51
|
Dynamic control of decision and movement speed in the human basal ganglia. Nat Commun 2022; 13:7530. [PMID: 36476581 PMCID: PMC9729212 DOI: 10.1038/s41467-022-35121-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
To optimally adjust our behavior to changing environments we need to both adjust the speed of our decisions and movements. Yet little is known about the extent to which these processes are controlled by common or separate mechanisms. Furthermore, while previous evidence from computational models and empirical studies suggests that the basal ganglia play an important role during adjustments of decision-making, it remains unclear how this is implemented. Leveraging the opportunity to directly access the subthalamic nucleus of the basal ganglia in humans undergoing deep brain stimulation surgery, we here combine invasive electrophysiological recordings, electrical stimulation and computational modelling of perceptual decision-making. We demonstrate that, while similarities between subthalamic control of decision- and movement speed exist, the causal contribution of the subthalamic nucleus to these processes can be disentangled. Our results show that the basal ganglia independently control the speed of decisions and movement for each hemisphere during adaptive behavior.
Collapse
|
52
|
A diffusion model for the congruency sequence effect. Psychon Bull Rev 2022; 29:2034-2051. [PMID: 35676612 DOI: 10.3758/s13423-022-02119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Two-choice reaction tasks for which stimuli differ on irrelevant and relevant dimensions (e.g., Simon, flanker, and Stroop tasks) show congruency effects. The diffusion model for conflict tasks (DMC) has provided a quantitative account of the mechanisms underlying decisions in such conflict tasks, but it has not been applied to the congruency sequence effect (CSE) for which the congruency on the prior trial influences performance on the current trial. The present study expands analysis of the reaction time (RT) distributions reflected by delta plots to the CSE, and then extends the DMC to simulate the results. With increasing RT: (1) the spatial Simon effect was almost unchanged following congruent trials but initially became smaller and finally reversed following incongruent trials; (2) the arrow-based Simon effects increased following both congruent and incongruent trials, but more so for the former than the latter; (3) the flanker congruency effect varied quadratically following congruent trials but increased linearly following incongruent trials. These results were modeled by the CSE-DMC, extended from the DMC with two additional assumptions: (1) feature integration influences only the controlled processes; (2) following incongruent trials, the automatic process is weakened. The results fit better with the CSE-DMC than with two variants that separately had only one of the two additional assumptions. These findings indicate that the CSEs for different conflict tasks have disparate RT distributions and that these disparities are likely due to the controlled and automatic processes being influenced differently for each trial sequence.
Collapse
|
53
|
Xu B, He T, Lu Y, Jia J, Sahakian BJ, Robbins TW, Jin L, Ye Z. Locus coeruleus integrity correlates with inhibitory functions of the fronto-subthalamic 'hyperdirect' pathway in Parkinson's disease. Neuroimage Clin 2022; 36:103276. [PMID: 36510410 PMCID: PMC9723406 DOI: 10.1016/j.nicl.2022.103276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
A long-running debate concerns whether dopamine or noradrenaline deficiency drives response disinhibition in Parkinson's disease (PD). This study aimed to investigate whether damage to the locus coeruleus (LC) or substantia nigra (SN) might impact inhibitory functions of the fronto-subthalamic hyperdirect or fronto-striatal indirect pathway. Patients with PD (n = 29, 13 women) and matched healthy controls (n = 29, 15 women) participated in this cross-sectional study. LC and SN integrity was assessed using neuromelanin-sensitive MRI. Response inhibition was measured using fMRI with a stop-signal task. In healthy controls, LC (but not SN) integrity correlated with the stopping-related activity of the right inferior frontal gyrus (IFG) and right subthalamic nucleus (STN), which further correlated with stop-signal reaction time (SSRT). PD patients showed reduced LC integrity, longer SSRT, and lower stopping-related activity over the right IFG, pre-supplementary motor area, and right caudate nucleus than healthy controls. In PD patients, the relationship between SSRT and the fronto-subthalamic pathway was preserved. However, LC integrity no longer correlated with the stopping-related right IFG or right STN activity. No contribution of SN integrity was found during stopping. In conclusion, LC (but not SN) might modulate inhibitory functions of the right IFG-STN pathway. Damage to the LC might impact the right IFG-STN pathway during stopping, leading to response disinhibition in PD.
Collapse
Affiliation(s)
- Biman Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yuquan Road 19(A), Beijing 100049, China
| | - Tingting He
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Yuan Lu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
| | - Jia Jia
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Barbara J. Sahakian
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Handan Road 220, Shanghai 200433, China
| | - Trevor W. Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Handan Road 220, Shanghai 200433, China
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - Lirong Jin
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China
| |
Collapse
|
54
|
A neurocomputational theory of action regulation predicts motor behavior in neurotypical individuals and patients with Parkinson’s disease. PLoS Comput Biol 2022; 18:e1010111. [DOI: 10.1371/journal.pcbi.1010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/01/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Surviving in an uncertain environment requires not only the ability to select the best action, but also the flexibility to withhold inappropriate actions when the environmental conditions change. Although selecting and withholding actions have been extensively studied in both human and animals, there is still lack of consensus on the mechanism underlying these action regulation functions, and more importantly, how they inter-relate. A critical gap impeding progress is the lack of a computational theory that will integrate the mechanisms of action regulation into a unified framework. The current study aims to advance our understanding by developing a neurodynamical computational theory that models the mechanism of action regulation that involves suppressing responses, and predicts how disruption of this mechanism can lead to motor deficits in Parkinson’s disease (PD) patients. We tested the model predictions in neurotypical individuals and PD patients in three behavioral tasks that involve free action selection between two opposed directions, action selection in the presence of conflicting information and abandoning an ongoing action when a stop signal is presented. Our results and theory suggest an integrated mechanism of action regulation that affects both action initiation and inhibition. When this mechanism is disrupted, motor behavior is affected, leading to longer reaction times and higher error rates in action inhibition.
Collapse
|
55
|
Bissett PG, Poldrack RA. Estimating the Time to Do Nothing: Toward Next-Generation Models of Response Inhibition. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2022. [DOI: 10.1177/09637214221121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Controlled behavior requires response inhibition, which is a cognitive function that involves withholding action as goals change. Response inhibition is often assessed using the stop-signal paradigm, in which participants respond to most stimuli but periodically withhold their response when a subsequent stop signal occurs. The stop-signal paradigm rests on the theoretical foundation of the independent race model, which assumes a stop racer that races independently against a go racer; behavior is determined by which racer finishes first. We highlight work showing violations of the keystone independence assumption of existing stop models and discuss promising new models of response inhibition.
Collapse
|
56
|
Moving beyond response times with accessible measures of manual dynamics. Sci Rep 2022; 12:19065. [PMID: 36351962 PMCID: PMC9646795 DOI: 10.1038/s41598-022-20579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
Button-press measures of response time (RT) and accuracy have long served a central role in psychological research. However, RT and accuracy provide limited insight into how cognitive processes unfold over time. To address this limitation, researchers have used hand-tracking techniques to investigate how cognitive processes unfold over the course of a response, are modulated by recent experience, and function across the lifespan. Despite the efficacy of these techniques for investigating a wide range of psychological phenomena, widespread adoption of hand-tracking techniques within the field is hindered by a range of factors, including equipment costs and the use of specialized software. Here, we demonstrate that the behavioral dynamics previously observed with specialized motion-tracking equipment in an Eriksen flanker task can be captured with an affordable, portable, and easy-to-assemble response box. Six-to-eight-year-olds and adults (N = 90) completed a computerized version of the flanker task by pressing and holding a central button until a stimulus array appeared. Participants then responded by releasing the central button and reaching to press one of two response buttons. This method allowed RT to be separated into initiation time (when the central button was released) and movement time (time elapsed between initiation and completion of the response). Consistent with previous research using motion-tracking techniques, initiation times and movement times revealed distinct patterns of effects across trials and between age groups, indicating that the method used in the current study presents a simple solution for researchers from across the psychological and brain sciences looking to move beyond RTs.
Collapse
|
57
|
Nwogo RO, Kammermeier S, Singh A. Abnormal neural oscillations during gait and dual-task in Parkinson’s disease. Front Syst Neurosci 2022; 16:995375. [PMID: 36185822 PMCID: PMC9522469 DOI: 10.3389/fnsys.2022.995375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Gait dysfunctions are debilitating motor symptoms of Parkinson’s disease (PD) and may result in frequent falling with health complications. The contribution of the motor-cognitive network to gait disturbance can be studied more thoroughly by challenging motor-cognitive dual-task gait performances. Gait is a complex motor task that requires an appropriate contribution from motor and cognitive networks, reflected in frequency modulations among several cortical and subcortical networks. Electrophysiological recordings by scalp electroencephalography and implanted deep brain stimulation (DBS) electrodes have unveiled modulations of specific oscillatory patterns in the cortical-subcortical circuits in PD. In this review, we summarize oscillatory contributions of the cortical, basal ganglia, mesencephalic locomotor, and cerebellar regions during gait and dual-task activities in PD. We detail the involvement of the cognitive network in dual-task settings and compare how abnormal oscillations in the specific frequency bands in the cortical and subcortical regions correlate with gait deficits in PD, particularly freezing of gait (FOG). We suggest that altered neural oscillations in different frequencies can cause derangements in broader brain networks, so neuromodulation and pharmacological therapies should be considered to normalize those network oscillations to improve challenged gait and dual-task motor functions in PD. Specifically, the theta and beta bands in premotor cortical areas, subthalamic nucleus, as well as alpha band activity in the brainstem prepontine nucleus, modulate under clinically effective levodopa and DBS therapies, improving gait and dual-task performance in PD with FOG, compared to PD without FOG and age-matched healthy control groups.
Collapse
Affiliation(s)
- Rachel O. Nwogo
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | | | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- *Correspondence: Arun Singh,
| |
Collapse
|
58
|
Rahman S, Siddique U, Choudhury S, Islam N, Roy A, Basu P, Anand SS, Islam MA, Shahi MS, Nayeem A, Chowdhury MTI, Chowdhury MSJH, Taylor JP, Baker MR, Baker SN, Kumar H. Comparing Stop Signal Reaction Times in Alzheimer's and Parkinson's Disease. Can J Neurol Sci 2022; 49:662-671. [PMID: 34321129 DOI: 10.1017/cjn.2021.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND To investigate the relative contributions of cerebral cortex and basal ganglia to movement stopping, we tested the optimum combination Stop Signal Reaction Time (ocSSRT) and median visual reaction time (RT) in patients with Alzheimer's disease (AD) and Parkinson's disease (PD) and compared values with data from healthy controls. METHODS Thirty-five PD patients, 22 AD patients, and 29 healthy controls were recruited to this study. RT and ocSSRT were measured using a hand-held battery-operated electronic box through a stop signal paradigm. RESULT The mean ocSSRT was found to be 309 ms, 368 ms, and 265 ms in AD, PD, and healthy controls, respectively, and significantly prolonged in PD compared to healthy controls (p = 0.001). The ocSSRT but not RT could separate AD from PD patients (p = 0.022). CONCLUSION Our data suggest that subcortical networks encompassing dopaminergic pathways in the basal ganglia play a more important role than cortical networks in movement-stopping. Combining ocSSRT with other putative indices or biomarkers of AD (and other dementias) could increase the accuracy of early diagnosis.
