51
|
Xiao Q, Luo Y, Lv F, He Q, Wu H, Chao F, Qiu X, Zhang L, Gao Y, Huang C, Wang S, Zhou C, Zhang Y, Jiang L, Tang Y. Protective Effects of 17β-Estradiol on Hippocampal Myelinated Fibers in Ovariectomized Middle-aged Rats. Neuroscience 2018; 385:143-153. [PMID: 29908214 DOI: 10.1016/j.neuroscience.2018.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
Estrogen replacement therapy (ERT) improves hippocampus-dependent cognition. This study investigated the impact of estrogen on hippocampal volume, CA1 subfield volume and myelinated fibers in the CA1 subfield of middle-aged ovariectomized rats. Ten-month-old bilaterally ovariectomized (OVX) female rats were randomly divided into OVX + E2 and OVX + Veh groups. After four weeks of subcutaneous injection with 17β-estradiol or a placebo, the OVX + E2 rats exhibited significantly short mean escape latency in a spatial learning task than that in the OVX + Veh rats. Using stereological methods, we did not observe significant differences in the volumes of the hippocampus and CA1 subfields between the two groups. However, using stereological methods and electron microscopy techniques, the total length of myelinated fibers and the total volumes of myelinated fibers, myelin sheaths and myelinated axons in the CA1 subfields of OVX + E2 rats were significantly 38.1%, 34.2%, 36.1% and 32.5%, respectively, higher than those in the OVX + Veh rats. After the parameters were calculated according to different diameter ranges, the estrogen replacement-induced remodeling of myelinated fibers in CA1 was mainly manifested in the myelinated fibers with a diameter of <1.0 μm. Therefore, four weeks of continuous E2 replacement improved the spatial learning capabilities of middle-aged ovariectomized rats. The E2 replacement-induced protection of spatial learning abilities might be associated with the beneficial effects of estrogen on myelinated fibers, particularly those with the diameters less than 1.0 μm, in the hippocampal CA1 region of middle-aged ovariectomized rats.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yanmin Luo
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fulin Lv
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qi He
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hong Wu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fenglei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuan Qiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yuan Gao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Geriatrics, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chunxia Huang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Physiology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Sanrong Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chunni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yi Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lin Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
52
|
Putatunda R, Bethea JR, Hu WH. Potential immunotherapies for traumatic brain and spinal cord injury. Chin J Traumatol 2018; 21:125-136. [PMID: 29759918 PMCID: PMC6033730 DOI: 10.1016/j.cjtee.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Wen-Hui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA,Corresponding author.
| |
Collapse
|
53
|
Increase in chemokine CXCL1 by ERβ ligand treatment is a key mediator in promoting axon myelination. Proc Natl Acad Sci U S A 2018; 115:6291-6296. [PMID: 29844175 PMCID: PMC6004485 DOI: 10.1073/pnas.1721732115] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Estrogen receptor β (ERβ) ligands promote remyelination in mouse models of multiple sclerosis. Recent work using experimental autoimmune encephalomyelitis (EAE) has shown that ERβ ligands induce axon remyelination, but impact peripheral inflammation to varying degrees. To identify if ERβ ligands initiate a common immune mechanism in remyelination, central and peripheral immunity and pathology in mice given ERβ ligands at peak EAE were assessed. All ERβ ligands induced differential expression of cytokines and chemokines, but increased levels of CXCL1 in the periphery and in astrocytes. Oligodendrocyte CXCR2 binds CXCL1 and has been implicated in normal myelination. In addition, despite extensive immune cell accumulation in the CNS, all ERβ ligands promoted extensive remyelination in mice at peak EAE. This finding highlights a component of the mechanism by which ERβ ligands mediate remyelination. Hence, interplay between the immune system and central nervous system may be responsible for the remyelinating effects of ERβ ligands. Our findings of potential neuroprotective benefits arising from the presence of CXCL1 could have implications for improved therapies for multiple sclerosis.
Collapse
|
54
|
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Interactions Between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma on Neuroinflammation, Demyelination, and Remyelination in Multiple Sclerosis. Cell Mol Neurobiol 2018; 38:783-795. [PMID: 28905149 DOI: 10.1007/s10571-017-0550-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/09/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is marked by neuroinflammation and demyelination with loss of oligodendrocytes in the central nervous system. The immune response is regulated by WNT/beta-catenin pathway in MS. Activated NF-kappaB, a major effector of neuroinflammation, and upregulated canonical WNT/beta-catenin pathway positively regulate each other. Demyelinating events present an upregulation of WNT/beta-catenin pathway, whereas proper myelinating phases show a downregulation of WNT/beta-catenin pathway essential for the promotion of oligodendrocytes precursors cells proliferation and differentiation. The activation of WNT/beta-catenin pathway results in differentiation failure and impairment in remyelination. However, PI3K/Akt pathway and TCF7L2, two downstream targets of WNT/beta-catenin pathway, are upregulated and promote proper remyelination. The interactions of these signaling pathways remain unclear. PPAR gamma activation can inhibit NF-kappaB, and can also downregulate the WNT/beta-catenin pathway. PPAR gamma and canonical WNT/beta-catenin pathway act in an opposite manner. PPAR gamma agonists appear as a promising treatment for the inhibition of demyelination and the promotion of proper remyelination through the control of both NF-kappaB activity and canonical WNT/beta-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
55
|
Lee S, Lee SO, Kim GL, Rhee DK. Estrogen receptor-β of microglia underlies sexual differentiation of neuronal protection via ginsenosides in mice brain. CNS Neurosci Ther 2018. [PMID: 29524300 DOI: 10.1111/cns.12842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIMS Streptococcus pneumoniae infection in acute bacterial meningitis can lead to widespread brain damage and mortality. Inflammatory responses by immune cells in the brain are thought to determine the degree of brain injury. Yet, the mechanisms underlying host responses to pneumococcal meningitis are largely unknown. To explore host responses as a potential therapeutic target for preventing brain injury after pneumococcal meningitis. METHODS We evaluated signaling mechanisms that minimize neuronal damage caused by pneumococcal infection; specifically, we assessed pathways related to neuronal survival after enhancing estrogen receptor-β (ER-β) expression using a natural therapeutic substance known as ginsenoside Rb1 and Rg3 enhanced ginseng. RESULTS Tissue damage caused by bacterial infection was reduced in Rb1/Rg3-treated mice as a result of microglial activation and the inhibition of apoptosis. Furthermore, Rb1 upregulated the expression of brain-derived neurotrophic factor (BDNF) as well as anti-apoptotic factors including Bcl-2 and Bcl-xL. Using BV2 microglial cells in vitro, Rb1 treatment inhibited microglial apoptosis in a manner associated with JAK2/STAT5 phosphorylation. CONCLUSION After S. pneumoniae infection in mice, particularly in female mice, Rb1-containing ginseng increased bacterial clearance and survival. These findings inform our understanding of the host immune response to pneumococcal meningitis.
Collapse
Affiliation(s)
- Seungyeop Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Si-On Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Gyu-Lee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
56
|
He K, Chen D, Ruan H, Li X, Tong J, Xu X, Zhang L, Yu J. BRAFV600E-dependent Mcl-1 stabilization leads to everolimus resistance in colon cancer cells. Oncotarget 2018; 7:47699-47710. [PMID: 27351224 PMCID: PMC5216972 DOI: 10.18632/oncotarget.10277] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023] Open
Abstract
mTOR activation is commonly caused by oncogenic mutations in RAS/RAF/MAPK and PI3K/AKT pathways, and promotes cancer progression and therapeutic resistance. However, mTOR inhibitors show limited single agent efficacy in patients. mTOR inhibitors suppress tumor cell growth and angiogenesis, and have recently been shown to induce death receptor/FADD-dependent apoptosis in colon cancers. Using a panel of BRAF V600E and WT colorectal cancer cell lines and in vitro selected resistant culture, and xenograft models, we demonstrate here that BRAFV600E confers resistance to mTOR inhibitors. Everolimus treatment disrupts the S6K1-IRS-2/PI3K negative feedback loop, leading to BRAF V600E-dependent activation of ERK and Mcl-1 stabilization in colon cancer cells, which in turn blocks the crosstalk from the death receptor to mitochondria. Co-treatment with inhibitors to Mcl-1, PI3K, RAF or MEK restores mTOR inhibitor-induced apoptosis by antagonizing Mcl-1 or abrogating ERK activation in BRAFV600E cells. Our findings provide a rationale for genotype-guided patient stratification and potential drug combinations to prevent or mitigate undesired activation of survival pathways induced by mTOR inhibitors.
Collapse
Affiliation(s)
- Kan He
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dongshi Chen
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hang Ruan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiangyun Li
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,The Third Military Medical University Daping Hospital, Daping, Yu Zhong District, Chongqing 400042, P.R. China
| | - Jingshan Tong
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiang Xu
- The Third Military Medical University Daping Hospital, Daping, Yu Zhong District, Chongqing 400042, P.R. China
| | - Lin Zhang
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
57
|
Wu X, Tong B, Yang Y, Luo J, Yuan X, Wei Z, Yue M, Xia Y, Dai Y. Arctigenin functions as a selective agonist of estrogen receptor β to restrict mTORC1 activation and consequent Th17 differentiation. Oncotarget 2018; 7:83893-83906. [PMID: 27863380 PMCID: PMC5356633 DOI: 10.18632/oncotarget.13338] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/08/2016] [Indexed: 12/13/2022] Open
Abstract
Arctigenin was previously proven to inhibit Th17 cell differentiation and thereby attenuate colitis in mice by down-regulating the activation of mechanistic target of rapamycin complex 1 (mTORC1). The present study was performed to address its underlying mechanism in view of estrogen receptor (ER). The specific antagonist PHTPP or siRNA of ERβ largely diminished the inhibitory effect of arctigenin on the mTORC1 activation in T cell lines and primary CD4+ T cells under Th17-polarization condition, suggesting that arctigenin functioned in an ERβ-dependent manner. Moreover, arctigenin was recognized to be an agonist of ERβ, which could bind to ERβ with a moderate affinity, promote dissociation of ERβ/HSP90 complex and nuclear translocation and phosphorylation of ERβ, and increase the transcription activity. Following activation of ERβ, arctigenin inhibited the activity of mTORC1 by disruption of ERβ-raptor-mTOR complex assembly. Deficiency of ERβ markedly abolished arctigenin-mediated inhibition of Th17 cell differentiation. In colitis mice, the activation of ERβ, inhibition of mTORC1 activation and Th17 response by arctigenin were abolished by PHTPP treatment. In conclusion, ERβ might be the target protein of arctigenin responsible for inhibition of mTORC1 activation and resultant prevention of Th17 cell differentiation and colitis development.
