51
|
The role of glutamate and its receptors in multiple sclerosis. J Neural Transm (Vienna) 2014; 121:945-55. [PMID: 24633998 DOI: 10.1007/s00702-014-1188-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/27/2014] [Indexed: 12/18/2022]
Abstract
Glutamate is an excitatory neurotransmitter of the central nervous system, which has a central role in a complex communication network established between neurons, astrocytes, oligodendrocytes, and microglia. Multiple abnormal triggers such as energy deficiency, oxidative stress, mitochondrial dysfunction, and calcium overload can lead to abnormalities in glutamate signaling. Thus, the disturbance of glutamate homeostasis could affect practically all physiological functions and interactions of brain cells, leading to excitotoxicity. Excitotoxicity is the pathological process by which nerve cells are damaged or killed by excessive stimulation by glutamate. Although neuron degeneration and death are the ultimate consequences of multiple sclerosis (MS), it is now widely accepted that alterations in the function of surrounding glial cells are key features in the progression of the disease. The present knowledge raise the possibility that the modulation of glutamate release and transport, as well as receptors blockade or glutamate metabolism modulation, might be relevant targets for the development of future therapeutic interventions in MS.
Collapse
|
52
|
Nisticò R, Mori F, Feligioni M, Nicoletti F, Centonze D. Synaptic plasticity in multiple sclerosis and in experimental autoimmune encephalomyelitis. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130162. [PMID: 24298163 DOI: 10.1098/rstb.2013.0162] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Approximately half of all patients with multiple sclerosis (MS) experience cognitive dysfunction, including learning and memory impairment. Recent studies suggest that hippocampal pathology is involved, although the mechanisms underlying these deficits remain poorly understood. Evidence obtained from a mouse model of MS, the experimental autoimmune encephalomyelitis (EAE), suggests that in the hippocampus of EAE mice long-term potentiation (LTP) is favoured over long-term depression in response to repetitive synaptic activation, through a mechanism dependent on enhanced IL-1β released from infiltrating lymphocytes or activated microglia. Facilitated LTP during an immune-mediated attack might underlie functional recovery, but also cognitive deficits and excitotoxic neurodegeneration. Having identified that pro-inflammatory cytokines such as IL-1β can influence synaptic function and integrity in early MS, it is hoped that new treatments targeted towards preventing synaptic pathology can be developed.
Collapse
Affiliation(s)
- Robert Nisticò
- Department of Physiology and Pharmacology, Sapienza University of Rome, , 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
53
|
Vázquez-Villoldo N, Domercq M, Martín A, Llop J, Gómez-Vallejo V, Matute C. P2X4 receptors control the fate and survival of activated microglia. Glia 2013; 62:171-84. [PMID: 24254916 DOI: 10.1002/glia.22596] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/02/2013] [Accepted: 10/16/2013] [Indexed: 01/22/2023]
Abstract
Microglia, the resident immune cells of the central nervous system, responds to brain disarrangements by becoming activated to contend with brain damage. Here we show that the expression of P2X4 receptors is upregulated in inflammatory foci and in activated microglia in the spinal cord of rats with experimental autoimmune encephalomyelitis (EAE) as well as in the optic nerve of multiple sclerosis patients. To study the role of P2X4 receptors in microgliosis, we activated microglia with LPS in vitro and in vivo. We observed that P2X4 receptor activity in vitro was increased in LPS-activated microglia as assessed by patch-clamp recordings. In addition, P2X4 receptor blockade significantly reduced microglial membrane ruffling, TNFα secretion and morphological changes, as well as LPS-induced microglial cell death. Accordingly, neuroinflammation provoked by LPS injection in vivo induced a rapid microglial loss in the spinal cord that was totally prevented or potentiated by P2X4 receptor blockade or facilitation, respectively. Within the brain, microglia in the hippocampal dentate gyrus showed particular vulnerability to LPS-induced neuroinflammation. Thus, microglia processes in this region retracted as early as 2 h after injection of LPS and died around 24 h later, two features which were prevented by blocking P2X4 receptors. Together, these data suggest that P2X4 receptors contribute to controlling the fate of activated microglia and its survival.
Collapse
Affiliation(s)
- Nuria Vázquez-Villoldo
- Departamento de Neurociencias, Universidad del País Vasco-UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain, Achucarro Basque Center for Neuroscience-UPV/EHU, 48170, Zamudio, Spain, Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
54
|
Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 2013; 33:12105-21. [PMID: 23864696 DOI: 10.1523/jneurosci.5369-12.2013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cerebellar deficit contributes significantly to disability in multiple sclerosis (MS). Several clinical and experimental studies have investigated the pathophysiology of cerebellar dysfunction in this neuroinflammatory disorder, but the cellular and molecular mechanisms are still unclear. In experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, proinflammatory cytokines, together with a degeneration of inhibitory neurons, contribute to impair GABAergic transmission at Purkinje cells (PCs). Here, we investigated glutamatergic transmission to gain insight into the pathophysiology of cerebellar dysfunction in EAE. Electrophysiological recordings from PCs showed increased duration of spontaneous excitatory postsynaptic currents (EPSCs) during the symptomatic phase of EAE, suggesting an alteration of glutamate uptake played by Bergmann glia. We indeed observed an impaired functioning of the glutamate-aspartate transporter/excitatory amino acid transporter 1 (GLAST/EAAT1) in EAE cerebellum caused by protein downregulation and in correlation with prominent astroglia activation. We have also demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β), released by a subset of activated microglia/macrophages and infiltrating lymphocytes, was involved directly in such synaptic alteration. In fact, brief incubation of IL-1β in normal cerebellar slices replicated EAE modifications through a rapid GLAST/EAAT1 downregulation, whereas incubation of an IL-1 receptor antagonist (IL-1ra) in EAE slices reduced spontaneous EPSC alterations. Finally, EAE mice treated with intracerebroventricular IL-1ra showed normal glutamatergic and GABAergic transmissions, along with GLAST/EAAT1 normalization, milder inflammation, and reduced motor deficits. These results highlight the crucial role played by the proinflammatory IL-1β in triggering molecular and synaptic events involved in neurodegenerative processes that characterize neuroinflammatory diseases such as MS.
Collapse
|
55
|
Rossi S, Motta C, Studer V, Barbieri F, Buttari F, Bergami A, Sancesario G, Bernardini S, De Angelis G, Martino G, Furlan R, Centonze D. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler 2013; 20:304-12. [PMID: 23886826 DOI: 10.1177/1352458513498128] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic inflammation leads to gray matter damage in progressive multiple sclerosis (MS), but the mechanism linking inflammation and neurodegeneration is unclear. OBJECTIVE The objective of this paper is to investigate the synaptic mechanism of inflammatory neurodegeneration in progressive forms of MS. METHODS Cytokine and neurofilament-light were determined in cerebrospinal fluid (CSF) of MS patients. In vitro electrophysiology and cell swelling experiments were performed to measure the effects of inflammatory cytokines in the CSF of MS patients on synaptic transmission and neuronal integrity. RESULTS Tumor necrosis factor-α (TNF) was higher in CSF of progressive MS subjects, and caused excitotoxic neuronal death in vitro. In murine brain slices incubated in the presence of CSF from progressive MS, in fact, we observed increased spontaneous excitatory postsynaptic currents (sEPSCs) and glutamate-mediated neuronal swelling through a mechanism dependent on enhanced TNF signaling. We also suggested a pathogenic role of B cells in TNF CSF increase, exacerbation of glutamatergic transmission and neuronal damage, since CNS depletion of B cells with intrathecal rituximab caused a dramatic reduction of TNF levels, of TNF-induced sEPSC alterations, and of neurofilament CSF concentrations in a patient with progressive MS. CONCLUSION Our results point to TNF as a primary neurotoxic molecule in progressive forms of MS.
