L, Chen J, Xu Q. In situ cancer vaccination using lipidoid nanoparticles. SCIENCE ADVANCES 2021; 7:7/19/eabf1244. [PMID: 33952519 PMCID: PMC8099179 DOI: 10.1126/sciadv.abf1244] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/17/2021] [Indexed: 05/08/2023]
Abstract
In situ vaccination is a promising strategy for cancer immunotherapy owing to its convenience and the ability to induce numerous tumor antigens. However, the advancement of in situ vaccination techniques has been hindered by low cross-presentation of tumor antigens and the immunosuppressive tumor microenvironment. To balance the safety and efficacy of in situ vaccination, we designed a lipidoid nanoparticle (LNP) to achieve simultaneously enhancing cross-presentation and STING activation. From combinatorial library screening, we identified 93-O17S-F, which promotes both the cross-presentation of tumor antigens and the intracellular delivery of cGAMP (STING agonist). Intratumor injection of 93-O17S-F/cGAMP in combination with pretreatment with doxorubicin exhibited excellent antitumor efficacy, with 35% of mice exhibiting total recovery from a primary B16F10 tumor and 71% of mice with a complete recovery from a subsequent challenge, indicating the induction of an immune memory against the tumor. This study provides a promising strategy for in situ cancer vaccination.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Min Qiu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Thomas Nyalile
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Zachary Glass
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xuewei Zhao
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Liu Yang
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
76
|
Mutational burden, MHC-I expression and immune infiltration as limiting factors for in situ vaccination by TNFα and IL-12 gene electrotransfer. Bioelectrochemistry 2021; 140:107831. [PMID: 33991775 DOI: 10.1016/j.bioelechem.2021.107831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
In situ vaccination is a promising immunotherapeutic approach, where various local ablative therapies are used to induce an immune response against tumor antigens that are released from the therapy-killed tumor cells. We recently proposed using intratumoral gene electrotransfer for concomitant transfection of a cytotoxic cytokine tumor necrosis factor-α (TNFα) to induce in situ vaccination, and an immunostimulatory cytokine interleukin 12 (IL-12) to boost the primed immune response. Here, our aim was to test the local and systemic effectiveness of the approach in tree syngeneic mouse tumor models and associate it with tumor immune profiles, characterized by tumor mutational burden, immune infiltration and expression of PD-L1 and MHC-I on tumor cells. While none of the tested characteristic proved predictive for local effectiveness, high tumor mutational burden, immune infiltration and MHC-I expression were associated with higher abscopal effectiveness. Hence, we have confirmed that both the abundance and presentation of tumor antigens as well as the absence of immunosuppressive mechanisms are important for effective in situ vaccination. These findings provide important indications for future development of in situ vaccination based treatments, and for the selection of tumor types that will most likely benefit from it.
Collapse
|
77
|
Jagodinsky JC, Jin WJ, Bates AM, Hernandez R, Grudzinski JJ, Marsh IR, Chakravarty I, Arthur IS, Zangl LM, Brown RJ, Nystuen EJ, Emma SE, Kerr C, Carlson PM, Sriramaneni RN, Engle JW, Aluicio-Sarduy E, Barnhart TE, Le T, Kim K, Bednarz BP, Weichert JP, Patel RB, Morris ZS. Temporal analysis of type 1 interferon activation in tumor cells following external beam radiotherapy or targeted radionuclide therapy. Theranostics 2021; 11:6120-6137. [PMID: 33995649 PMCID: PMC8120207 DOI: 10.7150/thno.54881] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Clinical interest in combining targeted radionuclide therapies (TRT) with immunotherapies is growing. External beam radiation therapy (EBRT) activates a type 1 interferon (IFN1) response mediated via stimulator of interferon genes (STING), and this is critical to its therapeutic interaction with immune checkpoint blockade. However, little is known about the time course of IFN1 activation after EBRT or whether this may be induced by decay of a TRT source. Methods: We examined the IFN1 response and expression of immune susceptibility markers in B78 and B16 melanomas and MOC2 head and neck cancer murine models using qPCR and western blot. For TRT, we used 90Y chelated to NM600, an alkylphosphocholine analog that exhibits selective uptake and retention in tumor cells including B78 and MOC2. Results: We observed significant IFN1 activation in all cell lines, with peak activation in B78, B16, and MOC2 cell lines occurring 7, 7, and 1 days, respectively, following RT for all doses. This effect was STING-dependent. Select IFN response genes remained upregulated at 14 days following RT. IFN1 activation following STING agonist treatment in vitro was identical to RT suggesting time course differences between cell lines were mediated by STING pathway kinetics and not DNA damage susceptibility. In vivo delivery of EBRT and TRT to B78 and MOC2 tumors resulted in a comparable time course and magnitude of IFN1 activation. In the MOC2 model, the combination of 90Y-NM600 and dual checkpoint blockade therapy reduced tumor growth and prolonged survival compared to single agent therapy and cumulative dose equivalent combination EBRT and dual checkpoint blockade therapy. Conclusions: We report the time course of the STING-dependent IFN1 response following radiation in multiple murine tumor models. We show the potential of TRT to stimulate IFN1 activation that is comparable to that observed with EBRT and this may be critical to the therapeutic integration of TRT with immunotherapies.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/physiopathology