Collapse
Affiliation(s)
- Xin Wu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bei Tong
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Yan Yang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Jinque Luo
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Xusheng Yuan
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Mengfan Yue
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| |
Collapse
|
58
|
Song X, Liu B, Cui L, Zhou B, Liu L, Liu W, Yao G, Xia M, Hayashi T, Hattori S, Ushiki-Kaku Y, Tashiro SI, Ikejima T. Estrogen Receptors Are Involved in the Neuroprotective Effect of Silibinin in Aβ 1-42-Treated Rats. Neurochem Res 2018; 43:796-805. [PMID: 29397533 DOI: 10.1007/s11064-018-2481-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by a cascade of pathologic changes. A widely discussed theory indicates that amyloid β (Aβ) peptides are the causative agents of AD. Silibinin, a flavonoid derived from milk thistle, is well known for its hepato-protective activities and we have reported the neuroprotective effects of silibinin. In this study, we investigated the role of estrogen receptors (ERs) in silibinin's neuroprotective effect on Aβ1-42-injected rats. Results of Morris water maze and novel object-recognition tests demonstrated that silibinin significantly attenuated Aβ1-42-induced memory impairment. Silibinin attenuated ERs and PI3K-Akt pathways, as well as modulated mitogen-activated protein kinases in the hippocampus of Aβ1-42-injected rats. Taken together, silibinin is a potential candidate in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaoyu Song
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.,Medical Research Center, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Bo Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Lingyu Cui
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Biao Zhou
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Lu Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Guodong Yao
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.,School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingyu Xia
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Yuko Ushiki-Kaku
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Shin-Ichi Tashiro
- Department of Medical Education & Primary Care, Kyoto Prefectural University of Medicine, Kajiicho 465, Kamikyo-ku, Kyoto City, Kyoto, 602-8566, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
59
|
Bove RM. Why monkeys do not get multiple sclerosis (spontaneously): An evolutionary approach. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:43-59. [PMID: 29492266 PMCID: PMC5824939 DOI: 10.1093/emph/eoy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
The goal of this review is to apply an evolutionary lens to understanding the origins of multiple sclerosis (MS), integrating three broad observations. First, only humans are known to develop MS spontaneously. Second, humans have evolved large brains, with characteristically large amounts of metabolically costly myelin. This myelin is generated over long periods of neurologic development—and peak MS onset coincides with the end of myelination. Third, over the past century there has been a disproportionate increase in the rate of MS in young women of childbearing age, paralleling increasing westernization and urbanization, indicating sexually specific susceptibility in response to changing exposures. From these three observations about MS, a life history approach leads us to hypothesize that MS arises in humans from disruption of the normal homeostatic mechanisms of myelin production and maintenance, during our uniquely long myelination period. This review will highlight under-explored areas of homeostasis in brain development, that are likely to shed new light on the origins of MS and to raise further questions about the interactions between our ancestral genes and modern environments.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology, UCSF, San Francisco, CA, USA
| |
Collapse
|
60
|
He Q, Luo Y, Lv F, Xiao Q, Chao F, Qiu X, Zhang L, Gao Y, Xiu Y, Huang C, Tang Y. Effects of estrogen replacement therapy on the myelin sheath ultrastructure of myelinated fibers in the white matter of middle-aged ovariectomized rats. J Comp Neurol 2017; 526:790-802. [PMID: 29205359 DOI: 10.1002/cne.24366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
Abstract
The effects of estrogen replacement therapy (ORT) on white matter and the myelin sheath ultrastructure in the white matter of middle-aged ovariectomized (OVX) rats were investigated in this study. Middle-aged rats were ovariectomized and divided into a placebo replacement (OVX + O) group and an estrogen replacement (OVX + E) group. Then, the Morris water maze, electron microscope techniques, and stereological methods were used to investigate the effects of ORT on spatial learning capacity, white matter volume and the myelin sheath ultrastructure in the white matter. We found that the spatial learning capacity of the OVX + E rats was significantly improved compared with that of the OVX + O rats. When compared with that of OVX + O rats, the total volume of the myelin sheaths in the white matter of the OVX + E rats was significantly increased by 27%, and the difference between the outer perimeter and inner perimeter of the myelin sheaths of the white matter in the OVX + E rats increased significantly by 12.6%. The myelinated fibers with mean diameters of 1.2-1.4 μm were significantly longer (46.1%) in the OVX + E rats; the difference between the mean diameter of myelinated fibers and the mean diameter of axons (0-0.4 μm) was significantly increased by 21.6% in the OVX + E rats. These results suggested that ORT had positive protective effects on the spatial learning ability and on the myelin sheath ultrastructure in the white matter of middle-aged OVX rats.
Collapse
Affiliation(s)
- Qi He
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Yanmin Luo
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Fulin Lv
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Qian Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Fenglei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Xuan Qiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China.,Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing, P. R. China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Yuan Gao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China.,Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, P. R. China
| | - Yun Xiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Institute of Life Science, Chongqing Medical University, Chongqing, P. R. China
| | - Chunxia Huang
- Department of Physiology, Chongqing Medical University, Chongqing, P. R. China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
61
|
Abstract
Although the core concept of remyelination - based on the activation, migration, proliferation and differentiation of CNS progenitors - has not changed over the past 20 years, our understanding of the detailed mechanisms that underlie this process has developed considerably. We can now decorate the central events of remyelination with a host of pathways, molecules, mediators and cells, revealing a complex and precisely orchestrated process. These advances have led to recent drug-based and cell-based clinical trials for myelin diseases and have opened up hitherto unrecognized opportunities for drug-based approaches to therapeutically enhance remyelination.
Collapse
|
62
|
Wnuk A, Kajta M. Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System. Int J Mol Sci 2017; 18:ijms18112394. [PMID: 29137141 PMCID: PMC5713362 DOI: 10.3390/ijms18112394] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Apoptosis and autophagy are involved in neural development and in the response of the nervous system to a variety of insults. Apoptosis is responsible for cell elimination, whereas autophagy can eliminate the cells or keep them alive, even in conditions lacking trophic factors. Therefore, both processes may function synergistically or antagonistically. Steroid and xenobiotic receptors are regulators of apoptosis and autophagy; however, their actions in various pathologies are complex. In general, the estrogen (ER), progesterone (PR), and mineralocorticoid (MR) receptors mediate anti-apoptotic signalling, whereas the androgen (AR) and glucocorticoid (GR) receptors participate in pro-apoptotic pathways. ER-mediated neuroprotection is attributed to estrogen and selective ER modulators in apoptosis- and autophagy-related neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, stroke, multiple sclerosis, and retinopathies. PR activation appeared particularly effective in treating traumatic brain and spinal cord injuries and ischemic stroke. Except for in the retina, activated GR is engaged in neuronal cell death, whereas MR signalling appeared to be associated with neuroprotection. In addition to steroid receptors, the aryl hydrocarbon receptor (AHR) mediates the induction and propagation of apoptosis, whereas the peroxisome proliferator-activated receptors (PPARs) inhibit this programmed cell death. Most of the retinoid X receptor-related xenobiotic receptors stimulate apoptotic processes that accompany neural pathologies. Among the possible therapeutic strategies based on targeting apoptosis via steroid and xenobiotic receptors, the most promising are the selective modulators of the ER, AR, AHR, PPARγ agonists, flavonoids, and miRNAs. The prospective therapies to overcome neuronal cell death by targeting autophagy via steroid and xenobiotic receptors are much less recognized.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
63
|
Griesbach GS, Masel BE, Helvie RE, Ashley MJ. The Impact of Traumatic Brain Injury on Later Life: Effects on Normal Aging and Neurodegenerative Diseases. J Neurotrauma 2017; 35:17-24. [PMID: 28920532 DOI: 10.1089/neu.2017.5103] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The acute and chronic effects of traumatic brain injury (TBI) have been widely described; however, there is limited knowledge on how a TBI sustained during early adulthood or mid-adulthood will influence aging. Epidemiological studies have explored whether TBI poses a risk for dementia and other neurodegenerative diseases associated with aging. We will discuss the influence of TBI and resulting medical comorbidities such as endocrine, sleep, and inflammatory disturbances on age-related gray and white matter changes and cognitive decline. Post mortem studies examining amyloid, tau, and other proteins will be discussed within the context of neurodegenerative diseases and chronic traumatic encephalopathy. The data support the suggestion that pathological changes triggered by an earlier TBI will have an influence on normal aging processes and will interact with neurodegenerative disease processes rather than the development of a specific disease, such as Alzheimer's or Parkinson's. Chronic neurophysiologic change after TBI may have detrimental effects on neurodegenerative disease.
