51
|
Chen M, Ren R, Lin W, Xiang L, Zhao Z, Shao B. Exploring the oncostatin M (OSM) feed-forward signaling of glioblastoma via STAT3 in pan-cancer analysis. Cancer Cell Int 2021; 21:565. [PMID: 34702277 PMCID: PMC8549168 DOI: 10.1186/s12935-021-02260-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023] Open
Abstract
Background Oncostatin M (OSM) has been reported to be a key regulating factor in the process of tumor development. Previous studies have demonstrated both the promotion and inhibition effects of OSM in tumors, therefore inspiring controversies. However, no systematic assessment of OSM across various cancers is available, and the mechanisms behind OSM-related cancer progression remain to be elucidated. Methods Based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, we conducted a pan-cancer analysis on OSM to explore its tumor-related functions across cancers as well as its correlations with specific molecules, cells in the tumor microenvironment. Considering the results of pan-cancer analysis, we chose the specific tumor glioblastoma multiforme (GBM) to screen out the OSM-induced signaling pathways and intercellular communications in tumor progression. Wound scratch assay, invasion assay and qRT-PCR were performed to verify the biological effects of OSM on glioblastoma cells. Results Higher OSM level was found in most tumor tissues compared with corresponding normal tissues, and the enhanced OSM expression was observed to be strongly related to patients’ poor prognosis in several cancers. Moreover, the expression of OSM was associated with stromal and immune cell infiltration in the tumor microenvironment, and OSM-related immune checkpoint and chemokine co-expression were also observed. Our results suggested that OSM could communicate extensively with the tumor microenvironment. Taking GBM as an example, our study found that two critical signaling pathways in OSM-related tumor progression by KEGG enrichment analysis: Jak-STAT and NF-κB pathways. Single-cell RNA sequencing data analysis of GBM revealed that OSM was mainly secreted by microglia, and cell–cell interaction analysis proved that OSM-OSMR is an important pathway for OSM to stimulate malignant cells. In vitro, OSM treatment could facilitate the migration and invasion of glioblastoma cells, meanwhile promote the proneural-mesenchymal transition. The administration of STAT3 inhibitors effectively suppressed the OSM-mediated biological effects, which proved the key role of STAT3 in OSM signaling. Conclusion Taken together, our study provides a comprehensive understanding with regard to the tumor progression under the regulation of OSM. OSM seems to be closely related to chronic inflammation and tumor development in the tumor microenvironment. As an important inflammatory factor in the tumor microenvironment, OSM may serve as a potential immunotherapeutic target for cancer treatment, especially for GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02260-9.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiyang Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lisha Xiang
- Clinical Trial Center (CTC), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
52
|
Wen J, Wang Y, Yuan M, Huang Z, Zou Q, Pu Y, Zhao B, Cai Z. Role of mismatch repair in aging. Int J Biol Sci 2021; 17:3923-3935. [PMID: 34671209 PMCID: PMC8495402 DOI: 10.7150/ijbs.64953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
A common feature of aging is the accumulation of genetic damage throughout life. DNA damage can lead to genomic instability. Many diseases associated with premature aging are a result of increased accumulation of DNA damage. In order to minimize these damages, organisms have evolved a complex network of DNA repair mechanisms, including mismatch repair (MMR). In this review, we detail the effects of MMR on genomic instability and its role in aging emphasizing on the association between MMR and the other hallmarks of aging, serving to drive or amplify these mechanisms. These hallmarks include telomere attrition, epigenetic alterations, mitochondrial dysfunction, altered nutrient sensing and cell senescence. The close relationship between MMR and these markers may provide prevention and treatment strategies, to reduce the incidence of age-related diseases and promote the healthy aging of human beings.
Collapse
Affiliation(s)
- Jie Wen
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China.,Department and Institute of Neurology, Guangdong Medical University, Guangdong, 524001, China.,Guangdong Key Laboratory of aging related cardio cerebral diseases, Guangdong, 524001, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Minghao Yuan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Zhenting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Yinshuang Pu
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Bin Zhao
- Department and Institute of Neurology, Guangdong Medical University, Guangdong, 524001, China.,Guangdong Key Laboratory of aging related cardio cerebral diseases, Guangdong, 524001, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| |
Collapse
|
53
|
Olkinuora AP, Peltomäki PT, Aaltonen LA, Rajamäki K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum Mol Genet 2021; 30:R206-R224. [PMID: 34329396 PMCID: PMC8490010 DOI: 10.1093/hmg/ddab208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
Hereditary colorectal cancer (CRC) syndromes attributable to high penetrance mutations represent 9-26% of young-onset CRC cases. The clinical significance of many of these mutations is understood well enough to be used in diagnostics and as an aid in patient care. However, despite the advances made in the field, a significant proportion of familial and early-onset cases remains molecularly uncharacterized and extensive work is still needed to fully understand the genetic nature of CRC susceptibility. With the emergence of next-generation sequencing and associated methods, several predisposition loci have been unraveled, but validation is incomplete. Individuals with cancer-predisposing mutations are currently enrolled in life-long surveillance, but with the development of new treatments, such as cancer vaccinations, this might change in the not so distant future for at least some individuals. For individuals without a known cause for their disease susceptibility, prevention and therapy options are less precise. Herein, we review the progress achieved in the last three decades with a focus on how CRC predisposition genes were discovered. Furthermore, we discuss the clinical implications of these discoveries and anticipate what to expect in the next decade.
Collapse
Affiliation(s)
- Alisa P Olkinuora
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Päivi T Peltomäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
54
|
Domingo E, García-Crespo C, Lobo-Vega R, Perales C. Mutation Rates, Mutation Frequencies, and Proofreading-Repair Activities in RNA Virus Genetics. Viruses 2021; 13:1882. [PMID: 34578463 PMCID: PMC8473064 DOI: 10.3390/v13091882] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
The error rate displayed during template copying to produce viral RNA progeny is a biologically relevant parameter of the replication complexes of viruses. It has consequences for virus-host interactions, and it represents the first step in the diversification of viruses in nature. Measurements during infections and with purified viral polymerases indicate that mutation rates for RNA viruses are in the range of 10-3 to 10-6 copying errors per nucleotide incorporated into the nascent RNA product. Although viruses are thought to exploit high error rates for adaptation to changing environments, some of them possess misincorporation correcting activities. One of them is a proofreading-repair 3' to 5' exonuclease present in coronaviruses that may decrease the error rate during replication. Here we review experimental evidence and models of information maintenance that explain why elevated mutation rates have been preserved during the evolution of RNA (and some DNA) viruses. The models also offer an interpretation of why error correction mechanisms have evolved to maintain the stability of genetic information carried out by large viral RNA genomes such as the coronaviruses.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain;
| |
Collapse
|
55
|
Muthye V, Lavrov DV. Multiple Losses of MSH1, Gain of mtMutS, and Other Changes in the MutS Family of DNA Repair Proteins in Animals. Genome Biol Evol 2021; 13:evab191. [PMID: 34402879 PMCID: PMC8438181 DOI: 10.1093/gbe/evab191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
MutS is a key component of the mismatch repair (MMR) pathway. Members of the MutS protein family are present in prokaryotes, eukaryotes, and viruses. Six MutS homologs (MSH1-6) have been identified in yeast, of which three function in nuclear MMR, while MSH1 functions in mitochondrial DNA repair. MSH proteins are believed to be well conserved in animals, except for MSH1-which is thought to be lost. Two intriguing exceptions to this general picture have been found, both in the class Anthozoa within the phylum Cnidaria. First, an ortholog of the yeast-MSH1 was reported in one hexacoral species. Second, a MutS homolog (mtMutS) has been found in the mitochondrial genome of all octocorals. To understand the origin and potential functional implications of these exceptions, we investigated the evolution of the MutS family both in Cnidaria and in animals in general. Our study confirmed the acquisition of octocoral mtMutS by horizontal gene transfer from a giant virus. Surprisingly, we identified MSH1 in all hexacorals and several sponges and placozoans. By contrast, MSH1 orthologs were lacking in other cnidarians, ctenophores, and bilaterian animals. Furthermore, while we identified MSH2 and MSH6 in nearly all animals, MSH4, MSH5, and, especially, MSH3 were missing in multiple species. Overall, our analysis revealed a dynamic evolution of the MutS family in animals, with multiple losses of MSH1, MSH3, some losses of MSH4 and MSH5, and a gain of the octocoral mtMutS. We propose that octocoral mtMutS functionally replaced MSH1 that was present in the common ancestor of Anthozoa.
Collapse
Affiliation(s)
- Viraj Muthye
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| | - Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| |
Collapse
|
56
|
Song Y, Gu Y, Hu X, Wang M, He Q, Li Y. Endometrial Tumors with MSI-H and dMMR Share a Similar Tumor Immune Microenvironment. Onco Targets Ther 2021; 14:4485-4497. [PMID: 34429613 PMCID: PMC8379685 DOI: 10.2147/ott.s324641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Microsatellite instability (MSI) and mismatch repair deficiency (dMMR) are important biomarkers for predicting responses to immune checkpoint inhibitor (ICI) therapies. Although PCR-based tests for high MSI (MSI-H) and dMMR yield highly concordant results in endometrial cancer (EC), it is unclear whether this is true for MSI-H and MMR detected by next-generation sequencing (NGS) and immunohistochemistry (IHC), respectively. This study investigated whether EC with MSI-H identified by NGS and dMMR identified by IHC have similar tumor immune microenvironments. Patients and Methods EC tissue and corresponding peripheral blood lymphocyte samples were collected from 99 randomly selected patients. MSI status and tumor mutation burden (TMB) were examined by NGS. MMR protein and programmed death ligand (PD-L)1 expression and tumor-infiltrating lymphocyte (TIL) abundance were evaluated by IHC. Results Of the 99 EC samples, 29 (29%) had dMMR by IHC, while 18 (18%) had MSI-H by NGS. MSI and MMR status identified by the two methods were discordant in the 99 EC patients, and 2/18 NGS-identified MSI-H patients (11%) retained MMR protein expression. MSI-H and dMMR endometrial tumors had similar numbers of cluster of differentiation (CD)3+ TILs (T cells) and CD8+ TILs (cytotoxic T cells) in the tumor center and periphery, which differed from those in microsatellite stable (MSS) and mismatch repair-proficient (pMMR) EC; they also showed similar TMB, PD-L1 expression, and TIL counts with higher TMB and PD-L1 expression than MSS and pMMR ECs. The abundance of CD3+ and CD8+ TILs was increased in PD-L1-positive EC. Conclusion NGS-identified MSI status and IHC-identified MMR status were inconsistent in EC, and 11% of NGS-identified MSI-H tumors retained MMR protein expression. Conversely, MSI and MMR status determined by the two methods provided similar data on TMB, PD-L1 expression, and TIL abundance, which can guide treatment decisions with ICIs.