- Carcinoma, Squamous Cell/radiotherapy
- Cell Line, Tumor
- Combined Modality Therapy
- Dose-Response Relationship, Radiation
- Female
- Gene Expression Regulation, Neoplastic/radiation effects
- Gene Knockout Techniques
- Head and Neck Neoplasms/pathology
- Immune Checkpoint Inhibitors
- Interferon Type I/biosynthesis
- Interferon Type I/genetics
- Interferon Type I/physiology
- Lymphocytes/drug effects
- Lymphocytes/radiation effects
- Melanoma, Experimental/immunology
- Melanoma, Experimental/physiopathology
- Melanoma, Experimental/radiotherapy
- Membrane Proteins/agonists
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Neoplasm Proteins/agonists
- Neoplasm Proteins/physiology
- Radiopharmaceuticals/pharmacokinetics
- Radiopharmaceuticals/therapeutic use
- Time Factors
- Tumor Protein, Translationally-Controlled 1
- Tumor Stem Cell Assay
- Up-Regulation
- Yttrium Radioisotopes/pharmacokinetics
- Yttrium Radioisotopes/therapeutic use
Collapse
Affiliation(s)
- Justin C. Jagodinsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Won Jong Jin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Amber M. Bates
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Reinier Hernandez
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Joseph J. Grudzinski
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ian R. Marsh
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ishan Chakravarty
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ian S. Arthur
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Luke M. Zangl
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ryan J. Brown
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Erin J. Nystuen
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sarah E. Emma
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Caroline Kerr
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Peter M. Carlson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Raghava N. Sriramaneni
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jonathan W. Engle
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Todd E. Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Trang Le
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Bryan P. Bednarz
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jamey P. Weichert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ravi B. Patel
- Department of Radiation Oncology, University of Pittsburgh School Hillman Cancer Center, Pittsburgh, PA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
78
|
Modulation of intratumoural myeloid cells, the hallmark of the anti-tumour efficacy induced by a triple combination: tumour-associated peptide, TLR-3 ligand and α-PD-1. Br J Cancer 2021; 124:1275-1285. [PMID: 33531689 PMCID: PMC8007692 DOI: 10.1038/s41416-020-01239-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/05/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Anti-programmed cell death 1 (PD-1)/programmed death-ligand 1 (PD-L1) monoclonal antibodies (mAbs) show remarkable clinical anti-tumour efficacy. However, rational combinations are needed to extend the clinical benefit to primary resistant tumours. The design of such combinations requires the identification of the kinetics of critical immune cell populations in the tumour microenvironment. METHODS In this study, we compared the kinetics of immune cells in the tumour microenvironment upon treatment with immunotherapy combinations with different anti-tumour efficacies in the non-inflamed tumour model TC-1/A9. Tumour-bearing C57BL/6J mice were treated with all possible combinations of a human papillomavirus (HPV) E7 long peptide, polyinosinic-polycytidylic acid (PIC) and anti-PD-1 mAb. Tumour growth and kinetics of the relevant immune cell populations were assessed over time. The involvement of key immune cells was confirmed by depletion with mAbs and immunophenotyping with multiparametric flow cytometry. RESULTS The maximum anti-tumour efficacy was achieved after intratumoural administration of HPV E7 long peptide and PIC combined with the systemic administration of anti-PD-1 mAb. The intratumoural immune cell kinetics of this combination was characterised by a biphasic immune response. An initial upsurge of proinflammatory myeloid cells led to a further rise in effector CD8+ T lymphocytes at day 8. Depletion of either myeloid cells or CD8+ T lymphocytes diminished the anti-tumour efficacy of the combination. CONCLUSIONS The anti-tumour efficacy of a successful immunotherapy combination in a non-inflamed tumour model relies on an early inflammatory process that remodels the myeloid cell compartment.
Collapse
|
79
|
Immunization with alloantibodies-covered melanoma cells induces regional antitumor effects that become systemic when combined with 5-FU treatment. Cancer Lett 2021; 503:151-162. [PMID: 33545224 DOI: 10.1016/j.canlet.2021.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
Alloantibodies, in particular immunoglobulin G (allo-IgG), confer a rejection advantage to tumors sharing the same major histocompatibility complex (MHC) in mice. However, when administrated intratumorally, this effect can only be achieved in combination with dendritic cells (DCs) activation. Here, we developed high titer allo-IgG by multiple rounds of immunization with allogenic B16 melanoma cells, which allows for the strong binding with B16 cells. We demonstrate that B16 cells incubated with these allo-IgG (referred to as allo-IgG-B16) become highly immunogenic, which release tumor antigens that are efficiently presented by classic DCs in lymph nodes (LNs). Injection of allo-IgG-B16 turns the tumor into an immune hot one and even elicits a systemic antitumor response when used together with 5-fluorouracil (5-FU). This systemic response is tumor-specific and relies on the critical site - LNs. Our findings provide a rationale for the use of allo-IgG in cancer treatment.