Collapse
Affiliation(s)
- Grace S Griesbach
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California.,2 Department of Neurosurgery, David Geffen School of Medicine at the University of California , Los Angeles, California
| | - Brent E Masel
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California.,3 University of Texas Medical Branch , Galveston, Texas
| | - Richard E Helvie
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California
| | - Mark J Ashley
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California
| |
Collapse
|
64
|
Giacoppo S, Thangavelu SR, Diomede F, Bramanti P, Conti P, Trubiani O, Mazzon E. Anti-inflammatory effects of hypoxia-preconditioned human periodontal ligament cell secretome in an experimental model of multiple sclerosis: a key role of IL-37. FASEB J 2017; 31:5592-5608. [PMID: 28842429 PMCID: PMC5690382 DOI: 10.1096/fj.201700524r] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
Recent research has widely investigated the anti-inflammatory effects of mesenchymal stem cells and their secretory products, termed the secretome, in the treatment of multiple sclerosis (MS). The present study examined the capacity of the conditioned medium (CM) from human periodontal ligament stem cells (hPLSCs) under hypoxia (H-hPDLSCs-CM) to suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. To induce EAE, female C57BL/6 mice were immunized with myelin oligodendroglial glycoprotein peptide35–55. At the onset of symptoms, H-hPDLSCs-CM was infused via the tail vein of mice. Our results demonstrate the efficacy of H-hPDLSCs-CM treatment in diminishing clinical and histologic disease score. A key finding from this study is the marked expression of anti-inflammatory cytokine IL-37, paralleled by the suppression of proinflammatory cytokines in mice with EAE that were treated with H-hPDLSCs-CM. In addition, a consequent modulation of oxidative stress, autophagic, and apoptotic markers was observed in mice with EAE after hPDLSCs-CM administration. In addition, to provide additional evidence of the molecular mechanisms that underlie H-hPDLSCs-CM, we investigated its therapeutic action in scratch injury–exposed NSC-34 neurons, an in vitro model of injury. This model reproduces severe inflammation and oxidative stress conditions as observed after EAE damage. In vitro results corroborate the ability of hPDLSCs-CM to modulate inflammatory, oxidative stress, and apoptotic pathways. Taken together, our findings suggest H-hPDLSCs-CM as a new pharmacologic opportunity for the management of MS.—Giacoppo, S., Thangavelu, S. R., Diomede, F., Bramanti, P., Conti, P., Trubiani, O., Mazzon, E. Anti-inflammatory effects of hypoxia-preconditioned human periodontal ligament cell secretome in an experimental model of multiple sclerosis: a key role of IL-37.
Collapse
Affiliation(s)
- Sabrina Giacoppo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi Bonino-Pulejo, Contrada Casazza, Messina, Italy
| | - Soundara Rajan Thangavelu
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi Bonino-Pulejo, Contrada Casazza, Messina, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral, and Biotechnological Sciences, University G. d'Annunzio, Chieti, Italy
| | - Placido Bramanti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi Bonino-Pulejo, Contrada Casazza, Messina, Italy
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral, and Biotechnological Sciences, University G. d'Annunzio, Chieti, Italy
| | - Emanuela Mazzon
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi Bonino-Pulejo, Contrada Casazza, Messina, Italy;
| |
Collapse
|
65
|
Heidker RM, Emerson MR, LeVine SM. Metabolic pathways as possible therapeutic targets for progressive multiple sclerosis. Neural Regen Res 2017; 12:1262-1267. [PMID: 28966637 PMCID: PMC5607817 DOI: 10.4103/1673-5374.213542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2017] [Indexed: 12/17/2022] Open
Abstract
Unlike relapsing remitting multiple sclerosis, there are very few therapeutic options for patients with progressive forms of multiple sclerosis. While immune mechanisms are key participants in the pathogenesis of relapsing remitting multiple sclerosis, the mechanisms underlying the development of progressive multiple sclerosis are less well understood. Putative mechanisms behind progressive multiple sclerosis have been put forth: insufficient energy production via mitochondrial dysfunction, activated microglia, iron accumulation, oxidative stress, activated astrocytes, Wallerian degeneration, apoptosis, etc. Furthermore, repair processes such as remyelination are incomplete. Experimental therapies that strive to improve metabolism within neurons and glia, e.g., oligodendrocytes, could act to counter inadequate energy supplies and/or support remyelination. Most experimental approaches have been examined as standalone interventions; however, it is apparent that the biochemical steps being targeted are part of larger pathways, which are further intertwined with other metabolic pathways. Thus, the potential benefits of a tested intervention, or of an established therapy, e.g., ocrelizumab, could be undermined by constraints on upstream and/or downstream steps. If correct, then this argues for a more comprehensive, multifaceted approach to therapy. Here we review experimental approaches to support neuronal and glial metabolism, and/or promote remyelination, which may have potential to lessen or delay progressive multiple sclerosis.
Collapse
Affiliation(s)
- Rebecca M. Heidker
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mitchell R. Emerson
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, AZ, USA
| | - Steven M. LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
66
|
Han SY, Kim J, Kim E, Kim SH, Seo DB, Kim JH, Shin SS, Cho JY. AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract. J Ginseng Res 2017; 42:496-503. [PMID: 30337810 PMCID: PMC6187086 DOI: 10.1016/j.jgr.2017.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
Background Korean ginseng (Panax ginseng) plays an anti-inflammatory role in a variety of inflammatory diseases such as gastritis, hepatitis, and colitis. However, inflammation-regulatory activity of the calyx of the P. ginseng berry has not been thoroughly evaluated. To understand whether the calyx portion of the P. ginseng berry is able to ameliorate inflammatory processes, an ethanolic extract of P. ginseng berry calyx (Pg-C-EE) was prepared, and lipopolysaccharide-activated macrophages and HEK293 cells transfected with inflammation-regulatory proteins were used to test the anti-inflammatory action of Pg-C-EE. Methods The ginsenoside contents of Pg-C-EE were analyzed by HPLC. Suppressive activity of Pg-C-EE on NO production, inflammatory gene expression, transcriptional activation, and inflammation signaling events were examined using the Griess assay, reverse transcription-polymerization chain reaction, luciferase activity reporter gene assay, and immunoblotting analysis. Results Pg-C-EE reduced NO production and diminished mRNA expression of inflammatory genes such as cyclooxygenase-2, inducible NO synthase, and tumor necrosis factor-α in a dose-dependent manner. This extract suppressed luciferase activity induced only by nuclear factor-κB. Interestingly, immunoblotting analysis results demonstrated that Pg-C-EE reduced the activities of protein kinase B (AKT)1 and AKT2. Conclusion These results suggest that Pg-C-EE may have nuclear-factor-κB-targeted anti-inflammatory properties through suppression of AKT. The calyx of the P. ginseng berry is an underused part of the ginseng plant, and development of calyx-derived extracts may be useful for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Sang Yun Han
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Juewon Kim
- Vital Beautie Research Division, Amorepacific Research and Development Center, Suwon, Republic of Korea
| | - Eunji Kim
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Su Hwan Kim
- Vital Beautie Research Division, Amorepacific Research and Development Center, Suwon, Republic of Korea
| | - Dae Bang Seo
- Vital Beautie Research Division, Amorepacific Research and Development Center, Suwon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Song Seok Shin
- Vital Beautie Research Division, Amorepacific Research and Development Center, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
67
|
Matrine promotes oligodendrocyte development in CNS autoimmunity through the PI3K/Akt signaling pathway. Life Sci 2017; 180:36-41. [PMID: 28499934 DOI: 10.1016/j.lfs.2017.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 01/21/2023]
Abstract
AIMS Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae flavescens, has been recently found to be beneficial in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, mainly through its anti-inflammatory effect. In the present study, we tested the effect of MAT on ongoing EAE and defined possible mechanisms underlying its effects on myelination and oligodendrocytes. MAIN METHODS EAE was induced in C57BL/6 mice and MAT treatment was started at disease onset. Clinical scores were monitored daily; spinal cords and the corpus callosum brain region of mice were harvested on day 23 p.i. for inflammatory infiltration and demyelination of the central nervous system. Myelin content and the development of oligodendrocytes and their precursors were determined by immunostaining, and expression of p-Akt, p-mTOR, p-PI3K, and p-P70S6 was determined by Western blot. KEY FINDINGS MAT effectively suppressed EAE severity and increased the expression of proteolipid protein, a myelin protein that is a marker of CNS myelin. MAT treatment largely increased the number of mature oligodendrocytes, and significantly activated the PI3K/Akt/mTOR signaling pathway, which is required for oligodendrocyte survival and axon myelination. SIGNIFICANCE These findings demonstrate a beneficial effect of MAT on oligodendrocyte differentiation and myelination during EAE, most likely through activating the PI3K/Akt/mTOR signaling pathway.
Collapse
|
68
|
Saeedi Saravi SS, Arefidoust A, Saeedi Saravi SS, Yaftian R, Bayati M, Salehi M, Dehpour AR. Mammalian target of rapamycin (mTOR)/nitric oxide system possibly modulate antidepressant-like effect of 17α-ethinyl estradiol in ovariectomized mice. Biomed Pharmacother 2017; 89:591-604. [DOI: 10.1016/j.biopha.2017.02.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 02/07/2023] Open
|
69
|
Hasselmann JPC, Karim H, Khalaj AJ, Ghosh S, Tiwari-Woodruff SK. Consistent induction of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice for the longitudinal study of pathology and repair. J Neurosci Methods 2017; 284:71-84. [PMID: 28396177 DOI: 10.1016/j.jneumeth.2017.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/15/2017] [Accepted: 04/04/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND While many groups use experimental autoimmune encephalomyelitis (EAE) as a model to uncover therapeutic targets and understand the pathology underlying multiple sclerosis (MS), EAE protocol variability introduces discrepancies in central nervous system (CNS) pathogenesis and clinical disease, limiting the comparability between studies and slowing much-needed translational research. OPTIMIZED METHOD Here we describe a detailed, reliable protocol for chronic EAE induction in C57BL/6 mice utilizing two injections of myelin oligodendrocyte glycoprotein (35-55) peptide mixed with complete Freund's adjuvant and paired with pertussis toxin. RESULTS The active MOG35-55-EAE protocol presented here induces ascending paralysis in 80-100% of immunized mice. We observe: (1) consistent T cell immune activation, (2) robust CNS infiltration by peripheral immune cells, and (3) perivascular demyelinating lesions concurrent with axon damage in the spinal cord and various brain regions, including the optic nerve, cortex, hippocampus, internal capsule, and cerebellum. COMPARISON WITH EXISTING METHOD(S) Lack of detailed protocols, combined with variability between laboratories, make EAE results difficult to compare and hinder the use of this model for therapeutic development. We provide the most detailed active MOG35-55-EAE protocol to date. With this protocol, we observe high disease incidence and a consistent, reliable disease course. The resulting pathology is MS-like and includes optic neuritis, perivascular mononuclear infiltration, CNS axon demyelination, and axon damage in both infiltrating lesions and otherwise normal-appearing white matter. CONCLUSIONS By providing a detailed active MOG35-55-EAE protocol that yields consistent and robust pathology, we aim to foster comparability between pre-clinical studies and facilitate the discovery of MS therapeutics.