Collapse
Affiliation(s)
- Yunfeng Song
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Ye Gu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiang Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Mengfei Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yiran Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
57
|
Schoch S, Sen V, Brenner W, Hartwig A, Köberle B. In Vitro Nephrotoxicity Studies of Established and Experimental Platinum-Based Compounds. Biomedicines 2021; 9:biomedicines9081033. [PMID: 34440237 PMCID: PMC8394219 DOI: 10.3390/biomedicines9081033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is one of the most commonly used drugs for the treatment of various solid cancers. However, its efficacy is restricted by severe side effects, especially dose-limiting nephrotoxicity. New platinum-based compounds are designed to overcome this limitation. Previous investigations showed that the platinum(IV)–nitroxyl complex PN149 is highly cytotoxic in various tumor cell lines. In the present study, investigations with PN149 were extended to normal human kidney tubule epithelia. Coincident with higher intracellular platinum accumulation, the cytotoxicity of PN149 in the proximal tubule epithelial cell line ciPTEC was more pronounced compared to the established platinum chemotherapeutics cisplatin, carboplatin and oxaliplatin. Quantitative gene expression profiling revealed the induction of ROS-inducible and anti-oxidative genes, suggesting an oxidative stress response by PN149. However, in contrast to cisplatin, no pro-inflammatory response was observed. Genes coding for distinct DNA damage response factors and genes related to apoptosis were up-regulated, indicating the activation of the DNA damage response system and induction of the apoptotic cascade by PN149. Altogether, a comparable transcriptional response was observed for PN149 and the platinum chemotherapeutics. However, the lack of inflammatory activity, which is a possible cause contributing to toxicity in human renal proximal tubule epithelia, might indicate the reduced nephrotoxic potential of PN149.
Collapse
Affiliation(s)
- Sarah Schoch
- Department of Laboratory Medicine, Lund University, Scheelevägen 2, 223 81 Lund, Sweden;
| | - Vasily Sen
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia;
| | - Walburgis Brenner
- Clinic for Obstetrics and Women’s Health, Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstreet 1, 55131 Mainz, Germany;
| | - Andrea Hartwig
- Karlsruhe Institute of Technology, Department of Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany;
| | - Beate Köberle
- Karlsruhe Institute of Technology, Department of Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany;
- Correspondence: ; Tel.: +49-721-608-42933
| |
Collapse
|
58
|
Ottaiano A, Santorsola M, Caraglia M, Circelli L, Gigantino V, Botti G, Nasti G. Genetic regressive trajectories in colorectal cancer: A new hallmark of oligo-metastatic disease? Transl Oncol 2021; 14:101131. [PMID: 34034007 PMCID: PMC8144733 DOI: 10.1016/j.tranon.2021.101131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) originates as consequence of multiple genetic alterations. Some of the involved genes have been extensively studied (APC, TP53, KRAS, SMAD4, PIK3CA, MMR genes) in highly heterogeneous and poly-metastatic cohorts. However, about 10% of metastatic CRC patients presents with an indolent oligo-metastatic disease differently from other patients with poly-metastatic and aggressive clinical course. Which are the genetic dynamics underlying the differences between oligo- and poly-metastatic CRC? The understanding of the genetic trajectories (primary→metastatic) of CRC, in patients selected to represent homogenous clinical models, is crucial to make genotype/phenotype correlations and to identify the molecular events pushing the disease towards an increasing malignant phenotype. This information is crucial to plan innovative therapeutic strategies aimed to reverse or inhibit these phenomena. In the present study, we review the genetic evolution of CRC with the intent to give a developmental perspective on the border line between oligo- and poly-metastatic diseases.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy.
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio, 7 80138, Naples, Italy; Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, 83031, Ariano Irpino, Italy
| | - Luisa Circelli
- AMES-Centro Polidiagnostico Strumentale, 80013, Casalnuovo di Napoli, Italy
| | - Valerio Gigantino
- Innovalab scarl, Molecular Biology, Centro Direzionale, isola A2, 80143, Naples, Italy
| | - Gerardo Botti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| |
Collapse
|
59
|
Yue M, Liu JY, Liu YP. Unusual immunohistochemical “null” pattern of four mismatch repair proteins in gastric cancer: A case report. World J Clin Cases 2021; 9:6102-6109. [PMID: 34368332 PMCID: PMC8316949 DOI: 10.12998/wjcc.v9.i21.6102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immunohistochemical (IHC) staining for mismatch repair (MMR) proteins is useful for gastric cancer treatment and prognosis. Different IHC staining patterns reflect the complex biological phenomena underlying MMR deficiency. We herein report a rare IHC staining pattern of four MMR-related proteins in gastric cancer.
CASE SUMMARY A “null” IHC staining pattern of four MMR-related proteins, including MLH1, PMS2, MSH2, and MSH6, in a 67-year-old male patient with gastric cancer pT3N3aM0 revealed promoter hypermethylation of MLH1. Next-generation sequencing showed that these four genes exhibited changes. One of these was the somatic mutation of the missing copy number in exon 14 of MSH2. Mutation analysis using peripheral blood showed no germline mutations in these four genes. The patient had no history of personal or family tumor history. We classified this case as sporadic. The patient returned to normal after operation, and there were no signs of tumor metastasis and recurrence. After six cycles of adjuvant chemotherapy, the patient was discharged in a stable condition. The patient had a mild reaction to chemotherapy and a good prognosis. At present, 16 mo after the operation, the patient's condition is stable.
CONCLUSION Abnormal MMR protein expression, helpful for individualized follow-up care, helped identify a sporadic case lacking familial clinical management implications.
Collapse
Affiliation(s)
- Meng Yue
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Jun-Ying Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Yue-Ping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|
60
|
Chakhtoura M, Fang M, Cubas R, O’Connor MH, Nichols CN, Richardson B, Talla A, Moir S, Cameron MJ, Tardif V, Haddad EK. Germinal Center T follicular helper (GC-Tfh) cell impairment in chronic HIV infection involves c-Maf signaling. PLoS Pathog 2021; 17:e1009732. [PMID: 34280251 PMCID: PMC8289045 DOI: 10.1371/journal.ppat.1009732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that the function of T follicular helper (Tfh) cells from lymph nodes (LN) of HIV-infected individuals is impaired. We found that these cells were unable to provide proper help to germinal center (GC)-B cells, as observed by altered and inefficient anti-HIV antibody response and premature death of memory B cells. The underlying molecular mechanisms of this dysfunction remain poorly defined. Herein, we have used a unique transcriptional approach to identify these molecular defects. We consequently determined the transcriptional profiles of LN GC-Tfh cells following their interactions with LN GC-B cells from HIV-infected and HIV-uninfected individuals, rather than analyzing resting ex-vivo GC-Tfh cells. We observed that proliferating GC-Tfh cells from HIV-infected subjects were transcriptionally different than their HIV-uninfected counterparts, and displayed a significant downregulation of immune- and GC-Tfh-associated pathways and genes. Our results strongly demonstrated that MAF (coding for the transcription factor c-Maf) and its upstream signaling pathway mediators (IL6R and STAT3) were significantly downregulated in HIV-infected subjects, which could contribute to the impaired GC-Tfh and GC-B cell functions reported during infection. We further showed that c-Maf function was associated with the adenosine pathway and that the signaling upstream c-Maf could be partially restored by adenosine deaminase -1 (ADA-1) supplementation. Overall, we identified a novel mechanism that contributes to GC-Tfh cell impairment during HIV infection. Understanding how GC-Tfh cell function is altered in HIV is crucial and could provide critical information about the mechanisms leading to the development and maintenance of effective anti-HIV antibodies. Human immunodeficiency virus (HIV) remains a worldwide burden despite available treatments. The virus induces dysregulations in major immune cells and organs including lymph nodes. Germinal center T follicular helper (GC-Tfh) cells are immune cells which induce specific anti-HIV antibodies by helping GC-B cells. In chronic HIV, the interaction between these two cell types is defective, leading to modified and inefficient anti-HIV antibody responses. In this study, we examined the underlying mechanisms of this dysfunction. We observed that proliferating GC-Tfh cells from HIV-infected individuals, displayed distinctive gene expression than those from -uninfected subjects, following GC-B cell interaction. Furthermore, GC-Tfh cells from HIV patients showed a reduction in important immune-related pathway and gene expression. A number of essential GC-Tfh cell genes, such as MAF and its associated genes (IL6R and STAT3), were particularly attenuated in HIV, contributing to the impaired cells function. Moreover, we found an association between MAF function and the key enzyme adenosine deaminase-1 (ADA-1), where supplementation with ADA-1 partially restored the dysfunctional signaling in GC-Tfh cells during chronic infection. Understanding how GC-Tfh cells are altered in HIV is critical to elucidate the mechanisms leading to effective anti-HIV antibodies.
