51
|
Lee S, Kim KW. Associations between texture of T1-weighted magnetic resonance imaging and radiographic pathologies in Alzheimer's disease. Eur J Neurol 2020; 28:735-744. [PMID: 33098172 DOI: 10.1111/ene.14609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Texture analysis of magnetic resonance imaging (MRI) brain scans have been proposed as a promising tool in the early diagnosis of Alzheimer's disease (AD), but its biological correlates remain unknown. In this study, we examined the relationship between MRI texture features and AD pathology. METHODS The study included 150 participants who had a 3.0T T1-weighted image, amyloid-β positron emission tomography (PET), and tau PET within 3 months of each other. In each of six brain regions (hippocampus, precuneus, and entorhinal, middle temporal, posterior cingulate and superior frontal cortices), linear regression analyses adjusting for age and sex was performed to examine the effects of regional amyloid-β and tau burden on regional texture features. We also compared neuroimaging measures based on pathological severity using ANOVA. RESULTS In all regions, tau burden (p < 0.05), but not amyloid-β burden, were associated with a certain texture feature that varied with the region's cytoarchitecture. Specifically, autocorrelation and cluster shade were associated with tau burden in allocortical and periallocortical regions, whereas entropy and contrast were associated with tau burden in neocortical regions. Mean signal intensity of each region did not show any associations with AD pathology. The values of the region-specific textures also varied across groups of varying pathological severity. CONCLUSIONS Our results suggest that textures of T1-weighted MRI reflect changes in the brain that are associated with regional tau burden and the local cytoarchitecture. This study provides insight into how MRI texture can be used for detection of microstructural changes in AD.
Collapse
Affiliation(s)
- Subin Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea.,Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | | |
Collapse
|
52
|
Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem 2020; 296:100105. [PMID: 33219130 PMCID: PMC7948403 DOI: 10.1074/jbc.rev120.008207] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Treatments for Alzheimer’s disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer’s pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
53
|
Bulk M, Hegeman-Kleinn I, Kenkhuis B, Suidgeest E, van Roon-Mom W, Lewerenz J, van Duinen S, Ronen I, van der Weerd L. Pathological characterization of T2*-weighted MRI contrast in the striatum of Huntington's disease patients. Neuroimage Clin 2020; 28:102498. [PMID: 33395988 PMCID: PMC7677121 DOI: 10.1016/j.nicl.2020.102498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/19/2023]
Abstract
Previous MRI studies consistently reported iron accumulation within the striatum of patients with Huntington's disease (HD). However, the pattern and origin of iron accumulation is poorly understood. This study aimed to characterize the histopathological correlates of iron-sensitive ex vivo MRI contrast change in HD brains. To this end, T2*-weighted 7T MRI was performed on postmortem tissue of the striatum of three control subjects and 10 HD patients followed by histological examination. In addition, formalin-fixed paraffin-embedded material of three control subjects and 14 HD patients was selected for only histology to identify the cellular localization of iron using stainings for iron, myelin, microglia and astrocytes. As expected HD striata showed prominent atrophy. Compared to controls, the striatum of HD patients was in general more hypointense on T2*-weighted high-field MRI and showed a more intense histopathological staining for iron. In addition, T2*-weighted MRI identified large focal hypointensities within the striatum of HD patients. Upon histological examination, these large focal hypointensities frequently colocalized with enlarged perivascular spaces and iron was found within the vessel wall and reactive astrocytes. In conclusion, we show that the striatum of HD patients has a distinctive phenotype on T2*-weighted MRI compared to control subjects. On ex vivo MRI, these contrast changes are heavily biased by enlarged perivascular spaces from which it is currently unknown whether this is a fixation artefact or a disease specific observation. Clinically, the observation of iron within reactive astrocytes is of importance for the interpretation and understanding of the potential underlying mechanisms of T2*-weighted MRI results in HD patients.
Collapse
Affiliation(s)
- Marjolein Bulk
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| | | | - Boyd Kenkhuis
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Ernst Suidgeest
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Willeke van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Lewerenz
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Sjoerd van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Itamar Ronen
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
54
|
Visser PJ, Reus LM, Gobom J, Jansen I, Dicks E, Tsolaki M, Verhey FRJ, Popp J, Martinez-Lage P, Vandenberghe R, Lleó A, Molinuevo JL, Engelborghs S, Freund-Levi Y, Froelich L, Sleegers K, Dobricic V, Hong S, Lovestone S, Streffer J, Vos SJB, Bos I, Smit AB, Blennow K, Scheltens P, Teunissen CE, Bertram L, Zetterberg H, Tijms BM. Cerebrospinal fluid total tau levels indicate aberrant neuronal plasticity in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33173883 DOI: 10.1101/2020.10.29.20211920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is characterised by abnormal amyloid beta and tau processing. Previous studies reported that cerebrospinal fluid (CSF) total tau (t-tau) levels vary between patients. Here we show that CSF t-tau variability is associated with distinct impairments in neuronal plasticity mediated by gene repression factors SUZ12 and REST. AD individuals with abnormal t-tau levels have increased CSF concentrations of plasticity proteins regulated by SUZ12 and REST. AD individuals with normal t-tau, on the contrary, have decreased concentrations of these plasticity proteins and increased concentrations in proteins associated with blood-brain and blood CSF-barrier dysfunction. Genomic analyses suggested that t-tau levels in part depend on genes involved in gene expression. The distinct plasticity abnormalities in AD as signaled by t-tau urge the need for personalised treatment.
Collapse
|
55
|
van der Weerd L, Lefering A, Webb A, Egli R, Bossoni L. Effects of Alzheimer's disease and formalin fixation on the different mineralised-iron forms in the human brain. Sci Rep 2020; 10:16440. [PMID: 33020534 PMCID: PMC7536241 DOI: 10.1038/s41598-020-73324-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Iron accumulation in the brain is a phenomenon common to many neurodegenerative diseases, perhaps most notably Alzheimer’s disease (AD). We present here magnetic analyses of post-mortem brain tissue of patients who had severe Alzheimer’s disease, and compare the results with those from healthy controls. Isothermal remanent magnetization experiments were performed to assess the extent to which different magnetic carriers are affected by AD pathology and formalin fixation. While Alzheimer’s brain material did not show higher levels of magnetite/maghemite nanoparticles than corresponding controls, the ferrihydrite mineral, known to be found within the core of ferritin proteins and hemosiderin aggregates, almost doubled in concentration in patients with Alzheimer’s pathology, strengthening the conclusions of our previous studies. As part of this study, we also investigated the effects of sample preparation, by performing experiments on frozen tissue as well as tissue which had been fixed in formalin for a period of 5 months. Our results showed that the two different preparations did not critically affect the concentration of magnetic carriers in brain tissue, as observable by SQUID magnetometry.