Collapse
|
80
|
Zhang Y, Ma S, Liu X, Xu Y, Zhao J, Si X, Li H, Huang Z, Wang Z, Tang Z, Song W, Chen X. Supramolecular Assembled Programmable Nanomedicine As In Situ Cancer Vaccine for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007293. [PMID: 33448050 DOI: 10.1002/adma.202007293] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Using nanotechnology for improving the immunotherapy efficiency represents a major research interest in recent years. However, there are paradoxes and obstacles in using a single nanoparticle to fulfill all the requirements in the complicated immune activation processes. Herein, a supramolecular assembled programmable immune activation nanomedicine (PIAN) for sequentially finishing multiple steps after intravenous injection and eliciting robust antitumor immunity in situ is reported. The programmable nanomedicine is constructed by supramolecular assembly via host-guest interactions between poly-[(N-2-hydroxyethyl)-aspartamide]-Pt(IV)/β-cyclodextrin (PPCD), CpG/polyamidoamine-thioketal-adamantane (CpG/PAMAM-TK-Ad), and methoxy poly(ethylene glycol)-thioketal-adamantane (mPEG-TK-Ad). After intravenous injection and accumulation at the tumor site, the high level of reactive oxygen species in the tumor microenvironment promotes PIAN dissociation and the release of PPCD (mediating tumor cell killing and antigen release) and CpG/PAMAM (mediating antigen capturing and transferring to the tumor-draining lymph nodes). This results in antigen-presenting cell activation, antigen presentation, and robust antitumor immune responses. In combination with anti-PD-L1 antibody, the PIAN cures 40% of mice in a colorectal cancer model. This PIAN provides a new framework for designing programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
| | - Xinming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
| | - Yudi Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jiayu Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Hongxiang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Zichao Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Zhenxin Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| |
Collapse
|
81
|
The Potentiation of Anti-Tumor Immunity by Tumor Abolition with Alpha Particles, Protons, or Carbon Ion Radiation and Its Enforcement by Combination with Immunoadjuvants or Inhibitors of Immune Suppressor Cells and Checkpoint Molecules. Cells 2021; 10:cells10020228. [PMID: 33503958 PMCID: PMC7912488 DOI: 10.3390/cells10020228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
The delivery of radiation therapy (RT) for cancer with intent to cure has been optimized and standardized over the last 80 years. Both preclinical and clinical work emphasized the observation that radiation destroys the tumor and exposes its components to the immune response in a mode that facilitates the induction of anti-tumor immunity or reinforces such a response. External beam photon radiation is the most prevalent in situ abolition treatment, and its use exposed the “abscopal effect”. Particle radiotherapy (PRT), which has been in various stages of research and development for 70 years, is today available for the treatment of patients in the form of alpha particles, proton, or carbon ion radiotherapy. Charged particle radiotherapy is based on the acceleration of charged species, such as protons or carbon-12, which deposit their energy in the treated tumor and have a higher relative biological effectiveness compared with photon radiation. In this review, we will bring evidence that alpha particles, proton, or carbon ion radiation can destroy tumors and activate specific anti-tumor immune responses. Radiation may also directly affect the distribution and function of immune cells such as T cells, regulatory T cells, and mononuclear phagocytes. Tumor abolition by radiation can trigger an immune response against the tumor. However, abolition alone rarely induces effective anti-tumor immunity resulting in systemic tumor rejection. Immunotherapy can complement abolition to reinforce the anti-tumor immunity to better eradicate residual local and metastatic tumor cells. Various methods and agents such as immunoadjuvants, suppressor cell inhibitors, or checkpoint inhibitors were used to manipulate the immune response in combination with radiation. This review deals with the manifestations of particle-mediated radiotherapy and its correlation with immunotherapy of cancer.
Collapse
|
82
|
Abstract
Bladder cancer has been successfully treated with immunotherapy, whereas prostate cancer is a cold tumor with inadequate immune-related treatment response. A greater understanding of the tumor microenvironment and methods for harnessing the immune system to address tumor growth will be needed to improve immunotherapies for both prostate and bladder cancer. Here, we provide an overview of prostate and bladder cancer, including fundamental aspects of the disease and treatment, the elaborate cellular makeup of the tumor microenvironment, and methods for exploiting relevant pathways to develop more effective treatments.
Collapse
|
83
|
Chen YP, Xu L, Tang TW, Chen CH, Zheng QH, Liu TP, Mou CY, Wu CH, Wu SH. STING Activator c-di-GMP-Loaded Mesoporous Silica Nanoparticles Enhance Immunotherapy Against Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56741-56752. [PMID: 33305564 DOI: 10.1021/acsami.0c16728] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Reversing the immunosuppressive tumor microenvironment (TME) is a strategic initiative to sensitize cancer immunotherapy. Emerging evidence shows that cyclic diguanylate monophosphate (c-di-GMP or cdG) can induce the stimulator of interferon genes (STING) pathway activation of antigen-presenting cells (APCs) and upregulate expression of type I interferons (IFNs) to enhance tumor immunogenicity. In vitro anionic cdG revealed fast plasma clearance, poor membrane permeability, and inadequate cytosolic bioavailability. Therefore, we explored a comprehensive "in situ vaccination" strategy on the basis of nanomedicine to trigger robust antitumor immunity. Rhodamine B isothiocyanate (RITC) fluorescent mesoporous silica nanoparticles (MSN) synthesized and modified with poly(ethylene glycol) (PEG) and an ammonium-based cationic molecule (TA) were loaded with negatively charged cdG via electrostatic interactions to form cdG@RMSN-PEG-TA. Treatment of RAW 264.7 cells with cdG@RMSN-PEG-TA markedly stimulated the secretion of IL-6, IL-1β, and IFN-β along with phospho-STING (Ser365) protein expression. In vivo cdG@RMSN-PEG-TA enhanced infiltration of leukocytes, including CD11c+ dendritic cells, F4/80+ macrophages, CD4+ T cells, and CD8+ T cells within the tumor microenvironment (TME), resulting in dramatic tumor growth inhibition in 4T1 breast tumor-bearing Balb/c mice. Our findings suggest that a nanobased platform can overcome the obstacles bare cdG can face in the TME. Our approach of an in situ vaccination using a STING agonist provides an attractive immunotherapy-based strategy for treating breast cancer.