Collapse
Affiliation(s)
- Marita Chakhtoura
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mike Fang
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rafael Cubas
- Iovance Biotherapeutics, San Carlos, California, United States of America
| | - Margaret H. O’Connor
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Carmen N. Nichols
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brian Richardson
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Aarthi Talla
- Allen Institute for Immunology, Seattle, Washington, United States of America
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark J. Cameron
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Virginie Tardif
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Sorbonne University, INSERM, Center of Reasearch in Myology (Association Institut de Myologie) UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, Paris, France
- * E-mail: (VT); (EKH)
| | - Elias K. Haddad
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (VT); (EKH)
| |
Collapse
|
61
|
Sychevskaya KA, Kravchenko SK, Risinskaya NV, Misyurina АЕ, Nikulina EE, Babaeva FE, Sudarikov AB. Microsatellite instability (MSI, EMAST) in the pathogenesis of follicular lymphoma. ONCOHEMATOLOGY 2021. [DOI: 10.17650/1818-8346-2021-16-2-56-69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background. Genetic instability, an important phenomenon involved in oncogenic transformation and tumor progression, is associated with the insufficiency of the multicomponent DNA repair complex, in particular, the nucleotide mismatch repair (MMR) system. The MMR defect manifests itself as abnormalities in DNA microsatellite repeats, or microsatellite instability (MSI). In the studies of colorectal cancer, the role of MSI in prognostication of the disease, and defining the choice of specific therapy with immune checkpoint inhibitors has been proven.However, in lymphatic system tumors, the significance of this phenomenon is poorly understood. Determination of genetic instability in the onset of follicular lymphoma, a disease characterized by a heterogeneous course, may have prognostic value.Objective: to determine the genetic instability at the onset of follicular lymphoma.Materials and methods. Here we report an analysis of 24 microsatellite repeats and amelogenin loci in tumor cells of 46 follicular lymphoma patients.Results. In the studied cohort, lesions in microsatellite repeats were presented by MSI in 9 cases (19.6 %) and the loss of heterozygosity (LOH) in 19 cases (41.3 %). Most frequent lesions were found for the SE33 marker located at the q14 locus of chromosome 6. A significant association was shown between MSI and the double-hit follicular lymphoma group with rearrangements of the MYC and BCL2/BCL6 genes.Conclusion. Thus, our data indicate that the MSI phenomenon might be involved in the pathogenesis of the lymphatic tumors and particularly follicular lymphoma. However further studies on the expanded cohorts of patients are required to define the possible prognostic value of MSI in lymphatic tumors.
Collapse
Affiliation(s)
- K. A. Sychevskaya
- National Medical Research Center for Hematology, Ministry of Health of Russia
| | - S. K. Kravchenko
- National Medical Research Center for Hematology, Ministry of Health of Russia
| | - N. V. Risinskaya
- National Medical Research Center for Hematology, Ministry of Health of Russia
| | - А. Е. Misyurina
- National Medical Research Center for Hematology, Ministry of Health of Russia
| | - E. E. Nikulina
- National Medical Research Center for Hematology, Ministry of Health of Russia
| | - F. E. Babaeva
- National Medical Research Center for Hematology, Ministry of Health of Russia
| | - A. B. Sudarikov
- National Medical Research Center for Hematology, Ministry of Health of Russia
| |
Collapse
|
62
|
Fernandes SG, Shah P, Khattar E. Recent Advances in Therapeutic Application of DNA Damage Response Inhibitors against Cancer. Anticancer Agents Med Chem 2021; 22:469-484. [PMID: 34102988 DOI: 10.2174/1871520621666210608105735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
DNA integrity is continuously challenged by intrinsic cellular processes and environmental agents. To overcome this genomic damage, cells have developed multiple signaling pathways collectively named as DNA damage response (DDR) and composed of three components: (i) sensor proteins, which detect DNA damage, (ii) mediators that relay the signal downstream and recruit the repair machinery, and (iii) the repair proteins, which restore the damaged DNA. A flawed DDR and failure to repair the damage lead to the accumulation of genetic lesions and increased genomic instability, which is recognized as a hallmark of cancer. Cancer cells tend to harbor increased mutations in DDR genes and often have fewer DDR pathways than normal cells. This makes cancer cells more dependent on particular DDR pathways and thus become more susceptible to compounds inhibiting those pathways compared to normal cells, which have all the DDR pathways intact. Understanding the roles of different DDR proteins in the DNA damage response and repair pathways and identification of their structures have paved the way for the development of their inhibitors as targeted cancer therapy. In this review, we describe the major participants of various DDR pathways, their significance in carcinogenesis, and focus on the inhibitors developed against several key DDR proteins.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Prachi Shah
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| |
Collapse
|
63
|
Sajjadi E, Venetis K, Piciotti R, Invernizzi M, Guerini-Rocco E, Haricharan S, Fusco N. Mismatch repair-deficient hormone receptor-positive breast cancers: Biology and pathological characterization. Cancer Cell Int 2021; 21:266. [PMID: 34001143 PMCID: PMC8130151 DOI: 10.1186/s12935-021-01976-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
The clinical outcome of patients with a diagnosis of hormone receptor (HR)+ breast cancer has improved remarkably since the arrival of endocrine therapy. Yet, resistance to standard treatments is a major clinical challenge for breast cancer specialists and a life-threatening condition for the patients. In breast cancer, mismatch repair (MMR) status assessment has been demonstrated to be clinically relevant not only in terms of screening for inherited conditions such as Lynch syndrome, but also for prognostication, selection for immunotherapy, and early identification of therapy resistance. Peculiar traits characterize the MMR biology in HR+ breast cancers compared to other cancer types. In these tumors, MMR genetic alterations are relatively rare, occurring in ~3 % of cases. On the other hand, modifications at the protein level can be observed also in the absence of gene alterations and vice versa. In HR+ breast cancers, the prognostic role of MMR deficiency has been confirmed by several studies, but its predictive value remains a matter of controversy. The characterization of MMR status in these patients is troubled by the lack of tumor-specific guidelines and/or companion diagnostic tests. For this reason, precise identification of MMR-deficient breast cancers can be problematic. A deeper understanding of the MMR biology and clinical actionability in HR+ breast cancer may light the path to effective tumor-specific diagnostic tools. For a precise MMR status profiling, the specific strengths and limitations of the available technologies should be taken into consideration. This article aims at providing a comprehensive overview of the current state of knowledge of MMR alterations in HR+ breast cancer. The available armamentarium for MMR testing in these tumors is also examined along with possible strategies for a tailored pathological characterization.
Collapse
Affiliation(s)
- Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Roberto Piciotti
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Viale Piazza D'Armi, 1, 28100, Novara, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Svasti Haricharan
- Department of Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, 92037, La Jolla, CA, USA
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
64
|
Köberle B, Schoch S. Platinum Complexes in Colorectal Cancer and Other Solid Tumors. Cancers (Basel) 2021; 13:cancers13092073. [PMID: 33922989 PMCID: PMC8123298 DOI: 10.3390/cancers13092073] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cisplatin is successfully used for the treatment of various solid cancers. Unfortunately, it shows no activity in colorectal cancer. The resistance phenotype of colorectal cancer cells is mainly caused by alterations in p53-controlled DNA damage signaling and/or defects in the cellular mismatch repair pathway. Improvement of platinum-based chemotherapy in cisplatin-unresponsive cancers, such as colorectal cancer, might be achieved by newly designed cisplatin analogues, which retain activity in unresponsive tumor cells. Moreover, a combination of cisplatin with biochemical modulators of DNA damage signaling might sensitize cisplatin-resistant tumor cells to the drug, thus providing another strategy to improve cancer therapy. Abstract Cisplatin is one of the most commonly used drugs for the treatment of various solid neoplasms, including testicular, lung, ovarian, head and neck, and bladder cancers. Unfortunately, the therapeutic efficacy of cisplatin against colorectal cancer is poor. Various mechanisms appear to contribute to cisplatin resistance in cancer cells, including reduced drug accumulation, enhanced drug detoxification, modulation of DNA repair mechanisms, and finally alterations in cisplatin DNA damage signaling preventing apoptosis in cancer cells. Regarding colorectal cancer, defects in mismatch repair and altered p53-mediated DNA damage signaling are the main factors controlling the resistance phenotype. In particular, p53 inactivation appears to be associated with chemoresistance and poor prognosis. To overcome resistance in cancers, several strategies can be envisaged. Improved cisplatin analogues, which retain activity in resistant cancer, might be applied. Targeting p53-mediated DNA damage signaling provides another therapeutic strategy to circumvent cisplatin resistance. This review provides an overview on the DNA repair pathways involved in the processing of cisplatin damage and will describe signal transduction from cisplatin DNA lesions, with special attention given to colorectal cancer cells. Furthermore, examples for improved platinum compounds and biochemical modulators of cisplatin DNA damage signaling will be presented in the context of colon cancer therapy.
Collapse
Affiliation(s)
- Beate Köberle
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Sarah Schoch
- Department of Laboratory Medicine, Lund University, Scheelevägen 2, 223 81 Lund, Sweden
| |
Collapse
|
65
|
Neri S, Guidotti S, Bini C, Pelotti S, D'Adamo S, Minguzzi M, Platano D, Santi S, Mariani E, Cattini L, Borzì RM. Oxidative stress-induced DNA damage and repair in primary human osteoarthritis chondrocytes: focus on IKKα and the DNA Mismatch Repair System. Free Radic Biol Med 2021; 166:212-225. [PMID: 33636333 DOI: 10.1016/j.freeradbiomed.2021.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022]
Abstract
During osteoarthritis development, chondrocytes are subjected to a functional derangement. This increases their susceptibility to stressful conditions such as oxidative stress, a characteristic of the aging tissue, which can further provoke extrinsic senescence by DNA damage responses. It was previously observed that IκB kinase α knockdown increases the replicative potential of primary human OA chondrocytes cultured in monolayer and the survival of the same cells undergoing hypertrophic-like differentiation in 3-D. In this paper we investigated whether IKKα knockdown could modulate oxidative stress-induced senescence of OA chondrocytes undergoing a DDR and particularly the involvement in this process of the DNA mismatch repair system, the principal mechanism for repair of replicative and recombinational errors, devoted to genomic stability maintenance in actively replicating cells. This repair system is also implicated in oxidative stress-mediated DNA damage repair. We analyzed microsatellite instability and expression of the mismatch repair components in human osteoarthritis chondrocytes after IKKα knockdown and H2O2 exposure. Only low MSI levels and incidence were detected and exclusively in IKKα proficient cells. Moreover, we found that IKKα proficient and deficient chondrocytes differently regulated MMR proteins after oxidative stress, both at mRNA and protein level, suggesting a reduced susceptibility of IKKα deficient cells. Our data suggest an involvement of the MMR system in the response to oxidative stress that tends to be more efficient in IKKαKD cells. This argues for a partial contribution of the MMR system to the better ability to recover DNA damage already observed in these cells.