Collapse
Affiliation(s)
- Silvia Rossi
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Grasselli G, Rossi S, Musella A, Gentile A, Loizzo S, Muzio L, Di Sanza C, Errico F, Musumeci G, Haji N, Fresegna D, Sepman H, De Chiara V, Furlan R, Martino G, Usiello A, Mandolesi G, Centonze D. Abnormal NMDA receptor function exacerbates experimental autoimmune encephalomyelitis. Br J Pharmacol 2013; 168:502-17. [PMID: 22924679 DOI: 10.1111/j.1476-5381.2012.02178.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 08/04/2012] [Accepted: 08/13/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Glutamate transmission is dysregulated in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the animal model of MS. A characteristic of EAE is increased glutamate transmission associated with up-regulation of AMPA receptors. However, little is known about the role of NMDA receptors in the synaptic modifications induced by EAE. EXPERIMENTAL APPROACH The contribution of NMDA receptors to the alterations of glutamate transmission and disease severity in EAE mice was assessed by means of neurophysiological, morphological, Western blot, metabolic and clinical score assessments. KEY RESULTS In our EAE mice, there was an NMDA receptor-dependent increase of glutamate release, associated with marked activation of the astroglia. Presynaptic NMDA receptors became overactive during EAE, increasing synaptic glutamate release by a mechanism dependent on voltage-gated sodium channels. By means of NAD(P)H autofluorescence analysis, we also found that EAE has a glutamate and NMDA receptor-dependent dysfunction of mitochondrial activity, which is known to contribute to the neurodegenerative damage of MS and EAE. Furthermore, pharmacological blockade of NMDA receptors in vivo ameliorated both synaptic transmission defects and of the clinical disease course of EAE mice, while EAE induced in mice with a genetically enhanced NMDA receptor signalling had opposite effects. CONCLUSIONS AND IMPLICATIONS Our data, showing both sensitization of NMDA receptors and their involvement in the progression of the EAE disease, supggest that pharmacological impairment of NMDA receptor signalling would be a component of a neuroprotection strategy in MS.
Collapse
Affiliation(s)
- G Grasselli
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Università Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Inoue M, Shinohara ML. The role of interferon-β in the treatment of multiple sclerosis and experimental autoimmune encephalomyelitis - in the perspective of inflammasomes. Immunology 2013; 139:11-8. [PMID: 23360426 DOI: 10.1111/imm.12081] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/01/2023] Open
Abstract
Inflammasomes in innate immune cells mediate the induction of inflammation by sensing microbes and pathogen-associated/damage-associated molecular patterns. Inflammasomes are also known to be involved in the development of some human and animal autoimmune diseases. The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is currently the most fully characterized inflammasome, although a limited number of studies have demonstrated its role in demyelinating autoimmune diseases in the central nervous system of humans and animals. Currently, the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), is known to be induced by the NLRP3 inflammasome through enhanced recruitment of inflammatory immune cells in the central nervous system. On the other hand, interferon-β (IFNβ), a first-line drug to treat MS, inhibits NLRP3 inflammasome activation, and ameliorates EAE. The NLRP3 inflammasome is indeed a factor capable of inducing EAE, but it is dispensable when EAE is induced by aggressive disease induction regimens. In such NLRP3 inflammasome-independent EAE, IFN-β treatment is generally not effective. This might therefore be one mechanism that leads to occasional failures of IFN-β treatment in EAE, and possibly, in MS as well. In the current review, we discuss inflammasomes and autoimmunity; in particular, the impact of the NLRP3 inflammasome on MS/EAE, and on IFN-β therapy.
Collapse
Affiliation(s)
- Makoto Inoue
- Department of Immunology, Duke University Medical Center, Durham, NC 277710, USA
| | | |
Collapse
|
58
|
Neuropathic pain in animal models of nervous system autoimmune diseases. Mediators Inflamm 2013; 2013:298326. [PMID: 23737643 PMCID: PMC3662183 DOI: 10.1155/2013/298326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/09/2013] [Indexed: 12/19/2022] Open
Abstract
Neuropathic pain is a frequent chronic presentation in autoimmune diseases of the nervous system, such as multiple sclerosis (MS) and Guillain-Barre syndrome (GBS), causing significant individual disablement and suffering. Animal models of experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune neuritis (EAN) mimic many aspects of MS and GBS, respectively, and are well suited to study the pathophysiology of these autoimmune diseases. However, while much attention has been devoted to curative options, research into neuropathic pain mechanisms and relief has been somewhat lacking. Recent studies have demonstrated a variety of sensory abnormalities in different EAE and EAN models, which enable investigations of behavioural changes, underlying mechanisms, and potential pharmacotherapies for neuropathic pain associated with these diseases. This review examines the symptoms, mechanisms, and clinical therapeutic options in these conditions and highlights the value of EAE and EAN animal models for the study of neuropathic pain in MS and GBS.
Collapse
|
59
|
Azami Tameh A, Clarner T, Beyer C, Atlasi MA, Hassanzadeh G, Naderian H. Regional regulation of glutamate signaling during cuprizone-induced demyelination in the brain. Ann Anat 2013; 195:415-23. [PMID: 23711509 DOI: 10.1016/j.aanat.2013.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/25/2013] [Accepted: 03/18/2013] [Indexed: 12/14/2022]
Abstract
Glutamate excitotoxicity is associated with a wide range of neurodegenerative disorders and also seems to be involved in the pathology of demyelinating disorders such as multiple sclerosis (MS). Cuprizone-induced toxic demyelination shows clear characteristics of MS such as demyelination and axonal damage without the involvement of the innate immune system. In this study, we have evaluated glutamate signaling during cuprizone-induced demyelination in the white and gray matter of mouse brain by studying the expression of ionotropic and metabotropic glutamate-receptors and -transporters by Affymetrix gene array analysis, followed by real-time PCR and western blot analysis. Cellular localization of glutamate transporters was investigated by fluorescence double-labeling experiments. Comparing white and gray matter areas, the expression of glutamate receptors was region-specific. Among NMDA receptor subunits, NR2A was up-regulated in the demyelinated corpus callosum (CC), whereas the metabotropic glutamate receptor mGluR2 was down-regulated in demyelinated gray matter. Glutamate-aspartate transporter (GLAST) co-localizing with GFAP(+) astrocytes was increased in both demyelinated CC and telencephalic cortex, whereas Slc1a4 transporter was up-regulated only in CC. Our data indicate that cuprizone treatment affects glutamate-receptors and -transporters differently in gray and white matter brain areas revealing particularly regulation of GLAST and Slc1a4 compared with other genes. This might have an important influence on brain-region selective sensitivity to neurotoxic compounds and the progression of demyelination as has been reported for MS and other demyelinating neurological diseases.
Collapse
Affiliation(s)
- Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran; Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
60
|
Strijbis EMM, Inkster B, Vounou M, Naegelin Y, Kappos L, Radue EW, Matthews PM, Uitdehaag BMJ, Barkhof F, Polman CH, Montana G, Geurts JJG. Glutamate gene polymorphisms predict brain volumes in multiple sclerosis. Mult Scler 2012; 19:281-8. [DOI: 10.1177/1352458512454345] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Several genetic markers have been associated with multiple sclerosis (MS) susceptibility; however, uncovering the genetic aetiology of the complex phenotypic expression of MS has been more difficult so far. The most common approach in imaging genetics is based on mass-univariate linear modelling (MULM), which faces several limitations. Objective: Here we apply a novel multivariate statistical model, sparse reduced-rank regression (sRRR), to identify possible associations of glutamate related single nucleotide polymorphisms (SNPs) and multiple MRI-derived phenotypes in MS. Methods: Seven phenotypes related to brain and lesion volumes for a total number of 326 relapsing–remitting and secondary-progressive MS patients and a total of 3809 glutamate related and control SNPs were analysed with sRRR, which resulted in a ranking of SNPs in decreasing order of importance (‘selection probability’). Lasso regression and MULM were used as comparative statistical techniques to assess consistency of the most important associations over different statistical models. Results: Five SNPs within the NMDA-receptor-2A-subunit (GRIN2A) domain were identified by sRRR in association with normalized brain volume (NBV), normalized grey matter volume and normalized white matter volume (NMWM). The association between GRIN2A and both NBV and NWMV was confirmed in MULM and Lasso analysis. Conclusions: Using a novel, multivariate regression model confirmed by two other statistical approaches we show associations between GRIN2A SNPs and phenotypic variation in NBV and NWMV in this first exploratory study. Replications in independent datasets are now necessary to validate these findings.