Collapse
Affiliation(s)
| | - Hawra Karim
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, CA 92521, USA
| | - Anna J Khalaj
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, CA 92521, USA
| | - Subir Ghosh
- Department of Statistics, UCR-CNAS, Riverside, CA 92521, USA
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, CA 92521, USA; Department of Neuroscience, UCR School of Medicine, Riverside, CA 92521, USA; Center for Glial-Neuronal Interactions, UCR School of Medicine, CA 92506, USA.
| |
Collapse
|
70
|
Li H, Ding C, Ding ZL, Ling M, Wang T, Wang W, Huang B. 17β-Oestradiol promotes differentiation of human embryonic stem cells into dopamine neurons via cross-talk between insulin-like growth factors-1 and oestrogen receptor β. J Cell Mol Med 2017; 21:1605-1618. [PMID: 28244646 PMCID: PMC5542902 DOI: 10.1111/jcmm.13090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022] Open
Abstract
Human embryonic stem cells (hESCs) can self‐renew and differentiate into all cell lineages. E2 is known to exhibit positive effects on embryo development. Although the importance of E2 in many physiological processes has been reported, to date few researchers have investigated the effects of E2 on hESCs differentiation. We studied the effects of E2 on dopamine (DA) neuron induction of hESCs and its related signalling pathways using the three‐stage protocol. In our study, 0.1 μM E2 were applied to hESCs‐derived human embryoid bodies (hEBs) and effects of E2 on neural cells differentiation were investigated. Protein and mRNA level assay indicated that E2 up‐regulated the expression of insulin‐like growth factors (IGF)‐1, ectoderm, neural precursor cells (NPC) and DA neuron markers, respectively. The population of hESC‐derived NPCs and DA neurons was increased to 92% and 93% to that of DMSO group, respectively. Furthermore, yield of DA neuron‐secreted tyrosine hydroxylase (TH) and dopamine was also increased. E2‐caused promotion was relieved in single inhibitor (ICI or JB1) group partly, and E2 effects were repressed more stronger in inhibitors combination (ICI plus JB1) group than in single inhibitor group at hEBs, hNPCs and hDA neurons stages. Owing to oestrogen receptors regulate multiple brain functions, when single or two inhibitors were used to treat neural differentiation stage, we found that oestrogen receptor (ER)β but not ERα is strongly repressed at the hNPCs and hDA neurons stage. These findings, for the first time, demonstrate the molecular cascade and related cell biology events involved in E2‐improved hNPC and hDA neuron differentiation through cross‐talk between IGF‐1 and ERβ in vitro.
Collapse
Affiliation(s)
- Hong Li
- Center of Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Chenyue Ding
- Center of Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Zhi-Liang Ding
- Department of Neurosurgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Mingfa Ling
- Center of Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Ting Wang
- Center of Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Wei Wang
- Center of Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Boxian Huang
- Center of Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| |
Collapse
|
71
|
Dulamea AO. Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:91-127. [PMID: 28093710 DOI: 10.1007/978-3-319-47861-6_7] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS) during development and throughout adulthood. They result from a complex and well controlled process of activation, proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs) from the germinative niches of the CNS. In multiple sclerosis (MS), the complex pathological process produces dysfunction and apoptosis of OLs leading to demyelination and neurodegeneration. This review attempts to describe the patterns of demyelination in MS, the steps involved in oligodendrogenesis and myelination in healthy CNS, the different pathways leading to OLs and myelin loss in MS, as well as principles involved in restoration of myelin sheaths. Environmental factors and their impact on OLs and pathological mechanisms of MS are also discussed. Finally, we will present evidence about the potential therapeutic targets in re-myelination processes that can be accessed in order to develop regenerative therapies for MS.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- Neurology Clinic, University of Medicine and Pharmacy "Carol Davila", Fundeni Clinical Institute, Building A, Neurology Clinic, Room 201, 022328, Bucharest, Romania.
| |
Collapse
|
72
|
Lysosomal Re-acidification Prevents Lysosphingolipid-Induced Lysosomal Impairment and Cellular Toxicity. PLoS Biol 2016; 14:e1002583. [PMID: 27977664 PMCID: PMC5169359 DOI: 10.1371/journal.pbio.1002583] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative lysosomal storage disorders (LSDs) are severe and untreatable, and mechanisms underlying cellular dysfunction are poorly understood. We found that toxic lipids relevant to three different LSDs disrupt multiple lysosomal and other cellular functions. Unbiased drug discovery revealed several structurally distinct protective compounds, approved for other uses, that prevent lysosomal and cellular toxicities of these lipids. Toxic lipids and protective agents show unexpected convergence on control of lysosomal pH and re-acidification as a critical component of toxicity and protection. In twitcher mice (a model of Krabbe disease [KD]), a central nervous system (CNS)-penetrant protective agent rescued myelin and oligodendrocyte (OL) progenitors, improved motor behavior, and extended lifespan. Our studies reveal shared principles relevant to several LSDs, in which diverse cellular and biochemical disruptions appear to be secondary to disruption of lysosomal pH regulation by specific lipids. These studies also provide novel protective strategies that confer therapeutic benefits in a mouse model of a severe LSD.
Collapse
|
73
|
17 β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7891202. [PMID: 27872858 PMCID: PMC5107215 DOI: 10.1155/2016/7891202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation.
Collapse
|
74
|
Lariosa-Willingham KD, Rosler ES, Tung JS, Dugas JC, Collins TL, Leonoudakis D. A high throughput drug screening assay to identify compounds that promote oligodendrocyte differentiation using acutely dissociated and purified oligodendrocyte precursor cells. BMC Res Notes 2016; 9:419. [PMID: 27592856 PMCID: PMC5011342 DOI: 10.1186/s13104-016-2220-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
Background Multiple sclerosis is caused by an autoimmune response resulting in demyelination and neural degeneration. The adult central nervous system has the capacity to remyelinate axons in part through the generation of new oligodendrocytes (OLs). To identify clinical candidate compounds that may promote remyelination, we have developed a high throughput screening (HTS) assay to identify compounds that promote the differentiation of oligodendrocyte precursor cells (OPCs) into OLs. Results Using acutely dissociated and purified rat OPCs coupled with immunofluorescent image quantification, we have developed an OL differentiation assay. We have validated this assay with a known promoter of differentiation, thyroid hormone, and subsequently used the assay to screen the NIH clinical collection library. We have identified twenty-seven hit compounds which were validated by dose response analysis and the generation of half maximal effective concentration (EC50) values allowed for the ranking of efficacy. The assay identified novel promoters of OL differentiation which we attribute to (1) the incorporation of an OL toxicity pre-screen to allow lowering the concentrations of toxic compounds and (2) the utilization of freshly purified, non-passaged OPCs. These features set our assay apart from other OL differentiation assays used for drug discovery efforts. Conclusions This acute primary OL-based differentiation assay should be of use to those interested in screening large compound libraries for the identification of drugs for the treatment of MS and other demyelinating diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2220-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen D Lariosa-Willingham
- Translational Medicine Center, Myelin Repair Foundation, Sunnyvale, CA, 94085, USA.,Teva Pharmaceuticals, Biologics and CNS Discovery, Redwood City, CA, 94063, USA
| | - Elen S Rosler
- Translational Medicine Center, Myelin Repair Foundation, Sunnyvale, CA, 94085, USA.,Alios BioPharma, South San Francisco, CA, 94080, USA
| | - Jay S Tung
- Translational Medicine Center, Myelin Repair Foundation, Sunnyvale, CA, 94085, USA
| | - Jason C Dugas
- Translational Medicine Center, Myelin Repair Foundation, Sunnyvale, CA, 94085, USA.,Rigel Pharmaceuticals, South San Francisco, CA, 94080, USA
| | - Tassie L Collins
- Translational Medicine Center, Myelin Repair Foundation, Sunnyvale, CA, 94085, USA.,NGM Biopharmaceuticals, Inc., South San Francisco, CA, 94080, USA
| | - Dmitri Leonoudakis
- Translational Medicine Center, Myelin Repair Foundation, Sunnyvale, CA, 94085, USA. .,Teva Pharmaceuticals, Biologics and CNS Discovery, Redwood City, CA, 94063, USA.
| |
Collapse
|
75
|
Gonzalez GA, Hofer MP, Syed YA, Amaral AI, Rundle J, Rahman S, Zhao C, Kotter MRN. Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system. Sci Rep 2016; 6:31599. [PMID: 27554391 PMCID: PMC4995517 DOI: 10.1038/srep31599] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/15/2016] [Indexed: 01/04/2023] Open
Abstract
Enhancing central nervous system (CNS) myelin regeneration is recognized as an important strategy to ameliorate the devastating consequences of demyelinating diseases such as multiple sclerosis. Previous findings have indicated that myelin proteins, which accumulate following demyelination, inhibit remyelination by blocking the differentiation of rat oligodendrocyte progenitor cells (OPCs) via modulation of PKCα. We therefore screened drugs for their potential to overcome this differentiation block. From our screening, tamoxifen emerges as a potent inducer of OPC differentiation in vitro. We show that the effects of tamoxifen rely on modulation of the estrogen receptors ERα, ERβ, and GPR30. Furthermore, we demonstrate that administration of tamoxifen to demyelinated rats in vivo accelerates remyelination. Tamoxifen is a well-established drug and is thus a promising candidate for a drug to regenerate myelin, as it will not require extensive safety testing. In addition, Tamoxifen plays an important role in biomedical research as an activator of inducible genetic models. Our results highlight the importance of appropriate controls when using such models.