Collapse
Affiliation(s)
- Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Anton Lefering
- Reactor Institute, Delft University of Technology, Delft, The Netherlands
| | - Andrew Webb
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Ramon Egli
- Central Institute for Meteorology and Geo-dynamics (ZAMG), Vienna, Austria
| | - Lucia Bossoni
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
56
|
D’Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. Exp Biol Med (Maywood) 2020; 245:1444-1473. [PMID: 32878460 PMCID: PMC7553095 DOI: 10.1177/1535370220953065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Brain degenerative disorders, which include some neurodevelopmental disorders and age-associated diseases, cause debilitating neurological deficits and are generally fatal. A large body of emerging evidence indicates that iron accumulation in neurons within specific regions of the brain plays an important role in the pathogenesis of many of these disorders. Iron homeostasis is a highly complex and incompletely understood process involving a large number of regulatory molecules. Our review provides a description of what is known about how iron is obtained by the body and brain and how defects in the homeostatic processes could contribute to the development of brain diseases, focusing on Alzheimer's disease and Parkinson's disease as well as four other disorders belonging to a class of inherited conditions referred to as neurodegeneration based on iron accumulation (NBIA) disorders. A description of potential therapeutic approaches being tested for each of these different disorders is provided.
Collapse
Affiliation(s)
| | - Mark C Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Affairs Medical Center, Tampa, FL 33612, USA
| |
Collapse
|
57
|
Quantitative susceptibility mapping in β-Amyloid PET-stratified patients with dementia and healthy controls - A hybrid PET/MRI study. Eur J Radiol 2020; 131:109243. [PMID: 32916411 DOI: 10.1016/j.ejrad.2020.109243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022]
Abstract
PURPOSE Post-mortem and in-vivo MRI data suggest an accumulation of iron in the brain of Alzheimer's disease (AD) patients. The majority of studies in clinically diagnosed AD patients found an increase of iron-sensitive MRI signals in the putamen. As the clinical diagnosis shows only a moderate sensitivity, Aβ-PET was used to further stratify patients with the clinical diagnosis of AD. Aim of this exploratory study was to examine whether Aβ-positive (AD) and Aβ-negative (non-AD) patients differ in their regional magnetic susceptibility compared to healthy controls (HCs) and whether regional susceptibility values correlate with mini mental state examination (MMSE) scores or global Aβ-load. METHODS We retrospectively analyzed [11C]PiB PET/MRI data of 11 HCs, 16 AD and 10 non-AD patients. We used quantitative susceptibility mapping (QSM) as iron-sensitive MRI signal measured at the 3 T PET/MR scanner. Global cerebral Aβ-load was determined by composite [11C]PiB SUV ratios. RESULTS Compared to HCs, AD patients showed higher QSM values in putamen (0.049 ± 0.033 vs. 0.002 ± 0.031; p = 0.006), while non-AD patients showed lower QSM values in caudate nucleus (0.003 ± 0.027 vs. 0.051 ± 0.039; p = 0.006). There was a trend towards a significant correlation between putaminal QSM and MMSE values (ρ=-0.340, p = 0.053). In AD patients, global Aβ-load and putaminal QSM values were significantly correlated (ρ=-0.574, p = 0.020). CONCLUSIONS These data indicate that AD and non-AD patients may show different cerebral iron pathologies which might be detectable by QSM MRI, and might be linked to neurodegeneration. Overall, the data encourage further investigations in well-defined patient cohorts to clarify the value of QSM/magnetic susceptibility in the course of neurodegenerative diseases and its potential as diagnostic biomarker.
Collapse
|
58
|
Zachariou V, Bauer CE, Seago ER, Raslau FD, Powell DK, Gold BT. Cortical iron disrupts functional connectivity networks supporting working memory performance in older adults. Neuroimage 2020; 223:117309. [PMID: 32861788 PMCID: PMC7821351 DOI: 10.1016/j.neuroimage.2020.117309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive brain iron negatively affects working memory and related processes but the impact of cortical iron on task-relevant, cortical brain networks is unknown. We hypothesized that high cortical iron concentration may disrupt functional circuitry within cortical networks supporting working memory performance. Fifty-five healthy older adults completed an N-Back working memory paradigm while functional magnetic resonance imaging (fMRI) was performed. Participants also underwent quantitative susceptibility mapping (QSM) imaging for assessment of non-heme brain iron concentration. Additionally, pseudo continuous arterial spin labeling scans were obtained to control for potential contributions of cerebral blood volume and structural brain images were used to control for contributions of brain volume. Task performance was positively correlated with strength of task-based functional connectivity (tFC) between brain regions of the frontoparietal working memory network. However, higher cortical iron concentration was associated with lower tFC within this frontoparietal network and with poorer working memory performance after controlling for both cerebral blood flow and brain volume. Our results suggest that high cortical iron concentration disrupts communication within frontoparietal networks supporting working memory and is associated with reduced working memory performance in older adults.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA.
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - Elayna R Seago
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - Flavius D Raslau
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - David K Powell
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA; Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA; Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA; Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA.
| |
Collapse
|
59
|
Norbom LB, Rokicki J, Meer DVD, Alnæs D, Doan NT, Moberget T, Kaufmann T, Andreassen OA, Westlye LT, Tamnes CK. Testing relationships between multimodal modes of brain structural variation and age, sex and polygenic scores for neuroticism in children and adolescents. Transl Psychiatry 2020; 10:251. [PMID: 32710012 PMCID: PMC7382506 DOI: 10.1038/s41398-020-00931-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Human brain development involves spatially and temporally heterogeneous changes, detectable across a wide range of magnetic resonance imaging (MRI) measures. Investigating the interplay between multimodal MRI and polygenic scores (PGS) for personality traits associated with mental disorders in youth may provide new knowledge about typical and atypical neurodevelopment. We derived independent components across cortical thickness, cortical surface area, and grey/white matter contrast (GWC) (n = 2596, 3-23 years), and tested for associations between these components and age, sex and-, in a subsample (n = 878), PGS for neuroticism. Age was negatively associated with a single-modality component reflecting higher global GWC, and additionally with components capturing common variance between global thickness and GWC, and several multimodal regional patterns. Sex differences were found for components primarily capturing global and regional surface area (boys > girls), but also regional cortical thickness. For PGS for neuroticism, we found weak and bidirectional associations with a component reflecting right prefrontal surface area. These results indicate that multimodal fusion is sensitive to age and sex differences in brain structure in youth, but only weakly to polygenic load for neuroticism.
Collapse
Affiliation(s)
- Linn B Norbom
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway.
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| | - Jaroslav Rokicki
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Christian K Tamnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
60
|
Bulk M, Abdelmoula WM, Geut H, Wiarda W, Ronen I, Dijkstra J, van der Weerd L. Quantitative MRI and laser ablation-inductively coupled plasma-mass spectrometry imaging of iron in the frontal cortex of healthy controls and Alzheimer’s disease patients. Neuroimage 2020; 215:116808. [DOI: 10.1016/j.neuroimage.2020.116808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022] Open
|
61
|
Spotorno N, Acosta-Cabronero J, Stomrud E, Lampinen B, Strandberg OT, van Westen D, Hansson O. Relationship between cortical iron and tau aggregation in Alzheimer's disease. Brain 2020; 143:1341-1349. [PMID: 32330946 PMCID: PMC7241946 DOI: 10.1093/brain/awaa089] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
A growing body of evidence suggests that the dysregulation of neuronal iron may play a critical role in Alzheimer's disease. Recent MRI studies have established a relationship between iron accumulation and amyloid-β aggregation. The present study provides further insight demonstrating a relationship between iron and tau accumulation using magnetic resonance-based quantitative susceptibility mapping and tau-PET in n = 236 subjects with amyloid-β pathology (from the Swedish BioFINDER-2 study). Both voxel-wise and regional analyses showed a consistent association between differences in bulk magnetic susceptibility, which can be primarily ascribed to an increase in iron content, and tau-PET signal in regions known to be affected in Alzheimer's disease. Subsequent analyses revealed that quantitative susceptibility specifically mediates the relationship between tau-PET and cortical atrophy measures, thus suggesting a modulatory effect of iron burden on the disease process. We also found evidence suggesting the relationship between quantitative susceptibility and tau-PET is stronger in younger participants (age ≤ 65). Together, these results provide in vivo evidence of an association between iron deposition and both tau aggregation and neurodegeneration, which help advance our understanding of the role of iron dysregulation in the Alzheimer's disease aetiology.