Collapse
Affiliation(s)
- Yi-Ping Chen
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Li Xu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Tao-Wei Tang
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Cheuh-Hsuan Chen
- Research Center of Applied Science, Academia Sinica, Taipei 115, Taiwan
| | - Quan-Hong Zheng
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Tsang-Pai Liu
- Mackay Junior College of Medicine, Nursing and Management, Taipei 112, Taiwan
- Department of Surgery, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Chung-Yuan Mou
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Cheng-Hsun Wu
- Nano Targeting & Therapy Biopharma Inc., Taipei 100, Taiwan
| | - Si-Han Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
84
|
Rossi SM, Murray T, McDonough L, Kelly H. Loco-regional drug delivery in oncology: current clinical applications and future translational opportunities. Expert Opin Drug Deliv 2020; 18:607-623. [PMID: 33253052 DOI: 10.1080/17425247.2021.1856074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Drug-based treatment regimens for cancer are often associated with off-target toxic side effects and low penetration of the drug at the tumor site leading to patient morbidity and limited efficacy. Loco-regional drug delivery has the potential to increase efficacy while concomitantly reducing toxicity.Areas covered: Clinical applications using loco-regional delivery include intra-arterial drug delivery in retinoblastoma, direct intra-tumoral (IT) injection of ethanol for ablation in hepatocellular carcinoma (HCC) and the use of HIPEC in peritoneal carcinomas. In recent years, there has been a significant increase in both approved products and clinical trials, with a particular emphasis on drug delivery platforms such as drug-eluting beads for HCC and hydrogel platforms for intravesical delivery in bladder cancer.Expert opinion: Development of loco-regional drug-delivery systems has been slow, limited by weak clinical data for early applications and challenges relating to dosing, delivery and retention of drugs at the site of action. However, there is increasing focus on the potential of loco-regional drug delivery when combined with bespoke drug-delivery platforms. With the growth in immunotherapies, the use of IT delivery to drive priming of the anti-tumor response has opened up a new field of opportunity for loco-regional drug delivery.
Collapse
Affiliation(s)
- Seona M Rossi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Timothy Murray
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam McDonough
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena Kelly
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| |
Collapse
|
85
|
Lang S, Tan Z, Wu X, Huang X. Synthesis of Carboxy-Dimethylmaleic Amide Linked Polymer Conjugate Based Ultra-pH-sensitive Nanoparticles for Enhanced Antitumor Immunotherapy. ACS Macro Lett 2020; 9:1693-1699. [PMID: 33224624 DOI: 10.1021/acsmacrolett.0c00755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) are an important tool for anticancer immunotherapy. To elicit powerful CTL activities, ultra-pH-sensitive nanoparticles (NPs) based on methoxy poly(ethylene glycol)-b-[poly(diisopropylamino)ethyl methacrylate] have been synthesized as a vaccine delivery platform. A representative CTL epitope, ovalbumin (OVA) peptide antigen, was covalently conjugated to the polymer backbone through an acid responsive carboxy-dimethylmaleic amide linker (CDM) resulting in polymer P-CDM-OVA. Interestingly, while the P-CDM-OVA released OVA peptide slowly in a pH 6.4 buffer, the addition of bovine serum albumin (BSA) mimicking proteins encountered in a cellular and/or in vivo environment significantly accelerated the release process. Successful cell surface presentation of OVA was observed when P-CDM-OVA based ultra-pH-sensitive particles were incubated with antigen presenting cells. These P-CDM-OVA NPs greatly enhanced CTL responses in vivo compared to the free peptide or the previously reported acetalated dextran particles encapsulating OVA. The P-CDM was also investigated for adjuvant conjugation, and the coadministration of P-CDM-OVA and the P-CDM-adjuvant conjugate NPs further improved CTL responses in vivo and effectively reduced tumor growth in mice. Thus, the CDM linked polymer presents a promising platform for anticancer immunotherapy.