Collapse
Affiliation(s)
- Ginez A Gonzalez
- Anne McLaren Laboratory for Regenerative Medicine, Department of Clinical Neurosciences, Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Matthias P Hofer
- Anne McLaren Laboratory for Regenerative Medicine, Department of Clinical Neurosciences, Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Yasir A Syed
- Anne McLaren Laboratory for Regenerative Medicine, Department of Clinical Neurosciences, Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Ana I Amaral
- Anne McLaren Laboratory for Regenerative Medicine, Department of Clinical Neurosciences, Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Jon Rundle
- Anne McLaren Laboratory for Regenerative Medicine, Department of Clinical Neurosciences, Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Saifur Rahman
- Anne McLaren Laboratory for Regenerative Medicine, Department of Clinical Neurosciences, Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Chao Zhao
- Anne McLaren Laboratory for Regenerative Medicine, Department of Clinical Neurosciences, Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Mark R N Kotter
- Anne McLaren Laboratory for Regenerative Medicine, Department of Clinical Neurosciences, Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| |
Collapse
|
76
|
Kipp M, Hochstrasser T, Schmitz C, Beyer C. Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neurosci Biobehav Rev 2016; 67:125-36. [DOI: 10.1016/j.neubiorev.2015.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023]
|
77
|
Liu G, Zhang F, Jiang Y, Hu Y, Gong Z, Liu S, Chen X, Jiang Q, Hao J. Integrating genome-wide association studies and gene expression data highlights dysregulated multiple sclerosis risk pathways. Mult Scler 2016; 23:205-212. [PMID: 27207450 DOI: 10.1177/1352458516649038] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Much effort has been expended on identifying the genetic determinants of multiple sclerosis (MS). Existing large-scale genome-wide association study (GWAS) datasets provide strong support for using pathway and network-based analysis methods to investigate the mechanisms underlying MS. However, no shared genetic pathways have been identified to date. OBJECTIVE We hypothesize that shared genetic pathways may indeed exist in different MS-GWAS datasets. METHODS Here, we report results from a three-stage analysis of GWAS and expression datasets. In stage 1, we conducted multiple pathway analyses of two MS-GWAS datasets. In stage 2, we performed a candidate pathway analysis of the large-scale MS-GWAS dataset. In stage 3, we performed a pathway analysis using the dysregulated MS gene list from seven human MS case-control expression datasets. RESULTS In stage 1, we identified 15 shared pathways. In stage 2, we successfully replicated 14 of these 15 significant pathways. In stage 3, we found that dysregulated MS genes were significantly enriched in 10 of 15 MS risk pathways identified in stages 1 and 2. CONCLUSION We report shared genetic pathways in different MS-GWAS datasets and highlight some new MS risk pathways. Our findings provide new insights on the genetic determinants of MS.
Collapse
Affiliation(s)
- Guiyou Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fang Zhang
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yang Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Shoufeng Liu
- Department of Neurology, Tianjin HuanHu Hospital, Tianjin, China
| | - Xiuju Chen
- Department of Neurology, Tianjin NanKai Hospital, Tianjin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
78
|
Khalaj AJ, Hasselmann J, Augello C, Moore S, Tiwari-Woodruff SK. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects. J Steroid Biochem Mol Biol 2016; 160:43-52. [PMID: 26776441 PMCID: PMC5233753 DOI: 10.1016/j.jsbmb.2016.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/06/2023]
Abstract
Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous remyelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires ERK1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN's neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as immunomodulatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury.
Collapse
Affiliation(s)
- Anna J Khalaj
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Jonathan Hasselmann
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Catherine Augello
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Spencer Moore
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States; Neuroscience Graduate Program, University of California, Riverside, United States.
| |
Collapse
|
79
|
Aggelakopoulou M, Kourepini E, Paschalidis N, Panoutsakopoulou V. ERβ in CD4+ T Cells Is Crucial for Ligand-Mediated Suppression of Central Nervous System Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2016; 196:4947-56. [PMID: 27183630 DOI: 10.4049/jimmunol.1600246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022]
Abstract
The development of therapies for multiple sclerosis targeting pathogenic T cell responses remains imperative. Previous studies have shown that estrogen receptor (ER) β ligands could inhibit experimental autoimmune encephalomyelitis. However, the effects of ERβ-specific ligands on human or murine pathogenic immune cells, such as Th17, were not investigated. In this article, we show that the synthetic ERβ-specific ligand 4-(2-phenyl-5,7-bis[trifluoromethyl]pyrazolo[1,5-a]pyrimidin-3-yl)phenol (PHTPP) reversed established paralysis and CNS inflammation, characterized by a dramatic suppression of pathogenic Th responses as well as induction of IL-10-producing regulatory CD4(+) T cell subsets in vivo. Moreover, administration of PHTPP in symptomatic mice induced regulatory CD4(+) T cells that were suppressive in vivo. PHTPP-mediated experimental autoimmune encephalomyelitis amelioration was canceled in mice with ERβ-deficient CD4(+) T cells only, indicating that expression of ERβ by these cells is crucial for the observed therapeutic effect. Importantly, synthetic ERβ-specific ligands acting directly on CD4(+) T cells suppressed human and mouse Th17 cells, downregulating Th17 cell signature gene expression and expanding IL-10-producing T cells among them. TGF-β1 and aryl hydrocarbon receptor activation enhanced the ERβ ligand-mediated expansion of IL-10-producing T cells among Th17 cells. In addition, these ERβ-specific ligands promoted the induction and maintenance of Foxp3(+) T regulatory cells, as well as their in vitro suppressive function. Thus, ERβ-specific ligands targeting pathogenic Th17 cells and inducing functional regulatory cells represent a promising subset of therapeutic agents for multiple sclerosis.
Collapse
Affiliation(s)
- Maria Aggelakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| | - Evangelia Kourepini
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| | - Nikolaos Paschalidis
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| | - Vily Panoutsakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| |
Collapse
|
80
|
Intracellular signaling pathway regulation of myelination and remyelination in the CNS. Exp Neurol 2016; 283:501-11. [PMID: 26957369 DOI: 10.1016/j.expneurol.2016.03.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/23/2022]
Abstract
The restoration of myelin sheaths on demyelinated axons remains a major obstacle in the treatment of multiple sclerosis (MS). Currently approved therapies work by modulating the immune system to reduce the number and rate of lesion formation but are only partially effective since they are not able to restore lost myelin. In the healthy CNS, myelin continues to be generated throughout life and spontaneous remyelination occurs readily in response to insults. In patients with MS, however, remyelination eventually fails, at least in part as a result of a failure of oligodendrocyte precursor cell (OPC) differentiation and the subsequent production of new myelin. A better understanding of the molecular mechanisms and signaling pathways that drive the process of myelin sheath formation is therefore important in order to speed the development of novel therapeutics designed to target remyelination. Here we review data supporting critical roles for three highly conserved intracellular signaling pathways: Wnt/β-catenin, PI3K/AKT/mTOR, and ERK/MAPK in the regulation of OPC differentiation and myelination both during development and in remyelination. Potential points of crosstalk between the three pathways and important areas for future research are also discussed.
Collapse
|
81
|
Microarray expression profile analysis of long noncoding RNAs in premature brain injury: A novel point of view. Neuroscience 2016; 319:123-33. [PMID: 26812036 DOI: 10.1016/j.neuroscience.2016.01.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are abundant in the central nervous system and have a key role in brain function as well as many neurological disorders. However, the regulatory function of lncRNAs in the premature brain has not been well studied. This study described the expression profile of lncRNAs in premature mice using microarray technology. 1999 differentially expressed lncRNAs and 955 differentially expressed mRNAs were identified. Gene Ontology (GO) and pathway analysis showed that these lncRNAs were involved in multiple biological processes, including the nervous system development and inflammatory response. Additionally, the lncRNA-mRNA-network and TF-gene-lncRNA-network were constructed to identify core regulatory lncRNAs and transcription factors. The sex-determining region of Y chromosome (SRY) gene may be a key transcription factor that regulates premature brain development and injury. This study for the first time represents an expression profile of differentially expressed lncRNAs in the premature brain and may provide a novel point of view into the mechanisms of premature brain injury.
Collapse
|
82
|
van Tilborg E, Heijnen CJ, Benders MJ, van Bel F, Fleiss B, Gressens P, Nijboer CH. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog Neurobiol 2015; 136:28-49. [PMID: 26655283 DOI: 10.1016/j.pneurobio.2015.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates.
Collapse
Affiliation(s)
- Erik van Tilborg
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manon J Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobbi Fleiss
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
83
|
Fingolimod ameliorates the development of experimental autoimmune encephalomyelitis by inhibiting Akt-mTOR axis in mice. Int Immunopharmacol 2015; 30:171-178. [PMID: 26632437 DOI: 10.1016/j.intimp.2015.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 11/20/2022]
Abstract
Fingolimod is a new immunosuppressive agent approved by Food and Drug Administration (FDA) for treating multiple sclerosis (MS). It acts as a functional antagonist to downregulate the S1P1 receptor, which is known to signal through the Akt-mTOR pathway. We investigated the mechanism of fingolimod action in the classical animal model of MS: experimental autoimmune encephalomyelitis (EAE). Fingolimod treatment significantly reduced clinical scores and histopathology in this model, even when treatment was begun after the onset of pathology. The Akt-mTOR signaling pathway was shown to be activated in the EAE model, by measuring the abundance of downstream activation markers, pAkt and ps6k. And this pathway was inhibited when EAE mice were treated with fingolimod. Mice with EAE exhibited an increased frequency of Th1 cells in the spleen, with concomitant increases in the mRNA levels of Tbet and Ifng and increased IFN-γ production by activated splenocytes; the frequency of Treg cells, as well as mRNA levels of Foxp3 and Tgfb, was reduced, as was TGF-β production by activated splenocytes. After treatment with fingolimod, these parameters were reversed, suggesting that fingolimod treatment inhibits the Akt-mTOR axis in EAE, which affects the differentiation and function of Th1 and Treg cells. These results provide an insight into the mechanism of action of fingolimod treatment and may provide new ideas for treating EAE and MS.