Collapse
Affiliation(s)
- Simin Rahman
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| | - Ummatul Siddique
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| | - Supriyo Choudhury
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| | - Nazrul Islam
- National Institute of Neurosciences & Hospital, Agargoan, Dhaka, Bangladesh
| | - Akash Roy
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| | - Purba Basu
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| | - Sidharth Shankar Anand
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| | | | | | - Abu Nayeem
- National Institute of Neurosciences & Hospital, Agargoan, Dhaka, Bangladesh
| | | | | | | | - Mark R Baker
- Medical School, Newcastle University, Newcastle upon Tyne, UK
- Departments of Neurology and Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Stuart N Baker
- Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Hrishikesh Kumar
- Department of Neurology, RGCM Research Centre, Institute of Neurosciences, Kolkata, India
| |
Collapse
|
59
|
Kane JM, McDonnell JL, Neimat JS, Hedera P, van den Wildenberg WPM, Phibbs FT, Bradley EB, Wylie SA, van Wouwe NC. Essential tremor impairs the ability to suppress involuntary action impulses. Exp Brain Res 2022; 240:1957-1966. [PMID: 35562536 PMCID: PMC11150918 DOI: 10.1007/s00221-022-06373-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
Abstract
Essential tremor (ET) is a movement disorder characterized primarily by action tremor which affects the regulation of movements. Disruptions in cerebello-thalamocortical networks could interfere with cognitive control over actions in ET, for example, the ability to suppress a strong automatic impulse over a more appropriate action (conflict control). The current study investigated whether ET impacts conflict control proficiency. Forty-one ET patients and 29 age-matched healthy controls (HCs) performed a conflict control task (Simon task). Participants were instructed to give a left or right response to a spatially lateralized arrow (direction of the arrow). When the action signaled by the spatial location and direction of the arrow were non-corresponding (induced conflict), the inappropriate action impulse required suppression. Overall, ET patients responded slower and less accurately compared to HCs. ET patients were especially less accurate on non-corresponding conflict (Nc) versus corresponding (Cs) trials. A focused analysis on fast impulsive response rates (based on the accuracy rate at the fastest reaction times on Nc trials) showed that ET patients made more fast errors compared to HCs. Results suggest impaired conflict control in ET compared to HCs. The increased impulsive errors seen in the ET population may be a symptom of deficiencies in the cerebello-thalamocortical networks, or, be caused by indirect effects on the cortico-striatal pathways. Future studies into the functional networks impacted by ET (cortico-striatal and cerebello-thalamocortical pathways) could advance our understanding of inhibitory control in general and the cognitive deficits in ET.
Collapse
Affiliation(s)
- Jessi M Kane
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
- Department of Psychology, University of Louisville, Louisville, KY, USA
| | | | - Joseph S Neimat
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Peter Hedera
- Department of Neurology, University of Louisville, Louisville, KY, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wery P M van den Wildenberg
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Fenna T Phibbs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elise B Bradley
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott A Wylie
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Nelleke C van Wouwe
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
60
|
Miletić S, Keuken MC, Mulder M, Trampel R, de Hollander G, Forstmann BU. 7T functional MRI finds no evidence for distinct functional subregions in the subthalamic nucleus during a speeded decision-making task. Cortex 2022; 155:162-188. [DOI: 10.1016/j.cortex.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
|
61
|
Evidence for non-selective response inhibition in uncertain contexts revealed by combined meta-analysis and Bayesian analysis of fMRI data. Sci Rep 2022; 12:10137. [PMID: 35710930 PMCID: PMC9203582 DOI: 10.1038/s41598-022-14221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Response inhibition is typically considered a brain mechanism selectively triggered by particular “inhibitory” stimuli or events. Based on recent research, an alternative non-selective mechanism was proposed by several authors. Presumably, the inhibitory brain activity may be triggered not only by the presentation of “inhibitory” stimuli but also by any imperative stimuli, including Go stimuli, when the context is uncertain. Earlier support for this notion was mainly based on the absence of a significant difference between neural activity evoked by equiprobable Go and NoGo stimuli. Equiprobable Go/NoGo design with a simple response time task limits potential confounds between response inhibition and accompanying cognitive processes while not preventing prepotent automaticity. However, previous neuroimaging studies used classical null hypothesis significance testing, making it impossible to accept the null hypothesis. Therefore, the current research aimed to provide evidence for the practical equivalence of neuronal activity in the Go and NoGo trials using Bayesian analysis of functional magnetic resonance imaging (fMRI) data. Thirty-four healthy participants performed a cued Go/NoGo task with an equiprobable presentation of Go and NoGo stimuli. To independently localize brain areas associated with response inhibition in similar experimental conditions, we performed a meta-analysis of fMRI studies using equal-probability Go/NoGo tasks. As a result, we observed overlap between response inhibition areas and areas that demonstrate the practical equivalence of neuronal activity located in the right dorsolateral prefrontal cortex, parietal cortex, premotor cortex, and left inferior frontal gyrus. Thus, obtained results favour the existence of non-selective response inhibition, which can act in settings of contextual uncertainty induced by the equal probability of Go and NoGo stimuli.
Collapse
|
62
|
Moolchand P, Jones SR, Frank MJ. Biophysical and Architectural Mechanisms of Subthalamic Theta under Response Conflict. J Neurosci 2022; 42:4470-4487. [PMID: 35477903 PMCID: PMC9172290 DOI: 10.1523/jneurosci.2433-19.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/26/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
The cortico-basal ganglia circuit is needed to suppress prepotent actions and to facilitate controlled behavior. Under conditions of response conflict, the frontal cortex and subthalamic nucleus (STN) exhibit increased spiking and theta band power, which are linked to adaptive regulation of behavioral output. The electrophysiological mechanisms underlying these neural signatures of impulse control remain poorly understood. To address this lacuna, we constructed a novel large-scale, biophysically principled model of the subthalamopallidal (STN-globus pallidus externus) network and examined the mechanisms that modulate theta power and spiking in response to cortical input. Simulations confirmed that theta power does not emerge from intrinsic network dynamics but is robustly elicited in response to cortical input as burst events representing action selection dynamics. Rhythmic burst events of multiple cortical populations, representing a state of conflict where cortical motor plans vacillate in the theta range, led to prolonged STN theta and increased spiking, consistent with empirical literature. Notably, theta band signaling required NMDA, but not AMPA, currents, which were in turn related to a triphasic STN response characterized by spiking, silence, and bursting periods. Finally, theta band resonance was also strongly modulated by architectural connectivity, with maximal theta arising when multiple cortical populations project to individual STN "conflict detector" units because of an NMDA-dependent supralinear response. Our results provide insights into the biophysical principles and architectural constraints that give rise to STN dynamics during response conflict, and how their disruption can lead to impulsivity and compulsivity.SIGNIFICANCE STATEMENT The subthalamic nucleus exhibits theta band power modulation related to cognitive control over motor actions during conditions of response conflict. However, the mechanisms of such dynamics are not understood. Here we developed a novel biophysically detailed and data-constrained large-scale model of the subthalamopallidal network, and examined the impacts of cellular and network architectural properties that give rise to theta dynamics. Our investigations implicate an important role for NMDA receptors and cortico-subthalamic nucleus topographical connectivities in theta power modulation.
Collapse
Affiliation(s)
- Prannath Moolchand
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
63
|
Palminteri S, Lebreton M. The computational roots of positivity and confirmation biases in reinforcement learning. Trends Cogn Sci 2022; 26:607-621. [PMID: 35662490 DOI: 10.1016/j.tics.2022.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
Humans do not integrate new information objectively: outcomes carrying a positive affective value and evidence confirming one's own prior belief are overweighed. Until recently, theoretical and empirical accounts of the positivity and confirmation biases assumed them to be specific to 'high-level' belief updates. We present evidence against this account. Learning rates in reinforcement learning (RL) tasks, estimated across different contexts and species, generally present the same characteristic asymmetry, suggesting that belief and value updating processes share key computational principles and distortions. This bias generates over-optimistic expectations about the probability of making the right choices and, consequently, generates over-optimistic reward expectations. We discuss the normative and neurobiological roots of these RL biases and their position within the greater picture of behavioral decision-making theories.
Collapse
Affiliation(s)
- Stefano Palminteri
- Laboratoire de Neurosciences Cognitives et Computationnelles, Institut National de la Santé et Recherche Médicale, Paris, France; Département d'Études Cognitives, Ecole Normale Supérieure, Paris, France; Université de Recherche Paris Sciences et Lettres, Paris, France.
| | - Maël Lebreton
- Paris School of Economics, Paris, France; LabNIC, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland; Swiss Center for Affective Science, Geneva, Switzerland.
| |
Collapse
|
64
|
Bielawski T, Drapała J, Krowicki P, Stańczykiewicz B, Frydecka D. Trauma Disrupts Reinforcement Learning in Rats-A Novel Animal Model of Chronic Stress Exposure. Front Behav Neurosci 2022; 16:903100. [PMID: 35663358 PMCID: PMC9157238 DOI: 10.3389/fnbeh.2022.903100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Trauma, as well as chronic stress that characterizes a modern fast-paced lifestyle, contributes to numerous psychopathologies and psychological problems. Psychiatric patients with traumas, as well as healthy individuals who experienced traumas in the past, are often characterized by diminished cognitive abilities. In our protocol, we used an animal model to explore the influence of chronic trauma on cognitive abilities and behavior in the group of 20 rats (Rattus norvegicus). The experimental group was introduced to chronic (12 consecutive days) exposure to predator odor (bobcat urine). We measured the reinforcement learning of each individual before and after the exposition via the Probabilistic Selection Task (PST) and we used Social Interaction Test (SIT) to assess the behavioral changes of each individual before and after the trauma. In the experimental group, there was a significant decrease in reinforcement learning after exposure to a single trauma (Wilcoxon Test, p = 0.034) as well as after 11 days of chronic trauma (Wilcoxon-test, p = 0.01) in comparison to pre-trauma performance. The control group, which was not exposed to predator odor but underwent the same testing protocol, did not present significant deterioration in reinforcement learning. In cross-group comparisons, there was no difference between the experimental and control group in PST before odor protocol (U Mann-Whitney two-sided, p = 0.909). After exposure to chronic trauma, the experimental group deteriorated in PST performance compared to control (U Mann-Whitney Two-sided, p = 0.0005). In SIT, the experimental group spent less time in an Interaction Zone with an unfamiliar rat after trauma protocol (Wilcoxon two-sided test, p = 0.019). Major strengths of our models are: (1) protocol allows investigating reinforcement learning before and after exposition to chronic trauma, with the same group of rats, (2) translational scope, as the PST is displayed on touchscreen, similarly to human studies, (3) protocol delivers chronic trauma that impairs reward learning, but behaviorally does not induce full-blown anhedonia, thus rats performed voluntarily throughout all the procedures.