Collapse
|
86
|
Xu Y, Ma S, Si X, Zhao J, Yu H, Ma L, Song W, Tang Z. Polyethyleneimine-CpG Nanocomplex as an In Situ Vaccine for Boosting Anticancer Immunity in Melanoma. Macromol Biosci 2020; 21:e2000207. [PMID: 33107202 DOI: 10.1002/mabi.202000207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/06/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy is redefining the field of cancer therapy. However, current cancer immunotherapies are limited by insufficient immune activation, which results in low response rate. Herein, polyethyleneimine-CpG nanocomplex (CpG@PEI) is reported as an in situ vaccine for boosting anticancer immunity in melanoma. CpG, a Toll-like receptor (TLR) 9 agonist, can activate antigen-presenting cells and increase the expression of costimulatory molecules, while PEI can help to enhance the stability and cellular internalization of CpG. It is proved that PEI loading can significantly enhance the cellular internalization and immune stimulation ability of CpG, and the CpG@PEI nanocomplex can effectively inhibit murine B16F10 melanoma growth after intratumoral injection. Further analysis reveals that this CpG@PEI nanocomplex therapy elicits both innate and adaptive immunity, with much increased natural killer (NK) cells and T cells infiltration in the tumor, as well as CD80 expression on the dendritic cells (DCs). This study will inspire more attempts in directly using single nanoparticle-loaded pattern recognition receptor (PRR) agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Yudi Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiayu Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Lili Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
87
|
Banstola A, Jeong JH, Yook S. Immunoadjuvants for cancer immunotherapy: A review of recent developments. Acta Biomater 2020; 114:16-30. [PMID: 32777293 DOI: 10.1016/j.actbio.2020.07.063] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy evolved as a new treatment modality to eradicate tumor cells and has gained in popularity after its successful clinical transition. By activating antigen-presenting cells (APCs), and thus, inducing innate or adaptive immune responses, immunoadjuvants have become promising tools for cancer immunotherapy. Different types of immunoadjuvants such as toll-like receptor (TLR) agonists, exosomes, and metallic and plant-derived immunoadjuvants have been studied for their immunological effects. However, the clinical use of immunoadjuvants is limited by short response rates and various side-effects. The rapid progress made in the development of nanoparticle systems as immunoadjuvant carrier vehicles has provided potential carriers for cancer immunotherapy. In this review article, we describe different types of immunoadjuvants, their limitations, modes of action, and the reasons for their clinical adoption. In addition, we review recent progress made in the nanoparticle-based immunoadjuvant field and on the combined use of nanoparticle-based immunoadjuvants and chemotherapy, phototherapy, radiation therapy, and immune checkpoint inhibitor-based therapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy emerged as a new hope for treating malignant tumors. Different types of immunoadjuvants serve as an important tool for cancer immunotherapy by activating an innate or adaptive immune response. Limitation of free immunoadjuvant has paved the path for the development of nanoparticle-based immunoadjuvant therapy with the hope of prolonging the therapeutic efficacy. This review highlights the recent advancement made in nanoparticle-based immunoadjuvant therapy in modulating the adaptive and innate immune system. The application of the combinatorial approach of chemotherapy, phototherapy, radiation therapy adds synergy in nanoparticle-based immunoadjuvant therapy. It will broaden the reader's understanding on the recent progress made in immunotherapy with the aid of immunoadjuvant-based nanosystem.
Collapse
Affiliation(s)
- Asmita Banstola
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
88
|
Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. J Clin Med 2020; 9:E2967. [PMID: 32937961 PMCID: PMC7564553 DOI: 10.3390/jcm9092967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still under development and being tested in numerous clinical trials. A detailed understanding of the interactions between cancer and the immune system is vital for optimisation of immunotherapies either alone or when combined with chemotherapy and other therapies. This article, in two main parts, provides an overview of: (1) components of the normal immune system and current knowledge regarding tumour immunology, biology and their interactions; (2) strategies, and targets, together with challenges and potential innovative approaches for cancer immunotherapy, with attention given to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Anne M. Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia;
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
89
|
Tristán-Manzano M, Justicia-Lirio P, Maldonado-Pérez N, Cortijo-Gutiérrez M, Benabdellah K, Martin F. Externally-Controlled Systems for Immunotherapy: From Bench to Bedside. Front Immunol 2020; 11:2044. [PMID: 33013864 PMCID: PMC7498544 DOI: 10.3389/fimmu.2020.02044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Immunotherapy is a very promising therapeutic approach against cancer that is particularly effective when combined with gene therapy. Immuno-gene therapy approaches have led to the approval of four advanced therapy medicinal products (ATMPs) for the treatment of p53-deficient tumors (Gendicine and Imlygic), refractory acute lymphoblastic leukemia (Kymriah) and large B-cell lymphomas (Yescarta). In spite of these remarkable successes, immunotherapy is still associated with severe side effects for CD19+ malignancies and is inefficient for solid tumors. Controlling transgene expression through an externally administered inductor is envisioned as a potent strategy to improve safety and efficacy of immunotherapy. The aim is to develop smart immunogene therapy-based-ATMPs, which can be controlled by the addition of innocuous drugs or agents, allowing the clinicians to manage the intensity and durability of the therapy. In the present manuscript, we will review the different inducible, versatile and externally controlled gene delivery systems that have been developed and their applications to the field of immunotherapy. We will highlight the advantages and disadvantages of each system and their potential applications in clinics.