Collapse
|
84
|
Schumacher M, Guennoun R, Mattern C, Oudinet JP, Labombarda F, De Nicola AF, Liere P. Analytical challenges for measuring steroid responses to stress, neurodegeneration and injury in the central nervous system. Steroids 2015; 103:42-57. [PMID: 26301525 DOI: 10.1016/j.steroids.2015.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Levels of steroids in the adult central nervous system (CNS) show marked changes in response to stress, degenerative disorders and injury. However, their analysis in complex matrices such as fatty brain and spinal cord tissues, and even in plasma, requires accurate and precise analytical methods. Radioimmunoassays (RIA) and enzyme-linked immunosorbent assays, even with prepurification steps, do not provide sufficient specificity, and they are at the origin of many inconsistent results in the literature. The analysis of steroids by mass spectrometric methods has become the gold standard for accurate and sensitive steroid analysis. However, these technologies involve multiple purification steps prone to errors, and they only provide accurate reference values when combined with careful sample workup. In addition, the interpretation of changes in CNS steroid levels is not an easy task because of their multiple sources: the endocrine glands and the local synthesis by neural cells. In the CNS, decreased steroid levels may reflect alterations of their biosynthesis, as observed in the case of chronic stress, post-traumatic stress disorders or depressive episodes. In such cases, return to normalization by administering exogenous hormones or by stimulating their endogenous production may have beneficial effects. On the other hand, increases in CNS steroids in response to acute stress, degenerative processes or injury may be part of endogenous protective or rescue programs, contributing to the resistance of neural cells to stress and insults. The aim of this review is to encourage a more critical reading of the literature reporting steroid measures, and to draw attention to the absolute need for well-validated methods. We discuss reported findings concerning changing steroid levels in the nervous system by insisting on methodological issues. An important message is that even recent mass spectrometric methods have their limits, and they only become reliable tools if combined with careful sample preparation.
Collapse
Affiliation(s)
| | | | | | | | - Florencia Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
85
|
Berry M, Ahmed Z, Morgan-Warren P, Fulton D, Logan A. Prospects for mTOR-mediated functional repair after central nervous system trauma. Neurobiol Dis 2015; 85:99-110. [PMID: 26459109 DOI: 10.1016/j.nbd.2015.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/09/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
Recent research has suggested that the growth of central nervous system (CNS) axons during development is mediated through the PI3K/Akt/mammalian target of rapamycin (mTOR) intracellular signalling axis and that suppression of activity in this pathway occurs during maturity as levels of the phosphatase and tensin homologue (PTEN) rise and inhibit PI3K activation of mTOR, accounting for the failure of axon regeneration in the injured adult CNS. This hypothesis is supported by findings confirming that suppression of PTEN in experimental adult animals promotes impressive axon regeneration in the injured visual and corticospinal motor systems. This review focuses on these recent developments, discussing the therapeutic potential of a mTOR-based treatment aimed at promoting functional recovery in CNS trauma patients, recognising that to fulfil this ambition, the new therapy should aim to promote not only axon regeneration but also remyelination of regenerated axons, neuronal survival and re-innervation of denervated targets through accurate axonal guidance and synaptogenesis, all with minimal adverse effects. The translational challenges presented by the implementation of this new axogenic therapy are also discussed.
Collapse
Affiliation(s)
- Martin Berry
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zubair Ahmed
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Peter Morgan-Warren
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Daniel Fulton
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
86
|
Popovic M, Stanojevic Z, Tosic J, Isakovic A, Paunovic V, Petricevic S, Martinovic T, Ciric D, Kravic-Stevovic T, Soskic V, Kostic-Rajacic S, Shakib K, Bumbasirevic V, Trajkovic V. Neuroprotective arylpiperazine dopaminergic/serotonergic ligands suppress experimental autoimmune encephalomyelitis in rats. J Neurochem 2015; 135:125-38. [PMID: 26083644 DOI: 10.1111/jnc.13198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022]
Abstract
Arylpiperazine-based dopaminergic/serotonergic ligands exert neuroprotective activity. We examined the effect of arylpiperazine D2 /5-HT1A ligands, N-{4-[2-(4-phenyl-piperazin-1-yl)-ethyl}-phenyl]-picolinamide (6a) and N-{3-[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide (6b), in experimental autoimmune encephalomyelitis (EAE), a model of neuroinflammation. Both compounds (10 mg/kg i.p.) reduced EAE clinical signs in spinal cord homogenate-immunized Dark Agouti rats. Compound 6b was more efficient in delaying the disease onset and reducing the maximal clinical score, which correlated with its higher affinity for D2 and 5-HT1A receptors. The protection was retained if treatment was limited to the effector (from day 8 onwards), but not the induction phase (day 0-7) of EAE. Compound 6b reduced CNS immune infiltration and expression of mRNA encoding the proinflammatory cytokines tumor necrosis factor, IL-6, IL-1, and GM-CSF, TH 1 cytokine IFN-γ, TH 17 cytokine IL-17, as well as the signature transcription factors of TH 1 (T-bet) and TH 17 (RORγt) cells. Arylpiperazine treatment reduced apoptosis and increased the activation of anti-apoptotic mediators Akt and p70S6 kinase in the CNS of EAE animals. The in vitro treatment with 6b protected oligodendrocyte cell line OLN-93 and neuronal cell line PC12 from mitogen-activated normal T cells or myelin basic protein-activated encephalitogenic T cells. In conclusion, arylpiperazine dopaminergic/serotonergic ligands suppress EAE through a direct neuroprotective action and decrease in CNS inflammation. Arylpiperazine dopaminergic/serotonergic ligands reduce neurological symptoms of acute autoimmune encephalomyelitis in rats without affecting the activation of autoreactive immune response, through mechanisms involving a decrease in CNS immune infiltration, as well as direct protection of CNS from immune-mediated damage. These data indicate potential usefulness of arylpiperazine-based compounds in the treatment of neuroinflammatory disorders such as multiple sclerosis.
Collapse
Affiliation(s)
- Marjan Popovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zeljka Stanojevic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Tosic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Tamara Martinovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Darko Ciric
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | - Kaveh Shakib
- Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
87
|
Dutta S, Rutkai I, Katakam PVG, Busija DW. The mechanistic target of rapamycin (mTOR) pathway and S6 Kinase mediate diazoxide preconditioning in primary rat cortical neurons. J Neurochem 2015; 134:845-56. [PMID: 26016889 DOI: 10.1111/jnc.13181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 11/27/2022]
Abstract
We examined the role of the mechanistic target of rapamycin (mTOR) pathway in delayed diazoxide (DZ)-induced preconditioning of cultured rat primary cortical neurons. Neurons were treated for 3 days with 500 μM DZ or feeding medium and then exposed to 3 h of continuous normoxia in Dulbecco's modified eagle medium with glucose or with 3 h of oxygen-glucose deprivation (OGD) followed by normoxia and feeding medium. The OGD decreased viability by 50%, depolarized mitochondria, and reduced mitochondrial respiration, whereas DZ treatment improved viability and mitochondrial respiration, and suppressed reactive oxygen species production, but did not restore mitochondrial membrane potential after OGD. Neuroprotection by DZ was associated with increased phosphorylation of protein kinase B (Akt), mTOR, and the major mTOR downstream substrate, S6 Kinase (S6K). The mTOR inhibitors rapamycin and Torin-1, as well as S6K-targeted siRNA abolished the protective effects of DZ. The effects of DZ on mitochondrial membrane potential and reactive oxygen species production were not affected by rapamycin. Preconditioning with DZ also changed mitochondrial and non-mitochondrial oxygen consumption rates. We conclude that in addition to reducing reactive oxygen species (ROS) production and mitochondrial membrane depolarization, DZ protects against OGD by activation of the Akt-mTOR-S6K pathway and by changes in mitochondrial respiration. Ischemic strokes have limited therapeutic options. Diazoxide (DZ) preconditioning can reduce neuronal damage. Using oxygen-glucose deprivation (OGD), we studied Akt/mTOR/S6K signaling and mitochondrial respiration in neuronal preconditioning. We found DZ protects neurons against OGD via the Akt/mTOR/S6K pathway and alters the mitochondrial and non-mitochondrial oxygen consumption rate. This suggests that the Akt/mTOR/S6k pathway and mitochondria are novel stroke targets.
Collapse
Affiliation(s)
- Somhrita Dutta
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Prasad V G Katakam
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - David W Busija
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
88
|
Schmitz K, de Bruin N, Bishay P, Männich J, Häussler A, Altmann C, Ferreirós N, Lötsch J, Ultsch A, Parnham MJ, Geisslinger G, Tegeder I. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice. EMBO Mol Med 2015; 6:1398-422. [PMID: 25269445 PMCID: PMC4237468 DOI: 10.15252/emmm.201404168] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4(+)CD25(+)FoxP3(+) regulatory T cells, CTLA4(+) inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial.