Collapse
Affiliation(s)
- Tomasz Bielawski
- Department of Psychiatry, Wrocław Medical University, Wrocław, Poland
| | - Jarosław Drapała
- Department of Computer Science and Systems Engineering, Faculty of Information and Communication Technology, Wrocław University of Science and Technology, Wrocław, Poland
| | - Paweł Krowicki
- Department of Laser Technologies, Automation and Production Management, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | | | - Dorota Frydecka
- Department of Psychiatry, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
65
|
Leimbach F, Atkinson-Clement C, Socorro P, Jahanshahi M. The Effects of Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease on Associative Learning of Verbal and Non-Verbal Information by Trial and Error or with Corrective Feedback. JOURNAL OF PARKINSON'S DISEASE 2022; 12:885-896. [PMID: 35342046 DOI: 10.3233/jpd-212843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Parkinson's disease (PD) and subthalamic nucleus deep brain stimulation (STN-DBS) are both known to induce cognitive changes. OBJECTIVE The aim of our study was to investigate the impact of STN-DBS on two forms of conditional associative learning (CAL), trial and error or corrective feedback learning, which differed in difficulty to test the load-dependency hypothesis of the cognitive effects of STN-DBS in PD. METHODS We recruited two groups of PD patients, those who had STN-DBS surgery bilaterally (n = 24) and a second unoperated group (n = 9) who were assessed on two versions of a task of visual CAL involving either a more difficult trial and error learning or a relatively easier corrective feedback learning. Each task was completed twice by both groups, On and Off STN-DBS for the operated group and a first and second time by the unoperated group. RESULTS With STN-DBS Off, corrective feedback learning was superior to trial and error CAL, but not with STN-DBS On. The unoperated PD group had improved performance during the second assessment. To control for the improvement observed with repeated assessment in the PD control group, we split the STN-DBS group into two subgroups based on the condition of the first assessment (Off first vs. On first). While we found no STN-DBS effects for the Off first subgroup (N = 14), we observed improved performance during the second STN-DBS Off session for the On first subgroup (N = 10). CONCLUSION The findings suggest that in PD, STN-DBS interferes with use of corrective feedback and its integration in the conditional associative learning process. Also STN stimulation affected the ability of operated patients to resolve proactive interference during learning of the arbitrary visual associations by trial and error or with corrective feedback.
Collapse
Affiliation(s)
- Friederike Leimbach
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Cyril Atkinson-Clement
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, F-75013, Paris, France.,Movement Investigation and Therapeutics Team, Paris, France.,School of Medicine, University of Nottingham, Nottingham, UK
| | - Pieter Socorro
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
66
|
Frömer R, Shenhav A. Filling the gaps: Cognitive control as a critical lens for understanding mechanisms of value-based decision-making. Neurosci Biobehav Rev 2022; 134:104483. [PMID: 34902441 PMCID: PMC8844247 DOI: 10.1016/j.neubiorev.2021.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/26/2022]
Abstract
While often seeming to investigate rather different problems, research into value-based decision making and cognitive control have historically offered parallel insights into how people select thoughts and actions. While the former studies how people weigh costs and benefits to make a decision, the latter studies how they adjust information processing to achieve their goals. Recent work has highlighted ways in which decision-making research can inform our understanding of cognitive control. Here, we provide the complementary perspective: how cognitive control research has informed understanding of decision-making. We highlight three particular areas of research where this critical interchange has occurred: (1) how different types of goals shape the evaluation of choice options, (2) how people use control to adjust the ways they make their decisions, and (3) how people monitor decisions to inform adjustments to control at multiple levels and timescales. We show how adopting this alternate viewpoint offers new insight into the determinants of both decisions and control; provides alternative interpretations for common neuroeconomic findings; and generates fruitful directions for future research.
Collapse
Affiliation(s)
- R Frömer
- Cognitive, Linguistic, and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI, United States.
| | - A Shenhav
- Cognitive, Linguistic, and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI, United States.
| |
Collapse
|
67
|
Waldthaler J, Vinding MC, Eriksson A, Svenningsson P, Lundqvist D. Neural correlates of impaired response inhibition in the antisaccade task in Parkinson’s disease. Behav Brain Res 2022; 422:113763. [DOI: 10.1016/j.bbr.2022.113763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 11/02/2022]
|
68
|
Coarse-Grained Neural Network Model of the Basal Ganglia to Simulate Reinforcement Learning Tasks. Brain Sci 2022; 12:brainsci12020262. [PMID: 35204025 PMCID: PMC8870197 DOI: 10.3390/brainsci12020262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Computational models of the basal ganglia (BG) provide a mechanistic account of different phenomena observed during reinforcement learning tasks performed by healthy individuals, as well as by patients with various nervous or mental disorders. The aim of the present work was to develop a BG model that could represent a good compromise between simplicity and completeness. Based on more complex (fine-grained neural network, FGNN) models, we developed a new (coarse-grained neural network, CGNN) model by replacing layers of neurons with single nodes that represent the collective behavior of a given layer while preserving the fundamental anatomical structures of BG. We then compared the functionality of both the FGNN and CGNN models with respect to several reinforcement learning tasks that are based on BG circuitry, such as the Probabilistic Selection Task, Probabilistic Reversal Learning Task and Instructed Probabilistic Selection Task. We showed that CGNN still has a functionality that mirrors the behavior of the most often used reinforcement learning tasks in human studies. The simplification of the CGNN model reduces its flexibility but improves the readability of the signal flow in comparison to more detailed FGNN models and, thus, can help to a greater extent in the translation between clinical neuroscience and computational modeling.
Collapse
|
69
|
Das A, Goldberg JH. Songbird subthalamic neurons project to dopaminergic midbrain and exhibit singing-related activity. J Neurophysiol 2022; 127:373-383. [PMID: 34965747 PMCID: PMC8896995 DOI: 10.1152/jn.00254.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Skill learning requires motor output to be evaluated against internal performance benchmarks. In songbirds, ventral tegmental area (VTA) dopamine neurons (DA) signal performance errors important for learning, but it remains unclear which brain regions project to VTA and how these inputs may contribute to DA error signaling. Here, we find that the songbird subthalamic nucleus (STN) projects to VTA and that STN microstimulation can excite VTA neurons. We also discover that STN receives inputs from motor cortical, auditory cortical, and ventral pallidal brain regions previously implicated in song evaluation. In the first neural recordings from songbird STN, we discover that the activity of most STN neurons is associated with body movements and not singing, but a small fraction of neurons exhibits precise song timing and performance error signals. Our results place the STN in a pathway important for song learning, but not song production, and expand the territories of songbird brain potentially associated with song learning.NEW & NOTEWORTHY Songbird subthalamic (STN) neurons exhibit singing-related signals and are interconnected with the motor cortical nucleus, auditory pallium, ventral pallidum, and ventral tegmental area, areas important for song generation and learning.
Collapse
Affiliation(s)
- Anindita Das
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Jesse H. Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| |
Collapse
|
70
|
Calderon CB, Verguts T, Frank MJ. Thunderstruck: The ACDC model of flexible sequences and rhythms in recurrent neural circuits. PLoS Comput Biol 2022; 18:e1009854. [PMID: 35108283 PMCID: PMC8843237 DOI: 10.1371/journal.pcbi.1009854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/14/2022] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Adaptive sequential behavior is a hallmark of human cognition. In particular, humans can learn to produce precise spatiotemporal sequences given a certain context. For instance, musicians can not only reproduce learned action sequences in a context-dependent manner, they can also quickly and flexibly reapply them in any desired tempo or rhythm without overwriting previous learning. Existing neural network models fail to account for these properties. We argue that this limitation emerges from the fact that sequence information (i.e., the position of the action) and timing (i.e., the moment of response execution) are typically stored in the same neural network weights. Here, we augment a biologically plausible recurrent neural network of cortical dynamics to include a basal ganglia-thalamic module which uses reinforcement learning to dynamically modulate action. This “associative cluster-dependent chain” (ACDC) model modularly stores sequence and timing information in distinct loci of the network. This feature increases computational power and allows ACDC to display a wide range of temporal properties (e.g., multiple sequences, temporal shifting, rescaling, and compositionality), while still accounting for several behavioral and neurophysiological empirical observations. Finally, we apply this ACDC network to show how it can learn the famous “Thunderstruck” song intro and then flexibly play it in a “bossa nova” rhythm without further training. How do humans flexibly adapt action sequences? For instance, musicians can learn a song and quickly speed up or slow down the tempo, or even play the song following a completely different rhythm (e.g., a rock song using a bossa nova rhythm). In this work, we build a biologically plausible network of cortico-basal ganglia interactions that explains how this temporal flexibility may emerge in the brain. Crucially, our model factorizes sequence order and action timing, respectively represented in cortical and basal ganglia dynamics. This factorization allows full temporal flexibility, i.e. the timing of a learned action sequence can be recomposed without interfering with the order of the sequence. As such, our model is capable of learning asynchronous action sequences, and flexibly shift, rescale, and recompose them, while accounting for biological data.