Collapse
Affiliation(s)
- Eva MM Strijbis
- Department of Neurology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Anatomy and Neuroscience, Section of Clinical Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| | - Becky Inkster
- Department of Mathematics, Statistics Section, Imperial College London, UK
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College London, UK
| | - Maria Vounou
- Department of Mathematics, Statistics Section, Imperial College London, UK
| | - Yvonne Naegelin
- Department of Neurology and Medical Image Analysis Centre, University Hospital, Basel, Switzerland
| | - Ludwig Kappos
- Department of Neurology and Medical Image Analysis Centre, University Hospital, Basel, Switzerland
| | - Ernst-Wilhelm Radue
- Department of Neurology and Medical Image Analysis Centre, University Hospital, Basel, Switzerland
| | - Paul M Matthews
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College London, UK
- GlaxoSmithKline Clinical Imaging Centre, Hammersmith Hospital, London, UK
| | - Bernard MJ Uitdehaag
- Department of Neurology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, VU University Medical Centre, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Chris H Polman
- Department of Neurology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Giovanni Montana
- Department of Mathematics, Statistics Section, Imperial College London, UK
| | - Jeroen JG Geurts
- Department of Anatomy and Neuroscience, Section of Clinical Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
61
|
Rossi S, Lo Giudice T, De Chiara V, Musella A, Studer V, Motta C, Bernardi G, Martino G, Furlan R, Martorana A, Centonze D. Oral fingolimod rescues the functional deficits of synapses in experimental autoimmune encephalomyelitis. Br J Pharmacol 2012; 165:861-9. [PMID: 21740406 DOI: 10.1111/j.1476-5381.2011.01579.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Alterations of glutamate-mediated synaptic transmission occur early during neuroinflammatory insults, and lead to degenerative neuronal damage in multiple sclerosis (MS) and also in experimental autoimmune encephalomyelitis (EAE), which is a murine model of MS. Fingolimod is an effective orally active agent for the treatment of MS, affecting lymphocyte invasion of the brain. However, it is still unclear if fingolimod can be neuroprotective in this disorder. EXPERIMENTAL APPROACH Using neurophysiological recordings and morphological evaluation of dendritic integrity, we evaluated the effects of oral fingolimod on the clinical score of EAE mice in order to determine whether the compound was associated with preservation of synaptic transmission. KEY RESULTS Oral fingolimod prevented and reversed the pre- and postsynaptic alterations of glutamate transmission in EAE mice. These effects were associated with a clear amelioration of the clinical deterioration seen in EAE mice, and with a significant inhibition of neuronal dendritic pathology. Fingolimod did not alter the spontaneous excitatory postsynaptic currents in control animals, suggesting that only the pathological processes behind the inflammation-induced defects in glutamate transmission were modulated by this compound. CONCLUSIONS AND IMPLICATIONS The beneficial effects of fingolimod on the clinical, synaptic and dendritic abnormalities of murine EAE might correlate with the neuroprotective actions of this agent, as observed in MS patients. LINKED ARTICLE This article is commented on by Gillingwater, pp. 858-860 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2011.01612.x.
Collapse
Affiliation(s)
- S Rossi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
The phylogenetic enlargement of cerebral cortex culminating in the human brain imposed greater communication needs that have been met by the massive expansion of WM (white matter). Damage to WM alters brain function, and numerous neurological diseases feature WM involvement. In the current review, we discuss the major features of WM, the contributions of WM compromise to brain pathophysiology, and some of the mechanisms mediating WM injury. We will emphasize the newly appreciated importance of neurotransmitter signalling in WM, particularly glutamate and ATP signalling, to understanding both normal and abnormal brain functions. A deeper understanding of the mechanisms leading to WM damage will generate much-needed insights for developing therapies for acute and chronic diseases with WM involvement.
Collapse
|
63
|
Cambron M, D'Haeseleer M, Laureys G, Clinckers R, Debruyne J, De Keyser J. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis. J Cereb Blood Flow Metab 2012; 32:413-24. [PMID: 22214904 PMCID: PMC3293127 DOI: 10.1038/jcbfm.2011.193] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In patients with multiple sclerosis (MS), a diffuse axonal degeneration occurring throughout the white matter of the central nervous system causes progressive neurologic disability. The underlying mechanism is unclear. This review describes a number of pathways by which dysfunctional astrocytes in MS might lead to axonal degeneration. White-matter astrocytes in MS show a reduced metabolism of adenosine triphosphate-generating phosphocreatine, which may impair the astrocytic sodium potassium pump and lead to a reduced sodium-dependent glutamate uptake. Astrocytes in MS white matter appear to be deficient in β(2) adrenergic receptors, which are involved in stimulating glycogenolysis and suppressing inducible nitric oxide synthase (NOS2). Glutamate toxicity, reduced astrocytic glycogenolysis leading to reduced lactate and glutamine production, and enhanced nitric oxide (NO) levels may all impair axonal mitochondrial metabolism, leading to axonal degeneration. In addition, glutamate-mediated oligodendrocyte damage and impaired myelination caused by a decreased production of N-acetylaspartate by axonal mitochondria might also contribute to axonal loss. White-matter astrocytes may be considered as a potential target for neuroprotective MS therapies.
Collapse
Affiliation(s)
- Melissa Cambron
- Department of Neurology, Center for Neurosciences, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | | | | | | | | | | |
Collapse
|
64
|
de Lago E, Moreno-Martet M, Cabranes A, Ramos JA, Fernández-Ruiz J. Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB1 receptor-mediated anti-inflammatory effects. Neuropharmacology 2012; 62:2299-308. [PMID: 22342378 DOI: 10.1016/j.neuropharm.2012.01.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the CNS and it is characterized by inflammation, demyelination, remyelination, gliosis and axonal damage that occur mainly in the spinal cord. Cannabinoids have been proposed as promising therapeutic agents in MS given their capability to alleviate specific MS symptoms (e.g., spasticity, pain). Although MS has been considered mainly an inflammatory disorder, recent evidence, however, revealed the importance of neurodegenerative events, opening the possibility that cannabinoid agonists, given their cytoprotective properties, may also serve to reduce oligodendrocyte death and axonal damage in MS. Thus, the treatment with WIN55,512-2, a potent CB(1) and CB(2) agonist, was reported to be effective to ameliorate tremor and spasticity in mice with chronic relapsing experimental autoimmune encephalomyelitis, a murine model of MS, but also to delay disease progression in this and other murine models of MS. The purpose of this investigation was to further explore the mechanism(s) underlying the amelioration in disease progression caused by WIN55,212-2. We have particularly focused on anti-glutamatergic and anti-inflammatory effects of this cannabinoid agonist. In this study, we used mice treated with myelin oligodendrocyte glycoprotein (MOG) that induces a progressive pattern of EAE and conducted the pharmacological experiments in early stages of the disease. As expected, the administration of WIN55,512-2 (5 mg/kg, i.p) had a positive effect in reducing neurological disability and improving motor coordination of EAE mice. Levels of glutamate and GABA in the spinal cord and also in the brainstem of EAE mice were similar to control animals, and, accordingly, they were not altered by the treatment with WIN55,212-2. However, EAE mice showed some subtle alterations in mRNA levels for the glutamate transporter GLT1 and, to a lesser extent, GLAST too, changes that were altered by the treatment with WIN55,212-2 in the spinal cord, but not in the brainstem. Regarding to inflammatory responses, EAE mice showed a marked up-regulation in mRNA levels for COX-2, inducible NOS and TNF-α in the spinal cord and the brainstem, these responses being attenuated after the treatment with WIN55,212-2. We also observed the presence of cell aggregates in the spinal cord of EAE mice that were significantly attenuated by the treatment with WIN55,212-2. Immunohistochemical analysis (with Iba-1 and Cd11b) of these aggregates indicated that they corresponded to microglia (resident macrophages) and peripheral macrophages. Lastly, experiments conducted with selective antagonists for the CB(1) (e.g. rimonabant) or CB(2) (e.g. AM-630) receptors revealed that WIN55,212-2 effects in EAE mice were mediated by the activation of CB(1) but not CB(2) receptors, as reflected the reversion of positive effects of this cannabinoid on neurological decline, TNF-α generation and accumulation of cell aggregates in the spinal cord with rimonabant, but not with AM-630. This was concordant with the lack of positive effects on neurological decline observed in EAE mice when they received HU-308, a selective CB(2) receptor agonist, instead WIN55,212-2. In summary, the treatment of EAE mice with the cannabinoid agonist WIN55,512-2 reduced their neurological disability and the progression of the disease. This effect was exerted through the activation of CB(1) receptors, which would exert a positive influence in the reduction of inflammatory events linked to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Eva de Lago
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
65
|
Abstract
We used multipotent stem cells (MSCs) derived from the young rat subventricular zone (SVZ) to study the effects of glutamate in oligodendrocyte maturation. Glutamate stimulated oligodendrocyte differentiation from SVZ-derived MSCs through the activation of specific N-methyl--aspartate (NMDA) receptor subunits. The effect of glutamate and NMDA on oligodendrocyte differentiation was evident in both the number of newly generated oligodendrocytes and their morphology. In addition, the levels of NMDAR1 and NMDAR2A protein increased during differentiation, whereas NMDAR2B and NMDAR3 protein levels decreased, suggesting differential expression of NMDA receptor subunits during maturation. Microfluorimetry showed that the activation of NMDA receptors during oligodendrocyte differentiation elevated cytosolic calcium levels and promoted myelination in cocultures with neurons. Moreover, we observed that stimulation of MSCs by NMDA receptors induced the generation of reactive oxygen species (ROS), which were negatively modulated by the NADPH inhibitor apocynin, and that the levels of ROS correlated with the degree of differentiation. Taken together, these findings suggest that ROS generated by NADPH oxidase by the activation of NMDA receptors promotes the maturation of oligodendrocytes and favors myelination.