Collapse
Affiliation(s)
- Simona Neri
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Serena Guidotti
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Carla Bini
- Department of Medical and Surgical Sciences, (DIMEC), Unit of Legal Medicine, University of Bologna, Via Irnerio, 49, 40126, Bologna, Italy.
| | - Susi Pelotti
- Department of Medical and Surgical Sciences, (DIMEC), Unit of Legal Medicine, University of Bologna, Via Irnerio, 49, 40126, Bologna, Italy.
| | - Stefania D'Adamo
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Manuela Minguzzi
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy.
| | - Daniela Platano
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy.
| | - Spartaco Santi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna at IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Erminia Mariani
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy.
| | - Luca Cattini
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Rosa Maria Borzì
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Immunorheumatology and Tissue Regeneration, Via di Barbiano 1/10, 40136, Bologna, Italy.
| |
Collapse
|
66
|
Puliga E, Corso S, Pietrantonio F, Giordano S. Microsatellite instability in Gastric Cancer: Between lights and shadows. Cancer Treat Rev 2021; 95:102175. [PMID: 33721595 DOI: 10.1016/j.ctrv.2021.102175] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Gastric cancer (GC) represents an important contributor to the global burden of cancer, being one of the most common and deadly malignancies worldwide. According to TCGA and ACRG classifications, the microsatellite instable (MSI) group represents a significant subset of GCs and is currently in the limelight of many researches due to its favorable survival outcome in resectable stages compared to microsatellite stable tumors. MSI GCs hypermutated phenotype triggers immunosurveillance, making this molecular subgroup a promising candidate for immune checkpoint inhibitors treatment. Conversely, conflicting outcomes have been reported in chemotherapy settings. Due to the clinical relevance of these observations, in this review we report and discuss the molecular, pathological, prognostic, and predictive features of MSI gastric tumors.
Collapse
Affiliation(s)
- Elisabetta Puliga
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|
67
|
Zhou CS, Feng MT, Chen X, Gao Y, Chen L, Li LD, Li DH, Cao YQ. Exonuclease 1 (EXO1) is a Potential Prognostic Biomarker and Correlates with Immune Infiltrates in Lung Adenocarcinoma. Onco Targets Ther 2021; 14:1033-1048. [PMID: 33623391 PMCID: PMC7894803 DOI: 10.2147/ott.s286274] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Exonuclease 1 (EXO1) has been identified to be highly expressed in different human malignancies, but its expression and prognostic role in lung adenocarcinoma (LUAD) remain unknown. Materials and Methods Two independent cohorts extracted from public databases and one cohort from our center were analyzed in this study. Expression levels of EXO1 in LUAD tissues and paired para-cancer tissues were detected. The prognostic value of EXO1 in LUAD patients was evaluated in the three cohorts. Enrichment analyses were performed to explore the possible underlying biological pathways. Moreover, we also explored the correlations between EXO1 and tumor-infiltrating immune cells and evaluated the impact of EXO1 knock-down on the migration of lung cancer cells. Results In this study, we found that EXO1 was highly expressed in LUAD tissues compared with para-cancerous tissues in public databases (p < 0.01), which was consistent with our data (p < 0.01). Survival analysis indicated that high expression of EXO1 was associated with poor prognosis in LUAD (p < 0.01). Enrichment analyses indicated that biological pathways like cell cycle regulation, DNA damage and repair, immune response, neuroactive ligand-receptor interaction, may be associated with EXO1 aberrant expression. Moreover, high expression of EXO1 was correlated with decreased infiltrating B cells (p < 0.01) and CD4+ T cells (p < 0.01) levels, and low infiltrating levels of B cells (p < 0.01) and dendritic cells (DCs) (p < 0.05) indicated poor overall survival (OS) in LUAD. Additionally, in vitro experiments suggested that knockdown of EXO1 may inhibit the migratory ability of lung cancer cells. Conclusion In conclusion, EXO1 is a potential prognostic biomarker in LUAD, and correlates with infiltrating levels of immune cells in the tumor microenvironment. Further prospective validation of EXO1 in lung cancer is warranted.
Collapse
Affiliation(s)
- Chang-Shuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ming-Tao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Liang-Dong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - De-Heng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi-Qun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
68
|
Immune Checkpoint Inhibition as Primary Adjuvant Therapy for an IDH1-Mutant Anaplastic Astrocytoma in a Patient with CMMRD: A Case Report-Usage of Immune Checkpoint Inhibition in CMMRD. ACTA ACUST UNITED AC 2021; 28:757-766. [PMID: 33535600 PMCID: PMC7985791 DOI: 10.3390/curroncol28010074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) is a rare autosomal recessive hereditary cancer syndrome due to biallelic germline mutation involving one of the four DNA mismatch repair genes. Here we present a case of a young female with CMMRD, homozygous for the c.2002A>G mutation in the PMS2 gene. She developed an early stage adenocarcinoma of the colon at the age of 14. Surveillance MRI of the brain at age 18 resulted in the detection of an asymptomatic brain cancer. On resection, this was diagnosed as an anaplastic astrocytoma. Due to emerging literature suggesting benefit of immunotherapy in this patient population, she was treated with adjuvant dual immune checkpoint inhibition, avoiding radiation. The patient remains stable with no evidence of progression 20 months after resection. The patient’s clinical course, as well as the rational for considering adjuvant immunotherapy in patients with CMMRD are discussed in this report.
Collapse
|
69
|
Activation of DNA damage response signaling in mammalian cells by ionizing radiation. Free Radic Res 2021; 55:581-594. [PMID: 33455476 DOI: 10.1080/10715762.2021.1876853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular responses to DNA damage are fundamental to preserve genomic integrity during various endogenous and exogenous stresses. Following radiation therapy and chemotherapy, this DNA damage response (DDR) also determines development of carcinogenesis and therapeutic outcome. In humans, DNA damage activates a robust network of signal transduction cascades, driven primarily through phosphorylation events. These responses primarily involve two key non-redundant signal transducing proteins of phosphatidylinositol 3-kinase-like (PIKK) family - ATR and ATM, and their downstream kinases (hChk1 and hChk2). They further phosphorylate effectors proteins such as p53, Cdc25A and Cdc25C which function either to activate the DNA damage checkpoints and cell death mechanisms, or DNA repair pathways. Identification of molecular pathways that determine signaling after DNA damage and trigger DNA repair in response to differing types of DNA lesions allows for a far better understanding of the consequences of radiation and chemotherapy on normal and tumor cells. Here we highlight the network of DNA damage response pathways that are activated after treatment with different types of radiation. Further, we discuss regulation of cell cycle checkpoint and DNA repair processes in the context of DDR in response to radiation.
Collapse
|
70
|
Li G, Deng L, Huang N, Sun F. The Biological Roles of lncRNAs and Future Prospects in Clinical Application. Diseases 2021; 9:diseases9010008. [PMID: 33450825 PMCID: PMC7838801 DOI: 10.3390/diseases9010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Chemo and radiation therapies are the most commonly used therapies for cancer, but they can induce DNA damage, resulting in the apoptosis of host cells. DNA double-stranded breaks (DSBs) are the most lethal form of DNA damage in cells, which are constantly caused by a wide variety of genotoxic agents, both environmentally and endogenously. To maintain genomic integrity, eukaryotic organisms have developed a complex mechanism for the repair of DNA damage. Researches reported that many cellular long noncoding RNAs (lncRNAs) were involved in the response of DNA damage. The roles of lncRNAs in DNA damage response can be regulated by the dynamic modification of N6-adenosine methylation (m6A). The cellular accumulation of DNA damage can result in various diseases, including cancers. Additionally, lncRNAs also play roles in controlling the gene expression and regulation of autophagy, which are indirectly involved with individual development. The dysregulation of these functions can facilitate human tumorigenesis. In this review, we summarized the origin and overview function of lncRNAs and highlighted the roles of lncRNAs involved in the repair of DNA damage.
Collapse
Affiliation(s)
- Guohui Li
- School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China; (G.L.); (L.D.)
| | - Liang Deng
- School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China; (G.L.); (L.D.)
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
- Correspondence: ; Tel.: +86-021-6630-6909
| |
Collapse
|
71
|
Aedes aegypti post-emergence transcriptome: Unveiling the molecular basis for the hematophagic and gonotrophic capacitation. PLoS Negl Trop Dis 2021; 15:e0008915. [PMID: 33406161 PMCID: PMC7815146 DOI: 10.1371/journal.pntd.0008915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/19/2021] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
The adult females of Aedes aegypti mosquitoes are facultative hematophagous insects but they are unable to feed on blood right after pupae emergence. The maturation process that takes place during the first post-emergence days, hereafter named hematophagic and gonotrophic capacitation, comprises a set of molecular and physiological changes that prepare the females for the first gonotrophic cycle. Notwithstanding, the molecular bases underlying mosquito hematophagic and gonotrophic capacitation remain obscure. Here, we investigated the molecular and biochemical changes in adult Ae. aegypti along the first four days post-emergence, prior to a blood meal. We performed a RNA-Seq analysis of the head and body, comparing male and female gene expression time courses. A total of 811 and 203 genes were differentially expressed, respectively in the body and head, and both body parts showed early, mid, and late female-specific expression profiles. Female-specific up-regulation of genes involved in muscle development and the oxidative phosphorylation pathway were remarkable features observed in the head. Functional assessment of mitochondrial oxygen consumption in heads showed a gradual increase in respiratory capacity and ATP-linked respiration as a consequence of induced mitochondrial biogenesis and content over time. This pattern strongly suggests that boosting oxidative phosphorylation in heads is a required step towards blood sucking habit. Several salivary gland genes, proteases, and genes involved in DNA replication and repair, ribosome biogenesis, and juvenile hormone signaling were up-regulated specifically in the female body, which may reflect the gonotrophic capacitation. This comprehensive description of molecular and biochemical mechanisms of the hematophagic and gonotrophic capacitation in mosquitoes unravels potentially new targets for vector control.