Collapse
Affiliation(s)
- Cristian Buc Calderon
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Michael J. Frank
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
71
|
Gupta A, Bansal R, Alashwal H, Kacar AS, Balci F, Moustafa AA. Neural Substrates of the Drift-Diffusion Model in Brain Disorders. Front Comput Neurosci 2022; 15:678232. [PMID: 35069160 PMCID: PMC8776710 DOI: 10.3389/fncom.2021.678232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Many studies on the drift-diffusion model (DDM) explain decision-making based on a unified analysis of both accuracy and response times. This review provides an in-depth account of the recent advances in DDM research which ground different DDM parameters on several brain areas, including the cortex and basal ganglia. Furthermore, we discuss the changes in DDM parameters due to structural and functional impairments in several clinical disorders, including Parkinson's disease, Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders, Obsessive-Compulsive Disorder (OCD), and schizophrenia. This review thus uses DDM to provide a theoretical understanding of different brain disorders.
Collapse
Affiliation(s)
- Ankur Gupta
- CNRS UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France
| | - Rohini Bansal
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hany Alashwal
- College of Information Technology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anil Safak Kacar
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Fuat Balci
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ahmed A. Moustafa
- School of Psychology & Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW, Australia
- School of Psychology, Faculty of Society and Design, Bond University, Robina, QLD, Australia
- Faculty of Health Sciences, Department of Human Anatomy and Physiology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
72
|
Ribot B, de Rugy A, Langbour N, Duron A, Goillandeau M, Michelet T. Competition, Conflict and Change of Mind: A Role of GABAergic Inhibition in the Primary Motor Cortex. Front Hum Neurosci 2022; 15:736732. [PMID: 35058762 PMCID: PMC8763692 DOI: 10.3389/fnhum.2021.736732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Deciding between different voluntary movements implies a continuous control of the competition between potential actions. Many theories postulate a leading role of prefrontal cortices in this executive function, but strong evidence exists that a motor region like the primary motor cortex (M1) is also involved, possibly via inhibitory mechanisms. This was already shown during the pre-movement decision period, but not after movement onset. For this pilot experiment we designed a new task compatible with the dynamics of post-onset control to study the silent period (SP) duration, a pause in electromyographic activity after single-pulse transcranial magnetic stimulation that reflects inhibitory mechanisms. A careful analysis of the SP during the ongoing movement indicates a gradual increase in inhibitory mechanisms with the level of competition, consistent with an increase in mutual inhibition between alternative movement options. However, we also observed a decreased SP duration for high-competition trials associated with change-of-mind inflections in their trajectories. Our results suggest a new post-onset adaptive process that consists in a transient reduction of GABAergic inhibition within M1 for highly conflicting situations. We propose that this reduced inhibition softens the competition between concurrent motor options, thereby favoring response vacillation, an adaptive strategy that proved successful at improving behavioral performance.
Collapse
Affiliation(s)
- Bastien Ribot
- CNRS, IMN, UMR 5293, University of Bordeaux, Bordeaux, France
| | - Aymar de Rugy
- CNRS, EPHE, INCIA, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Nicolas Langbour
- Unité de Recherche Clinique Intersectorielle en Psychiatrie à Vocation Régionale du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Anne Duron
- Faculté de Médecine, Université de Paris, Paris, France
| | | | - Thomas Michelet
- CNRS, EPHE, INCIA, UMR 5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
73
|
Moussawi K, Kim MJ, Baybayan S, Wood M, Mills KA. Deep brain stimulation effect on anterior pallidum reduces motor impulsivity in Parkinson's disease. Brain Stimul 2022; 15:23-31. [PMID: 34749005 PMCID: PMC8816820 DOI: 10.1016/j.brs.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Deep Brain Stimulation (DBS) of the subthalamic nucleus or globus pallidus internus is used to treat the motor symptoms of Parkinson's disease. The former can worsen impulsive and compulsive behaviors after controlling for the reduction of dopaminergic medications. However, the effect of pallidal DBS on such behaviors in PD patients is less clear. OBJECTIVE/HYPOTHESIS We hypothesized that greater stimulation spread to the pallidum with prefrontal connectivity would reduce motor impulsivity. METHODS Seven Parkinson's patients with stable globus pallidus internus DBS settings for 3 months, disease duration of 13 ± 1.3 years, and Montreal Cognitive Assessment of 26.8 ± 1.1 each had two stimulation settings defined based on reconstructions of lead placement and volume of tissue activation targeting either a dorsal or ventral position along the DBS electrode but still within the globus pallidus internus. Subjects performed a stop signal reaction time task with the DBS turned off vs. on in each of the defined stimulation settings, which was correlated with the degree of stimulation effect on pallidal subregions. RESULTS A shorter distance between the volume of tissue activation and the right prefrontally-connected GPi correlated with less impulsivity on the stop signal reaction time task (r = 0.69, p < 0.05). Greater volume of tissue activation overlap with the non-prefrontally-connected globus pallidus internus was associated with increased impulsivity. CONCLUSION These data can be leveraged to optimize DBS programming in PD patients with problematic impulsivity or in other disorders involving impulsive behaviors such as substance use disorders.
Collapse
Affiliation(s)
- Khaled Moussawi
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Corresponding Author: Kelly A. Mills, Johns Hopkins University School of Medicine, Dept. of Neurology, Meyer 6-181D, 600 N. Wolfe Street, Baltimore, MD 21287, Phone: 410-502-0133,
| | - Min Jae Kim
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sydney Baybayan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Myles Wood
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kelly A. Mills
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Corresponding Author: Kelly A. Mills, Johns Hopkins University School of Medicine, Dept. of Neurology, Meyer 6-181D, 600 N. Wolfe Street, Baltimore, MD 21287, Phone: 410-502-0133,
| |
Collapse
|
74
|
Dorsal visual stream is preferentially engaged during externally guided action selection in Parkinson Disease. Clin Neurophysiol 2021; 136:237-246. [PMID: 35012844 PMCID: PMC8941338 DOI: 10.1016/j.clinph.2021.11.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/01/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE In patients with Parkinson Disease (PD), self-imitated or internally cued (IC) actions are thought to be compromised by the disease process, as exemplified by impairments in action initiation. In contrast, externally-cued (EC) actions which are made in response to sensory prompts can restore a remarkable degree of movement capability in PD, particularly alleviating freezing-of-gait. This study investigates the electrophysiological underpinnings of movement facilitation in PD through visuospatial cuing, with particular attention to the dynamics within the posterior parietal cortex (PPC) and lateral premotor cortex (LPMC) axis of the dorsal visual stream. METHODS Invasive cortical recordings over the PPC and LPMC were obtained during deep brain stimulation lead implantation surgery. Thirteen PD subjects performed an action selection task, which was constituted by left or right joystick movement with directional visual cuing in the EC condition and internally generated direction selection in the IC condition. Time-resolved neural activities within and between the PPC and LPMC were compared between EC and IC conditions. RESULTS Reaction times (RT) were significantly faster in the EC condition relative to the IC condition (paired t-test, p = 0.0015). PPC-LPMC inter-site phase synchrony within the β-band (13-35 Hz) was significantly greater in the EC relative to the IC condition. Greater PPC-LPMC β debiased phase lag index (dwPLI) prior to movement onset was correlated with faster reaction times only in the EC condition. Multivariate granger causality (GC) was greater in the EC condition relative to the IC condition, prior to and during movement. CONCLUSION Relative to IC actions, we report relative increase in inter-site phase synchrony and directional PPC to LPMC connectivity in the β-band during preparation and execution of EC actions. Furthermore, increased strength of connectivity is predictive of faster RT, which are pathologically slow in PD patients. Stronger engagement of the PPC-LPMC cortical network by an EC specifically through the channel of β-modulation is implicated in correcting the pathological slowing of action initiation seen in Parkinson's patients. SIGNIFICANCE These findings shed light on the electrophysiological mechanisms that underlie motor facilitation in PD patients through visuospatial cuing.
Collapse
|
75
|
Diesburg DA, Greenlee JD, Wessel JR. Cortico-subcortical β burst dynamics underlying movement cancellation in humans. eLife 2021; 10:70270. [PMID: 34874267 PMCID: PMC8691838 DOI: 10.7554/elife.70270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Dominant neuroanatomical models hold that humans regulate their movements via loop-like cortico-subcortical networks, which include the subthalamic nucleus (STN), motor thalamus, and sensorimotor cortex (SMC). Inhibitory commands across these networks are purportedly sent via transient, burst-like signals in the β frequency (15-29 Hz). However, since human depth-recording studies are typically limited to one recording site, direct evidence for this proposition is hitherto lacking. Here, we present simultaneous multi-site recordings from SMC and either STN or motor thalamus in humans performing the stop-signal task. In line with their purported function as inhibitory signals, subcortical β-bursts were increased on successful stop-trials. STN bursts in particular were followed within 50 ms by increased β-bursting over SMC. Moreover, between-site comparisons (including in a patient with simultaneous recordings from SMC, thalamus, and STN) confirmed that β-bursts in STN temporally precede thalamic β-bursts. This highly unique set of recordings provides empirical evidence for the role of β-bursts in conveying inhibitory commands along long-proposed cortico-subcortical networks underlying movement regulation in humans.
Collapse
Affiliation(s)
- Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
| | - Jeremy Dw Greenlee
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, United States
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, United States.,Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, United States
| |
Collapse
|
76
|
Nougaret S, Fascianelli V, Ravel S, Genovesio A. Intrinsic timescales across the basal ganglia. Sci Rep 2021; 11:21395. [PMID: 34725371 PMCID: PMC8560808 DOI: 10.1038/s41598-021-00512-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Recent studies have shown that temporal stability of the neuronal activity over time can be estimated by the structure of the spike-count autocorrelation of neuronal populations. This estimation, called the intrinsic timescale, has been computed for several cortical areas and can be used to propose a cortical hierarchy reflecting a scale of temporal receptive windows between areas. In this study, we performed an autocorrelation analysis on neuronal populations of three basal ganglia (BG) nuclei, including the striatum and the subthalamic nucleus (STN), the input structures of the BG, and the external globus pallidus (GPe). The analysis was performed during the baseline period of a motivational visuomotor task in which monkeys had to apply different amounts of force to receive different amounts of reward. We found that the striatum and the STN have longer intrinsic timescales than the GPe. Moreover, our results allow for the placement of these subcortical structures within the already-defined scale of cortical temporal receptive windows. Estimates of intrinsic timescales are important in adding further constraints in the development of computational models of the complex dynamics among these nuclei and throughout cortico-BG-thalamo-cortical loops.