Collapse
Affiliation(s)
- Nicola Spotorno
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | | | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Björn Lampinen
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Olof T Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Danielle van Westen
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Diagnostic Radiology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
62
|
Yan N, Zhang J. Iron Metabolism, Ferroptosis, and the Links With Alzheimer's Disease. Front Neurosci 2020; 13:1443. [PMID: 32063824 PMCID: PMC7000453 DOI: 10.3389/fnins.2019.01443] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Iron is an essential transition metal for numerous biologic processes in mammals. Iron metabolism is regulated via several coordination mechanisms including absorption, utilization, recycling, and storage. Iron dyshomeostasis can result in intracellular iron retention, thereby damaging cells, tissues, and organs through free oxygen radical generation. Numerous studies have shown that brain iron overload is involved in the pathological mechanism of neurodegenerative disease including Alzheimer’s disease (AD). However, the underlying mechanisms have not been fully elucidated. Ferroptosis, a newly defined iron-dependent form of cell death, which is distinct from apoptosis, necrosis, autophagy, and other forms of cell death, may provide us a new viewpoint. Here, we set out to summarize the current knowledge of iron metabolism and ferroptosis, and review the contributions of iron and ferroptosis to AD.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
63
|
Bulk M, Kenkhuis B, van der Graaf LM, Goeman JJ, Natté R, van der Weerd L. Postmortem T2*- Weighted MRI Imaging of Cortical Iron Reflects Severity of Alzheimer's Disease. J Alzheimers Dis 2019; 65:1125-1137. [PMID: 30103327 PMCID: PMC6218127 DOI: 10.3233/jad-180317] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The value of iron-based MRI changes for the diagnosis and staging of Alzheimer's disease (AD) depends on an association between cortical iron accumulation and AD pathology. Therefore, this study determined the cortical distribution pattern of MRI contrast changes in cortical regions selected based on the known distribution pattern of tau pathology and investigated whether MRI contrast changes reflect the underlying AD pathology in the different lobes. T2*-weighted MRI was performed on postmortem cortical tissue of controls, late-onset AD (LOAD), and early-onset AD (EOAD) followed by histology and correlation analyses. Combining ex vivo high-resolution MRI and histopathology revealed that: 1) LOAD and EOAD have a different distribution pattern of AD pathological hallmarks and MRI contrast changes over the cortex, with EOAD showing more severe MRI changes; 2) per lobe, severity of AD pathological hallmarks correlates with iron accumulation, and hence with MRI. Therefore, iron-sensitive MRI sequences allow detection of the cortical distribution pattern of AD pathology ex vivo.
Collapse
Affiliation(s)
- Marjolein Bulk
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Percuros BV, Leiden, The Netherlands
| | - Boyd Kenkhuis
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jelle J Goeman
- Department of Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco Natté
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
64
|
Tiepolt S, Schäfer A, Rullmann M, Roggenhofer E, Gertz HJ, Schroeter ML, Patt M, Bazin PL, Jochimsen TH, Turner R, Sabri O, Barthel H. Quantitative Susceptibility Mapping of Amyloid-β Aggregates in Alzheimer's Disease with 7T MR. J Alzheimers Dis 2019; 64:393-404. [PMID: 29865069 DOI: 10.3233/jad-180118] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND PET imaging is an established technique to detect cerebral amyloid-β (Aβ) plaques in vivo. Some preclinical and postmortem data report an accumulation of redox-active iron near Aβ plaques. Quantitative susceptibility mapping (QSM) at high-field MRI enables iron deposits to be depicted with high spatial resolution. OBJECTIVE Aim of this study was to examine whether iron and Aβ plaque accumulation is related and thus, whether 7T MRI might be an additive diagnostic tool to Aβ PET imaging. METHODS Postmortem human Alzheimer's disease (AD) and healthy control (HC) frontal gray matter (GM) was imaged with 7T MRI which resulted in T1 maps and QSM. Aβ plaque load was determined by histopathology. In vivo, 10 Aβ PET-positive AD patients (74.1±6.0a) and 10 Aβ PET-negative HCs (67.1±4.4a) underwent 7T MR examination and QSM maps were analyzed. Severity of cognitive deficits was determined by MMSE. RESULTS Postmortem, the susceptibility of Aβ plaque-containing GM were higher than those of Aβ plaque-free GM (0.011±0.002 versus - 0.008±0.003 ppm, p < 0.001). In vivo, only the bilateral globus pallidus showed significantly higher susceptibility in AD patients compared to HCs (right: 0.277±0.018 versus - 0.009±0.009 ppm; left: 0.293±0.014 versus - 0.007±0.012 ppm, p < 0.0001). The pallidal QSM values were negatively correlated with those of the MMSE (r = - 0.69, p = 0.001). CONCLUSION The postmortem study revealed significant susceptibility differences between the Aβ plaque-containing and Aβ plaque-free GM, whereas in vivo only the QSM values of the globus pallidus differed significantly between AD and HC group. The pallidal QSM values correlated with the severity of cognitive deficits. These findings encourage efforts to optimize the 7T-QSM methodology.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Andreas Schäfer
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Siemens Healthcare GmbH, Diagnostic Imaging, Magnetic Resonance, Research & Development, Erlangen, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany.,Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Elisabeth Roggenhofer
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,LREN, Department for Clinical Neurosciences, CHUV, University of Lausanne, Lausanne, Switzerland
| | | | | | - Matthias L Schroeter
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Pierre-Louis Bazin
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thies H Jochimsen
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Robert Turner
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
65
|
De Barros A, Arribarat G, Combis J, Chaynes P, Péran P. Matching ex vivo MRI With Iron Histology: Pearls and Pitfalls. Front Neuroanat 2019; 13:68. [PMID: 31333421 PMCID: PMC6616088 DOI: 10.3389/fnana.2019.00068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Iron levels in the brain can be estimated using newly developed specific magnetic resonance imaging (MRI) sequences. This technique has several applications, especially in neurodegenerative disorders like Alzheimer's disease or Parkinson's disease. Coupling ex vivo MRI with histology allows neuroscientists to better understand what they see in the images. Iron is one of the most extensively studied elements, both by MRI and using histological or physical techniques. Researchers were initially only able to make visual comparisons between MRI images and different types of iron staining, but the emergence of specific MRI sequences like R2* or quantitative susceptibility mapping meant that quantification became possible, requiring correlations with physical techniques. Today, with advances in MRI and image post-processing, it is possible to look for MRI/histology correlations by matching the two sorts of images. For the result to be acceptable, the choice of methodology is crucial, as there are hidden pitfalls every step of the way. In order to review the advantages and limitations of ex vivo MRI correlation with iron-based histology, we reviewed all the relevant articles dealing with the topic in humans. We provide separate assessments of qualitative and quantitative studies, and after summarizing the significant results, we emphasize all the pitfalls that may be encountered.