Collapse
|
66
|
Oyanguren-Desez O, Rodríguez-Antigüedad A, Villoslada P, Domercq M, Alberdi E, Matute C. Gain-of-function of P2X7 receptor gene variants in multiple sclerosis. Cell Calcium 2011; 50:468-72. [PMID: 21906809 DOI: 10.1016/j.ceca.2011.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/26/2011] [Accepted: 08/08/2011] [Indexed: 11/25/2022]
Abstract
We have previously shown that P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates chronic experimental autoimmune encephalomyelitis. Here, we have explored the putative association of functionally relevant single nucleotide polymorphisms of the P2X7 receptor gene with multiple sclerosis. We found that T allele of rs17525809 polymorphism, which yields an Ala-76 to Val change in the extracellular domain, is more frequent in multiple sclerosis patients than in controls. Importantly, P2X7 variants with Val show a gain-of-function consisting in higher calcium permeability, larger electrophysiological responses and higher ethidium uptake, and enhance the effect of the also gain-of-function His-155 to Tyr substitution (rs208294) in the haplotype formed by these two variants. These findings may contribute to define the genetic background predisposing for multiple sclerosis and its pathophysiology.
Collapse
Affiliation(s)
- Olatz Oyanguren-Desez
- Centro de Investigaciones Biomédicas en Red Enfermedades Neurodegenerativas (CIBERNED) and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
67
|
|
68
|
Abstract
MicroRNAs (miRNAs) are non-coding, single-stranded small RNAs, usually 18-25 nucleotides long, have ability to regulate gene expression post-transcriptionally. miRNAs are highly homologous, conserved and are found in various living organisms including plants and animals. Present studies show that these small RNAs anticipate and are directly involved in many important physiological and pathological processes including growth, proliferation, maturation, metabolism, and inflammation among others. Evidences are accumulating that miRNAs play active role in directing immune responses and, therefore, might be involved in pathogenesis of autoimmune diseases. Recent studies have found that miRNAs are critical in proliferation, maturation and differentiation of T cells, B cells and, therefore, may affect the outcome of an immune response. In light of such understanding, this review briefly introduces miRNAs and discusses its role in the pathogenesis of various autoimmune diseases, as well as its potential as a biomarker and therapeutic target in the management of autoimmune diseases.
Collapse
|
69
|
Pampliega O, Domercq M, Soria FN, Villoslada P, Rodríguez-Antigüedad A, Matute C. Increased expression of cystine/glutamate antiporter in multiple sclerosis. J Neuroinflammation 2011; 8:63. [PMID: 21639880 PMCID: PMC3117706 DOI: 10.1186/1742-2094-8-63] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/03/2011] [Indexed: 11/10/2022] Open
Abstract
Background Glutamate excitotoxicity contributes to oligodendrocyte and tissue damage in multiple sclerosis (MS). Intriguingly, glutamate level in plasma and cerebrospinal fluid of MS patients is elevated, a feature which may be related to the pathophysiology of this disease. In addition to glutamate transporters, levels of extracellular glutamate are controlled by cystine/glutamate antiporter xc-, an exchanger that provides intracellular cystine for production of glutathione, the major cellular antioxidant. The objective of this study was to analyze the role of the system xc- in glutamate homeostasis alterations in MS pathology. Methods Primary cultures of human monocytes and the cell line U-937 were used to investigate the mechanism of glutamate release. Expression of cystine glutamate exchanger (xCT) was quantified by quantitative PCR, Western blot, flow cytometry and immunohistochemistry in monocytes in vitro, in animals with experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and in samples of MS patients. Results and discussion We show here that human activated monocytes release glutamate through cystine/glutamate antiporter xc- and that the expression of the catalytic subunit xCT is upregulated as a consequence of monocyte activation. In addition, xCT expression is also increased in EAE and in the disease proper. In the later, high expression of xCT occurs both in the central nervous system (CNS) and in peripheral blood cells. In particular, cells from monocyte-macrophage-microglia lineage have higher xCT expression in MS and in EAE, indicating that immune activation upregulates xCT levels, which may result in higher glutamate release and contribution to excitotoxic damage to oligodendrocytes. Conclusions Together, these results reveal that increased expression of the cystine/glutamate antiporter system xc- in MS provides a link between inflammation and excitotoxicity in demyelinating diseases.
Collapse
Affiliation(s)
- Olatz Pampliega
- Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Bizkaia, Spain
| | | | | | | | | | | |
Collapse
|
70
|
The experimental autoimmune encephalomyelitis model for proteomic biomarker studies: from rat to human. Clin Chim Acta 2011; 412:812-22. [PMID: 21333641 DOI: 10.1016/j.cca.2011.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 01/13/2023]
Abstract
Multiple sclerosis (MScl) is defined by central nervous system (CNS) inflammation, demyelination and axonal damage. Some of the disease mechanisms are known but the cause of this complex disorder stays an enigma. Experimental autoimmune encephalomyelitis (EAE) is an animal model mimicking many aspects of MScl. This review aims to provide an overview over proteomic biomarker studies in the EAE model emphasizing the translational aspects with respect to MScl in humans.
Collapse
|
71
|
Domercq M, Alberdi E, Sánchez-Gómez MV, Ariz U, Pérez-Samartín A, Matute C. Dual-specific phosphatase-6 (Dusp6) and ERK mediate AMPA receptor-induced oligodendrocyte death. J Biol Chem 2011; 286:11825-36. [PMID: 21300799 DOI: 10.1074/jbc.m110.153049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter.
Collapse
Affiliation(s)
- Maria Domercq
- Centro de Investigaciones Biomédicas en Red Enfermedades Neurodegenerativas, Universidad del País Vasco, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
72
|
Abstract
Excessive signalling by excitatory neurotransmitters like glutamate and ATP can be deleterious to neurons and oligodendroglia, and cause disease. In particular, sustained activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-d-aspartate (NMDA) receptors damages oligodendrocytes, a feature that depends entirely on Ca(2+) overload of the cytoplasm and that can be initiated by disruption of glutamate homeostasis. Thus, inhibition of glutamate uptake by activated microglia can compromise glutamate homeostasis and induce oligodendrocyte excitotoxicity. Moreover, non-lethal, brief activation of kainate receptors in oligodendrocytes rapidly sensitizes these cells to complement attack as a consequence of oxidative stress. In addition to glutamate, ATP signalling can directly trigger oligodendrocyte excitotoxicity via activation of Ca(2+) -permeable P2X7 purinergic receptors, which mediates ischaemic damage to white matter (WM) and causes lesions that are reminiscent of multiple sclerosis (MS) plaques. Conversely, blockade of P2X7 receptors attenuates post-ischaemic injury to WM and ameliorates chronic experimental autoimmune encephalomyelitis, a model of MS. Importantly, P2X7 expression is elevated in normal-appearing WM in patients with MS, suggesting that signalling through this receptor in oligodendrocytes may be enhanced in this disease. Altogether, these observations reveal novel mechanisms by which altered glutamate and ATP homeostasis can trigger oligodendrocyte death. This review aims at summarizing current knowledge about the mechanisms leading to WM damage as a consequence of altered neurotransmitter signalling, and their relevance to disease. This knowledge will generate new therapeutic avenues to treat more efficiently acute and chronic WM pathology.
