51
|
De Barros A, Arribarat G, Combis J, Chaynes P, Péran P. Matching ex vivo MRI With Iron Histology: Pearls and Pitfalls. Front Neuroanat 2019; 13:68. [PMID: 31333421 PMCID: PMC6616088 DOI: 10.3389/fnana.2019.00068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Iron levels in the brain can be estimated using newly developed specific magnetic resonance imaging (MRI) sequences. This technique has several applications, especially in neurodegenerative disorders like Alzheimer's disease or Parkinson's disease. Coupling ex vivo MRI with histology allows neuroscientists to better understand what they see in the images. Iron is one of the most extensively studied elements, both by MRI and using histological or physical techniques. Researchers were initially only able to make visual comparisons between MRI images and different types of iron staining, but the emergence of specific MRI sequences like R2* or quantitative susceptibility mapping meant that quantification became possible, requiring correlations with physical techniques. Today, with advances in MRI and image post-processing, it is possible to look for MRI/histology correlations by matching the two sorts of images. For the result to be acceptable, the choice of methodology is crucial, as there are hidden pitfalls every step of the way. In order to review the advantages and limitations of ex vivo MRI correlation with iron-based histology, we reviewed all the relevant articles dealing with the topic in humans. We provide separate assessments of qualitative and quantitative studies, and after summarizing the significant results, we emphasize all the pitfalls that may be encountered.
Collapse
Affiliation(s)
- Amaury De Barros
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
- Department of Anatomy, Toulouse Faculty of Medicine, Toulouse, France
| | - Germain Arribarat
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| | - Jeanne Combis
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| | - Patrick Chaynes
- Department of Anatomy, Toulouse Faculty of Medicine, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| |
Collapse
|
52
|
Levy J, Facchinetti P, Jan C, Achour M, Bouvier C, Brunet JF, Delzescaux T, Giuliano F. Tridimensional mapping of Phox2b expressing neurons in the brainstem of adult Macaca fascicularis and identification of the retrotrapezoid nucleus. J Comp Neurol 2019; 527:2875-2884. [PMID: 31071232 DOI: 10.1002/cne.24713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 11/08/2022]
Abstract
Chemosensitivity is a key mechanism for the regulation of breathing in vertebrates. The retrotrapezoid nucleus is a crucial hub for respiratory chemoreception within the brainstem. It integrates chemosensory information that are both peripheral from the carotid bodies (via the nucleus of the solitary tract) and central through the direct sensing of extracellular protons. To date, the location of a genetically defined RTN has only been ascertained in rodents. We first demonstrated that Phox2b, a key determinant for the development of the visceral nervous system and branchiomotor nuclei in the brainstem including the RTN, had a similar distribution in the brainstem of adult macaques compared to adult rats. Second, based on previous description of a specific molecular signature for the RTN in rats, and on an innovative technique for duplex in situ hybridization, we identified parafacial neurons which coexpressed Phox2b and ppGal mRNAs. They were located ventrally to the nucleus of the facial nerve and extended from the caudal part of the nucleus of the superior olive to the rostral tip of the inferior olive. Using the previously described blockface technique, deformations were corrected to allow the proper alignment and stacking of digitized sections, hence providing for the first time a 3D reconstruction of the macaque brainstem, Phox2b distribution and the primate retrotrapezoid nucleus. This description should help bridging the gap between rodents and humans for the description of key respiratory structures in the brainstem.