Collapse
Affiliation(s)
- Simon Nougaret
- Institut de Neurosciences de la Timone, UMR7289, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France. .,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Valeria Fascianelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,PhD Program in Behavioral Neuroscience, Sapienza University of Rome, 00185, Rome, Italy
| | - Sabrina Ravel
- Institut de Neurosciences de la Timone, UMR7289, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
77
|
Chrabaszcz A, Wang D, Lipski W, Bush A, Crammond D, Shaiman S, Dickey M, Holt L, Turner R, Fiez J, Richardson R. Simultaneously recorded subthalamic and cortical LFPs reveal different lexicality effects during reading aloud. JOURNAL OF NEUROLINGUISTICS 2021; 60:101019. [PMID: 34305315 PMCID: PMC8294107 DOI: 10.1016/j.jneuroling.2021.101019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Many language functions are traditionally assigned to cortical brain areas, leaving the contributions of subcortical structures to language processing largely unspecified. The present study examines a potential role of the subthalamic nucleus (STN) in lexical processing, specifically, reading aloud of words (e.g., 'fate') and pseudowords (e.g., 'fape'). We recorded local field potentials simultaneously from the STN and the cortex (precentral, postcentral, and superior temporal gyri) of 13 people with Parkinson's disease undergoing awake deep brain stimulation and compared STN's lexicality-related neural activity with that of the cortex. Both STN and cortical activity demonstrated significant task-related modulations, but the lexicality effects were different in the two brain structures. In the STN, an increase in gamma band activity (31-70 Hz) was present in pseudoword trials compared to word trials during subjects' spoken response. In the cortex, a greater decrease in beta band activity (12-30 Hz) was observed for pseudowords in the precentral gyrus. Additionally, 11 individual cortical sites showed lexicality effects with varying temporal and topographic characteristics in the alpha and beta frequency bands. These findings suggest that the STN and the sampled cortical regions are involved differently in the processing of lexical distinctions.
Collapse
Affiliation(s)
- A. Chrabaszcz
- Department of Psychology, University of Pittsburgh, Pittsburgh, USA, 15213
| | - D. Wang
- School of Medicine, Tsinghua University, Beijing, China, 100084
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, USA, 15213
| | - W.J. Lipski
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, USA, 15213
| | - A. Bush
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, USA, 02114
- Harvard Medical School, Boston, USA, 02115
| | - D.J. Crammond
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, USA, 15213
| | - S. Shaiman
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, USA, 15213
| | - M.W. Dickey
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, USA, 15213
| | - L.L. Holt
- Department of Psychology, Carnegie Mellon University, Pittsburgh, USA, 15213
| | - R.S. Turner
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, USA, 15213
- University of Pittsburgh Brain Institute, Pittsburgh, USA, 15213
| | - J.A. Fiez
- Department of Psychology, University of Pittsburgh, Pittsburgh, USA, 15213
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, USA, 15213
- University of Pittsburgh Brain Institute, Pittsburgh, USA, 15213
| | - R.M. Richardson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, USA, 02114
- Harvard Medical School, Boston, USA, 02115
| |
Collapse
|
78
|
Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages. J Neurosci 2021; 41:8826-8838. [PMID: 34493541 DOI: 10.1523/jneurosci.1105-21.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
The ability to stop an already initiated action is paramount to adaptive behavior. Much scientific debate in the field of human action-stopping currently focuses on two interrelated questions. (1) Which cognitive and neural processes uniquely underpin the implementation of inhibitory control when actions are stopped after explicit stop signals, and which processes are instead commonly evoked by all salient signals, even those that do not require stopping? (2) Why do purported (neuro)physiological signatures of inhibition occur at two different latencies after stop signals? Here, we address both questions via two preregistered experiments that combined measurements of corticospinal excitability, EMG, and whole-scalp EEG. Adult human subjects performed a stop signal task that also contained "ignore" signals: equally salient signals that did not require stopping but rather completion of the Go response. We found that both stop- and ignore signals produced equal amounts of early-latency inhibition of corticospinal excitability and EMG, which took place ∼150 ms following either signal. Multivariate pattern analysis of the whole-scalp EEG data further corroborated that this early processing stage was shared between stop- and ignore signals, as neural activity following the two signals could not be decoded from each other until a later time period. In this later period, unique activity related to stop signals emerged at frontocentral scalp sites, reflecting an increased stop signal P3. These findings suggest a two-step model of action-stopping, according to which an initial, universal inhibitory response to the saliency of the stop signal is followed by a slower process that is unique to outright stopping.SIGNIFICANCE STATEMENT Humans often have to stop their ongoing actions when indicated by environmental stimuli (stop signals). Successful action-stopping requires both the ability to detect these salient stop signals and to subsequently inhibit ongoing motor programs. Because of this tight entanglement of attentional control and motor inhibition, identifying unique neurophysiological signatures of action-stopping is difficult. Indeed, we report that recently proposed early-latency signatures of motor inhibition during action-stopping are also found after salient signals that do not require stopping. However, using multivariate pattern analysis of scalp-recorded neural data, we also identified subsequent neural activity that uniquely distinguished action-stopping from saliency detection. These results suggest that actions are stopped in two stages: the first common to all salient events and the second unique to action-stopping.
Collapse
|
79
|
Diesburg DA, Wessel JR. The Pause-then-Cancel model of human action-stopping: Theoretical considerations and empirical evidence. Neurosci Biobehav Rev 2021; 129:17-34. [PMID: 34293402 PMCID: PMC8574992 DOI: 10.1016/j.neubiorev.2021.07.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
The ability to stop already-initiated actions is a key cognitive control ability. Recent work on human action-stopping has been dominated by two controversial debates. First, the contributions (and neural signatures) of attentional orienting and motor inhibition after stop-signals are near-impossible to disentangle. Second, the timing of purportedly inhibitory (neuro)physiological activity after stop-signals has called into question which neural signatures reflect processes that actually contribute to action-stopping. Here, we propose that a two-stage model of action-stopping - proposed by Schmidt and Berke (2017) based on subcortical rodent recordings - may resolve these controversies. Translating this model to humans, we first argue that attentional orienting and motor inhibition are inseparable because orienting to salient events like stop-signals automatically invokes broad motor inhibition, reflecting a fast-acting, ubiquitous Pause process. We then argue that inhibitory signatures after stop-signals differ in latency because they map onto two sequential stages: the salience-related Pause and a slower, stop-specific Cancel process. We formulate the model, discuss recent supporting evidence in humans, and interpret existing data within its context.
Collapse
Affiliation(s)
- Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
80
|
London D, Fazl A, Katlowitz K, Soula M, Pourfar MH, Mogilner AY, Kiani R. Distinct population code for movement kinematics and changes of ongoing movements in human subthalamic nucleus. eLife 2021; 10:64893. [PMID: 34519273 PMCID: PMC8500714 DOI: 10.7554/elife.64893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/14/2021] [Indexed: 01/23/2023] Open
Abstract
The subthalamic nucleus (STN) is theorized to globally suppress movement through connections with downstream basal ganglia structures. Current theories are supported by increased STN activity when subjects withhold an uninitiated action plan, but a critical test of these theories requires studying STN responses when an ongoing action is replaced with an alternative. We perform this test in subjects with Parkinson’s disease using an extended reaching task where the movement trajectory changes mid-action. We show that STN activity decreases during action switches, contrary to prevalent theories. Furthermore, beta oscillations in the STN local field potential, which are associated with movement inhibition, do not show increased power or spiking entrainment during switches. We report an inhomogeneous population neural code in STN, with one sub-population encoding movement kinematics and direction and another encoding unexpected action switches. We suggest an elaborate neural code in STN that contributes to planning actions and changing the plans.
Collapse
Affiliation(s)
- Dennis London
- Center for Neural Science, New York University, New York, United States.,Department of Neurosurgery, Center for Neuromodulation, NYU Langone Health, New York, United States
| | - Arash Fazl
- Department of Neurosurgery, Center for Neuromodulation, NYU Langone Health, New York, United States
| | - Kalman Katlowitz
- Department of Neurosurgery, Center for Neuromodulation, NYU Langone Health, New York, United States.,Neuroscience Institute, NYU Langone Health, New York, United States
| | - Marisol Soula
- Department of Neurosurgery, Center for Neuromodulation, NYU Langone Health, New York, United States.,Neuroscience Institute, NYU Langone Health, New York, United States
| | - Michael H Pourfar
- Department of Neurosurgery, Center for Neuromodulation, NYU Langone Health, New York, United States
| | - Alon Y Mogilner
- Department of Neurosurgery, Center for Neuromodulation, NYU Langone Health, New York, United States
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, United States.,Neuroscience Institute, NYU Langone Health, New York, United States.,Department of Psychology, New York University, New York, United States
| |
Collapse
|
81
|
Erb CD, Moher J, Marcovitch S. Attentional capture in goal-directed action during childhood, adolescence, and early adulthood. J Exp Child Psychol 2021; 214:105273. [PMID: 34509699 DOI: 10.1016/j.jecp.2021.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Attentional capture occurs when salient but task-irrelevant information disrupts our ability to respond to task-relevant information. Although attentional capture costs have been found to decrease between childhood and adulthood, it is currently unclear the extent to which such age-related changes reflect an improved ability to recover from attentional capture or to avoid attentional capture. In addition, recent research using hand-tracking techniques with adults indicates that attentional capture by a distractor can generate response activations corresponding to the distractor's location, consistent with action-centered models of attention. However, it is unknown whether attentional capture can also result in the capture of action in children and adolescents. Therefore, we presented 5-year-olds, 9-year-olds, 13- and 14-year-olds, and adults (N = 96) with a singleton search task in which participants responded by reaching to touch targets on a digital display. Consistent with action-centered models of attention, distractor effects were evident in each age group's movement trajectories. In contrast to movement trajectories, movement times revealed significant age-related reductions in the costs of attentional capture, suggesting that age-related improvements in attentional control may be driven in part by an enhanced ability to recover from-as opposed to avoid-attentional capture. Children's performance was also significantly affected by response repetition effects, indicating that children may be more susceptible to interference from a wider range of task-irrelevant factors than adults. In addition to presenting novel insights into the development of attention and action, these results highlight the benefits of incorporating hand-tracking techniques into developmental research.