Collapse
Affiliation(s)
- Carlos Matute
- Departamento de Neurociencias and CIBERNED, Universidad del País Vasco, Leioa, Vizcaya, Spain Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain.
| |
Collapse
|
73
|
Yao K, Crawford JR, Komaroff AL, Ablashi DV, Jacobson S. Review part 2: Human herpesvirus-6 in central nervous system diseases. J Med Virol 2010; 82:1669-78. [PMID: 20827763 DOI: 10.1002/jmv.21861] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Karen Yao
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
74
|
Rossi S, De Chiara V, Furlan R, Musella A, Cavasinni F, Muzio L, Bernardi G, Martino G, Centonze D. Abnormal activity of the Na/Ca exchanger enhances glutamate transmission in experimental autoimmune encephalomyelitis. Brain Behav Immun 2010; 24:1379-85. [PMID: 20647042 DOI: 10.1016/j.bbi.2010.07.241] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/11/2010] [Accepted: 07/14/2010] [Indexed: 01/06/2023] Open
Abstract
It is increasingly accepted that excessive glutamate release plays a key role in the pathophysiology of grey matter damage in multiple sclerosis (MS). The mechanisms causing abnormal glutamate transmission in this disorder are however largely unexplored. By means of electrophysiological recordings from single striatal neurons in slices, we found that the presymptomatic and acute phases of experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS, are associated with enhanced synaptic release of glutamate. The reverse mode of action of axonal Na(+)/Ca(++) exchanger, secondary to abnormal functioning of voltage-dependent Na(+) channels, was identified as a major cause of this alteration. In fact, inhibition of the Na(+)/Ca(++) exchanger with bepridil or with KB-R7943, which selectively blocks the reverse mode of the exchanger, reduced the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from striatal neurons in EAE mice but not in control animals. In the presence of tetrodotoxin (TTX), a blocker of voltage-dependent Na(+) channels, the effect of bepridil was normalized in acute (25 days post-immunization) EAE mice, indicating that axonal accumulation of Na(+) ions flowing through voltage-dependent Na(+) channels plays a role in the abnormal activity of the Na(+)/Ca(++) exchanger in EAE. Our data reveal an important role of Na(+)/Ca(++) exchanger and of voltage-dependent Na(+) channels in the pathological process of EAE, and provide a rationale for the use of neuroprotective strategies since the very early stages of MS.
Collapse
Affiliation(s)
- Silvia Rossi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Takahashi N, Sakurai T, Davis KL, Buxbaum JD. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 2010; 93:13-24. [PMID: 20950668 DOI: 10.1016/j.pneurobio.2010.09.004] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/03/2010] [Accepted: 09/30/2010] [Indexed: 01/05/2023]
Abstract
Multiple lines of evidence in schizophrenia, from brain imaging, studies in postmortem brains, and genetic association studies, have implicated oligodendrocyte and myelin dysfunction in this disease. Recent studies suggest that oligodendrocyte and myelin dysfunction leads to changes in synaptic formation and function, which could lead to cognitive dysfunction, a core symptom of schizophrenia. Furthermore, there is accumulating data linking oligodendrocyte and myelin dysfunction with dopamine and glutamate abnormalities, both of which are found in schizophrenia. These findings implicate oligodendrocyte and myelin dysfunction as a primary change in schizophrenia, not only as secondary consequences of the illness or treatment. Strategies targeting oligodendrocyte and myelin abnormalities could therefore provide therapeutic opportunities for patients suffering from schizophrenia.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Conte Center for the Neuroscience of Mental Disorders and the Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
76
|
Marte A, Cavallero A, Morando S, Uccelli A, Raiteri M, Fedele E. Alterations of glutamate release in the spinal cord of mice with experimental autoimmune encephalomyelitis. J Neurochem 2010; 115:343-52. [PMID: 20649849 DOI: 10.1111/j.1471-4159.2010.06923.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated the spontaneous and the depolarisation-induced release of [(3)H]D-aspartate ([(3)H]D-ASP), a non-metabolisable analogue of glutamate, in spinal cord slices, synaptosomes and gliosomes from mice with experimental autoimmune encephalomyelitis (EAE) at 13, 21 and 55 days post-immunisation (d.p.i.), representing onset, peak and chronic phases of the pathology. At 13 and 21 d.p.i., the KCl-evoked, calcium-dependent overflow of [(3)H]D-ASP in spinal cord slices was significantly lower (30-40%), whereas at 55 d.p.i. it was significantly higher (30%), than that elicited in matched controls. When the release was measured from spinal cord synaptosomes and gliosomes in superfusion, a different picture emerged. The spontaneous and the KCl(15 mM)-induced release of [(3)H]D-ASP were significantly increased both in synaptosomes (17% and 45%, respectively) and gliosomes (26% and 25%, respectively) at 21, but not at 13, d.p.i. At 55 d.p.i., the KCl-induced [(3)H]D-ASP release was significantly increased (40%) only in synaptosomes. Finally, uptake of [(3)H]D-ASP was markedly (50-60%) increased in spinal cord synaptosomes, but not in gliosomes, obtained from EAE mice at 21 d.p.i., whereas no differences could be detected at 13 d.p.i. Our data indicate that glutamatergic neurotransmission is altered in the spinal cord of EAE mice.
Collapse
Affiliation(s)
- Antonella Marte
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
77
|
|
78
|
Inflammation induced neurological handicap processes in multiple sclerosis: new insights from preclinical studies. J Neural Transm (Vienna) 2010; 117:907-17. [PMID: 20571836 DOI: 10.1007/s00702-010-0432-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 05/26/2010] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis (MS) is described as originating from incompletely explained neuroinflammatory processes, dysfunction of neuronal repair mechanisms and chronicity of inflammation events. Blood-borne immune cell infiltration and microglia activation are causing both neuronal destruction and myelin loss, which are responsible for progressive motor deficiencies, organic and cognitive dysfunctions. MRI as a non-invasive imaging method offers various ways to visualise de- and remyelination, neuronal loss, leukocyte infiltration, blood-brain barrier modification and new sensors are emerging to detect inflammatory lesions at an early stage. We describe studies performed on experimental autoimmune encephalomyelitis (EAE) animal models of MS that shed new light on mechanisms of functional impairments to understand the neurological handicap in MS. We focus on examples of neuroinflammation-mediated inhibition of CNS repair involving adult neurogenesis in the sub-ventricular zone and hippocampus and such experimentally observed inhibitions could reflect deficient plasticity and activation of compensatory mechanisms in MS. In parallel with cognitive decline, organic deficits such as bladder dysfunction are described in most of MS patients. Neuropharmacological interventions, electrical stimulation of nerves, MRI and histopathology follow-up studies helped in understanding the operating events to remodel the neurological networks and to compensate the inflammatory lesions both in spinal cord and in cortical regions. At the molecular level, the local production of reactive products is a well-described phenomenon: oxidative species disturb cellular physiology and generate new molecular epitopes that could further promote immune reactions. The translational research from EAE animal models to MS patient cohorts helps in understanding the mechanisms of the neurological handicap and in development of new therapeutic concepts in MS.