Collapse
Affiliation(s)
- Amaury De Barros
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
- Department of Anatomy, Toulouse Faculty of Medicine, Toulouse, France
| | - Germain Arribarat
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| | - Jeanne Combis
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| | - Patrick Chaynes
- Department of Anatomy, Toulouse Faculty of Medicine, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| |
Collapse
|
66
|
Masaldan S, Belaidi AA, Ayton S, Bush AI. Cellular Senescence and Iron Dyshomeostasis in Alzheimer's Disease. Pharmaceuticals (Basel) 2019; 12:E93. [PMID: 31248150 PMCID: PMC6630536 DOI: 10.3390/ph12020093] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023] Open
Abstract
Iron dyshomeostasis is a feature of Alzheimer's disease (AD). The impact of iron on AD is attributed to its interactions with the central proteins of AD pathology (amyloid precursor protein and tau) and/or through the iron-mediated generation of prooxidant molecules (e.g., hydroxyl radicals). However, the source of iron accumulation in pathologically relevant regions of the brain and its contribution to AD remains unclear. One likely contributor to iron accumulation is the age-associated increase in tissue-resident senescent cells that drive inflammation and contribute to various pathologies associated with advanced age. Iron accumulation predisposes ageing tissue to oxidative stress that can lead to cellular dysfunction and to iron-dependent cell death modalities (e.g., ferroptosis). Further, elevated brain iron is associated with the progression of AD and cognitive decline. Elevated brain iron presents a feature of AD that may be modified pharmacologically to mitigate the effects of age/senescence-associated iron dyshomeostasis and improve disease outcome.
Collapse
Affiliation(s)
- Shashank Masaldan
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
67
|
Pelkmans W, Dicks E, Barkhof F, Vrenken H, Scheltens P, van der Flier WM, Tijms BM. Gray matter T1-w/T2-w ratios are higher in Alzheimer's disease. Hum Brain Mapp 2019; 40:3900-3909. [PMID: 31157938 PMCID: PMC6771703 DOI: 10.1002/hbm.24638] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/18/2023] Open
Abstract
Myelin determines the conduction of neuronal signals along axonal connections in networks of the brain. Loss of myelin integrity in neuronal circuits might result in cognitive decline in Alzheimer's disease (AD). Recently, the ratio of T1-weighted by T2-weighted MRI has been used as a proxy for myelin content in gray matter of the cortex. With this approach, we investigated whether AD dementia patients show lower cortical myelin content (i.e., a lower T1-w/T2-w ratio value). We selected structural T1-w and T2-w MR images of 293 AD patients and 172 participants with normal cognition (NC). T1-w/T2-w ratios were computed for the whole brain and within 90 automated anatomical labeling atlas regions using SPM12, compared between groups and correlated with the neuronal injury marker tau in cerebrospinal fluid (CSF) and Mini Mental State Examination (MMSE). In contrast to our hypothesis, AD patients showed higher whole brain T1-w/T2-w ratios than NC, and regionally in 31 anatomical areas (p < .0005; d = 0.21 to 0.48), predominantly in the inferior parietal lobule, angular gyrus, anterior cingulate, and precuneus. Regional higher T1-w/T2-w values were associated with higher CSF tau concentrations (p < .0005; r = .16 to .22) and worse MMSE scores (p < .0005; r = -.16 to -.21). These higher T1-w/T2-w values in AD seem to contradict previous pathological findings of demyelination and disconnectivity in AD. Future research should further investigate the biological processes reflected by increases in T1-w/T2-w values.
Collapse
Affiliation(s)
- Wiesje Pelkmans
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ellen Dicks
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Hugo Vrenken
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Epidemiology & Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
68
|
Thurnher MM, Boban J, Rieger A, Gelpi E. Susceptibility-Weighted MR Imaging Hypointense Rim in Progressive Multifocal Leukoencephalopathy: The End Point of Neuroinflammation and a Potential Outcome Predictor. AJNR Am J Neuroradiol 2019; 40:994-1000. [PMID: 31122919 DOI: 10.3174/ajnr.a6072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Progressive multifocal leukoencephalopathy (PML) represents a life-threatening demyelinating disorder of the brain caused by reactivation of a rare opportunistic infection with JC Polyomavirus. The aims of this study were to describe the incidence of a susceptibility-weighted imaging hypointense rim in patients with multifocal leukoencephalopathy and to explore the histologic correlates and prognostic value of the rim with regard to the clinical outcome. MATERIALS AND METHODS This retrospective study included 18 patients with a definite diagnosis of progressive multifocal leukoencephalopathy. Ten patients were HIV-positive, 3 patients had natalizumab-associated progressive multifocal leukoencephalopathy, 1 patient had multiple myeloma, 3 patients had a history of lymphoma, and 1 was diagnosed with acute myeloid leukemia. Patients were divided into short- (up to 12 months) and long-term (>12 months) survivors. A total of 93 initial and follow-up MR imaging examinations were reviewed. On SWI, the presence and development of a hypointense rim at the periphery of the progressive multifocal leukoencephalopathy lesions were noted. A postmortem histologic examination was performed in 2 patients: A rim formed in one, and in one, there was no rim. RESULTS A total of 73 progressive multifocal leukoencephalopathy lesions were observed. In 13 (72.2%) patients, a well-defined thin, linear, hypointense rim at the periphery of the lesion toward the cortical side was present, while in 5 (27.8%) patients, it was completely absent. All 11 long-term survivors and 2 short-term survivors presented with a prominent SWI-hypointense rim, while 5/7 short-term survivors did not have this rim. CONCLUSIONS The thin, uniformly linear, gyriform SWI-hypointense rim in the paralesional U-fibers in patients with definite progressive multifocal leukoencephalopathy might represent an end-point stage of the neuroinflammatory process in long-term survivors.
Collapse
Affiliation(s)
- M M Thurnher
- From the Departments of Biomedical Imaging and Image-Guided Therapy (M.M.T., J.B.)
| | - J Boban
- From the Departments of Biomedical Imaging and Image-Guided Therapy (M.M.T., J.B.)