Collapse
Affiliation(s)
- Christopher D Erb
- School of Psychology, University of Auckland, Auckland 1010, New Zealand.
| | - Jeff Moher
- Department of Psychology, Connecticut College, New London, CT 06320, USA
| | - Stuart Marcovitch
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
82
|
Lo Buono V, Lucà Trombetta M, Palmeri R, Bonanno L, Cartella E, Di Lorenzo G, Bramanti P, Marino S, Corallo F. Subthalamic nucleus deep brain stimulation and impulsivity in Parkinson's disease: a descriptive review. Acta Neurol Belg 2021; 121:837-847. [PMID: 33961279 PMCID: PMC8349322 DOI: 10.1007/s13760-021-01684-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
Standard treatment of Parkinson’s disease involves the dopaminergic medications. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an important neurosurgical intervention often used as alternative treatment to drug therapy; however, it can be associated with increase of impulsive behaviors. This descriptive review focused on studies investigating the correlation between Deep brain stimulation of the subthalamic nucleus and impulsivity in Parkinson’s disease patients, arguing, the action’s mechanism and the specific role of the subthalamic nucleus. We searched on PubMed and Web of Science databases and screening references of included studies and review articles for additional citations. From initial 106 studies, only 15 met the search criteria. Parkinson’s Disease patients with and without Deep Brain Stimulation were compared with healthy controls, through 16 different tasks that assessed some aspects of impulsivity. Both Deep brain stimulation of the subthalamic nucleus and medication were associated with impulsive behavior and influenced decision-making processes. Moreover, findings demonstrated that: Impulse Control Disorders (ICDs) occurred soon after surgery, while, in pharmacological treatment, they appeared mainly after the initiation of treatment or the increase in dosage, especially with dopamine agonists. The subthalamic nucleus plays a part in the fronto-striato-thalamic-cortical loops mediating motor, cognitive, and emotional functions: this could explain the role of the Deep Brain Stimulation in behavior modulation in Parkinson’s Disease patients. Indeed, increase impulsivity has been reported also after deep brain stimulation of the subthalamic nucleus independently by dopaminergic medication status.
Collapse
Affiliation(s)
| | | | | | - Lilla Bonanno
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | | - Silvia Marino
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | |
Collapse
|
83
|
Ma X, Megli A, Pittenger C, Pushkarskaya H. OCD Influences Evidence Accumulation During Decision Making in Males but Not Females During Perceptual and Value-Driven Choice. Front Psychiatry 2021; 12:687680. [PMID: 34393851 PMCID: PMC8358201 DOI: 10.3389/fpsyt.2021.687680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2021] [Indexed: 02/02/2023] Open
Abstract
Individuals with obsessive-compulsive disorder (OCD) often have difficulty making decisions. Valuation and value-based judgements are particularly difficult. The mechanisms underlying these impairments are still poorly understood. Previous work has suggested that individuals with OCD require more information prior to making a choice during perceptual discrimination tasks. Little previous work has examined value-guided choice in OCD. Here we examined perceptual and value-based decision making in adults with OCD, using a novel task in which the two types of decision are tested in parallel using the same individually calibrated sets of visual stimuli (Perceptual and Value-based decision-making task, PVDM). Twenty-seven unmedicated participants with OCD (16 female) and thirty-one healthy controls (15 female) were tested. Data were analyzed using hierarchical drift-diffusion modeling (HDDM). Decision formation was altered in OCD, but differentially between genders: males with OCD, but not females, accumulated more information (i.e., were more cautious) and were less effective in evidence accumulation than age- and IQ-matched healthy males. Furthermore, males with OCD, but not females, were less likely than controls to adjust the process of evidence accumulation across decision contexts. These unexpectedly gender-dimorphic effects suggest that more attention should be paid to gender differences in studies of OCD, and of pathophysiology more broadly.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| | - Ashton Megli
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| | - Christopher Pittenger
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT, United States
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT, United States
| | - Helen Pushkarskaya
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
84
|
Paas A, Novembre G, Lappe C, Keller PE. Not all errors are alike: modulation of error-related neural responses in musical joint action. Soc Cogn Affect Neurosci 2021; 16:512-524. [PMID: 33565593 PMCID: PMC8094995 DOI: 10.1093/scan/nsab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
During joint action, the sense of agency enables interaction partners to implement corrective and adaptive behaviour in response to performance errors. When agency becomes ambiguous (e.g. when action similarity encourages perceptual self-other overlap), confusion as to who produced what may disrupt this process. The current experiment investigated how ambiguity of agency affects behavioural and neural responses to errors in a joint action domain where self-other overlap is common: musical duos. Pairs of pianists performed piano pieces in synchrony, playing either the same pitches (ambiguous agency) or different pitches (unambiguous agency) while electroencephalography (EEG) was recorded for each individual. Behavioural and event-related potential results showed no effects of the agency manipulation but revealed differences in how distinct error types are processed. Self-produced 'wrong note' errors (substitutions) were left uncorrected, showed post-error slowing and elicited an error-related negativity (ERN) peaking before erroneous keystrokes (pre-ERN). In contrast, self-produced 'extra note' errors (additions) exhibited pre-error slowing, error and post-error speeding, were rapidly corrected and elicited the ERN. Other-produced errors evoked a feedback-related negativity but no behavioural effects. Overall findings shed light upon how the nervous system supports fluent interpersonal coordination in real-time joint action by employing distinct mechanisms to manage different types of errors.
Collapse
Affiliation(s)
- Anita Paas
- The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab & Neuroscience and Behaviour Lab, Italian Institute of Technology (IIT), Rome, 00161, Italy
| | - Claudia Lappe
- Department of Medicine, Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, 48149, Germany
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
85
|
Isherwood SJS, Keuken MC, Bazin PL, Forstmann BU. Cortical and subcortical contributions to interference resolution and inhibition - An fMRI ALE meta-analysis. Neurosci Biobehav Rev 2021; 129:245-260. [PMID: 34310977 DOI: 10.1016/j.neubiorev.2021.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 01/19/2023]
Abstract
Interacting with our environment requires the selection of appropriate responses and the inhibition of others. Such effortful inhibition is achieved by a number of interference resolution and global inhibition processes. This meta-analysis including 57 studies and 73 contrasts revisits the overlap and differences in brain areas supporting interference resolution and global inhibition in cortical and subcortical brain areas. Activation likelihood estimation was used to discern the brain regions subserving each type of cognitive control. Individual contrast analysis revealed a common activation of the bilateral insula and supplementary motor areas. Subtraction analyses demonstrated the voxel-wise differences in recruitment in a number of areas including the precuneus in the interference tasks and the frontal pole and dorsal striatum in the inhibition tasks. Our results display a surprising lack of subcortical involvement within these types of cognitive control, a finding that is likely to reflect a systematic gap in the field of functional neuroimaging.
Collapse
Affiliation(s)
- S J S Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, the Netherlands.
| | - M C Keuken
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, the Netherlands
| | - P L Bazin
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, the Netherlands; Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, Germany
| | - B U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, the Netherlands
| |
Collapse
|
86
|
Moeller M, Grohn J, Manohar S, Bogacz R. An association between prediction errors and risk-seeking: Theory and behavioral evidence. PLoS Comput Biol 2021; 17:e1009213. [PMID: 34270552 PMCID: PMC8318232 DOI: 10.1371/journal.pcbi.1009213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/28/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
Reward prediction errors (RPEs) and risk preferences have two things in common: both can shape decision making behavior, and both are commonly associated with dopamine. RPEs drive value learning and are thought to be represented in the phasic release of striatal dopamine. Risk preferences bias choices towards or away from uncertainty; they can be manipulated with drugs that target the dopaminergic system. Based on the common neural substrate, we hypothesize that RPEs and risk preferences are linked on the level of behavior as well. Here, we develop this hypothesis theoretically and test it empirically. First, we apply a recent theory of learning in the basal ganglia to predict how RPEs influence risk preferences. We find that positive RPEs should cause increased risk-seeking, while negative RPEs should cause risk-aversion. We then test our behavioral predictions using a novel bandit task in which value and risk vary independently across options. Critically, conditions are included where options vary in risk but are matched for value. We find that our prediction was correct: participants become more risk-seeking if choices are preceded by positive RPEs, and more risk-averse if choices are preceded by negative RPEs. These findings cannot be explained by other known effects, such as nonlinear utility curves or dynamic learning rates.
Collapse
Affiliation(s)
- Moritz Moeller
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jan Grohn
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Sanjay Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Rafal Bogacz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
87
|
Arumugham SS, Srinivas D, Narayanaswamy JC, Jaisoorya TS, Kashyap H, Domenech P, Palfi S, Mallet L, Venkatasubramanian G, Reddy YJ. Identification of biomarkers that predict response to subthalamic nucleus deep brain stimulation in resistant obsessive-compulsive disorder: protocol for an open-label follow-up study. BMJ Open 2021; 11:e047492. [PMID: 34158304 PMCID: PMC8220486 DOI: 10.1136/bmjopen-2020-047492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/26/2021] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) of bilateral anteromedial subthalamic nucleus (amSTN) has been found to be helpful in a subset of patients with severe, chronic and treatment-refractory obsessive-compulsive disorder (OCD). Biomarkers may aid in patient selection and optimisation of this invasive treatment. In this trial, we intend to evaluate neurocognitive function related to STN and related biosignatures as potential biomarkers for STN DBS in OCD. METHODS AND ANALYSIS Twenty-four subjects with treatment-refractory OCD will undergo open-label STN DBS. Structural/functional imaging, electrophysiological recording and neurocognitive assessment would be performed at baseline. The subjects would undergo a structured clinical assessment for 12 months postsurgery. A group of 24 healthy volunteers and 24 subjects with treatment-refractory OCD who receive treatment as usual would be recruited for comparison of biomarkers and treatment response, respectively. Baseline biomarkers would be evaluated as predictors of clinical response. Neuroadaptive changes would be studied through a reassessment of neurocognitive functioning, imaging and electrophysiological activity post DBS. ETHICS AND DISSEMINATION The protocol has been approved by the National Institute of Mental Health and Neurosciences Ethics Committee. The study findings will be disseminated through peer-reviewed scientific journals and scientific meetings.