Collapse
|
72
|
Monakhova MV, Milakina MA, Trikin RM, Oretskaya TS, Kubareva EA. Functional Specifics of the MutL Protein of the DNA Mismatch Repair System in Different Organisms. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
73
|
Kontizas E, Tastsoglou S, Karamitros T, Karayiannis Y, Kollia P, Hatzigeorgiou AG, Sgouras DN. Impact of Helicobacter pylori Infection and Its Major Virulence Factor CagA on DNA Damage Repair. Microorganisms 2020; 8:microorganisms8122007. [PMID: 33339161 PMCID: PMC7765595 DOI: 10.3390/microorganisms8122007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/10/2023] Open
Abstract
Helicobacter pylori infection induces a plethora of DNA damages. Gastric epithelial cells, in order to maintain genomic integrity, require an integrous DNA damage repair (DDR) machinery, which, however, is reported to be modulated by the infection. CagA is a major H. pylori virulence factor, associated with increased risk for gastric carcinogenesis. Its pathogenic activity is partly regulated by phosphorylation on EPIYA motifs. Our aim was to identify effects of H. pylori infection and CagA on DDR, investigating the transcriptome of AGS cells, infected with wild-type, ΔCagA and EPIYA-phosphorylation-defective strains. Upon RNA-Seq-based transcriptomic analysis, we observed that a notable number of DDR genes were found deregulated during the infection, potentially resulting to base excision repair and mismatch repair compromise and an intricate deregulation of nucleotide excision repair, homologous recombination and non-homologous end-joining. Transcriptome observations were further investigated on the protein expression level, utilizing infections of AGS and GES-1 cells. We observed that CagA contributed to the downregulation of Nth Like DNA Glycosylase 1 (NTHL1), MutY DNA Glycosylase (MUTYH), Flap Structure-Specific Endonuclease 1 (FEN1), RAD51 Recombinase, DNA Polymerase Delta Catalytic Subunit (POLD1), and DNA Ligase 1 (LIG1) and, contrary to transcriptome results, Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) upregulation. Our study accentuates the role of CagA as a significant contributor of H. pylori infection-mediated DDR modulation, potentially disrupting the balance between DNA damage and repair, thus favoring genomic instability and carcinogenesis.
Collapse
Affiliation(s)
- Eleftherios Kontizas
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Correspondence: (E.K.); (D.N.S.); Tel.: +30-210-647-8812 (E.K.); +30-210-647-8824 (D.N.S.)
| | - Spyros Tastsoglou
- Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece;
- DIANA-Lab, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Yiannis Karayiannis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Panagoula Kollia
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Hellenic Pasteur Institute, 11521 Athens, Greece;
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Dionyssios N. Sgouras
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Correspondence: (E.K.); (D.N.S.); Tel.: +30-210-647-8812 (E.K.); +30-210-647-8824 (D.N.S.)
| |
Collapse
|
74
|
Gillman R, Lopes Floro K, Wankell M, Hebbard L. The role of DNA damage and repair in liver cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188493. [PMID: 33316376 DOI: 10.1016/j.bbcan.2020.188493] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is rapidly becoming a major cause of global mortality due to the ever-increasing prevalence of obesity. DNA damage is known to play an important role in cancer initiation, however DNA repair systems are also vital for the survival of cancer cells. Given the function of the liver and its exposure to the gut, it is likely that DNA damage and repair would be of particular importance in hepatocellular carcinoma. However, many contemporary reports have neglected the role of individual pathways of DNA damage and repair in their hypotheses. This review, therefore, aims to provide a concise overview for researchers in the field of liver cancer to understand the pathways of DNA damage and repair and their individual roles in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rhys Gillman
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Kylie Lopes Floro
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; Department of Radiation Oncology, Townsville University Hospital, Townsville, Queensland, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; Australian Institute for Tropical Health and Medicine, Townsville, Queensland, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia; Australian Institute for Tropical Health and Medicine, Townsville, Queensland, Australia.
| |
Collapse
|
75
|
Chang SC, Li AFY, Lin PC, Lin CC, Lin HH, Huang SC, Lin CH, Liang WY, Chen WS, Jiang JK, Lin JK, Yang SH, Lan YT. Clinicopathological and Molecular Profiles of Sporadic Microsatellite Unstable Colorectal Cancer with or without the CpG Island Methylator Phenotype (CIMP). Cancers (Basel) 2020; 12:cancers12113487. [PMID: 33238621 PMCID: PMC7700556 DOI: 10.3390/cancers12113487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/07/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The 5'-C-phosphate-G-3' island methylator phenotype (CIMP) is a specific phenotype of colorectal cancer (CRC) associated with microsatellite instability-high (MSI-high) tumors. METHODS In this study, we determined the CIMP status using eight methylation markers in 92 MSI-high CRC patients after excluding five germline mismatch repair (MMR) gene mutations analyzed by next-generation sequencing (NGS) and confirmed by Sanger sequencing. The mutation spectra of 22 common CRC-associated genes were analyzed by NGS. RESULTS Of the 92 sporadic MSI-high tumors, 23 (25%) were considered CIMP-high (expressed more than 5 of 8 markers). CIMP-high tumors showed proximal colon preponderance and female predominance. The mutation profiles of CIMP-high tumors were significantly different from those of CIMP-low or CIMP-0 tumors (i.e., higher frequencies of BRAF, POLD1, MSH3, and SMAD4 mutations but lower frequencies of APC, TP53, and KRAS mutations). Multivariate analysis demonstrated that tumor, node, metastasis (TNM) stage was the independent prognostic factor affecting overall survival (OS). Among the MSI-high cases, the CIMP status did not impact the outcome of patients with MSI-high tumors. CONCLUSIONS Only TNM stage was a statistically significant predictor of outcomes independent of CIMP profiles in MSI-high CRC patients. Sporadic MSI-high CRCs with different mechanisms of carcinogenesis have specific mutation profiles and clinicopathological features.
Collapse
Affiliation(s)
- Shih-Ching Chang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Anna Fen-Yau Li
- Department of Pathology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (A.F.-Y.L.); (W.-Y.L.)
| | - Pei-Ching Lin
- Department of Clinical Pathology, Yang-Ming Branch, Taipei City Hospital, Taipei 11146, Taiwan;
- Department of Health and Welfare, University of Taipei, Taipei 11153, Taiwan
| | - Chun-Chi Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Hung-Hsin Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Shen-Chieh Huang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Chien-Hsing Lin
- Division of Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Wen-Yi Liang
- Department of Pathology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (A.F.-Y.L.); (W.-Y.L.)
| | - Wei-Shone Chen
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Jen-Kou Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Shung-Haur Yang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Yuan-Tzu Lan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
- Correspondence: ; Tel.: +886-2-28757544-110
| |
Collapse
|
76
|
Vågbø CB, Slupphaug G. RNA in DNA repair. DNA Repair (Amst) 2020; 95:102927. [DOI: 10.1016/j.dnarep.2020.102927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
|
77
|
Cilona M, Locatello LG, Novelli L, Gallo O. The Mismatch Repair System (MMR) in Head and Neck Carcinogenesis and Its Role in Modulating the Response to Immunotherapy: A Critical Review. Cancers (Basel) 2020; 12:cancers12103006. [PMID: 33081243 PMCID: PMC7602801 DOI: 10.3390/cancers12103006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The dysfunction of the mismatch repair system, an important mechanism for the detection and correction of DNA replication mistakes, may often lead to instability in the length of specific genetic sequences, known as microsatellites, and to the accumulation of mutations. Microsatellite instability is a well-known risk factor for the development of colorectal cancers and other types of tumors but is also considered a positive predictor of the immunotherapy response. Malignancies harboring such a specific genomic instability are very immunogenic because of the great number of aberrant antigens they produce. Therapies based on the blockade of specific immune checkpoints have shown to induce an effective immune response against microsatellite-unstable cancer. Many studies proved that microsatellite instability has a decisive role in the carcinogenesis and the malignant progression of head and neck cancer and, in the near future, it may become a useful tool in tailoring immunotherapy also in this field of precision oncology. Abstract The mismatch repair (MMR) system has a major role in the detection and correction of DNA replication errors, resulting from DNA polymerase slippage or nucleotides misincorporation. Specific inherited/acquired alterations or epigenetic inactivation of MMR genes are associated with microsatellite instability (MSI): the loss of crucial function in repairing DNA alterations can promote carcinogenesis by favoring the accumulation of thousands of mutations in a broad spectrum of different anatomic sites such as colon, stomach, prostate, esophagus, endometrium, lung and head and neck. Recent extensive data suggest that tumor mutational burden strongly correlates with a clinical response to immunotherapy using checkpoint inhibitors and this response is influenced by MMR deficiency in a wide range of human solid cancers. In this context, few data about this crucial point are available for head and neck cancer (HNC). In this review, we discuss the role of MMR alterations and the resulting MSI in HNC pathogenesis. Furthermore, by summarizing the clinical available data on how they influence the progression of precancerous lesions and the risk of recurrence or second primary tumors, we want to define the current role of MSI in the management of HNC. Finally, we analyze the complex interaction between cancer cells and the immune system addressing the data now available about a potential correlation between microsatellite instability and immunotherapy response in HNC.
Collapse
Affiliation(s)
- Maria Cilona
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla, 3-50134 Florence, Italy; (M.C.); (L.G.L.)
| | - Luca Giovanni Locatello
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla, 3-50134 Florence, Italy; (M.C.); (L.G.L.)
| | - Luca Novelli
- Department of Pathology, Careggi University Hospital, Largo Brambilla, 3-50134 Florence, Italy;
| | - Oreste Gallo
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla, 3-50134 Florence, Italy; (M.C.); (L.G.L.)