| | | | - E Gelpi
- Institute of Neurology (E.G.), University Hospital Vienna, Medical University of Vienna, Vienna, Austria
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-Institut dÌnvestigacions Biomediques August Pi i Sunyer (E.G.), Barcelona, Spain
| |
Collapse
|
69
|
Finnegan ME, Visanji NP, Romero-Canelon I, House E, Rajan S, Mosselmans JFW, Hazrati LN, Dobson J, Collingwood JF. Synchrotron XRF imaging of Alzheimer's disease basal ganglia reveals linear dependence of high-field magnetic resonance microscopy on tissue iron concentration. J Neurosci Methods 2019; 319:28-39. [PMID: 30851339 DOI: 10.1016/j.jneumeth.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chemical imaging of the human brain has great potential for diagnostic and monitoring purposes. The heterogeneity of human brain iron distribution, and alterations to this distribution in Alzheimer's disease, indicate iron as a potential endogenous marker. The influence of iron on certain magnetic resonance imaging (MRI) parameters increases with magnetic field, but is under-explored in human brain tissues above 7 T. NEW METHOD Magnetic resonance microscopy at 9.4 T is used to calculate parametric images of chemically-unfixed post-mortem tissue from Alzheimer's cases (n = 3) and healthy controls (n = 2). Iron-rich regions including caudate nucleus, putamen, globus pallidus and substantia nigra are analysed prior to imaging of total iron distribution with synchrotron X-ray fluorescence mapping. Iron fluorescence calibration is achieved with adjacent tissue blocks, analysed by inductively coupled plasma mass spectrometry or graphite furnace atomic absorption spectroscopy. RESULTS Correlated MR images and fluorescence maps indicate linear dependence of R2, R2* and R2' on iron at 9.4 T, for both disease and control, as follows: [R2(s-1) = 0.072[Fe] + 20]; [R2*(s-1) = 0.34[Fe] + 37]; [R2'(s-1) = 0.26[Fe] + 16] for Fe in μg/g tissue (wet weight). COMPARISON WITH EXISTING METHODS This method permits simultaneous non-destructive imaging of most bioavailable elements. Iron is the focus of the present study as it offers strong scope for clinical evaluation; the approach may be used more widely to evaluate the impact of chemical elements on clinical imaging parameters. CONCLUSION The results at 9.4 T are in excellent quantitative agreement with predictions from experiments performed at lower magnetic fields.
Collapse
Affiliation(s)
- Mary E Finnegan
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Naomi P Visanji
- The Edmond J Safra Program in Parkinson's Disease and the Morton & Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, M5T 2S8, Canada
| | - Isolda Romero-Canelon
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Emily House
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Surya Rajan
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | - Jon Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Joanna F Collingwood
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK; Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
70
|
Probing Brain Developmental Patterns of Myelination and Associations With Psychopathology in Youths Using Gray/White Matter Contrast. Biol Psychiatry 2019; 85:389-398. [PMID: 30447910 DOI: 10.1016/j.biopsych.2018.09.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cerebral myeloarchitecture shows substantial development across childhood and adolescence, and aberrations in these trajectories are relevant for a range of mental disorders. Differential myelination between intracortical and subjacent white matter can be approximated using signal intensities in T1-weighted magnetic resonance imaging. METHODS To test the sensitivity of gray/white matter contrast (GWC) to age and individual differences in psychopathology and general cognitive ability in youths (8-23 years), we formed data-driven psychopathology and cognitive components using a large population-based sample, the Philadelphia Neurodevelopmental Cohort (N = 6487, 52% female). We then tested for associations with regional GWC defined by an independent component analysis in a subsample with available magnetic resonance imaging data (n = 1467, 53% female). RESULTS The analyses revealed a global GWC component, which showed an age-related decrease from late childhood and across adolescence. In addition, we found regional anatomically meaningful components with differential age associations explaining variance beyond the global component. When accounting for age and sex, both higher symptom levels of anxiety or prodromal psychosis and lower cognitive ability were associated with higher GWC in insula and cingulate cortices and with lower GWC in pre- and postcentral cortices. We also found several additional regional associations with anxiety, prodromal psychosis, and cognitive ability. CONCLUSIONS Independent modes of GWC variation are sensitive to global and regional brain developmental processes, possibly related to differences between intracortical and subjacent white matter myelination, and individual differences in regional GWC are associated with both mental health and general cognitive functioning.
Collapse
|
71
|
Jonkman LE, Kenkhuis B, Geurts JJG, van de Berg WDJ. Post-Mortem MRI and Histopathology in Neurologic Disease: A Translational Approach. Neurosci Bull 2019; 35:229-243. [PMID: 30790214 DOI: 10.1007/s12264-019-00342-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023] Open
Abstract
In this review, combined post-mortem brain magnetic resonance imaging (MRI) and histology studies are highlighted, illustrating the relevance of translational approaches to define novel MRI signatures of neuropathological lesions in neuroinflammatory and neurodegenerative disorders. Initial studies combining post-mortem MRI and histology have validated various MRI sequences, assessing their sensitivity and specificity as diagnostic biomarkers in neurologic disease. More recent studies have focused on defining new radiological (bio)markers and implementing them in the clinical (research) setting. By combining neurological and neuroanatomical expertise with radiological development and pathological validation, a cycle emerges that allows for the discovery of novel MRI biomarkers to be implemented in vivo. Examples of this cycle are presented for multiple sclerosis, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. Some applications have been shown to be successful, while others require further validation. In conclusion, there is much to explore with post-mortem MRI and histology studies, which can eventually be of high relevance for clinical practice.
Collapse
Affiliation(s)
- Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
72
|
McIntosh A, Mela V, Harty C, Minogue AM, Costello DA, Kerskens C, Lynch MA. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol 2019; 29:606-621. [PMID: 30661261 DOI: 10.1111/bpa.12704] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
Among the changes that typify Alzheimer's disease (AD) are neuroinflammation and microglial activation, amyloid deposition perhaps resulting from compromised microglial function and iron accumulation. Data from Genome Wide Association Studies (GWAS) identified a number of gene variants that endow a significant risk of developing AD and several of these encode proteins expressed in microglia and proteins that are implicated in the immune response. This suggests that neuroinflammation and the accompanying microglial activation are likely to contribute to the pathogenesis of the disease. The trigger(s) leading to these changes remain to be identified. In this study, we set out to examine the link between the inflammatory, metabolic and iron-retentive signature of microglia in vitro and in transgenic mice that overexpress the amyloid precursor protein (APP) and presenilin 1 (PS1; APP/PS1 mice), a commonly used animal model of AD. Stimulation of cultured microglia with interferon (IFN)γ and amyloid-β (Aβ) induced an inflammatory phenotype and switched the metabolic profile and iron handling of microglia so that the cells became glycolytic and iron retentive, and the phagocytic and chemotactic function of the cells was reduced. Analysis of APP/PS1 mice by magnetic resonance imaging (MRI) revealed genotype-related hypointense areas in the hippocampus consistent with iron deposition, and immunohistochemical analysis indicated that the iron accumulated in microglia, particularly in microglia that decorated Aβ deposits. Isolated microglia prepared from APP/PS1 mice were characterized by a switch to a glycolytic and iron-retentive phenotype and phagocytosis of Aβ was reduced in these cells. This evidence suggests that the switch to glycolysis in microglia may kick-start a cascade of events that ultimately leads to microglial dysfunction and Aβ accumulation.