Collapse
|
79
|
Steen C, Wilczak N, Hoogduin JM, Koch M, De Keyser J. Reduced creatine kinase B activity in multiple sclerosis normal appearing white matter. PLoS One 2010; 5:e10811. [PMID: 20520825 PMCID: PMC2876025 DOI: 10.1371/journal.pone.0010811] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 05/05/2010] [Indexed: 11/26/2022] Open
Abstract
Background Two studies using 31P-magnetic resonance spectroscopy (MRS) reported enhanced phosphocreatine (PCr) levels in normal appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but this finding could not be properly explained. Methodology/Principal Findings We performed 31P-MRS and 1H-MRS in the NAWM in 36 subjects, including 17 with progressive MS, 9 with benign MS, and 10 healthy controls. Compared to controls, PCr/β-ATP and PCr/total 31P ratios were significantly increased in subjects with progressive MS, but not with benign MS. There was no correlation between PCr ratios and the N-acetylaspartate/creatine ratio, suggesting that elevated PCr levels in NAWM were not secondary to axonal loss. In the central nervous system, PCr is degraded by creatine kinase B (CK-B), which in the white matter is confined to astrocytes. In homogenates of NAWM from 10 subjects with progressive MS and 10 controls without central nervous system disease, we measured CK-B levels with an ELISA, and measured its activity with an enzymatic assay kit. Compared to controls, both CK-B levels and activity were decreased in subjects with MS (22.41 versus 46.28 µg/ml; p = 0.0007, and 2.89 versus 7.76 U/l; p<0.0001). Conclusions/Significance Our results suggest that PCr metabolism in the NAWM in MS is impaired due to decreased CK-B levels. Our findings raise the possibility that a defective PCr metabolism in astrocytes might contribute to the degeneration of oligodendrocytes and axons in MS.
Collapse
Affiliation(s)
- Christel Steen
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nadine Wilczak
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes M. Hoogduin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- BCN-Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcus Koch
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacques De Keyser
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Neurology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
80
|
Domercq M, Perez-Samartin A, Aparicio D, Alberdi E, Pampliega O, Matute C. P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 2010; 58:730-40. [PMID: 20029962 DOI: 10.1002/glia.20958] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brain ischemia leading to stroke is a major cause of disability in developed countries. Therapeutic strategies have most commonly focused on protecting neurons from ischemic damage. However, ischemic damage to white matter causes oligodendrocyte death, myelin disruption, and axon dysfunction, and it is partially mediated by glutamate excitotoxicity. We have previously demonstrated that oligodendrocytes express ionotropic purinergic receptors. The objective of this study was to investigate the role of purinergic signaling in white matter ischemia. We show that, in addition to glutamate, enhanced ATP signaling during ischemia is also deleterious to oligodendrocytes and myelin, and impairs white matter function. Thus, ischemic oligodendrocytes in culture display an inward current and cytosolic Ca(2+) overload, which is partially mediated by P2X7 receptors. Indeed, oligodendrocytes release ATP after oxygen and glucose deprivation through the opening of pannexin hemichannels. Consistently, ischemia-induced mitochondrial depolarization as well as oxidative stress culminating in cell death are partially reversed by P2X7 receptor antagonists, by the ATP degrading enzyme apyrase and by blockers of pannexin hemichannels. In turn, ischemic damage in isolated optic nerves, which share the properties of brain white matter, is greatly attenuated by all these drugs. Ultrastructural analysis and electrophysiological recordings demonstrated that P2X7 antagonists prevent ischemic damage to oligodendrocytes and myelin, and improved action potential recovery after ischemia. These data indicate that ATP released during ischemia and the subsequent activation of P2X7 receptor is critical to white matter demise during stroke and point to this receptor type as a therapeutic target to limit tissue damage in cerebrovascular diseases.
Collapse
Affiliation(s)
- Maria Domercq
- Centro de Investigaciones Biomédicas en Red Enfermedades Neurodegenerativas (CIBERNED) and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
81
|
The AMPA receptor as a therapeutic target: current perspectives and emerging possibilities. Future Med Chem 2010; 2:877-91. [DOI: 10.4155/fmc.10.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is a subtype of the ionotropic glutamate receptors that plays a prominent role in neurotransmission and is widespread throughout the CNS. Because of this, its malfunction can result in a multitude of nervous system diseases. This review looks at compounds that are able to modulate AMPAR function by binding to one of several sites on the receptor that either downregulate its function (competitive, noncompetitive and uncompetitive antagonists) or upregulate its function (positive modulators). It will also give an account of the various diseases that have implicated AMPAR dysfunction and how specific types of AMPAR modulator may be beneficial in their treatment. The AMPAR remains an unexploited but important therapeutic target.
Collapse
|
82
|
Gutiérrez-Fernández A, González-Pinto A, Vega P, Barbeito S, Matute C. Expression of oligodendrocyte and myelin genes is not altered in peripheral blood cells of patients with first-episode schizophrenia and bipolar disorder. Bipolar Disord 2010; 12:107-9. [PMID: 20148873 DOI: 10.1111/j.1399-5618.2009.00776.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
83
|
Increased expression of glutamate transporters in subcortical white matter after transient focal cerebral ischemia. Neurobiol Dis 2010; 37:156-65. [DOI: 10.1016/j.nbd.2009.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 09/15/2009] [Accepted: 09/27/2009] [Indexed: 12/28/2022] Open
|
84
|
|
85
|
The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ 2009; 17:1083-91. [DOI: 10.1038/cdd.2009.179] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
86
|
Hinson SR, McKeon A, Lennon VA. Neurological autoimmunity targeting aquaporin-4. Neuroscience 2009; 168:1009-18. [PMID: 19699271 DOI: 10.1016/j.neuroscience.2009.08.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/06/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
Neuromyelitis optica (NMO) is the first inflammatory autoimmune demyelinating disease of the CNS for which a specific tissue target molecule has been identified--the astrocytic water channel aquaporin-4 (AQP4). Immunological insights have propelled significant advances in understanding the clinical, radiologic and immunopathologic characteristics of the disease in the last 5 years. In this review, we describe features distinguishing CNS AQP4 autoimmunity from classical multiple sclerosis (MS). In NMO, disease attacks preferentially involve the optic nerves and spinal cord (hence the name), but neurological signs in the initial attack of AQP4 autoimmunity in children commonly involve the brain. A clinically validated serum biomarker, NMO-IgG, distinguishes relapsing CNS inflammatory demyelinating disorders related to NMO from MS. The NMO-IgG autoantibody is AQP4-specific. Clinical, radiological and immunopathological data support its role in the pathogenesis of NMO spectrum disorders. Lesions characteristic of NMO are distinct from MS: AQP4 and its coupled glutamate transporter, excitatory amino acid transporter 2 (EAAT2), are lost, with and without associated myelin loss, IgG, IgM and complement are deposited in a vasculocentric pattern, edema and inflammation are prominent. In vitro studies demonstrate that binding of NMO-IgG to astrocytic AQP4 initiates multiple potentially neuropathogenic mechanisms: complement activation, AQP4 and EAAT2 downregulation with disruption of water and glutamate homeostasis, enhanced blood-brain barrier permeability, plasma protein and granulocyte influx, and antibody-dependent cell-mediated cytotoxicity. Development of effective, and potentially curative, therapies requires validated models of the disease, in animals and cell culture systems.
Collapse
Affiliation(s)
- S R Hinson
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
87
|
Otaegui D, Baranzini SE, Armañanzas R, Calvo B, Muñoz-Culla M, Khankhanian P, Inza I, Lozano JA, Castillo-Triviño T, Asensio A, Olaskoaga J, López de Munain A. Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One 2009; 4:e6309. [PMID: 19617918 PMCID: PMC2708922 DOI: 10.1371/journal.pone.0006309] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 06/19/2009] [Indexed: 12/15/2022] Open
Abstract
Differences in gene expression patterns have been documented not only in Multiple Sclerosis patients versus healthy controls but also in the relapse of the disease. Recently a new gene expression modulator has been identified: the microRNA or miRNA. The aim of this work is to analyze the possible role of miRNAs in multiple sclerosis, focusing on the relapse stage. We have analyzed the expression patterns of 364 miRNAs in PBMC obtained from multiple sclerosis patients in relapse status, in remission status and healthy controls. The expression patterns of the miRNAs with significantly different expression were validated in an independent set of samples. In order to determine the effect of the miRNAs, the expression of some predicted target genes of these were studied by qPCR. Gene interaction networks were constructed in order to obtain a co-expression and multivariate view of the experimental data. The data analysis and later validation reveal that two miRNAs (hsa-miR-18b and hsa-miR-599) may be relevant at the time of relapse and that another miRNA (hsa-miR-96) may be involved in remission. The genes targeted by hsa-miR-96 are involved in immunological pathways as Interleukin signaling and in other pathways as wnt signaling. This work highlights the importance of miRNA expression in the molecular mechanisms implicated in the disease. Moreover, the proposed involvement of these small molecules in multiple sclerosis opens up a new therapeutic approach to explore and highlight some candidate biomarker targets in MS.