Collapse
Affiliation(s)
- Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Dwarakanath Srinivas
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Janardhanan C Narayanaswamy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - T S Jaisoorya
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Himani Kashyap
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Philippe Domenech
- Univ Paris-Est Créteil, DMU CARE - Département Médical-Universitaire de Chirurgie et Anesthésie réanimation, DMU IMPACT, Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Creteil, France
- Univ of Paris 12 UPEC, Faculté de médecine, INSERM U955, Creteil, France
| | - Stéphane Palfi
- Univ Paris-Est Créteil, DMU CARE - Département Médical-Universitaire de Chirurgie et Anesthésie réanimation, DMU IMPACT, Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Creteil, France
- Univ of Paris 12 UPEC, Faculté de médecine, INSERM U955, Creteil, France
| | - Luc Mallet
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Department of Mental Health and Psychiatry, University of Geneva, Geneva, Switzerland
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Yc Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
88
|
De Pretto M, Mouthon M, Debove I, Pollo C, Schüpbach M, Spierer L, Accolla EA. Proactive inhibition is not modified by deep brain stimulation for Parkinson's disease: An electrical neuroimaging study. Hum Brain Mapp 2021; 42:3934-3949. [PMID: 34110074 PMCID: PMC8288097 DOI: 10.1002/hbm.25530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/06/2022] Open
Abstract
In predictable contexts, motor inhibitory control can be deployed before the actual need for response suppression. The brain functional underpinnings of proactive inhibition, and notably the role of basal ganglia, are not entirely identified. We investigated the effects of deep brain stimulation of the subthalamic nucleus or internal globus pallidus on proactive inhibition in patients with Parkinson's disease. They completed a cued go/no-go proactive inhibition task ON and (unilateral) OFF stimulation while EEG was recorded. We found no behavioural effect of either subthalamic nucleus or internal globus pallidus deep brain stimulation on proactive inhibition, despite a general improvement of motor performance with subthalamic nucleus stimulation. In the non-operated and subthalamic nucleus group, we identified periods of topographic EEG modulation by the level of proactive inhibition. In the subthalamic nucleus group, source estimation analysis suggested the initial involvement of bilateral frontal and occipital areas, followed by a right lateralized fronto-basal network, and finally of right premotor and left parietal regions. Our results confirm the overall preservation of proactive inhibition capacities in both subthalamic nucleus and internal globus pallidus deep brain stimulation, and suggest a partly segregated network for proactive inhibition, with a preferential recruitment of the indirect pathway.
Collapse
Affiliation(s)
- Michael De Pretto
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Mouthon
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ines Debove
- Movement Disorders Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital University Hospital Bern, Bern, Switzerland
| | - Michael Schüpbach
- Movement Disorders Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lucas Spierer
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ettore A Accolla
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Neurology Unit, Department of Medicine, HFR - Cantonal Hospital Fribourg, Fribourg, Switzerland
| |
Collapse
|
89
|
Rac-Lubashevsky R, Frank MJ. Analogous computations in working memory input, output and motor gating: Electrophysiological and computational modeling evidence. PLoS Comput Biol 2021; 17:e1008971. [PMID: 34097689 PMCID: PMC8211210 DOI: 10.1371/journal.pcbi.1008971] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/17/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
Adaptive cognitive-control involves a hierarchical cortico-striatal gating system that supports selective updating, maintenance, and retrieval of useful cognitive and motor information. Here, we developed a task that independently manipulates selective gating operations into working-memory (input gating), from working-memory (output gating), and of responses (motor gating) and tested the neural dynamics and computational principles that support them. Increases in gating demands, captured by gate switches, were expressed by distinct EEG correlates at each gating level that evolved dynamically in partially overlapping time windows. Further, categorical representations of specific maintained items and of motor responses could be decoded from EEG when the corresponding gate was switching, thereby linking gating operations to prioritization. Finally, gate switching at all levels was related to increases in the motor decision threshold as quantified by the drift diffusion model. Together these results support the notion that cognitive gating operations scaffold on top of mechanisms involved in motor gating.
Collapse
Affiliation(s)
- Rachel Rac-Lubashevsky
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| | - Michael J. Frank
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
90
|
Corticostriatal Regulation of Language Functions. Neuropsychol Rev 2021; 31:472-494. [PMID: 33982264 DOI: 10.1007/s11065-021-09481-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/20/2021] [Indexed: 10/21/2022]
Abstract
The role of corticostriatal circuits in language functions is unclear. In this review, we consider evidence from language learning, syntax, and controlled language production and comprehension tasks that implicate various corticostriatal circuits. Converging evidence from neuroimaging in healthy individuals, studies in populations with subcortical dysfunction, pharmacological studies, and brain stimulation suggests a domain-general regulatory role of corticostriatal systems in language operations. The role of corticostriatal systems in language operations identified in this review is likely to reflect a broader function of the striatum in responding to uncertainty and conflict which demands selection, sequencing, and cognitive control. We argue that this role is dynamic and varies depending on the degree and form of cognitive control required, which in turn will recruit particular corticostriatal circuits and components organised in a cognitive hierarchy.
Collapse
|
91
|
Abstract
The discovery of neural signals that reflect the dynamics of perceptual decision formation has had a considerable impact. Not only do such signals enable detailed investigations of the neural implementation of the decision-making process but they also can expose key elements of the brain's decision algorithms. For a long time, such signals were only accessible through direct animal brain recordings, and progress in human neuroscience was hampered by the limitations of noninvasive recording techniques. However, recent methodological advances are increasingly enabling the study of human brain signals that finely trace the dynamics of the unfolding decision process. In this review, we highlight how human neurophysiological data are now being leveraged to furnish new insights into the multiple processing levels involved in forming decisions, to inform the construction and evaluation of mathematical models that can explain intra- and interindividual differences, and to examine how key ancillary processes interact with core decision circuits.
Collapse
Affiliation(s)
- Redmond G O'Connell
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland;
| | - Simon P Kelly
- School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
92
|
The Human Basal Ganglia Mediate the Interplay between Reactive and Proactive Control of Response through Both Motor Inhibition and Sensory Modulation. Brain Sci 2021; 11:brainsci11050560. [PMID: 33925153 PMCID: PMC8146223 DOI: 10.3390/brainsci11050560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
The basal ganglia (BG) have long been known for contributing to the regulation of motor behaviour by means of a complex interplay between tonic and phasic inhibitory mechanisms. However, after having focused for a long time on phasic reactive mechanisms, it is only recently that psychological research in healthy humans has modelled tonic proactive mechanisms of control. Mutual calibration between anatomo-functional and psychological models is still needed to better understand the unclear role of the BG in the interplay between proactive and reactive mechanisms of control. Here, we implemented an event-related fMRI design allowing proper analysis of both the brain activity preceding the target-stimulus and the brain activity induced by the target-stimulus during a simple go/nogo task, with a particular interest in the ambiguous role of the basal ganglia. Post-stimulus activity was evoked in the left dorsal striatum, the subthalamus nucleus and internal globus pallidus by any stimulus when the situation was unpredictable, pinpointing its involvement in reactive, non-selective inhibitory mechanisms when action restraint is required. Pre-stimulus activity was detected in the ventral, not the dorsal, striatum, when the situation was unpredictable, and was associated with changes in functional connectivity with the early visual, not the motor, cortex. This suggests that the ventral striatum supports modulatory influence over sensory processing during proactive control.
Collapse
|
93
|
Stimulation of Different Sectors of the Human Dorsal Premotor Cortex Induces a Shift from Reactive to Predictive Action Strategies and Changes in Motor Inhibition: A Dense Transcranial Magnetic Stimulation (TMS) Mapping Study. Brain Sci 2021; 11:brainsci11050534. [PMID: 33923217 PMCID: PMC8146001 DOI: 10.3390/brainsci11050534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Delayed motor tasks require timely interaction between immobility and action. The neural substrates of these processes probably reside in the premotor and motor circuits; however, fine-grained anatomical/functional information is still lacking. Participants performed a delayed simple reaction task, structured as a ready-set-go sequence, with a fixed, predictable, SET-period. Responses were given with lip movements. During the SET-period, we performed a systematic dense-mapping of the bilateral dorsal premotor region (dPM) by means of single transcranial magnetic stimulation (TMS) pulses on an 18-spot mapping grid, interleaved with sham TMS which served as a baseline. Reaction times (RTs) in TMS trials over each grid spot were compared to RTs in sham trials to build a statistical parametric z-map. The results reveal a rostro-caudal functional gradient in the dPM. TMS of the rostral dPM induced a shift from reactive towards predictive response strategies. TMS of the caudal dPM interfered with the SET-period duration. By means of dense TMS mapping, we have drawn a putative functional map of the role of the dPM during the SET-period. A higher-order rostral component is involved in setting action strategies and a caudal, lower-order, part is probably involved in the inhibitory control of motor output.
Collapse
|
94
|
Rubin JE, Vich C, Clapp M, Noneman K, Verstynen T. The credit assignment problem in cortico-basal ganglia-thalamic networks: A review, a problem and a possible solution. Eur J Neurosci 2021; 53:2234-2253. [PMID: 32302439 DOI: 10.1111/ejn.14745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
The question of how cortico-basal ganglia-thalamic (CBGT) pathways use dopaminergic feedback signals to modify future decisions has challenged computational neuroscientists for decades. Reviewing the literature on computational representations of dopaminergic corticostriatal plasticity, we show how the field is converging on a normative, synaptic-level learning algorithm that elegantly captures both neurophysiological properties of CBGT circuits and behavioral dynamics during reinforcement learning. Unfortunately, the computational studies that have led to this normative algorithmic model have all relied on simplified circuits that use abstracted action-selection rules. As a result, the application of this corticostriatal plasticity algorithm to a full model of the CBGT pathways immediately fails because the spatiotemporal distance between integration (corticostriatal circuits), action selection (thalamocortical loops) and learning (nigrostriatal circuits) means that the network does not know which synapses should be reinforced to favor previously rewarding actions. We show how observations from neurophysiology, in particular the sustained activation of selected action representations, can provide a simple means of resolving this credit assignment problem in models of CBGT learning. Using a biologically realistic spiking model of the full CBGT circuit, we demonstrate how this solution can allow a network to learn to select optimal targets and to relearn action-outcome contingencies when the environment changes. This simple illustration highlights how the normative framework for corticostriatal plasticity can be expanded to capture macroscopic network dynamics during learning and decision-making.
Collapse
Affiliation(s)
- Jonathan E Rubin
- Department of Mathematics, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catalina Vich
- Department de Matemàtiques i Informàtica, Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Spain
| | - Matthew Clapp
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kendra Noneman
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA
| | - Timothy Verstynen
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Psychology, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
95
|
Anticipatory human subthalamic area beta-band power responses to dissociable tastes correlate with weight gain. Neurobiol Dis 2021; 154:105348. [PMID: 33781923 PMCID: PMC9208339 DOI: 10.1016/j.nbd.2021.105348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022] Open
Abstract
The availability of enticing sweet, fatty tastes is prevalent in the modern diet and contribute to overeating and obesity. In animal models, the subthalamic area plays a role in mediating appetitive and consummatory feeding behaviors, however, its role in human feeding is unknown. We used intraoperative, subthalamic field potential recordings while participants (n = 5) engaged in a task designed to provoke responses of taste anticipation and receipt. Decreased subthalamic beta-band (15-30 Hz) power responses were observed for both sweet-fat and neutral tastes. Anticipatory responses to taste-neutral cues started with an immediate decrease in beta-band power from baseline followed by an early beta-band rebound above baseline. On the contrary, anticipatory responses to sweet-fat were characterized by a greater and sustained decrease in beta-band power. These activity patterns were topographically specific to the subthalamic nucleus and substantia nigra. Further, a neural network trained on this beta-band power signal accurately predicted (AUC ≥ 74%) single trials corresponding to either taste. Finally, the magnitude of the beta-band rebound for a neutral taste was associated with increased body mass index after starting deep brain stimulation therapy. We provide preliminary evidence of discriminatory taste encoding within the subthalamic area associated with control mechanisms that mediate appetitive and consummatory behaviors.