Collapse
Affiliation(s)
- Jonathan Levy
- INSERM UMR1179-Handicap Neuromusculaire, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France.,Service de Médecine Physique et de Réadaptation-APHP, Hôpital Raymond Poincaré, Garches, France.,Fondation Garches-APHP, Hôpital Raymond Poincaré, Garches, France
| | - Patricia Facchinetti
- INSERM UMR1179-Handicap Neuromusculaire, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Caroline Jan
- Molecular Imaging Research Center (MIRCen)-Commissariat à l'Énergie Atomique (CEA), Fontenay-aux-Roses, France.,CNRS-CEA UMR9199-Neurodegenerative Diseases Laboratory, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Mélyna Achour
- INSERM UMR1179-Handicap Neuromusculaire, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Clément Bouvier
- Molecular Imaging Research Center (MIRCen)-Commissariat à l'Énergie Atomique (CEA), Fontenay-aux-Roses, France.,NEOXIA, Paris, France
| | - Jean-François Brunet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, Paris, France
| | - Thierry Delzescaux
- Molecular Imaging Research Center (MIRCen)-Commissariat à l'Énergie Atomique (CEA), Fontenay-aux-Roses, France.,CNRS-CEA UMR9199-Neurodegenerative Diseases Laboratory, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - François Giuliano
- INSERM UMR1179-Handicap Neuromusculaire, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France.,Service de Médecine Physique et de Réadaptation-APHP, Hôpital Raymond Poincaré, Garches, France
| |
Collapse
|
53
|
Nickl RC, Reich MM, Pozzi NG, Fricke P, Lange F, Roothans J, Volkmann J, Matthies C. Rescuing Suboptimal Outcomes of Subthalamic Deep Brain Stimulation in Parkinson Disease by Surgical Lead Revision. Neurosurgery 2019; 85:E314-E321. [DOI: 10.1093/neuros/nyz018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
Clinical trials have established subthalamic deep-brain-stimulation (STN-DBS) as a highly effective treatment for motor symptoms of Parkinson disease (PD), but in clinical practice outcomes are variable. Experienced centers are confronted with an increasing number of patients with partially “failed” STN-DBS, in whom motor benefit doesn’t meet expectations. These patients require a complex multidisciplinary and standardized workup to identify the likely cause.
OBJECTIVE
To describe outcomes in a series of PD patients undergoing lead revision for suboptimal motor benefit after STN-DBS surgery and characterize selection criteria for surgical revision.
METHODS
We investigated 9 PD patients with STN-DBS, who had unsatisfactory outcomes despite intensive neurological management. Surgical revision was considered if the ratio of DBS vs levodopa-induced improvement of UPDRS-III (DBS-rr) was below 75% and the electrodes were found outside the dorsolateral STN.
RESULTS
Fifteen electrodes were replaced via stereotactic revision surgery into the dorsolateral STN without any adverse effects. Median displacement distance was 4.1 mm (range 1.6-8.42 mm). Motor symptoms significantly improved (38.2 ± 6.6 to 15.5 ± 7.9 points, P < .001); DBS-rr increased from 64% to 190%.
CONCLUSION
Patients with persistent OFFmotor symptoms after STN-DBS should be screened for levodopa-responsiveness, which can serve as a benchmark for best achievable motor benefit. Even small horizontal deviations of the lead from the optimal position within the dorsolateral STN can cause stimulation responses, which are markedly inferior to the levodopa response. Patients with an image confirmed lead displacement and preserved levodopa response are candidates for lead revision and can expect significant motor improvement from appropriate lead replacement.
Collapse
Affiliation(s)
- Robert C Nickl
- Department of Neurosurgery, Julius-Maximilians-University Hospital, Wue-rzburg, Germany
| | - Martin M Reich
- Department of Neurology, Julius-Maximilians-University Hospital, Wuerzburg, Germany
| | | | - Patrick Fricke
- Department of Neurosurgery, Julius-Maximilians-University Hospital, Wue-rzburg, Germany
| | - Florian Lange
- Department of Neurosurgery, Julius-Maximilians-University Hospital, Wue-rzburg, Germany
| | - Jonas Roothans
- Department of Neurology, Julius-Maximilians-University Hospital, Wuerzburg, Germany
| | - Jens Volkmann
- Department of Neurology, Julius-Maximilians-University Hospital, Wuerzburg, Germany
| | - Cordula Matthies
- Department of Neurosurgery, Julius-Maximilians-University Hospital, Wue-rzburg, Germany
| |
Collapse
|
54
|
Dos Santos EC, da Luz Veronez DA, de Almeida DB, Piedade GS, Oldoni C, de Meneses MS, Marques MS. Morphometric Study of the Internal Globus Pallidus Using the Robert, Barnard, and Brown Staining Method. World Neurosurg 2019; 126:e371-e378. [PMID: 30822586 DOI: 10.1016/j.wneu.2019.02.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND The globus pallidus internus (Gpi) is a major target in functional neurosurgery. Anatomical studies are crucial for correct planning and good surgical outcomes in this region. The present study described the anatomical coordinates of the Gpi and its relationship with other brain structures and compared the findings with those from previous anatomical studies. METHODS We obtained 35 coronal and 5 horizontal brain specimens from the Department of Anatomy and stained them using the Robert, Barnard, and Brown technique. After excluding defective samples, 60 nuclei were analyzed by assessing their distances to the anatomical references and the trajectories to these nuclei. RESULTS The barycenter of the Gpi was identified at the level of the mammillary bodies and 1 cm above the intercommissural plane. Thereafter, the distances to other structures were found. The mean ± standard deviation distance was 15.62 ± 2.66 mm to the wall of the third ventricle and 17.02 ± 2.69 mm to its midline, 4.74 ± 1.12 mm to the optic tract, 2.51 ± 0.8 mm and 13.56 ± 2 mm to the internal and external capsule, and 21.3 ± 2.44 mm to the insular cortex. The cortical point of entry should be located 22.03 ± 4.34 mm to 48.74 ± 4.44 mm from the midline. CONCLUSION The Gpi has less variability in distance to closer anatomical references, such as the optic tract and internal capsule. Distant locations showed a more inhomogeneous pattern. Anatomical studies such as ours are important for the development of new therapeutic approaches and can be used as a basis for new research involving volumetric and specific group analyses.