Collapse
Affiliation(s)
- Katja Schmitz
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Natasja de Bruin
- Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Philipp Bishay
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Julia Männich
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Annett Häussler
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Christine Altmann
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Alfred Ultsch
- DataBionics Research Group, University of Marburg, Marburg, Germany
| | - Michael J Parnham
- Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| |
Collapse
|
89
|
Kalakh S, Mouihate A. The promyelinating properties of androstenediol in gliotoxin-induced demyelination in rat corpus callosum. Neuropathol Appl Neurobiol 2015; 41:964-82. [DOI: 10.1111/nan.12237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Samah Kalakh
- Department of Physiology, Faculty of Medicine; Kuwait University; Safat Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine; Kuwait University; Safat Kuwait
| |
Collapse
|
90
|
Multiple functional therapeutic effects of the estrogen receptor β agonist indazole-Cl in a mouse model of multiple sclerosis. Proc Natl Acad Sci U S A 2014; 111:18061-6. [PMID: 25453074 DOI: 10.1073/pnas.1411294111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Currently available immunomodulatory therapies do not stop the pathogenesis underlying multiple sclerosis (MS) and are only partially effective in preventing the onset of permanent disability in patients with MS. Identifying a drug that stimulates endogenous remyelination and/or minimizes axonal degeneration would reduce the rate and degree of disease progression. Here, the effects of the highly selective estrogen receptor (ER) β agonist indazole chloride (Ind-Cl) on functional remyelination in chronic experimental autoimmune encephalomyelitis (EAE) mice were investigated by assessing pathologic, functional, and behavioral consequences of both prophylactic and therapeutic (peak EAE) treatment with Ind-Cl. Peripheral cytokines from autoantigen-stimulated splenocytes were measured, and central nervous system infiltration by immune cells, axon health, and myelination were assessed by immunohistochemistry and electron microscopy. Therapeutic Ind-Cl improved clinical disease and rotorod performance and also decreased peripheral Th1 cytokines and reactive astrocytes, activated microglia, and T cells in brains of EAE mice. Increased callosal myelination and mature oligodendrocytes correlated with improved callosal conduction and refractoriness. Therapeutic Ind-Cl-induced remyelination was independent of its effects on the immune system, as Ind-Cl increased remyelination within the cuprizone diet-induced demyelinating model. We conclude that Ind-Cl is a refined pharmacologic agent capable of stimulating functionally relevant endogenous myelination, with important implications for progressive MS treatment.
Collapse
|
91
|
Moore S, Khalaj AJ, Patel R, Yoon J, Ichwan D, Hayardeny L, Tiwari-Woodruff SK. Restoration of axon conduction and motor deficits by therapeutic treatment with glatiramer acetate. J Neurosci Res 2014; 92:1621-36. [PMID: 24989965 PMCID: PMC4305217 DOI: 10.1002/jnr.23440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 12/20/2022]
Abstract
Glatiramer acetate (GA; Copaxone) is an approved drug for the treatment of multiple sclerosis (MS). The underlying multifactorial anti-inflammatory, neuroprotective effect of GA is in the induction of reactive T cells that release immunomodulatory cytokines and neurotrophic factors at the injury site. These GA-induced cytokines and growth factors may have a direct effect on axon function. Building on previous findings that suggest a neuroprotective effect of GA, we assessed the therapeutic effects of GA on brain and spinal cord pathology and functional correlates using the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Therapeutic regimens were utilized based on promising prophylactic efficacy. More specifically, C57BL/6 mice were treated with 2 mg/mouse/day GA for 8 days beginning at various time points after EAE post-induction day 15, yielding a thorough, clinically relevant assessment of GA efficacy within the context of severe progressive disease. Therapeutic treatment with GA significantly decreased clinical scores and improved rotorod motor performance in EAE mice. These functional improvements were supported by an increase in myelinated axons and fewer amyloid precursor protein-positive axons in the spinal cords of GA-treated EAE mice. Furthermore, therapeutic GA decreased microglia/macrophage and T cell infiltrates and increased oligodendrocyte numbers in both the spinal cord and corpus callosum of EAE mice. Finally, GA improved callosal axon conduction and nodal protein organization in EAE. Our results demonstrate that therapeutic GA treatment has significant beneficial effects in a chronic mouse model of MS, in which its positive effects on both myelinated and non-myelinated axons results in improved axon function.
Collapse
Affiliation(s)
- Spencer Moore
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Anna J Khalaj
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Rhusheet Patel
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - JaeHee Yoon
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Daniel Ichwan
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Liat Hayardeny
- Pharmacology Unit, Global Innovative Research and Development, Teva Pharmaceutical IndustriesNetanya, Israel
| | - Seema K Tiwari-Woodruff
- Department of Neurology, UCLA School of MedicineLos Angeles, California
- Brain Research Institute, UCLA School of MedicineLos Angeles, California
| |
Collapse
|
92
|
Cyclin-dependent kinase 5 mediates adult OPC maturation and myelin repair through modulation of Akt and GsK-3β signaling. J Neurosci 2014; 34:10415-29. [PMID: 25080600 DOI: 10.1523/jneurosci.0710-14.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Failure of remyelination in diseases, such as multiple sclerosis (MS), leads to permanent axonal damage and irreversible functional loss. The mechanisms controlling remyelination are currently poorly understood. Recent studies implicate the cyclin-dependent kinase 5 (Cdk5) in regulating oligodendrocyte (OL) development and myelination in CNS. In this study, we show that Cdk5 is also an important regulator of remyelination. Pharmacological inhibition of Cdk5 inhibits repair of lysolecithin lesions. This inhibition is a consequence of Cdk5 disruption in neural cells because remyelination in slice cultures is blocked by Cdk5 inhibitors, whereas specific deletion of Cdk5 in OLs inhibits myelin repair. In CNP-Cre;Cdk5(fl/fl) conditional knock-out mouse (Cdk5 cKO), myelin repair was delayed significantly in response to focal demyelinating lesions compared with wild-type animals. The lack of myelin repair was reflected in decreased expression of MBP and proteolipid protein and a reduction in the total number of myelinated axons in the lesion. The number of CC1(+) cells in the lesion sites was significantly reduced in Cdk5 cKO compared with wild-type animals although the total number of oligodendrocyte lineage cells (Olig2(+) cells) was increased, suggesting that Cdk5 loss perturbs the transition of early OL lineage cell into mature OL and subsequent remyelination. The failure of remyelination in Cdk5 cKO animals was associated with a reduction in signaling through the Akt pathway and an enhancement of Gsk-3β signaling pathways. Together, these data suggest that Cdk5 is critical in regulating the transition of adult oligodendrocyte precursor cells to mature OLs that is essential for myelin repair in adult CNS.
Collapse
|
93
|
Tuccinardi T, Poli G, Dell'Agnello M, Granchi C, Minutolo F, Martinelli A. Receptor-based virtual screening evaluation for the identification of estrogen receptorβligands. J Enzyme Inhib Med Chem 2014; 30:662-70. [DOI: 10.3109/14756366.2014.959946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
94
|
Suwanna N, Thangnipon W, Kumar S, de Vellis J. Neuroprotection by diarylpropionitrile in mice with spinal cord injury. EXCLI JOURNAL 2014; 13:1097-103. [PMID: 26417324 PMCID: PMC4464390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 12/02/2022]
Abstract
The initial impact of spinal cord injury (SCI) often results in inflammation leading to irreversible damage with consequent loss of locomotor function. Minimal recovery is achieved once permanent damage has occurred. Using a mouse model of SCI we observed a transitory increase followed by a rapid decline in gene expression and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of cellular anti-oxidative genes. Immediate treatment with diarylpropionitrile (DPN), a non-steroidal selective estrogen receptor ß ligand, resulted in a significant increase in Nrf2 levels, and reduction of inflammation and apoptosis compared to untreated SCI animals. Furthermore, DPN-treatment improved locomotor function within 7 days after induction of SCI. DPN acted through activation of PI3K/ Akt pathway, known to be involved in down-regulation of apoptosis and up-regulation of cell survival in injured tissues. These findings suggest that immediate activation of cellular anti-oxidative stress mechanisms should provide protection against irreversible tissue damage and its profound detrimental effect on locomotor function associated with SCI.
Collapse
Affiliation(s)
- Nirut Suwanna
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand,*To whom correspondence should be addressed: Wipawan Thangnipon, Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170, Thailand; Tel.: +66 24419003 ext 1203; Fax: +66 24419003 ext. 1311, E-mail:
| | - Shalini Kumar
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience, University of California, Los Angeles, California 90095, USA
| | - Jean de Vellis
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
95
|
Suwanna N, Thangnipon W, Soi-Ampornkul R. Neuroprotective effects of diarylpropionitrile against β-amyloid peptide-induced neurotoxicity in rat cultured cortical neurons. Neurosci Lett 2014; 578:44-9. [PMID: 24960633 DOI: 10.1016/j.neulet.2014.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/02/2014] [Accepted: 06/12/2014] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease is a major cause of dementia in the elderly that involves a β-amyloid peptide (Aβ)-induced cascade of an increase in oxidative damage and inflammation. The present study demonstrated the neuroprotective effects of diarylpropionitrile (DPN), a non-steroidal estrogen receptor β selective ligand, against 10 μM Aβ1-42-induced oxidative stress and inflammation in primary rat cortical cell culture. Pre-treatment with 1-100 nM DPN significantly decreased neuronal cell death by increasing cell viability through a significant attenuation in the reactive oxygen species level, downregulation of pro-apoptotic activated caspase-3 and Bax, and upregulation of anti-apoptotic Bcl-2, thereby mitigating apoptotic morphological alterations. DPN pre-treatment decreased the expression levels of pro-inflammatory cytokines IL-1β and IL-6 through attenuation of Aβ1-42-induced phosphorylation of mitogen-activated protein kinases JNK and p38. In addition, DPN enhanced ERK1/2 and Akt phosphorylation depressed by Aβ1-42. These findings suggest that DPN protects neurons from Aβ1-42-induced neurotoxicity through a variety of mechanisms, ranging from anti-oxidation, anti-apoptosis, through to anti-inflammation.
Collapse
Affiliation(s)
- Nirut Suwanna
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.
| | - Rungtip Soi-Ampornkul
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
96
|
Faria DDP, Copray S, Buchpiguel C, Dierckx R, de Vries E. PET imaging in multiple sclerosis. J Neuroimmune Pharmacol 2014; 9:468-82. [PMID: 24809810 DOI: 10.1007/s11481-014-9544-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/21/2014] [Indexed: 01/03/2023]
Abstract
Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus can be applied to detect and monitor different aspects of diseases. The number of applications of PET imaging in multiple sclerosis is still limited. Clinical studies using PET are basically focused on monitoring changes in glucose metabolism and the presence of activated microglia/macrophages in sclerotic lesions. In preclinical studies, PET imaging of targets for other processes, like demyelination and remyelination, has been investigated and may soon be translated to clinical applications. Moreover, more PET tracers that could be relevant for MS are available now, but have not been studied in this context yet. In this review, we summarize the PET imaging studies performed in multiple sclerosis up to now. In addition, we will identify potential applications of PET imaging of processes or targets that are of interest to MS research, but have yet remained largely unexplored.