Collapse
Affiliation(s)
- Allison McIntosh
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Virginia Mela
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Conor Harty
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Aedin M Minogue
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Derek A Costello
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Christian Kerskens
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Marina A Lynch
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
73
|
Nikseresht S, Bush AI, Ayton S. Treating Alzheimer's disease by targeting iron. Br J Pharmacol 2019; 176:3622-3635. [PMID: 30632143 DOI: 10.1111/bph.14567] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/14/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022] Open
Abstract
No disease modifying drugs have been approved for Alzheimer's disease despite recent major investments by industry and governments throughout the world. The burden of Alzheimer's disease is becoming increasingly unsustainable, and given the last decade of clinical trial failures, a renewed understanding of the disease mechanism is called for, and trialling of new therapeutic approaches to slow disease progression is warranted. Here, we review the evidence and rational for targeting brain iron in Alzheimer's disease. Although iron elevation in Alzheimer's disease was reported in the 1950s, renewed interest has been stimulated by the advancement of fluid and imaging biomarkers of brain iron that predict disease progression, and the recent discovery of the iron-dependent cell death pathway termed ferroptosis. We review these emerging clinical and biochemical findings and propose how this pathway may be targeted therapeutically to slow Alzheimer's disease progression. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Sara Nikseresht
- The Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- The Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
74
|
Gong NJ, Dibb R, Bulk M, van der Weerd L, Liu C. Imaging beta amyloid aggregation and iron accumulation in Alzheimer's disease using quantitative susceptibility mapping MRI. Neuroimage 2019; 191:176-185. [PMID: 30739060 DOI: 10.1016/j.neuroimage.2019.02.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022] Open
Abstract
Beta amyloid is a protein fragment snipped from the amyloid precursor protein (APP). Aggregation of these peptides into amyloid plaques is one of the hallmarks of Alzheimer's disease. MR imaging of beta amyloid plaques has been attempted using various techniques, notably with T2* contrast. The non-invasive detectability of beta amyloid plaques in MR images has so far been largely attributed to focal iron deposition accompanying the plaques. It is believed that the T2* shortening effects of paramagnetic iron are the primary source of contrast between plaques and surrounding tissue. Amyloid plaque itself has been reported to induce no magnetic susceptibility effect. We hypothesized that aggregations of beta amyloid would increase electron density and induce notable changes in local susceptibility value, large enough to generate contrast relative to surrounding normal tissues that can be visualized by quantitative susceptibility mapping (QSM) MR imaging. To test this hypothesis, we first demonstrated in a phantom that beta amyloid is diamagnetic and can generate strong contrast on susceptibility maps. We then conducted experiments on a transgenic mouse model of Alzheimer's disease that is known to mimic the formation of human beta amyloid but without neurofibrillary tangles or neuronal death. Over a period of 18 months, we showed that QSM can be used to longitudinally monitor beta amyloid accumulation and accompanied iron deposition in vivo. Individual beta amyloid plaque can also be visualized ex vivo in high resolution susceptibility maps. Moreover, the measured negative susceptibility map and positive susceptibility map could provide histology-like image contrast for identifying deposition of beta amyloid plaques and iron. Finally, we demonstrated that the diamagnetic susceptibility of beta amyloid can also be observed in brain specimens of AD patients. The ability to assess beta amyloid aggregation non-invasively with QSM MR imaging may aid the diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Nan-Jie Gong
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
| | - Russell Dibb
- Center for In Vivo Microscopy, Duke University School of Medicine, Durham, NC, USA
| | - Marjolein Bulk
- Department of Radiology & Human Genetics, Leiden University Medical Center, the Netherlands
| | - Louise van der Weerd
- Department of Radiology & Human Genetics, Leiden University Medical Center, the Netherlands
| | - Chunlei Liu
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
75
|
Jonkman LE, Graaf YGD, Bulk M, Kaaij E, Pouwels PJW, Barkhof F, Rozemuller AJM, van der Weerd L, Geurts JJG, van de Berg WDJ. Normal Aging Brain Collection Amsterdam (NABCA): A comprehensive collection of postmortem high-field imaging, neuropathological and morphometric datasets of non-neurological controls. NEUROIMAGE-CLINICAL 2019; 22:101698. [PMID: 30711684 PMCID: PMC6360607 DOI: 10.1016/j.nicl.2019.101698] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 12/18/2022]
Abstract
Well-characterized, high-quality brain tissue of non-neurological control subjects is a prerequisite to study the healthy aging brain, and can serve as a control for the study of neurological disorders. The Normal Aging Brain Collection Amsterdam (NABCA) provides a comprehensive collection of post-mortem (ultra-)high-field MRI (3Tesla and 7 Tesla) and neuropathological datasets of non-neurological controls. By providing MRI within the pipeline, NABCA uniquely stimulates translational neurosciences; from molecular and morphometric tissue studies to the clinical setting. We describe our pipeline, including a description of our on-call autopsy team, donor selection, in situ and ex vivo post-mortem MRI protocols, brain dissection and neuropathological diagnosis. A demographic, radiological and pathological overview of five selected cases on all these aspects is provided. Additionally, information is given on data management, data and tissue application procedures, including review by a scientific advisory board, and setting up a material transfer agreement before distribution of tissue. Finally, we focus on future prospects, which includes laying the foundation for a unique platform for neuroanatomical, histopathological and neuro-radiological education, of professionals, students and the general (lay) audience. NABCA provides a collection of correlative post-mortem MRI and pathological datasets. Non-neurological control brains for studies on aging and neurological disorders. Stimulating micro- to macroscale structural exploration within same patient Post-mortem MRI data and tissue available for integrated advanced data analytics
Collapse
Affiliation(s)
- Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Yvon Galis-de Graaf
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marjolein Bulk
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Eliane Kaaij
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Department of radiology and nuclear medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of radiology and nuclear medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institutes of neurology and healthcare engineering, University College London, London, United Kingdom
| | - Annemieke J M Rozemuller
- Department of pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
76
|
Park M, Moon Y, Han SH, Moon WJ. Motor cortex hypointensity on susceptibility-weighted imaging: a potential imaging marker of iron accumulation in patients with cognitive impairment. Neuroradiology 2019; 61:675-683. [PMID: 30693411 DOI: 10.1007/s00234-019-02159-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE To assess the prevalence and characteristics of motor cortex hypointensity on 3-T susceptibility-weighted imaging (SWI) in patients with cognitive impairment and examine its clinical significance. METHODS The institutional review board approved this retrospective study and waived the requirement for informed consent. A total of 127 patients with a clinical diagnosis of probable Alzheimer's disease (AD) (n = 32) or mild cognitive impairment (MCI) (n = 95) and 127 age- and sex-matched control subjects underwent 3-T brain magnetic resonance imaging. SWI was analyzed for both subjective visual scoring and the quantitative estimation of phase shift in the posterior bank of the motor cortex. A multivariate logistic regression analysis was performed to identify clinical and imaging variables associated with motor cortex hypointensity on SWI. RESULTS Motor cortex hypointensity on SWI was observed in 94/127 cognitively impaired patients (74.0%) and 72/127 control subjects (56.7%) (p = 0.004). Age was the only variable that was significantly associated with motor cortex hypointensity in patients with cognitive impairment (odds ratio, 1.15; 95% confidence interval, 1.065-1.242; p < 0.001). The quantitative analysis confirmed a significant increase in phase shifting in the posterior bank of the motor cortex in patients with positive motor cortex hypointensity on SWI (p < 0.001). CONCLUSION Motor cortex hypointensity on SWI was more frequently found in patients with cognitive impairment than in age-matched controls and was positively associated with age. Thus, it may be a potential imaging marker of iron accumulation in patients with MCI or AD.