Collapse
Affiliation(s)
- María Tristán-Manzano
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Pedro Justicia-Lirio
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain.,LentiStem Biotech, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Noelia Maldonado-Pérez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Marina Cortijo-Gutiérrez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Karim Benabdellah
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Francisco Martin
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| |
Collapse
|
90
|
Behravan J, Razazan A, Behravan G. Towards Breast Cancer Vaccines, Progress and Challenges. Curr Drug Discov Technol 2020; 16:251-258. [PMID: 29732989 DOI: 10.2174/1570163815666180502164652] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023]
Abstract
Breast cancer is the second leading cause of cancer death among women. National cancer institute of the US estimates that one in eight women will be diagnosed with breast cancer during their lifetime. Considering the devastating effects of the disease and the alarming numbers many scientists and research groups have devoted their research to fight breast cancer. Several recommendations are to be considered as preventing measures which include living a healthy lifestyle, regular physical activity, weight control and smoking cessation. Early detection of the disease by annual and regular mammography after the age of 40 is recommended by many healthcare institutions. This would help the diagnosis of the disease at an earlier stage and the start of the treatment before it is spread to other parts of the body. Current therapy for breast cancer includes surgical ablation, radiotherapy and chemotherapy which is often associated with adverse effects and even may lead to a relapse of the disease at a later stage. In order to achieve a long-lasting anticancer response with minimal adverse effects, development of breast cancer vaccines is under investigation by many laboratories. The immune system can be stimulated by a vaccine against breast cancer. This approach has attracted a great enthusiasm in recent years. No breast cancer vaccines have been approved for clinical use today. One breast cancer vaccine (NeuVax) has now completed clinical trial phase III and a few preventive and therapeutic breast cancer vaccines are at different steps of development. We think that with the recent advancements in immunotherapy, a breast cancer vaccine is not far from reach.
Collapse
Affiliation(s)
- Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Mediphage Bioceuticals, Inc., 661 University Avenue, Suite 1300, MaRS Centre, West Tower, Toronto M5G0B7, Canada
| | - Atefeh Razazan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazal Behravan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
91
|
Li Y, Su Z, Zhao W, Zhang X, Momin N, Zhang C, Wittrup KD, Dong Y, Irvine DJ, Weiss R. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. ACTA ACUST UNITED AC 2020; 1:882-893. [PMID: 34447945 DOI: 10.1038/s43018-020-0095-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Therapies that synergistically stimulate immunogenic cancer cell death (ICD), inflammation, and immune priming are of great interest for cancer immunotherapy. However, even multi-agent therapies often fail to trigger all of the steps necessary for self-sustaining anti-tumor immunity. Here we describe self-replicating RNAs encapsulated in lipid nanoparticles (LNP-replicons), which combine three key elements: (1) an LNP composition that potently promotes ICD, (2) RNA that stimulates danger sensors in transfected cells, and (3) RNA-encoded IL-12 for modulation of immune cells. Intratumoral administration of LNP-replicons led to high-level expression of IL-12, stimulation of a type I interferon response, and cancer cell ICD, resulting in a highly inflamed tumor microenvironment and priming of systemic anti-tumor immunity. In several mouse models of cancer, a single intratumoral injection of replicon-LNPs eradicated large established tumors, induced protective immune memory, and enabled regression of distal uninjected tumors. LNP-replicons are thus a promising multifunctional single-agent immunotherapeutic.
Collapse
Affiliation(s)
- Yingzhong Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhijun Su
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Weiyu Zhao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Xinfu Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Noor Momin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - K Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
92
|
Liao Y, Liu S, Fu S, Wu J. HMGB1 in Radiotherapy: A Two Headed Signal Regulating Tumor Radiosensitivity and Immunity. Onco Targets Ther 2020; 13:6859-6871. [PMID: 32764978 PMCID: PMC7369309 DOI: 10.2147/ott.s253772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is a mainstay of cancer treatment. Recent studies have shown that RT not only directly induces cell death but also has late and sustained immune effects. High mobility group box 1 (HMGB1) is a nuclear protein released during RT, with location-dependent functions. It is essential for normal cellular function but also regulates the proliferation and migration of tumor cells by binding to high-affinity receptors. In this review, we summarize recent evidence on the functions of HMGB1 in RT according to the position, intracellular HMGB1 and extracellular HMGB1. Intracellular HMGB1 induces radiation tolerance in tumor cells by promoting DNA damage repair and autophagy. Extracellular HMGB1 plays a more intricate role in radiation-related immune responses, wherein it not only stimulates the anti-tumor immune response by facilitating the recognition of dying tumor cells but is also involved in maintaining immunosuppression. Factors that potentially affect the role of HMGB1 in RT-induced cytotoxicity have also been discussed in the context of possible therapeutic applications, which helps to develop effective and targeted radio-sensitization therapies.