Collapse
Affiliation(s)
- David Otaegui
- Multiple Sclerosis Unit, Biodonostia Institute, San Sebastián, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 2009; 29:3442-52. [PMID: 19295150 DOI: 10.1523/jneurosci.5804-08.2009] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neurodegeneration is the irremediable pathological event occurring during chronic inflammatory diseases of the CNS. Here we show that, in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, inflammation is capable in enhancing glutamate transmission in the striatum and in promoting synaptic degeneration and dendritic spine loss. These alterations occur early in the disease course, are independent of demyelination, and are strongly associated with massive release of tumor necrosis factor-alpha from activated microglia. CNS invasion by myelin-specific blood-borne immune cells is the triggering event, and the downregulation of the early gene Arc/Arg3.1, leading to the abnormal expression and phosphorylation of AMPA receptors, represents a culminating step in this cascade of neurodegenerative events. Accordingly, EAE-induced synaptopathy subsided during pharmacological blockade of AMPA receptors. Our data establish a link between neuroinflammation and synaptic degeneration and calls for early neuroprotective therapies in chronic inflammatory diseases of the CNS.
Collapse
|
89
|
Mitosek-Szewczyk K, Sulkowski G, Stelmasiak Z, Strużyńska L. Expression of glutamate transporters GLT-1 and GLAST in different regions of rat brain during the course of experimental autoimmune encephalomyelitis. Neuroscience 2008; 155:45-52. [DOI: 10.1016/j.neuroscience.2008.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
|
90
|
Abstract
The blood-brain barrier (BBB) is a highly specialized brain endothelial structure of the fully differentiated neurovascular system. In concert with pericytes, astrocytes, and microglia, the BBB separates components of the circulating blood from neurons. Moreover, the BBB maintains the chemical composition of the neuronal "milieu," which is required for proper functioning of neuronal circuits, synaptic transmission, synaptic remodeling, angiogenesis, and neurogenesis in the adult brain. BBB breakdown, due to disruption of the tight junctions, altered transport of molecules between blood and brain and brain and blood, aberrant angiogenesis, vessel regression, brain hypoperfusion, and inflammatory responses, may initiate and/or contribute to a "vicious circle" of the disease process, resulting in progressive synaptic and neuronal dysfunction and loss in disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and others. These findings support developments of new therapeutic approaches for chronic neurodegenerative disorders directed at the BBB and other nonneuronal cells of the neurovascular unit.
Collapse
|
91
|
Pampliega O, Domercq M, Villoslada P, Sepulcre J, Rodríguez-Antigüedad A, Matute C. Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis. J Neuroimmunol 2008; 195:194-8. [PMID: 18378006 DOI: 10.1016/j.jneuroim.2008.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 01/15/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
Glutamate excitotoxicity contributes to oligodendrocyte and tissue damage in multiple sclerosis (MS). Here, we have examined if glutamate homeostasis is altered in plasma from MS patients. We initially observed that plasma glutamate levels are elevated in MS patients as compared to control subjects. In addition, we have studied the presence of a polymorphism sited in the promoter of the glutamate transporter EAAT2 whose mutant genotype results in lower transporter expression. We found that the polymorphism is not associated with the risk to develop MS. However, it is associated with higher glutamate plasma levels during the course of a relapse. These findings suggest that glutamate homeostasis is compromised in MS and that carrying this mutation may contribute to this alteration in relapsing MS.
Collapse
Affiliation(s)
- Olatz Pampliega
- Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio. Bizkaia, Spain
| | | | | | | | | | | |
Collapse
|
92
|
Sicotte NL, Kern KC, Giesser BS, Arshanapalli A, Schultz A, Montag M, Wang H, Bookheimer SY. Regional hippocampal atrophy in multiple sclerosis. Brain 2008; 131:1134-41. [DOI: 10.1093/brain/awn030] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
93
|
PHAM NT, MATSUKI N, SHIBUYA M, TAMAHARA S, ONO K. Impaired Expression of Excitatory Amino Acid Transporter 2 (EAAT2) and Glutamate Homeostasis in Canine Necrotizing Meningoencephalitis. J Vet Med Sci 2008; 70:1071-5. [DOI: 10.1292/jvms.70.1071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Ngoc-Thi PHAM
- Laboratory of Veterinary Clinical Pathobiology, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Naoaki MATSUKI
- Laboratory of Veterinary Clinical Pathobiology, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Masahiro SHIBUYA
- Laboratory of Veterinary Clinical Pathobiology, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Satoshi TAMAHARA
- Laboratory of Veterinary Clinical Pathobiology, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kenichiro ONO
- Laboratory of Veterinary Clinical Pathobiology, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
94
|
Bianchi MG, Gazzola GC, Tognazzi L, Bussolati O. C6 glioma cells differentiated by retinoic acid overexpress the glutamate transporter excitatory amino acid carrier 1 (EAAC1). Neuroscience 2007; 151:1042-52. [PMID: 18207650 DOI: 10.1016/j.neuroscience.2007.11.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/29/2007] [Accepted: 11/30/2007] [Indexed: 12/18/2022]
Abstract
The transport of excitatory amino acids (EAA) in CNS is performed by a family of high affinity, sodium dependent carriers. One of these transporters, excitatory amino acid carrier 1 (EAAC1), is known to be regulated by several mechanisms that modify carrier abundance on the plasma membrane. Much less is known on EAAC1 regulation at the level of gene expression. Here we report that, in C6 rat glioma cells, a line recently described to contain neural stem-like cells, EAAC1 is markedly induced by all trans-retinoic acid (ATRA), a well known differentiating agent. Consistently, ATRA stimulates EAA transport, with the maximal effect observed at concentrations>or=1 microM. After 4 days of treatment with 10 microM ATRA, the transport Vmax is fivefold enhanced, Slc1a1 mRNA is increased by 400% compared with control, EAAC1 carrier is sixfold overexpressed and the C6 culture is greatly enriched of cells with bipolar morphology strongly positive for EAAC1 immunoreactivity. Compared with untreated cells, ATRA-treated C6 cells express less Slc1a3 mRNA, for the transporter GLAST, but significantly higher levels of Slc1a2 mRNA, for the transporter GLT-1, although no expression of either protein is detected with Western blot in both untreated and ATRA-treated cells. Consistently, the inhibition pattern of aspartate transport and its stimulation by phorbol esters are indicative of a transport process due to EAAC1 operation. Under the conditions adopted, ATRA treatment causes the induction of proteolipid protein, an oligodendrocytic marker. These results indicate that, in C6 cells, ATRA stimulates the expression of EAAC1, possibly as a step toward oligodendrocytic differentiation, and constitute the first demonstration of the induction of this transporter by a differentiating agent.
Collapse
Affiliation(s)
- M G Bianchi
- Unit of General and Clinical Pathology, Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma, Italy
| | | | | | | |
Collapse
|
95
|
Affiliation(s)
- Lawrence M. Sayre
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| | - George Perry
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Mark A. Smith
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
96
|
Abstract
In multiple sclerosis (MS), the presence of demyelinating plaques has concentrated researchers' minds on the role of the oligodendrocyte in its pathophysiology. Recently, with the rediscovery of early and widespread loss of axons in the disease, new emphasis has been put on the role of axons and axon-oligodendrocyte interactions in MS. Despite the fact that, in 1904, Müller claimed that MS was a disease of astrocytes, more recently, astrocytes have taken a back seat, except as the cells that form the final glial scar after all hope of demyelination is over. However, perhaps it is time for the return of the astrocyte to popularity in the pathogenesis of MS, with recent reports on the dual role of astrocytes in aiding degeneration and demyelination, by promoting inflammation, damage of oligodendrocytes and axons, and glial scarring, but also in creating a permissive environment for remyelination by their action on oligodendrocyte precursor migration, oligodendrocyte proliferation, and differentiation. We review these findings to try to provide a cogent view of astrocytes in the pathology of MS.