Collapse
Affiliation(s)
- Mina Park
- Department of Radiology, Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea.,Department of Radiology, Gangnam Severance Hospital, College of Medicine, Yonsei University, Seoul, South Korea
| | - Yeonsil Moon
- Department of Neurology, Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Seol-Heui Han
- Department of Neurology, Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Won-Jin Moon
- Department of Radiology, Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea.
| |
Collapse
|
77
|
Kenkhuis B, Jonkman LE, Bulk M, Buijs M, Boon BDC, Bouwman FH, Geurts JJG, van de Berg WDJ, van der Weerd L. 7T MRI allows detection of disturbed cortical lamination of the medial temporal lobe in patients with Alzheimer's disease. NEUROIMAGE-CLINICAL 2019; 21:101665. [PMID: 30642758 PMCID: PMC6413344 DOI: 10.1016/j.nicl.2019.101665] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/24/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
Abstract
Using 7T T2⁎-weighted imaging, we scanned post-mortem hemispheres of Alzheimer patients and age-matched controls to describe the patterns of appearance of cortical lamination on T2*-weighted MRI in the medial temporal lobe and to assess the changes in Alzheimer patients versus controls. While controls showed a hypointense line of Baillarger in the majority of the cases, appearance of cortical lamination varied to a greater extent in the Alzheimer patients. Severely distorted cortical lamination was also observed in advanced stage Alzheimer patients and presented itself as a broad hypointense inhomogeneous band, covering a large part of the cortical width. Histology indicated that the changes in the appearance of visible cortical lamination were not only associated with myelin changes, but also with diffuse cortical iron alterations and depositions. Therefore, imaging cortical lamination alterations in Alzheimer patients using T2*-weighted MRI might provide new information on involved neuroanatomical structures in an advanced neurodegenerative stage. 7T T2*-weighted MRI of post-mortem hemispheres allows detection of cortical lamination features in the medial temporal lobe AD patients show increased variation in the appearance of visible contrast patterns in the cortex. Severely distorted cortical lamination is observed in a proportion of advanced stage AD patients, but not in controls. Altered cortical contrast of AD patients reflects myelin-associated iron alterations and depositions on histology.
Collapse
Affiliation(s)
- Boyd Kenkhuis
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Marjolein Bulk
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Percuros BV, Leiden, the Netherlands
| | - Mathijs Buijs
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Baayla D C Boon
- Department of Neurology and Alzheimer Center, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands; Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Femke H Bouwman
- Department of Neurology and Alzheimer Center, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
78
|
Nuñez MT, Chana-Cuevas P. New Perspectives in Iron Chelation Therapy for the Treatment of Neurodegenerative Diseases. Pharmaceuticals (Basel) 2018; 11:ph11040109. [PMID: 30347635 PMCID: PMC6316457 DOI: 10.3390/ph11040109] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Iron chelation has been introduced as a new therapeutic concept for the treatment of neurodegenerative diseases with features of iron overload. At difference with iron chelators used in systemic diseases, effective chelators for the treatment of neurodegenerative diseases must cross the blood–brain barrier. Given the promissory but still inconclusive results obtained in clinical trials of iron chelation therapy, it is reasonable to postulate that new compounds with properties that extend beyond chelation should significantly improve these results. Desirable properties of a new generation of chelators include mitochondrial destination, the center of iron-reactive oxygen species interaction, and the ability to quench free radicals produced by the Fenton reaction. In addition, these chelators should have moderate iron binding affinity, sufficient to chelate excessive increments of the labile iron pool, estimated in the micromolar range, but not high enough to disrupt physiological iron homeostasis. Moreover, candidate chelators should have selectivity for the targeted neuronal type, to lessen unwanted secondary effects during long-term treatment. Here, on the basis of a number of clinical trials, we discuss critically the current situation of iron chelation therapy for the treatment of neurodegenerative diseases with an iron accumulation component. The list includes Parkinson’s disease, Friedreich’s ataxia, pantothenate kinase-associated neurodegeneration, Huntington disease and Alzheimer’s disease. We also review the upsurge of new multifunctional iron chelators that in the future may replace the conventional types as therapeutic agents for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco T Nuñez
- Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago 7800024, Chile.
| | - Pedro Chana-Cuevas
- Center for the Treatment of Movement Disorders, Universidad de Santiago de Chile, Belisario Prat 1597, Santiago 83800000, Chile.
| |
Collapse
|
79
|
Blamire AM. MR approaches in neurodegenerative disorders. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 108:1-16. [PMID: 30538047 DOI: 10.1016/j.pnmrs.2018.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Neurodegenerative disease is the umbrella term which refers to a range of clinical conditions causing degeneration of neurons within the central nervous system leading to loss of brain function and eventual death. The most prevalent of these is Alzheimer's disease (AD), which affects approximately 50 million people worldwide and is predicted to reach 75 million by 2030. Neurodegenerative diseases can only be fully diagnosed at post mortem by neuropathological assessment of the type and distribution of protein deposits which characterise each different condition, but there is a clear role for imaging technologies in aiding patient diagnoses in life. Magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques have been applied to study these conditions for many years. In this review, we consider the range of MR-based measurements and describe the findings in AD, but also contrast these with the second most common dementia, dementia with Lewy bodies (DLB). The most definitive observation is the major structural brain changes seen in AD using conventional T1-weighted (T1w) MRI, where medial temporal lobe structures are notably atrophied in most symptomatic patients with AD, but often preserved in DLB. Indeed these findings are sufficiently robust to have been incorporated into clinical diagnostic criteria. Diffusion tensor imaging (DTI) reveals widespread changes in tissue microstructure, with increased mean diffusivity and decreased fractional anisotropy reflecting the degeneration of the white matter structures. There are suggestions that there are subtle differences between AD and DLB populations. At the metabolic level, atrophy-corrected MRS demonstrates reduced density of healthy neurons in brain areas with altered perfusion and in regions known to show higher deposits of pathogenic proteins. As studies have moved from patients with advanced disease and clear dysfunction to patients with earlier presentation such as with mild cognitive impairment (MCI), which in some represents the first signs of their ensuing dementia, the ability of MRI to detect differences has been weaker and further work is still required, ideally in much larger cohorts than previously studied. The vast majority of imaging research in dementia populations has been univariate with respect to the MR-derived parameters considered. To date, none of these measurements has uniquely replicated the patterns of tissue involvement seen by neuropathology, and the ability of MR techniques to deliver a non-invasive diagnosis eludes us. Future opportunities may lie in combining MR and nuclear medicine approaches (position emission tomography, PET) to provide a more complete view of structural and metabolic changes. Such developments will require multi-variate analyses, possibly combined with artificial intelligence or deep learning algorithms, to enhance our ability to combine the array of image-derived information, genetic, gender and lifestyle factors.
Collapse
Affiliation(s)
- Andrew M Blamire
- Institute of Cellular Medicine and Centre for In Vivo Imaging, Newcastle University, UK.
| |
Collapse
|
80
|
Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C. Iron and Alzheimer's Disease: From Pathogenesis to Therapeutic Implications. Front Neurosci 2018; 12:632. [PMID: 30250423 PMCID: PMC6139360 DOI: 10.3389/fnins.2018.00632] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
As people age, iron deposits in different areas of the brain may impair normal cognitive function and behavior. Abnormal iron metabolism generates hydroxyl radicals through the Fenton reaction, triggers oxidative stress reactions, damages cell lipids, protein and DNA structure and function, and ultimately leads to cell death. There is an imbalance in iron homeostasis in Alzheimer's disease (AD). Excessive iron contributes to the deposition of β-amyloid and the formation of neurofibrillary tangles, which in turn, promotes the development of AD. Therefore, iron-targeted therapeutic strategies have become a new direction. Iron chelators, such as desferoxamine, deferiprone, deferasirox, and clioquinol, have received a great deal of attention and have obtained good results in scientific experiments and some clinical trials. Given the limitations and side effects of the long-term application of traditional iron chelators, alpha-lipoic acid and lactoferrin, as self-synthesized naturally small molecules, have shown very intriguing biological activities in blocking Aβ-aggregation, tauopathy and neuronal damage. Despite a lack of evidence for any clinical benefits, the conjecture that therapeutic chelation, with a special focus on iron ions, is a valuable approach for treating AD remains widespread.