- Correspondence: ; Tel.: +39-0557947989
| |
Collapse
|
78
|
Lodovichi S, Cervelli T, Pellicioli A, Galli A. Inhibition of DNA Repair in Cancer Therapy: Toward a Multi-Target Approach. Int J Mol Sci 2020; 21:E6684. [PMID: 32932697 PMCID: PMC7554826 DOI: 10.3390/ijms21186684] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Alterations in DNA repair pathways are one of the main drivers of cancer insurgence. Nevertheless, cancer cells are more susceptible to DNA damage than normal cells and they rely on specific functional repair pathways to survive. Thanks to advances in genome sequencing, we now have a better idea of which genes are mutated in specific cancers and this prompted the development of inhibitors targeting DNA repair players involved in pathways essential for cancer cells survival. Currently, the pivotal concept is that combining the inhibition of mechanisms on which cancer cells viability depends is the most promising way to treat tumorigenesis. Numerous inhibitors have been developed and for many of them, efficacy has been demonstrated either alone or in combination with chemo or radiotherapy. In this review, we will analyze the principal pathways involved in cell cycle checkpoint and DNA repair focusing on how their alterations could predispose to cancer, then we will explore the inhibitors developed or in development specifically targeting different proteins involved in each pathway, underscoring the rationale behind their usage and how their combination and/or exploitation as adjuvants to classic therapies could help in patients clinical outcome.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| | - Achille Pellicioli
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| |
Collapse
|
79
|
banimohamad-shotorbani B, Kahroba H, Sadeghzadeh H, Wilson DM, Maadi H, Samadi N, Hejazi MS, Farajpour H, Onari BN, Sadeghi MR. DNA damage repair response in mesenchymal stromal cells: From cellular senescence and aging to apoptosis and differentiation ability. Ageing Res Rev 2020; 62:101125. [PMID: 32683038 DOI: 10.1016/j.arr.2020.101125] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are heterogeneous and contain several populations, including stem cells. MSCs' secretome has the ability to induce proliferation, differentiation, chemo-attraction, anti-apoptosis, and immunomodulation activities in stem cells. Moreover, these cells recognize tissue damage caused by drugs, radiation (e.g., Ultraviolet, infra-red) and oxidative stress, and respond in two ways: either MSCs differentiate into particular cell lineages to preserve tissue homeostasis, or they release a regenerative secretome to activate tissue repairing mechanisms. The maintenance of MSCs in quiescence can increase the incidence and accumulation of various forms of genomic modifications, particularly upon environmental insults. Thus, dysregulated DNA repair pathways can predispose MSCs to senescence or apoptosis, reducing their stemness and self-renewal properties. For instance, DNA damage can impair telomere replication, activating DNA damage checkpoints to maintain MSC function. In this review, we aim to summarize the role of DNA damage and associated repair responses in MSC senescence, differentiation and programmed cell death.
Collapse
|
80
|
Ijsselsteijn R, Jansen JG, de Wind N. DNA mismatch repair-dependent DNA damage responses and cancer. DNA Repair (Amst) 2020; 93:102923. [DOI: 10.1016/j.dnarep.2020.102923] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
81
|
Liu JY, Zou T, Yin JY, Wang Z, Wang Y, Liu ZQ, Chen J, Chen ZW. Genetic Variants in DNA Mismatch Repair Pathway predict prognosis of Lung Cancer patients with receiving Platinum-Based Chemotherapy. J Cancer 2020; 11:5281-5288. [PMID: 32742474 PMCID: PMC7391198 DOI: 10.7150/jca.46150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: To investigate the relationships between genetic variants in DNA mismatch repair pathway genes and the prognosis of platinum-based chemotherapy in lung cancer patients. Methods: 346 lung cancer patients who received at least two cycles of platinum-based chemotherapy were recruited in this study. A total of 35 single nucleotide polymorphisms in 7 DNA mismatch repair genes were genotyped to investigate their associations with platinum-based chemotherapy prognosis. Result: The results revealed that patients carried MSH2 rs4608577 TT genotype had a significantly shorter progression free survival than patients with GG or GT genotypes (Additive model: P=0.003, OR =0.94, 95% CI =0.33-1.57). Patients with SAPCD1 rs707937 TT genotype had a significantly longer overall survival than patients with GG or GT genotypes (Additive model: P=0.0003, OR=0.75, 95% CI =0.35-1.14). Eight SNPs and fourteen SNPs were related to progression free survival and overall survival in subgroup analyses, respectively. Conclusion: Our findings suggest that the MSH2 rs4608577 and SAPCD1 rs707937 may be potential clinical biomarkers for predicting platinum-based chemotherapy prognosis in lung cancer patients.
Collapse
Affiliation(s)
- Jun-Yan Liu
- Department of Orthopaedics, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| | - Ting Zou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China
| | - Ji-Ye Yin
- Departments of Clinical Pharmacology, Xinagya Hospital, Central South University, Changsha 410008, China.,Institute of Clinical Pharmacology and Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Zhan Wang
- Department of Medical Oncology, Lung cancer and Gastrointestinal unit, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Ying Wang
- Hunan clinical research center in gynecologic cancer, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, China
| | - Zhao-Qian Liu
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, Hunan, P.R.China.,Departments of Clinical Pharmacology, Xinagya Hospital, Central South University, Changsha 410008, China
| | - Juan Chen
- Department of Pharmacy, Xinagya Hospital, Central South University, Changsha 410008, China
| | - Zhi-Wei Chen
- Department of Orthopaedics, The First Affiliated Hospital of the University of South China, Hengyang 421001, China
| |
Collapse
|
82
|
Burgess JT, Rose M, Boucher D, Plowman J, Molloy C, Fisher M, O'Leary C, Richard DJ, O'Byrne KJ, Bolderson E. The Therapeutic Potential of DNA Damage Repair Pathways and Genomic Stability in Lung Cancer. Front Oncol 2020; 10:1256. [PMID: 32850380 PMCID: PMC7399071 DOI: 10.3389/fonc.2020.01256] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite advances in our understanding of the molecular biology of the disease and improved therapeutics, lung cancer remains the most common cause of cancer-related deaths worldwide. Therefore, an unmet need remains for improved treatments, especially in advanced stage disease. Genomic instability is a universal hallmark of all cancers. Many of the most commonly prescribed chemotherapeutics, including platinum-based compounds such as cisplatin, target the characteristic genomic instability of tumors by directly damaging the DNA. Chemotherapies are designed to selectively target rapidly dividing cells, where they cause critical DNA damage and subsequent cell death (1, 2). Despite the initial efficacy of these drugs, the development of chemotherapy resistant tumors remains the primary concern for treatment of all lung cancer patients. The correct functioning of the DNA damage repair machinery is essential to ensure the maintenance of normal cycling cells. Dysregulation of these pathways promotes the accumulation of mutations which increase the potential of malignancy. Following the development of the initial malignancy, the continued disruption of the DNA repair machinery may result in the further progression of metastatic disease. Lung cancer is recognized as one of the most genomically unstable cancers (3). In this review, we present an overview of the DNA damage repair pathways and their contributions to lung cancer disease occurrence and progression. We conclude with an overview of current targeted lung cancer treatments and their evolution toward combination therapies, including chemotherapy with immunotherapies and antibody-drug conjugates and the mechanisms by which they target DNA damage repair pathways.
Collapse
Affiliation(s)
- Joshua T Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Didier Boucher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jennifer Plowman
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Christopher Molloy
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Mark Fisher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Connor O'Leary
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
83
|
Rosa RCA, Santis JO, Teixeira LA, Molfetta GA, Dos Santos JTT, Ribeiro VDS, Chahud F, Ribeiro-Silva A, Brunaldi MO, Silva WA, Ferraz VEDF. Lynch syndrome identification in a Brazilian cohort of endometrial cancer screened by a universal approach. Gynecol Oncol 2020; 159:229-238. [PMID: 32694065 DOI: 10.1016/j.ygyno.2020.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To report the frequency of Lynch syndrome (LS) in a cohort of patients from Southeast Brazil bearing endometrial cancer (EC), using a tumor screening universal approach. METHODS A total of 242 endometrial carcinomas were screened by immunohistochemistry (IHC) and microsatellite instability (MSI) for detection of DNA mismatch repair deficiency (dMMR). MLH1 methylation was assessed to identify sporadic cases. Patients with dMMR tumors were recruited for germline variant analysis by next-generation sequencing of the MLH1, MSH2, MSH6, PMS2, and EPCAM genes. RESULTS Ninety-three out of 242 tumors (38.5%) were classified as dMMR based on MSI and IHC results. Of these, 54 cases were selected for germline analysis, and 37/54 (68.5%) were available for sequencing. Ten patients (10/37, 27%) harbored germline pathogenic or likely pathogenic variants, most of them in the MSH6 gene (4/10, 40%). Seven variants of uncertain significance were found. Eight novel germline variants were identified. The LS prevalence in our cohort was of at least 4.1%. LS patients presented lower mean age at cancer diagnosis compared with patients diagnosed with sporadic EC. Individuals with dMMR tumors, without germline pathogenic variants detected in LS-genes ("Lynch-like" syndrome), had an intermediate mean age at cancer diagnosis between LS and sporadic cases. CONCLUSION This is the first report of the LS prevalence in EC screened by a universal approach in Brazil. Our findings contribute to a better understanding of the mutational landscape of this syndrome in Brazil, which is relevant for improved identification, genetic counseling, prevention and control of cancer in LS.
Collapse
Affiliation(s)
- Reginaldo Cruz Alves Rosa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Regional Blood Center at University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Jessica Oliveira Santis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Regional Blood Center at University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Lorena Alves Teixeira
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Greice Andreotti Molfetta
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Regional Blood Center at University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | | | - Vanessa Dos Santos Ribeiro
- Inter-institutional Doctoral Program in Nursing, Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, Brazil.
| | - Fernando Chahud
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Alfredo Ribeiro-Silva
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Mariângela Ottoboni Brunaldi
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Regional Blood Center at University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Victor Evangelista de Faria Ferraz
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center for Medical Genomics at Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, Brazil.
| |
Collapse
|
84
|
Recurrent mismatch binding by MutS mobile clamps on DNA localizes repair complexes nearby. Proc Natl Acad Sci U S A 2020; 117:17775-17784. [PMID: 32669440 DOI: 10.1073/pnas.1918517117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA mismatch repair (MMR), the guardian of the genome, commences when MutS identifies a mismatch and recruits MutL to nick the error-containing strand, allowing excision and DNA resynthesis. Dominant MMR models posit that after mismatch recognition, ATP converts MutS to a hydrolysis-independent, diffusive mobile clamp that no longer recognizes the mismatch. Little is known about the postrecognition MutS mobile clamp and its interactions with MutL. Two disparate frameworks have been proposed: One in which MutS-MutL complexes remain mobile on the DNA, and one in which MutL stops MutS movement. Here we use single-molecule FRET to follow the postrecognition states of MutS and the impact of MutL on its properties. In contrast to current thinking, we find that after the initial mobile clamp formation event, MutS undergoes frequent cycles of mismatch rebinding and mobile clamp reformation without releasing DNA. Notably, ATP hydrolysis is required to alter the conformation of MutS such that it can recognize the mismatch again instead of bypassing it; thus, ATP hydrolysis licenses the MutS mobile clamp to rebind the mismatch. Moreover, interaction with MutL can both trap MutS at the mismatch en route to mobile clamp formation and stop movement of the mobile clamp on DNA. MutS's frequent rebinding of the mismatch, which increases its residence time in the vicinity of the mismatch, coupled with MutL's ability to trap MutS, should increase the probability that MutS-MutL MMR initiation complexes localize near the mismatch.