Collapse
Affiliation(s)
- Anna Williams
- Inserm, U711, Université Pierre and Marie Curie, Faculté de médecine, IFR 70, Paris F-75013, France, and Department of Clinical Neurosciences, Western General Hospital, Edinburgh, UK.
| | | | | |
Collapse
|
97
|
Tilleux S, Hermans E. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 2007; 85:2059-70. [PMID: 17497670 DOI: 10.1002/jnr.21325] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Oxidative stress, neuroinflammation, and excitotoxicity are frequently considered distinct but common hallmarks of several neurological disorders, including Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Alzheimer's disease. Although neuron degeneration and death are the ultimate consequences of these pathological processes, it is now widely accepted that alterations in the function of surrounding glial cells are key features in the progression of these diseases. In response to alteration in their local environment, microglia, commonly considered the resident immune cells of the nervous parenchyma, become activated and release a variety of soluble factors. Among these, proinflammatory cytokines and free radicals actively participate in the degenerative insults. In addition, excitotoxic neuronal damage resulting from excessive glutamate is frequently associated with impaired handling of extracellular glutamate by gliotic astrocytes. Although several research projects have focused on the biochemical mechanisms of the regulation of glial glutamate transporters, a relationship between activation of microglia and modulation of astrocytic glutamate uptake is now suggested. The aim of this review is to summarize and discuss the data showing an influence of inflammatory mediators and related free radicals on the expression and activity of glial glutamate transporters.
Collapse
Affiliation(s)
- Sébastien Tilleux
- Laboratoire de Pharmacologie Expérimentale, Faculté de Médecine, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
98
|
Newcombe J, Uddin A, Dove R, Patel B, Turski L, Nishizawa Y, Smith T. Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol 2007; 18:52-61. [PMID: 17924980 DOI: 10.1111/j.1750-3639.2007.00101.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Blockade of receptors for the excitatory neurotransmitter glutamate ameliorates neurological clinical signs in models of the CNS inflammatory demyelinating disease multiple sclerosis (MS). To investigate whether glutamate excitoxicity may play a role in MS pathogenesis, the cellular localization of glutamate and its receptors, transporters and enzymes was examined. Expression of glutamate receptor (GluR) 1, a Ca(++)-permeable ionotropic AMPA receptor subunit, was up-regulated on oligodendrocytes in active MS lesion borders, but Ca(++)-impermeable AMPA GluR2 subunit levels were not increased. Reactive astrocytes in active plaques expressed AMPA GluR3 and metabotropic mGluR1, 2/3 and 5 receptors and the GLT-1 transporter, and a subpopulation was immunostained with glutamate antibodies. Activated microglia and macrophages were immunopositive for GluR2, GluR4 and NMDA receptor subunit 1. Kainate receptor GluR5-7 immunostaining showed endothelial cells and dystrophic axons. Astrocyte and macrophage populations expressed glutamate metabolizing enzymes and unexpectedly the EAAC1 transporter, which may play a role in glutamate uptake in lesions. Thus, reactive astrocytes in MS white matter lesions are equipped for a protective role in sequestering and metabolizing extracellular glutamate. However, they may be unable to maintain glutamate at levels low enough to protect oligodendrocytes rendered vulnerable to excitotoxic damage because of GluR1 up-regulation.
Collapse
Affiliation(s)
- Jia Newcombe
- Department of Neuroinflammation, Institute of Neurology, University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
99
|
Matute C, Torre I, Pérez-Cerdá F, Pérez-Samartín A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodríguez-Antigüedad A, Sánchez-Gómez M, Domercq M. P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 2007; 27:9525-33. [PMID: 17728465 PMCID: PMC6673129 DOI: 10.1523/jneurosci.0579-07.2007] [Citation(s) in RCA: 311] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oligodendrocyte death and demyelination are hallmarks of multiple sclerosis (MS). Here we show that ATP signaling can trigger oligodendrocyte excitotoxicity via activation of calcium-permeable P2X(7) purinergic receptors expressed by these cells. Sustained activation of P2X(7) receptors in vivo causes lesions that are reminiscent of the major features of MS plaques, i.e., demyelination, oligodendrocyte death, and axonal damage. In addition, treatment with P2X(7) antagonists of chronic experimental autoimmune encephalomyelitis (EAE), a model of MS, reduces demyelination and ameliorates the associated neurological symptoms. Together, these results indicate that ATP can kill oligodendrocytes via P2X(7) activation and that this cell death process contributes to EAE. Importantly, P2X(7) expression is elevated in normal-appearing axon tracts in MS patients, suggesting that signaling through this receptor in oligodendrocytes may be enhanced in this disease. Thus, P2X(7) receptor antagonists may be beneficial for the treatment of MS.
Collapse
MESH Headings
- Adenosine Triphosphate/toxicity
- Animals
- Animals, Newborn
- Calcium/metabolism
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Glial Fibrillary Acidic Protein/metabolism
- Glycoproteins
- Humans
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Membrane Potentials/radiation effects
- Mice
- Microscopy, Immunoelectron/methods
- Myelin Basic Protein/metabolism
- Myelin-Oligodendrocyte Glycoprotein
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Oligodendroglia/ultrastructure
- Optic Nerve/cytology
- Optic Nerve/pathology
- Optic Nerve/ultrastructure
- Patch-Clamp Techniques/methods
- Peptide Fragments
- Platelet Aggregation Inhibitors
- Purinergic P2 Receptor Antagonists
- Rats
- Rats, Sprague-Dawley
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2X7
Collapse
Affiliation(s)
- Carlos Matute
- Departamento de Neurociencias, Universidad del País Vasco, 48940 Leioa, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Expression of ionotropic glutamate receptor GLUR3 and effects of glutamate on MBP- and MOG-specific lymphocyte activation and chemotactic migration in multiple sclerosis patients. J Neuroimmunol 2007; 188:146-58. [PMID: 17628700 DOI: 10.1016/j.jneuroim.2007.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Revised: 05/21/2007] [Accepted: 05/31/2007] [Indexed: 11/28/2022]
Abstract
The present study was aimed at confirming the presence of GluR3 on T lymphocytes and to assess the effect of glutamate on proliferative responses to myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) and chemotactic migration to CXCL12/stromal cell-derived factor-1, RANTES, and MIP-1alpha in 15 control subjects and 20 relapsing-remitting multiple sclerosis (MS) patients (10 in a stable clinical phase and 10 during relapse). T lymphocytes of control subjects and MS patients express both mRNA and protein of GluR3 receptors, as shown by RT-PCR and immunoblot analyses. An up-regulation was evident during relapse and in patients with neuroradiological evidence of disease activity. Glutamate and AMPA at concentrations of 10 nM to 10 muM were able to enhance T lymphocyte proliferation to MBP and MOG and the chemotactic migration of T cells both in controls and MS patients. In the latter group, significantly higher proliferation values in response to glutamate were found in patients assessed during relapse and in those with gadolinium (Gd)+ enhancing lesions on MRI. Glutamate concentrations above 10 muM appeared to be inhibitory on MBP and MOG-specific T-lymphocyte proliferation as well as chemotactic response in both patients and controls. Higher GluR3 expression and higher activating effect of glutamate on T cells of MS patients during relapses and with evidence of disease activity on MRI suggests the involvement of glutamate-mediated mechanisms in the T-cell detrimental effects. In MS patients, glutamate within physiological ranges in the cerebrospinal fluid and brain extracellular space might enhance myelin antigen-specific proliferation and chemotactic migration via activation of AMPA receptors, which can be relevant for myelin and neuronal damage in MS. Excess glutamate levels seem to induce an inhibitory effect on lymphocyte function, and therefore the detrimental effect of this excitatory amino acid in this case could be attributed to a direct toxicity on glial and neuronal cells.
Collapse
|