Collapse
Affiliation(s)
- Jun-Lin Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yong-Gang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zheng-Sheng Yang
- Department of Dermatology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China.,Key Laboratory of Medical Cell Biology of Ministry of Education, Institute of Health Sciences, China Medical University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
81
|
Bulk M, Moursel LG, van der Graaf LM, van Veluw SJ, Greenberg SM, van Duinen SG, van Buchem MA, van Rooden S, van der Weerd L. Cerebral Amyloid Angiopathy With Vascular Iron Accumulation and Calcification. Stroke 2018; 49:2081-2087. [DOI: 10.1161/strokeaha.118.021872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marjolein Bulk
- From the Department of Radiology (M.B., L.G.M., L.M.v.d.G., M.A.v.B., S.v.R., L.v.d.W.)
- Department of Human Genetics (M.B., L.G.M., L.M.v.d.G., L.v.d.W.)
| | - Laure Grand Moursel
- From the Department of Radiology (M.B., L.G.M., L.M.v.d.G., M.A.v.B., S.v.R., L.v.d.W.)
- Department of Human Genetics (M.B., L.G.M., L.M.v.d.G., L.v.d.W.)
| | - Linda M. van der Graaf
- From the Department of Radiology (M.B., L.G.M., L.M.v.d.G., M.A.v.B., S.v.R., L.v.d.W.)
- Department of Human Genetics (M.B., L.G.M., L.M.v.d.G., L.v.d.W.)
| | - Susanne J. van Veluw
- Leiden University Medical Center, the Netherlands; and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (S.J.v.V., S.M.G.)
| | - Steven M. Greenberg
- Leiden University Medical Center, the Netherlands; and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (S.J.v.V., S.M.G.)
| | | | - Mark A. van Buchem
- From the Department of Radiology (M.B., L.G.M., L.M.v.d.G., M.A.v.B., S.v.R., L.v.d.W.)
| | - Sanneke van Rooden
- From the Department of Radiology (M.B., L.G.M., L.M.v.d.G., M.A.v.B., S.v.R., L.v.d.W.)
| | - Louise van der Weerd
- From the Department of Radiology (M.B., L.G.M., L.M.v.d.G., M.A.v.B., S.v.R., L.v.d.W.)
- Department of Human Genetics (M.B., L.G.M., L.M.v.d.G., L.v.d.W.)
| |
Collapse
|
82
|
Hierro-Bujalance C, Bacskai BJ, Garcia-Alloza M. In Vivo Imaging of Microglia With Multiphoton Microscopy. Front Aging Neurosci 2018; 10:218. [PMID: 30072888 PMCID: PMC6060250 DOI: 10.3389/fnagi.2018.00218] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/26/2018] [Indexed: 01/04/2023] Open
Abstract
Neuroimaging has become an unparalleled tool to understand the central nervous system (CNS) anatomy, physiology and neurological diseases. While an altered immune function and microglia hyperactivation are common neuropathological features for many CNS disorders and neurodegenerative diseases, direct assessment of the role of microglial cells remains a challenging task. Non-invasive neuroimaging techniques, including magnetic resonance imaging (MRI), positron emission tomography (PET) and single positron emission computed tomography (SPECT) are widely used for human clinical applications, and a variety of ligands are available to detect neuroinflammation. In animal models, intravital imaging has been largely used, and minimally invasive multiphoton microcopy (MPM) provides high resolution detection of single microglia cells, longitudinally, in living brain. In this study, we review in vivo real-time MPM approaches to assess microglia in preclinical studies, including individual cell responses in surveillance, support, protection and restoration of brain tissue integrity, synapse formation, homeostasis, as well as in different pathological situations. We focus on in vivo studies that assess the role of microglia in mouse models of Alzheimer’s disease (AD), analyzing microglial motility and recruitment, as well as the role of microglia in anti-amyloid-β treatment, as a key therapeutic approach to treat AD. Altogether, MPM provides a high contrast and high spatial resolution approach to follow microglia chronically in vivo in complex models, supporting MPM as a powerful tool for deep intravital tissue imaging.
Collapse
Affiliation(s)
- Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Instituto de Investigación e Innovación en Ciencias Biomedicas de la Provincia de Cadiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Instituto de Investigación e Innovación en Ciencias Biomedicas de la Provincia de Cadiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
83
|
Quantitative comparison of different iron forms in the temporal cortex of Alzheimer patients and control subjects. Sci Rep 2018; 8:6898. [PMID: 29720594 PMCID: PMC5932027 DOI: 10.1038/s41598-018-25021-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/10/2018] [Indexed: 12/25/2022] Open
Abstract
We present a quantitative study of different molecular iron forms found in the temporal cortex of Alzheimer (AD) patients. Applying the methodology we developed in our previous work, we quantify the concentrations of non-heme Fe(III) by Electron Paramagnetic Resonance (EPR), magnetite/maghemite and ferrihydrite by SQUID magnetometry, together with the MRI transverse relaxation rate [Formula: see text], to obtain a systematic view of molecular iron in the temporal cortex. Significantly higher values of [Formula: see text], a larger concentration of ferrihydrite, and a larger magnetic moment of magnetite/maghemite particles are found in the brain of AD patients. Moreover, we found correlations between the concentration of the iron detected by EPR, the concentration of the ferrihydrite mineral and the average iron loading of ferritin. We discuss these findings in the framework of iron dis-homeostasis, which has been proposed to occur in the brain of AD patients.
Collapse
|
84
|
Lewerenz J, Ates G, Methner A, Conrad M, Maher P. Oxytosis/Ferroptosis-(Re-) Emerging Roles for Oxidative Stress-Dependent Non-apoptotic Cell Death in Diseases of the Central Nervous System. Front Neurosci 2018; 12:214. [PMID: 29731704 PMCID: PMC5920049 DOI: 10.3389/fnins.2018.00214] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Although nerve cell death is the hallmark of many neurological diseases, the processes underlying this death are still poorly defined. However, there is a general consensus that neuronal cell death predominantly proceeds by regulated processes. Almost 30 years ago, a cell death pathway eventually named oxytosis was described in neuronal cells that involved glutathione depletion, reactive oxygen species production, lipoxygenase activation, and calcium influx. More recently, a cell death pathway that involved many of the same steps was described in tumor cells and termed ferroptosis due to a dependence on iron. Since then there has been a great deal of discussion in the literature about whether these are two distinct pathways or cell type- and insult-dependent variations on the same pathway. In this review, we compare and contrast in detail the commonalities and distinctions between the two pathways concluding that the molecular pathways involved in the regulation of ferroptosis and oxytosis are highly similar if not identical. Thus, we suggest that oxytosis and ferroptosis should be regarded as two names for the same cell death pathway. In addition, we describe the potential physiological relevance of oxytosis/ferroptosis in multiple neurological diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm University, Ulm, Germany
| | - Gamze Ates
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Axel Methner
- Department of Neurology, University Medical Center and Focus Program Translational Neuroscience of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|