Collapse
|
85
|
Rajapakse A, Suraweera A, Boucher D, Naqi A, O'Byrne K, Richard DJ, Croft LV. Redox Regulation in the Base Excision Repair Pathway: Old and New Players as Cancer Therapeutic Targets. Curr Med Chem 2020; 27:1901-1921. [PMID: 31258058 DOI: 10.2174/0929867326666190430092732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/09/2019] [Accepted: 04/05/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Reactive Oxygen Species (ROS) are by-products of normal cellular metabolic processes, such as mitochondrial oxidative phosphorylation. While low levels of ROS are important signalling molecules, high levels of ROS can damage proteins, lipids and DNA. Indeed, oxidative DNA damage is the most frequent type of damage in the mammalian genome and is linked to human pathologies such as cancer and neurodegenerative disorders. Although oxidative DNA damage is cleared predominantly through the Base Excision Repair (BER) pathway, recent evidence suggests that additional pathways such as Nucleotide Excision Repair (NER) and Mismatch Repair (MMR) can also participate in clearance of these lesions. One of the most common forms of oxidative DNA damage is the base damage 8-oxoguanine (8-oxoG), which if left unrepaired may result in G:C to A:T transversions during replication, a common mutagenic feature that can lead to cellular transformation. OBJECTIVE Repair of oxidative DNA damage, including 8-oxoG base damage, involves the functional interplay between a number of proteins in a series of enzymatic reactions. This review describes the role and the redox regulation of key proteins involved in the initial stages of BER of 8-oxoG damage, namely Apurinic/Apyrimidinic Endonuclease 1 (APE1), human 8-oxoguanine DNA glycosylase-1 (hOGG1) and human single-stranded DNA binding protein 1 (hSSB1). Moreover, the therapeutic potential and modalities of targeting these key proteins in cancer are discussed. CONCLUSION It is becoming increasingly apparent that some DNA repair proteins function in multiple repair pathways. Inhibiting these factors would provide attractive strategies for the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Aleksandra Rajapakse
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia.,School of Natural Sciences, Griffith University, Nathan, QLD, Australia
| | - Amila Suraweera
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Didier Boucher
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Ali Naqi
- Department of Chemistry, Pennsylvania State University, United States
| | - Kenneth O'Byrne
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia.,Cancer Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J Richard
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Laura V Croft
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
86
|
Wang D, Qian X, Sanchez-Solana B, Tripathi BK, Durkin ME, Lowy DR. Cancer-Associated Point Mutations in the DLC1 Tumor Suppressor and Other Rho-GAPs Occur Frequently and Are Associated with Decreased Function. Cancer Res 2020; 80:3568-3579. [PMID: 32606003 DOI: 10.1158/0008-5472.can-19-3984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
In advanced cancer, the RHOA GTPase is often active together with reduced expression of genes encoding Rho-specific GTPase-accelerating proteins (Rho-GAP), which negatively regulate RHOA and related GTPases. Here we used the The Cancer Genome Atlas dataset to examine 12 tumor types (including colon, breast, prostate, pancreas, lung adenocarcinoma, and squamous cell carcinoma) for the frequency of codon mutations of 10 Rho-GAP and experimentally tested biochemical and biological consequences for cancer-associated mutants that arose in the DLC1 tumor suppressor gene. DLC1 was the Rho-GAP gene mutated most frequently, with 5%-8% of tumors in five of the tumor types evaluated having DLC1 missense mutations. Furthermore, 20%-26% of the tumors in four of these five tumor types harbored missense mutations in at least one of the 10 Rho-GAPs. Experimental analysis of the DLC1 mutants indicated 7 of 9 mutants whose lesions were located in the Rho-GAP domain were deficient for Rho-GAP activity and for suppressing cell migration and anchorage-independent growth. Analysis of a DLC1 linker region mutant and a START domain mutant showed each was deficient for suppressing migration and growth in agar, but their Rho-GAP activity was similar to that of wild-type DLC1. Compared with the wild-type, the linker region mutant bound 14-3-3 proteins less efficiently, while the START domain mutant displayed reduced binding to Caveolin-1. Thus, mutation of Rho-GAP genes occurs frequently in some cancer types and the majority of cancer-associated DLC1 mutants evaluated were deficient biologically, with various mechanisms contributing to their reduced activity. SIGNIFICANCE: These findings indicate that point mutation of Rho-GAP genes is unexpectedly frequent in several cancer types, with DLC1 mutants exhibiting reduced function by various mechanisms.
Collapse
Affiliation(s)
- Dunrui Wang
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Xiaolan Qian
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Beatriz Sanchez-Solana
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Brajendra K Tripathi
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Marian E Durkin
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland.
| |
Collapse
|
87
|
Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A. Mismatch Repair Pathway, Genome Stability and Cancer. Front Mol Biosci 2020; 7:122. [PMID: 32671096 PMCID: PMC7332687 DOI: 10.3389/fmolb.2020.00122] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 01/02/2023] Open
Abstract
The acquisition of genomic instability is one of the key characteristics of the cancer cell, and microsatellite instability (MSI) is an important segment of this phenomenon. This review aims to describe the mismatch DNA repair (MMR) system whose deficiency is responsible for MSI and discuss the cellular roles of MMR genes. Malfunctioning of the MMR repair pathway increases the mutational burden of specific cancers and is often involved in its etiology, sometimes as an influential bystander and sometimes as the main driving force. Detecting the presence of MSI has for a long time been an important part of clinical diagnostics, but has still not achieved its full potential. The MSI blueprints of specific tumors are useful for precize grading, evaluation of cancer chance and prognosis and to help us understand how and why therapy-resistant cancers arise. Furthermore, evidence indicates that MSI is an important predictive biomarker for the application of immunotherapy.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Iva Salamon
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Anja Bukovac
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
88
|
Aurilio G, Cimadamore A, Santoni M, Nolè F, Scarpelli M, Massari F, Lopez-Beltran A, Cheng L, Montironi R. New Frontiers in Prostate Cancer Treatment: Are We Ready for Drug Combinations with Novel Agents? Cells 2020; 9:cells9061522. [PMID: 32580469 PMCID: PMC7349416 DOI: 10.3390/cells9061522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Medical treatment for metastatic castration-resistant prostate cancer (mCRPC) patients has progressively been evolving from a nonspecific clinical approach to genomics-oriented therapies. The scientific community is in fact increasingly focusing on developing DNA damage repair (DDR) defect-driven novel molecules, both as single-agent therapy and in combined treatment strategies. Accordingly, research is under way into combined drug therapies targeting different pathways, e.g. androgen receptor signaling (ARS) and poly (adenosine diphosphate [ADP]-ribose) polymerase (PARP) enzymes, immune checkpoint (IC) and PARP, IC, and ARS, and prostate-specific membrane antigen (PSMA). In an attempt to formulate evolving treatment paradigms in mCRPC patients, here we selected clinical research into patients undergoing therapies with emerging molecules, with particular emphasis towards PARP-, IC-, and PSMA-inhibitors. In order to focus on those molecules and drug combinations most likely to be translated into routine clinical care in the near future, we selected only those clinical studies currently recruiting patients. A PubMed search focusing on the keywords “prostate cancer”, “metastatic castration-resistant prostate cancer”, “DDR pathways”, “ARS inhibitors”, “PARP inhibitors”, “IC inhibitors”, “PSMA-targeting agents”, and “drug combinations” was performed.
Collapse
Affiliation(s)
- Gaetano Aurilio
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
- Correspondence: ; Tel.: +390257489502; Fax: +390294379234
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62012 Macerata, Italy;
| | - Franco Nolè
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| | - Francesco Massari
- Division of Oncology, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy;
| | | | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, 60126 Ancona, Italy; (A.C.); (M.S.); (R.M.)
| |
Collapse
|
89
|
Pestana RC, Sen S, Hobbs BP, Hong DS. Histology-agnostic drug development - considering issues beyond the tissue. Nat Rev Clin Oncol 2020; 17:555-568. [PMID: 32528101 DOI: 10.1038/s41571-020-0384-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/25/2022]
Abstract
With advances in tumour biology and immunology that continue to refine our understanding of cancer, therapies are now being developed to treat cancers on the basis of specific molecular alterations and markers of immune phenotypes that transcend specific tumour histologies. With the landmark approvals of pembrolizumab for the treatment of patients whose tumours have high microsatellite instability and larotrectinib and entrectinib for those harbouring NTRK fusions, a regulatory pathway has been created to facilitate the approval of histology-agnostic indications. Negative results presented in the past few years, however, highlight the intrinsic complexities faced by drug developers pursuing histology-agnostic therapeutic agents. When patient selection and statistical analysis involve multiple potentially heterogeneous histologies, guidance is needed to navigate the challenges posed by trial design. Additionally, as new therapeutic agents are tested and post-approval data become available, the regulatory framework for acting on these data requires further optimization. In this Review, we summarize the development and testing of approved histology-agnostic therapeutic agents and present data on other agents currently under development. Finally, we discuss the challenges intrinsic to histology-agnostic drug development in oncology, including biological, regulatory, design and statistical considerations.
Collapse
Affiliation(s)
- Roberto Carmagnani Pestana
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Centro de Oncologia e Hematologia Einstein Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Shiraj Sen
- Sarah Cannon Research Institute, Denver, CO, USA
| | - Brian P Hobbs
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
90
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
91
|
Kafer GR, Cesare AJ. A Survey of Essential Genome Stability Genes Reveals That Replication Stress Mitigation Is Critical for Peri-Implantation Embryogenesis. Front Cell Dev Biol 2020; 8:416. [PMID: 32548123 PMCID: PMC7274024 DOI: 10.3389/fcell.2020.00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Murine development demands that pluripotent epiblast stem cells in the peri-implantation embryo increase from approximately 120 to 14,000 cells between embryonic days (E) 4.5 and E7.5. This is possible because epiblast stem cells can complete cell cycles in under 3 h in vivo. To ensure conceptus fitness, epiblast cells must undertake this proliferative feat while maintaining genome integrity. How epiblast cells maintain genome health under such an immense proliferation demand remains unclear. To illuminate the contribution of genome stability pathways to early mammalian development we systematically reviewed knockout mouse data from 347 DDR and repair associated genes. Cumulatively, the data indicate that while many DNA repair functions are dispensable in embryogenesis, genes encoding replication stress response and homology directed repair factors are essential specifically during the peri-implantation stage of early development. We discuss the significance of these findings in the context of the unique proliferative demands placed on pluripotent epiblast stem cells.