Collapse
Affiliation(s)
- Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
93
|
Zhong XF, Sun X. Nanomedicines based on nanoscale metal-organic frameworks for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:928-935. [PMID: 32355277 PMCID: PMC7468577 DOI: 10.1038/s41401-020-0414-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapy, with an aim to enhance host immune responses, has been recognized as a promising therapeutic treatment for cancer. A diversity of immunomodulatory agents, including tumor-associated antigens, adjuvants, cytokines and immunomodulators, has been explored for their ability to induce a cascading adaptive immune response. Nanoscale metal-organic frameworks (nMOFs), a class of crystalline-shaped nanomaterials formed by the self-assembly of organic ligands and metal nodes, are attractive for cancer immunotherapy because they feature tunable pore size, high surface area and loading capacity, and intrinsic biodegradability. In this review we summarize recent progress in the development of nMOFs for cancer immunotherapy, including cancer vaccine delivery and combination of in situ vaccination with immunomodulators to reverse immune suppression. Current challenges and future perspectives for rational design of nMOF-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Xiao-Fang Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
94
|
Liu W, Dai E, Liu Z, Ma C, Guo ZS, Bartlett DL. In Situ Therapeutic Cancer Vaccination with an Oncolytic Virus Expressing Membrane-Tethered IL-2. Mol Ther Oncolytics 2020; 17:350-360. [PMID: 32405533 PMCID: PMC7210382 DOI: 10.1016/j.omto.2020.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Successful in situ therapeutic vaccination would allow locally delivered oncolytic virus (OV) to exert systemic immunologic effects on metastases and improve survival. We have utilized bilateral flank tumor models to determine the most efficacious regimens of in situ vaccination. Intratumoral injection with membrane-tethered interleukin -2-armed OV (vvDD-mIL2) plus a Toll-like receptor 9 ligand (CpG) yielded systemic immunization and decreased tumor growth in a contralateral, noninjected tumor. Our main aims were to study the tumor immune microenvironment (TME) after vaccination and identify additional immune adjuvants that may improve the systemic tumor-specific immunity. Immunological profiles in the spleen showed an increased CD8+ T cell/regulatory T cell (Treg) ratio and increased CD11c+ cells after dual injection in one flank tumor. Concurrently, there was increased infiltration of tumor necrosis factor alpha (TNF-α)+CD8+ T cells and interferon gamma (IFN-γ)+CD4+ T cells and reduced CTLA-4+PD-1+CD8+ T cells in the contralateral, noninjected tumor. The anti-tumoral activity depended on CD8+ T cells and IFN-γ, but not CD4+ T cells. Based on the negative immune components still existing in the untreated tumors, we investigated additional adjuvants: clodronate liposome-mediated depletion of macrophages plus anti-PD-1 therapy. This regimen dramatically reduced the tumor burden in the noninjected tumor and increased median survival by 87%, suggesting that inhibition/elimination of suppressive components in the tumor microenvironment (TME) can improve therapeutic outcomes. This study emphasizes the importance of immune profiling to design rational, combined immunotherapy regimens ultimately to impact patient survival.
Collapse
Affiliation(s)
- Weilin Liu
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Enyong Dai
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zuqiang Liu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Congrong Ma
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - David L. Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
95
|
Shin H, Na K. Cancer-Targetable pH-Sensitive Zinc-Based Immunomodulators Combined with Photodynamic Therapy for in Situ Vaccination. ACS Biomater Sci Eng 2020; 6:3430-3439. [PMID: 33463185 DOI: 10.1021/acsbiomaterials.0c00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A cancer vaccine is a promising immunotherapy modality, but the heterogenicity of tumors and substantial time and costs required in tumor-associated antigen (TAA) screening have hindered the development of an individualized vaccine. Herein, we propose in situ vaccination using cancer-targetable pH-sensitive zinc-based immunomodulators (CZIs) to elicit antitumor immune response against TAAs of patients' tumors without the ex vivo identification processes. In the tumor microenvironment, CZIs promote the release of large amounts of TAAs and exposure of calreticulin on the cell surface via immunogenic cell death through the combined effect of excess zinc ions and photodynamic therapy (PDT). With these properties, CZIs potentiate antitumor immunity and inhibit tumor growth as well as lung metastasis in CT26 tumor-bearing mice. This nanoplatform may suggest an alternative therapeutic strategy to overcoming the limitations of existing cancer vaccines and may broaden the application of nanoparticles for cancer immunotherapy.
Collapse
Affiliation(s)
- Heejun Shin
- Center for Photomedicine, Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi do 14662, Republic of Korea
| | - Kun Na
- Center for Photomedicine, Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi do 14662, Republic of Korea.,Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi do 14662, Republic of Korea
| |
Collapse
|
96
|
Singh MP, Sethuraman SN, Ritchey J, Fiering S, Guha C, Malayer J, Ranjan A. In-situ vaccination using focused ultrasound heating and anti-CD-40 agonistic antibody enhances T-cell mediated local and abscopal effects in murine melanoma. Int J Hyperthermia 2020; 36:64-73. [PMID: 31795832 DOI: 10.1080/02656736.2019.1663280] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The success of melanoma immunotherapy is dependent on the presence of activated and functional T-cells in tumors. The objective of this study was to investigate the impact of local-focused ultrasound (FUS) heating (∼42-45 °C) and in-situ anti-CD-40 agonistic antibody in enhancing T-cell function for melanoma immunotherapy. We compared the following groups of mice with bilateral flank B16 F10 melanoma: (1) Control, (2) FUS, (3) CD-40, and (4) CD-40 + FUS (FUS40). FUS heating was applied for ∼15 min in right flank tumor, and intratumoral injections of CD-40 were performed sequentially within 4 h. A total of 3 FUS and 4 anti-CD-40 treatments were administered unilaterally 3 days apart. Mice were sacrificed 30 days post-inoculation, and the treated tumor and spleen tissues were profiled for T-cell function and macrophage polarization. Compared to all other groups, histology and flow cytometry showed that FUS40 increased the population of tumor-specific CD-4+ and CD-8+ T cells rich in Granzyme B+, interleukin-2 (IL-2) and IFN-γ production and poor in PD-1 expression. In addition, FUS40 promoted the infiltration of tumor-suppressing M1 phenotype macrophages in the treated mice. The resultant immune-enhancing effects of FUS40 suppressed B16 melanoma growth at the treated site by 2-3-folds compared to control, FUS, and CD-40, and also achieved significant abscopal effects in untreated tumors relative to CD40 alone. Additionally, the local FUS40 prevented adverse liver toxicities in the treated mice. Our study suggests that combined FUS and CD-40 can enhance T-cell and macrophage functions to aid effective melanoma immunotherapy.