Collapse
|
96
|
Guillaumin A, Serra GP, Georges F, Wallén-Mackenzie Å. Experimental investigation into the role of the subthalamic nucleus (STN) in motor control using optogenetics in mice. Brain Res 2021; 1755:147226. [PMID: 33358727 DOI: 10.1016/j.brainres.2020.147226] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
The subthalamic nucleus (STN) is critical for the execution of intended movements. Loss of its normal function is strongly associated with several movement disorders, including Parkinson's disease for which the STN is an important target area in deep brain stimulation (DBS) therapy. Classical basal ganglia models postulate that two parallel pathways, the direct and indirect pathways, exert opposing control over movement, with the STN acting within the indirect pathway. The STN is regulated by both inhibitory and excitatory input, and is itself excitatory. While most functional knowledge of this clinically relevant brain structure has been gained from pathological conditions and models, primarily parkinsonian, experimental evidence for its role in normal motor control has remained more sparse. The objective here was to tease out the selective impact of the STN on several motor parameters required to achieve intended movement, including locomotion, balance and motor coordination. Optogenetic excitation and inhibition using both bilateral and unilateral stimulations of the STN were implemented in freely-moving mice. The results demonstrate that selective optogenetic inhibition of the STN enhances locomotion while its excitation reduces locomotion. These findings lend experimental support to basal ganglia models of the STN in terms of locomotion. In addition, optogenetic excitation in freely-exploring mice induced self-grooming, disturbed gait and a jumping/escaping behavior, while causing reduced motor coordination in advanced motor tasks, independent of grooming and jumping. This study contributes experimentally validated evidence for a regulatory role of the STN in several aspects of motor control.
Collapse
Affiliation(s)
- Adriane Guillaumin
- Department of Organism Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Gian Pietro Serra
- Department of Organism Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - François Georges
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
97
|
Mosher CP, Mamelak AN, Malekmohammadi M, Pouratian N, Rutishauser U. Distinct roles of dorsal and ventral subthalamic neurons in action selection and cancellation. Neuron 2021; 109:869-881.e6. [PMID: 33482087 PMCID: PMC7933114 DOI: 10.1016/j.neuron.2020.12.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/12/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
The subthalamic nucleus (STN) supports action selection by inhibiting all motor programs except the desired one. Recent evidence suggests that STN can also cancel an already selected action when goals change, a key aspect of cognitive control. However, there is little neurophysiological evidence for dissociation between selecting and cancelling actions in the human STN. We recorded single neurons in the STN of humans performing a stop-signal task. Movement-related neurons suppressed their activity during successful stopping, whereas stop-signal neurons activated at low-latencies near the stop-signal reaction time. In contrast, STN and motor-cortical beta-bursting occurred only later in the stopping process. Task-related neuronal properties varied by recording location from dorsolateral movement to ventromedial stop-signal tuning. Therefore, action selection and cancellation coexist in STN but are anatomically segregated. These results show that human ventromedial STN neurons carry fast stop-related signals suitable for implementing cognitive control.
Collapse
Affiliation(s)
- Clayton P Mosher
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
98
|
Meyer GM, Spay C, Beliakova A, Gaugain G, Pezzoli G, Ballanger B, Boulinguez P, Cilia R. Inhibitory control dysfunction in parkinsonian impulse control disorders. Brain 2021; 143:3734-3747. [PMID: 33320929 DOI: 10.1093/brain/awaa318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/07/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022] Open
Abstract
Impulse control disorders (ICDs) in Parkinson's disease have been associated with dysfunctions in the control of value- or reward-based responding (choice impulsivity) and abnormalities in mesocorticolimbic circuits. The hypothesis that dysfunctions in the control of response inhibition (action impulsivity) also play a role in Parkinson's disease ICDs has recently been raised, but the underlying neural mechanisms have not been probed directly. We used high-resolution EEG recordings from 41 patients with Parkinson's disease with and without ICDs to track the spectral and dynamical signatures of different mechanisms involved in inhibitory control in a simple visuomotor task involving no selection between competing responses and no reward to avoid potential confounds with reward-based decision. Behaviourally, patients with Parkinson's disease with ICDs proved to be more impulsive than those without ICDs. This was associated with decreased beta activity in the precuneus and in a region of the medial frontal cortex centred on the supplementary motor area. The underlying dynamical patterns pinpointed dysfunction of proactive inhibitory control, an executive mechanism intended to gate motor responses in anticipation of stimulation in uncertain contexts. The alteration of the cortical drive of proactive response inhibition in Parkinson's disease ICDs pinpoints the neglected role the precuneus might play in higher order executive functions in coordination with the supplementary motor area, specifically for switching between executive settings. Clinical perspectives are discussed in the light of the non-dopaminergic basis of this function.
Collapse
Affiliation(s)
- Garance M Meyer
- Université de Lyon, F-69622, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, F-69000, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, F-69000, France
| | - Charlotte Spay
- Université de Lyon, F-69622, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, F-69000, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, F-69000, France
| | - Alina Beliakova
- Université de Lyon, F-69622, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, F-69000, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, F-69000, France
| | - Gabriel Gaugain
- Université de Lyon, F-69622, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, F-69000, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, F-69000, France
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy.,Previous affiliation: Parkinson Institute, ASST "Gaetano Pini-CTO", Milan, Italy
| | - Bénédicte Ballanger
- Université de Lyon, F-69622, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, F-69000, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, F-69000, France
| | - Philippe Boulinguez
- Université de Lyon, F-69622, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, F-69000, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, F-69000, France
| | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy.,Previous affiliation: Parkinson Institute, ASST "Gaetano Pini-CTO", Milan, Italy
| |
Collapse
|
99
|
Goenner L, Maith O, Koulouri I, Baladron J, Hamker FH. A spiking model of basal ganglia dynamics in stopping behavior supported by arkypallidal neurons. Eur J Neurosci 2021; 53:2296-2321. [PMID: 33316152 DOI: 10.1111/ejn.15082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/29/2022]
Abstract
The common view that stopping action plans by the basal ganglia is achieved mainly by the subthalamic nucleus alone due to its direct excitatory projection onto the output nuclei of the basal ganglia has been challenged by recent findings. The proposed "pause-then-cancel" model suggests that the subthalamic nucleus provides a rapid stimulus-unspecific "pause" signal, followed by a stop-cue-specific "cancel" signal from striatum-projecting arkypallidal neurons. To determine more precisely the relative contribution of the different basal ganglia nuclei in stopping, we simulated a stop-signal task with a spiking neuron model of the basal ganglia, considering recently discovered connections from the arkypallidal neurons, and cortex-projecting GPe neurons. For the arkypallidal and prototypical GPe neurons, we obtained neuron model parameters by fitting their neuronal responses to published experimental data. Our model replicates findings of stop-signal tasks at neuronal and behavioral levels. We provide evidence for the existence of a stop-related cortical input to the arkypallidal and cortex-projecting GPe neurons such that the stop responses of the subthalamic nucleus, the arkypallidal neurons, and the cortex-projecting GPe neurons complement each other to achieve functional stopping behavior. Particularly, the cortex-projecting GPe neurons may complement the stopping within the basal ganglia caused by the arkypallidal and STN neurons by diminishing cortical go-related processes. Furthermore, we predict effects of lesions on stopping performance and propose that arkypallidal neurons mainly participate in stopping by inhibiting striatal neurons of the indirect rather than the direct pathway.
Collapse
Affiliation(s)
- Lorenz Goenner
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Oliver Maith
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Iliana Koulouri
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Javier Baladron
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Fred H Hamker
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
100
|
Happer JP, Wagner LC, Beaton LE, Rosen BQ, Marinkovic K. The "when" and "where" of the interplay between attentional capture and response inhibition during a Go/NoGo variant. Neuroimage 2021; 231:117837. [PMID: 33577939 DOI: 10.1016/j.neuroimage.2021.117837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Inhibitory control relies on attention, inhibition, and other functions that are integrated across neural networks in an interactive manner. Functional MRI studies have provided excellent spatial mapping of the involved regions. However, finer temporal resolution is needed to capture the underlying neural dynamics and the pattern of their functional contributions. Here, we used anatomically-constrained magnetoencephalography (aMEG) which combines MEG with structural MRI to examine how the spatial ("where") and temporal ("when") processing stages and interregional co-oscillations unfold in real time to contribute to inhibitory control. Healthy participants completed a modified Go/NoGo paradigm in which a subset of stimuli was modified to be visually salient (SAL). Compared to the non-modified condition, the SAL manipulation facilitated response withholding on NoGo trials and hindered responding to Go stimuli, reflecting attentional capture effectuated by an orienting response to SAL stimuli. aMEG source estimates indicate SAL stimuli elicited the attentional "circuit breaker" effect through early activity within a right-lateralized network centered around the lateral temporal cortex with additional activity in the pre-supplementary motor area (preSMA) and anterior insula (aINS/FO). Activity of the bilateral inferior frontal cortex responded specifically to inhibitory demands and was generally unaffected by the attentional manipulation. In contrast, early aINS/FO activity was sensitive to stimulus salience while subsequent activity was specific to inhibitory control. Activity estimated to the medial prefrontal cortex including the dorsal anterior cingulate cortex and preSMA reflected an integrative role that was sensitive to both inhibitory and attentional stimulus properties. At the level of neurofunctional networks, neural synchrony in the theta band (4-7 Hz) revealed interactions between principal cortical regions subserving attentional and inhibitory processes. Together, these results underscore the dynamic, integrative processing stages underlying inhibitory control.
Collapse
Affiliation(s)
- Joseph P Happer
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 5500 Campanile Dr., San Diego 92182, CA, United States.
| | - Laura C Wagner
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego 92182, CA, United States.
| | - Lauren E Beaton
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego 92182, CA, United States.
| | - Burke Q Rosen
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego 92182, CA, United States; Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla 92093, CA, United States.
| | - Ksenija Marinkovic
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 5500 Campanile Dr., San Diego 92182, CA, United States; Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego 92182, CA, United States; Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla 92093, CA, United States.
| |
Collapse
|