Collapse
Affiliation(s)
| | - Anthony J. Cesare
- Genome Integrity Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
92
|
Rose E, Carvalho JL, Hecht M. Mechanisms of DNA repair in Trypanosoma cruzi: What do we know so far? DNA Repair (Amst) 2020; 91-92:102873. [PMID: 32505694 DOI: 10.1016/j.dnarep.2020.102873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Trypanosoma cruzi is the etiological agent of Chagas Disease, which affects 6-7 million people worldwide. Since the early stages of infection and throughout its life cycle, the parasite is exposed to several genotoxic agents. Furthermore, DNA damage is also part of the mechanism of action of at least a few trypanocidal drugs, including Benznidazole. Thus, it is paramount for the parasite to count on an efficient DNA repair machinery to guarantee genome integrity and survival. The present work provides an up-to-date review of both the conserved and peculiar DNA repair mechanisms described in T. cruzi against oxidative stress, ultraviolet and ionizing radiation, DNA adduct-inducing agents, and Benznidazole. The comprehension of the DNA repair mechanisms of the parasite may shed light on the parasite evolution and possibly pave the way for the development of novel and more effective trypanocidal drugs.
Collapse
Affiliation(s)
- Ester Rose
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil.
| | - Juliana Lott Carvalho
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
93
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
94
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
95
|
Babbar M, Basu S, Yang B, Croteau DL, Bohr VA. Mitophagy and DNA damage signaling in human aging. Mech Ageing Dev 2020; 186:111207. [PMID: 31923475 PMCID: PMC7047626 DOI: 10.1016/j.mad.2020.111207] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
Aging is associated with multiple human pathologies. In the past few years mitochondrial homeostasis has been well correlated with age-related disorders and longevity. Mitochondrial homeostasis involves generation, biogenesis and removal of dysfunctional mitochondria via mitophagy. Mitophagy is regulated by various mitochondrial and extra-mitochondrial factors including morphology, oxidative stress and DNA damage. For decades, DNA damage and inefficient DNA repair have been considered as major determinants for age-related disorders. Although defects in DNA damage recognition and repair and mitophagy are well documented to be major factors in age-associated diseases, interactivity between these is poorly understood. Mitophagy efficiency decreases with age leading to accumulation of dysfunctional mitochondria enhancing the severity of age-related disorders including neurodegenerative diseases, inflammatory diseases, cancer, diabetes and many more. Therefore, mitophagy is being targeted for intervention in age-associated disorders. NAD+ supplementation has emerged as one intervention to target both defective DNA repair and mitophagy. In this review, we discuss the molecular signaling pathways involved in regulation of DNA damage and repair and of mitophagy, and we highlight the opportunities for clinical interventions targeting these processes to improve the quality of life during aging.
Collapse
Affiliation(s)
- Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sambuddha Basu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Beimeng Yang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
96
|
Németh E, Lovrics A, Gervai JZ, Seki M, Rospo G, Bardelli A, Szüts D. Two main mutational processes operate in the absence of DNA mismatch repair. DNA Repair (Amst) 2020; 89:102827. [PMID: 32126497 DOI: 10.1016/j.dnarep.2020.102827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The analysis of tumour genome sequences has demonstrated high rates of base substitution mutagenesis upon the inactivation of DNA mismatch repair (MMR), and the resulting somatic mutations in MMR deficient tumours appear to significantly enhance the response to immune therapy. A handful of different algorithmically derived base substitution mutation signatures have been attributed to MMR deficiency in tumour somatic mutation datasets. In contrast, mutation data obtained from whole genome sequences of isogenic wild type and MMR deficient cell lines in this study, as well as from published sources, show a more uniform experimental mutation spectrum of MMR deficiency. In order to resolve this discrepancy, we reanalysed mutation data from MMR deficient tumour whole exome and whole genome sequences. We derived two base substitution signatures using non-negative matrix factorisation, which together adequately describe mutagenesis in all tumour and cell line samples. The two new signatures broadly resemble COSMIC signatures 6 and 20, but perform better than existing COSMIC signatures at identifying MMR deficient tumours in mutation signature deconstruction. We show that the contribution of the two identified signatures, one of which is dominated by C to T mutations at CpG sites, is biased by the different sequence composition of the exome and the whole genome. We further show that the identity of the inactivated MMR gene, the tissue type, the mutational burden or the patient's age does not influence the mutation spectrum, but that a tendency for a greater contribution by the CpG mutational process is observed in tumours as compared to cultured cells. Our analysis suggest that two separable mutational processes operate in the genomes of MMR deficient cells.
Collapse
Affiliation(s)
- Eszter Németh
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Anna Lovrics
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Judit Z Gervai
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Masayuki Seki
- Department of Biochemistry, Tohoku Medical & Pharmaceutical University, Miyagi 981-8558, Japan
| | - Giuseppe Rospo
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo TO, Italy; Department of Oncology, University of Turin, 10060, Candiolo TO, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo TO, Italy; Department of Oncology, University of Turin, 10060, Candiolo TO, Italy
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary.
| |
Collapse
|
97
|
Gonzalez V, Spampinato CP. The mismatch repair protein MSH6 regulates somatic recombination in Arabidopsis thaliana. DNA Repair (Amst) 2020; 87:102789. [PMID: 31945543 DOI: 10.1016/j.dnarep.2020.102789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/29/2019] [Accepted: 01/08/2020] [Indexed: 11/28/2022]
Abstract
The mismatch repair (MMR) pathway promotes genome stability by controlling the fidelity of replication and recombination. The first step of the pathway involves recognition of the mismatch by heterodimers composed of MutS homologs (MSH). Although MSH6 has been well characterized in yeasts and humans, the role of the plant protein has not been extensively studied. We first analyzed gene expression in Arabidopsis thaliana. The use of transgenic plants expressing the β-glucuronidase (GUS) reporter gene under the control of approximately 1-kb region upstream of the start codon of the AtMSH6 gene demonstrated that MSH6 is preferentially expressed in undifferentiated cells with an intense cell division rate. We then examined protein function in meiotic and somatic recombination. Suppression of AtMSH6 did not affect the rate of meiotic recombination, but increased the frequency of recombination between two homeologous repeats of a marker gene by 3-fold relative to wild-type plants. Expression of the AtMSH6 gene under the control of its own promoter in msh6 homozygous mutant plants rescued the altered somatic recombination phenotype. We conclude that MSH6 shows a functional conservation across different biological kingdoms and a functional specificity in plants.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
98
|
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation; mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physical-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate. A distinction is made between mechanistically unavoidable and evolutionarily relevant mutation and recombination.
Collapse
|
99
|
Eso Y, Shimizu T, Takeda H, Takai A, Marusawa H. Microsatellite instability and immune checkpoint inhibitors: toward precision medicine against gastrointestinal and hepatobiliary cancers. J Gastroenterol 2020; 55:15-26. [PMID: 31494725 PMCID: PMC6942585 DOI: 10.1007/s00535-019-01620-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023]
Abstract
Recent innovations in the next-generation sequencing technologies have unveiled that the accumulation of genetic alterations results in the transformation of normal cells into cancer cells. Accurate and timely repair of DNA is, therefore, essential for maintaining genetic stability. Among various DNA repair pathways, the mismatch repair (MMR) pathway plays a pivotal role. MMR deficiency leads to a molecular feature of microsatellite instability (MSI) and predisposes to cancer. Recent studies revealed that MSI-high (MSI-H) or mismatch repair-deficient (dMMR) tumors, regardless of their primary site, have a promising response to immune checkpoint inhibitors (ICIs), leading to the approval of the anti-programmed cell death protein 1 monoclonal antibody pembrolizumab for the treatment of advanced or recurrent MSI-H/dMMR solid tumors that continue to progress after conventional chemotherapies. This new indication marks a paradigm shift in the therapeutic strategy of cancers; however, when considering the optimum indication for ICIs and their safe and effective usage, it is important for clinicians to understand the genetic and immunologic features of each tumor. In this review, we describe the molecular basis of the MMR pathway, diagnostics of MSI status, and the clinical importance of MSI status and the tumor mutation burden in developing therapeutic strategies against gastrointestinal and hepatobiliary malignancies.
Collapse
Affiliation(s)
- Yuji Eso
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Takahiro Shimizu
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Haruhiko Takeda
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Atsushi Takai
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Hiroyuki Marusawa
- grid.417000.20000 0004 1764 7409Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, Osaka, 5438555 Japan
| |
Collapse
|
100
|
Chirinos-Arias MC, Spampinato CP. Growth and development of AtMSH7 mutants in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:329-336. [PMID: 31785519 DOI: 10.1016/j.plaphy.2019.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
DNA mismatch repair (MMR) is a highly conserved biological pathway that improves the fidelity of DNA replication and recombination. MMR is initiated when MutS proteins recognize mismatches and small loops of unpaired nucleotides. Arabidopsis thaliana and other plants encode MutS protein homologs (MSH) conserved among other eukaryotic organisms, but also encode an extra MSH polypeptide (MSH7). In order to better understand the role of MSH7 in vivo, a full set of phenotypic parameters that covered the development of the plant from seed imbibition to flowering and seed maturation was analyzed in A. thaliana harboring two different msh7 alleles. Plants deficient in MSH7 show statistically significant faster germination rates, longer primary roots during the juvenile vegetative phase, and higher cauline leaf and axillary and lateral inflorescence numbers compared with wild type. We also quantified number, length and area of siliques and seed number per silique. Disruption of MSH7 resulted in a higher number of smaller siliques than wild type. There were no differences in seed number per silique between genotypes. These findings suggest that mutant plant growth appears to be caused by an impaired cell cycle checkpoint that allows cell division without adequate DNA repair. This increase in proliferation activity demonstrates a functional and temporal link between DNA repair and cell cycle regulation.
Collapse
Affiliation(s)
- Michelle C Chirinos-Arias
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|