Collapse
Affiliation(s)
- Mohit Pratap Singh
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - Jerry Ritchey
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Steven Fiering
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Chandan Guha
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jerry Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
97
|
Bouzid R, Peppelenbosch M, Buschow SI. Opportunities for Conventional and in Situ Cancer Vaccine Strategies and Combination with Immunotherapy for Gastrointestinal Cancers, A Review. Cancers (Basel) 2020; 12:cancers12051121. [PMID: 32365838 PMCID: PMC7281593 DOI: 10.3390/cancers12051121] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Survival of gastrointestinal cancer remains dismal, especially for metastasized disease. For various cancers, especially melanoma and lung cancer, immunotherapy has been proven to confer survival benefits, but results for gastrointestinal cancer have been disappointing. Hence, there is substantial interest in exploring the usefulness of adaptive immune system education with respect to anti-cancer responses though vaccination. Encouragingly, even fairly non-specific approaches to vaccination and immune system stimulation, involving for instance influenza vaccines, have shown promising results, eliciting hopes that selection of specific antigens for vaccination may prove useful for at least a subset of gastrointestinal cancers. It is widely recognized that immune recognition and initiation of responses are hampered by a lack of T cell help, or by suppressive cancer-associated factors. In this review we will discuss the hurdles that limit efficacy of conventional cancer therapeutic vaccination methods (e.g., peptide vaccines, dendritic cell vaccination). In addition, we will outline other forms of treatment (e.g., radiotherapy, chemotherapy, oncolytic viruses) that also cause the release of antigens through immunogenic tumor cell death and can thus be considered unconventional vaccination methods (i.e., in situ vaccination). Finally, we focus on the potential additive value that vaccination strategies may have for improving the effect immunotherapy. Overall, a picture will emerge that although the field has made substantial progress, successful immunotherapy through the combination with cancer antigen vaccination, including that for gastrointestinal cancers, is still in its infancy, prompting further intensification of the research effort in this respect.
Collapse
|
98
|
Guevara ML, Persano F, Persano S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol 2019; 69:238-248. [PMID: 31883449 DOI: 10.1016/j.semcancer.2019.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
Immunotherapy is emerging as a groundbreaking cancer treatment, offering the unprecedented opportunity to effectively treat and in several cases, even cure previously untreatable malignancies. Anti-tumour immunotherapies designed to amplify T cell responses against defined tumour antigens have long been considered effective approaches for cancer treatment. Despite a clear rationale behind such immunotherapies, extensive past efforts were unsuccessful in mediating clinically relevant anti-tumour activity in humans. This is mainly because tumours adopt specific mechanisms to circumvent the host´s immunity. Emerging data suggest that the full potential of cancer immunotherapy will be only achieved by combining immunotherapies designed to generate or amplify anti-tumour T cell responses with strategies able to impair key tumour immune-evasion mechanisms. However, many approaches aimed to re-shape the tumour immune microenvironment (TIME) are commonly associated with severe systemic toxicity, require frequent administration, and only show modest efficacy in clinical settings. The use of nanodelivery systems is revealing as a valid means to overcome these limitations by improving the targeting efficiency, minimising systemic exposure of immunomodulatory agents, and enabling the development of novel combinatorial immunotherapies. In this review, we examine the emerging field of therapeutic modulation of TIME by the use of nanoparticle-based immunomodulators and potential future directions for TIME-targeting nanotherapies.
Collapse
Affiliation(s)
- Maria L Guevara
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Francesca Persano
- Department of Mathematics and Physics, University of Salento, Lecce, Italy
| | - Stefano Persano
- Formulation Testing & Discovery, BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany.
| |
Collapse
|
99
|
Gorbet MJ, Ranjan A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol Ther 2019; 207:107456. [PMID: 31863820 DOI: 10.1016/j.pharmthera.2019.107456] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Chemotherapy, surgery, and radiation are accepted as the preferred treatment modalities against cancer, but in recent years the use of immunotherapeutic approaches has gained prominence as the fourth treatment modality in cancer patients. In this approach, a patient's innate and adaptive immune systems are activated to achieve clearance of occult cancerous cells. In this review, we discuss the preclinical and clinical immunotherapeutic (e.g., immunoadjuvants (in-situ vaccines, oncolytic viruses, CXC antagonists, device activated agents), organic and inorganic nanoparticles, and checkpoint blockade) that are under investigation for cancer therapy and diagnostics. Additionally, the innovations in imaging of immune cells for tracking therapeutic responses and limitations (e.g., toxicity, inefficient immunomodulation, etc.) are described. Existing data suggest that if immune therapy is optimized, it can be a real and potentially paradigm-shifting cancer treatment frontier.
Collapse
Affiliation(s)
- Michael-Joseph Gorbet
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA.
| |
Collapse
|
100
|
Immunomodulatory Drugs Encoded by Oncolytic Viruses: Is the Whole Greater Than the Sum? Mol Ther 2019; 27:1874-1877. [PMID: 31586519 DOI: 10.1016/j.ymthe.2019.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|