Collapse
Affiliation(s)
- Daniele de Paula Faria
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
97
|
Rahn EJ, Iannitti T, Donahue RR, Taylor BK. Sex differences in a mouse model of multiple sclerosis: neuropathic pain behavior in females but not males and protection from neurological deficits during proestrus. Biol Sex Differ 2014; 5:4. [PMID: 24581045 PMCID: PMC3974112 DOI: 10.1186/2042-6410-5-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/31/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS), a demyelinating disease of the central nervous system, is one of the most prevalent neurological disorders in the industrialized world. This disease afflicts more than two million people worldwide, over two thirds of which are women. MS is typically diagnosed between the ages of 20-40 and can produce debilitating neurological impairments including muscle spasticity, muscle paralysis, and chronic pain. Despite the large sex disparity in MS prevalence, clinical and basic research investigations of how sex and estrous cycle impact development, duration, and severity of neurological impairments and pain symptoms are limited. To help address these questions, we evaluated behavioral signs of sensory and motor functions in one of the most widely characterized animal models of MS, the experimental autoimmune encephalomyelitis (EAE) model. METHODS C57BL/6 male and female mice received flank injection of complete Freund's adjuvant (CFA) or CFA plus myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) to induce EAE. Experiment 1 evaluated sex differences of EAE-induced neurological motor deficits and neuropathic pain-like behavior over 3 weeks, while experiment 2 evaluated the effect of estrous phase in female mice on the same behavioral measures for 3 months. EAE-induced neurological motor deficits including gait analysis and forelimb grip strength were assessed. Neuropathic pain-like behaviors evaluated included sensitivity to mechanical, cold, and heat stimulations. Estrous cycle was determined daily via vaginal lavage. RESULTS MOG35-55-induced EAE produced neurological impairments (i.e., motor dysfunction) including mild paralysis and decreases in grip strength in both females and males. MOG35-55 produced behavioral signs of neuropathic pain-mechanical and cold hypersensitivity-in females, but not males. MOG35-55 did not change cutaneous heat sensitivity in either sex. Administration of CFA or CFA + MOG35-55 prolonged the time spent in diestrus for 2 weeks, after which normal cycling returned. MOG35-55 produced fewer neurological motor deficits when mice were in proestrus relative to non-proestrus phases. CONCLUSIONS We conclude that female mice are superior to males for the study of neuropathic pain-like behaviors associated with MOG35-55-induced EAE. Further, proestrus may be protective against EAE-induced neurological deficits, thus necessitating further investigation into the impact that estrous cycle exerts on MS symptoms.
Collapse
Affiliation(s)
| | | | | | - Bradley K Taylor
- Department of Physiology, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
98
|
Briz V, Baudry M. Estrogen Regulates Protein Synthesis and Actin Polymerization in Hippocampal Neurons through Different Molecular Mechanisms. Front Endocrinol (Lausanne) 2014; 5:22. [PMID: 24611062 PMCID: PMC3933789 DOI: 10.3389/fendo.2014.00022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/13/2014] [Indexed: 12/21/2022] Open
Abstract
Estrogen rapidly modulates hippocampal synaptic plasticity by activating selective membrane-associated receptors. Reorganization of the actin cytoskeleton and stimulation of mammalian target of rapamycin (mTOR)-mediated protein synthesis are two major events required for the consolidation of hippocampal long-term potentiation and memory. Estradiol regulates synaptic plasticity by interacting with both processes, but the underlying molecular mechanisms are not yet fully understood. Here, we used acute rat hippocampal slices to analyze the mechanisms underlying rapid changes in mTOR activity and actin polymerization elicited by estradiol. Estradiol-induced mTOR phosphorylation was preceded by rapid and transient activation of both extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) and by phosphatase and tensin homolog (PTEN) degradation. These effects were prevented by calpain and ERK inhibitors. Estradiol-induced mTOR stimulation did not require activation of classical estrogen receptors (ER), as specific ERα and ERβ agonists (PPT and DPN, respectively) failed to mimic this effect, and ER antagonists could not block it. Estradiol rapidly activated both RhoA and p21-activated kinase (PAK). Furthermore, a specific inhibitor of RhoA kinase (ROCK), H1152, and a potent and specific PAK inhibitor, PF-3758309, blocked estradiol-induced cofilin phosphorylation and actin polymerization. ER antagonists also blocked these effects of estrogen. Consistently, both PPT and DPN stimulated PAK and cofilin phosphorylation as well as actin polymerization. Finally, the effects of estradiol on actin polymerization were insensitive to protein synthesis inhibitors, but its stimulation of mTOR activity was impaired by latrunculin A, a drug that disrupts actin filaments. Taken together, our results indicate that estradiol regulates local protein synthesis and cytoskeletal reorganization via different molecular mechanisms and signaling pathways.
Collapse
Affiliation(s)
- Victor Briz
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
- *Correspondence: Michel Baudry, Graduate College of Biomedical Sciences, Western University of Health Sciences, NSC, Room 102C, 309 E. 2nd Street, Pomona, CA 91766-1854, USA e-mail:
| |
Collapse
|
99
|
Estrogen receptor (ER) β expression in oligodendrocytes is required for attenuation of clinical disease by an ERβ ligand. Proc Natl Acad Sci U S A 2013; 110:19125-30. [PMID: 24191028 DOI: 10.1073/pnas.1311763110] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Treatment of experimental autoimmune encephalomyelitis (EAE) mice with the estrogen receptor (ER) β ligand diarylpropionitrile (DPN) has been shown to have neuroprotective effects via stimulation of endogenous myelination. The direct cellular mechanisms underlying the effects of this ERβ ligand on the central nervous system are uncertain because different cell types in both the peripheral immune system and central nervous system express ERs. ERβ is the target molecule of DPN because DPN treatment fails to decrease EAE clinical symptoms in global ERβ-null mice. Here we investigated the potential role of ERβ expression in cells of oligodendrocyte (OL) lineage in ERβ ligand-mediated neuroprotection. To this end, we selectively deleted ERβ in OLs using the well-characterized Cre-loxP system for conditional gene knockout (CKO) in mice. The effects of this ERβ CKO on ERβ ligand-mediated neuroprotective effects in chronic EAE mice were investigated. ERβ CKO in OLs prevented DPN-induced decrease in EAE clinical disease. DPN treatment during EAE did not attenuate demyelination, only partially improved axon conduction, and did not activate the phosphatidylinositol 3-kinase/serine-threonine-specific protein kinase/mammalian target of rapamycin signaling pathway in ERβ CKO mice. However, DPN treatment significantly increased brain-derived neurotrophic factor levels in ERβ CKO mice. These findings demonstrate that signaling through ERβ in OLs is essential for the beneficial myelination effects of the ERβ ligand DPN in chronic EAE mice. Further, these findings have important implications for neuroprotective therapies that directly target OL survival and myelination.
Collapse
|
100
|
Moore S, Khalaj AJ, Yoon J, Patel R, Hannsun G, Yoo T, Sasidhar M, Martinez-Torres L, Hayardeny L, Tiwari-Woodruff SK. Therapeutic laquinimod treatment decreases inflammation, initiates axon remyelination, and improves motor deficit in a mouse model of multiple sclerosis. Brain Behav 2013; 3:664-82. [PMID: 24363970 PMCID: PMC3868172 DOI: 10.1002/brb3.174] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/28/2013] [Accepted: 08/08/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Therapeutic strategies that induce effective neuroprotection and enhance intrinsic repair mechanisms are central goals for future treatment of multiple sclerosis (MS), as well as other diseases. Laquinimod (LQ) is an orally administered, central nervous system (CNS)-active immunomodulator with demonstrated efficacy in MS clinical trials and a favorable safety and tolerability profile. AIMS We aimed to explore the pathological, functional, and behavioral consequences of prophylactic and therapeutic (after presentation of peak clinical disease) LQ treatment in the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS. MATERIALS AND METHODS Active EAE-induced 8-week-old C57BL/6 mice were treated with 5 or 25 mg/kg/day LQ via oral gavage beginning on EAE post-immunization day 0, 8, or 21. Clinical scores and rotorod motor performance were assessed throughout the disease course. Immune analysis of autoantigen-stimulated splenocytes, electrophysiological conduction of callosal axons, and immunohistochemistry of white matter-rich corpus callosum and spinal cord were performed. RESULTS Prophylactic and therapeutic treatment with LQ significantly decreased mean clinical disease scores, inhibited Th1 cytokine production, and decreased the CNS inflammatory response. LQ-induced improvement in axon myelination and integrity during EAE was functional, as evidenced by significant recovery of callosal axon conduction and axon refractoriness and pronounced improvement in rotorod motor performance. These improvements correlate with LQ-induced attenuation of EAE-induced demyelination and axon damage, and improved myelinated axon numbers. DISCUSSION Even when initiated at peak disease, LQ treatment has beneficial effects within the chronic EAE mouse model. In addition to its immunomodulatory effects, the positive effects of LQ treatment on oligodendrocyte numbers and myelin density are indicative of significant, functional neuroprotective and neurorestorative effects. CONCLUSIONS Our results support a potential neuroprotective, in addition to immunomodulatory, effect of LQ treatment in inhibiting ongoing MS/EAE disease progression.
Collapse
Affiliation(s)
- Spencer Moore
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Anna J Khalaj
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Jaehee Yoon
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Rhusheet Patel
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Gemmy Hannsun
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Timothy Yoo
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Manda Sasidhar
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Leonardo Martinez-Torres
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California
| | - Liat Hayardeny
- Pharmacology Unit, Global Innovative R&D, Teva Pharmaceutical Industries Netanya, Israel
| | - Seema K Tiwari-Woodruff
- Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, California ; Brain Research Institute, UCLA School of Medicine Los Angeles, California ; Intellectual Development and Disabilities Research Center, UCLA Los Angeles, California
| |
Collapse
|