Collapse
Affiliation(s)
| | | | | | | | - Carolina Oldoni
- Federal University of Parana's Medical School, Curitiba, Brazil
| | - Murilo Sousa de Meneses
- Federal University of Parana's Medical School, Curitiba, Brazil; Department of Anatomy, Federal University of Parana, Jardim das Americas, Curitiba, Brazil; Neurological Institute of Curitiba, Curitiba, Brazil.
| | | |
Collapse
|
55
|
Güngör A, Baydın ŞS, Holanda VM, Middlebrooks EH, Isler C, Tugcu B, Foote K, Tanriover N. Microsurgical anatomy of the subthalamic nucleus: correlating fiber dissection results with 3-T magnetic resonance imaging using neuronavigation. J Neurosurg 2019; 130:716-732. [PMID: 29726781 DOI: 10.3171/2017.10.jns171513] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Despite the extensive use of the subthalamic nucleus (STN) as a deep brain stimulation (DBS) target, unveiling the extensive functional connectivity of the nucleus, relating its structural connectivity to the stimulation-induced adverse effects, and thus optimizing the STN targeting still remain challenging. Mastering the 3D anatomy of the STN region should be the fundamental goal to achieve ideal surgical results, due to the deep-seated and obscure position of the nucleus, variable shape and relatively small size, oblique orientation, and extensive structural connectivity. In the present study, the authors aimed to delineate the 3D anatomy of the STN and unveil the complex relationship between the anatomical structures within the STN region using fiber dissection technique, 3D reconstructions of high-resolution MRI, and fiber tracking using diffusion tractography utilizing a generalized q-sampling imaging (GQI) model. METHODS Fiber dissection was performed in 20 hemispheres and 3 cadaveric heads using the Klingler method. Fiber dissections of the brain were performed from all orientations in a stepwise manner to reveal the 3D anatomy of the STN. In addition, 3 brains were cut into 5-mm coronal, axial, and sagittal slices to show the sectional anatomy. GQI data were also used to elucidate the connections among hubs within the STN region. RESULTS The study correlated the results of STN fiber dissection with those of 3D MRI reconstruction and tractography using neuronavigation. A 3D terrain model of the subthalamic area encircling the STN was built to clarify its anatomical relations with the putamen, globus pallidus internus, globus pallidus externus, internal capsule, caudate nucleus laterally, substantia nigra inferiorly, zona incerta superiorly, and red nucleus medially. The authors also describe the relationship of the medial lemniscus, oculomotor nerve fibers, and the medial forebrain bundle with the STN using tractography with a 3D STN model. CONCLUSIONS This study examines the complex 3D anatomy of the STN and peri-subthalamic area. In comparison with previous clinical data on STN targeting, the results of this study promise further understanding of the structural connections of the STN, the exact location of the fiber compositions within the region, and clinical applications such as stimulation-induced adverse effects during DBS targeting.
Collapse
Affiliation(s)
- Abuzer Güngör
- 1Department of Neurosurgery, Acıbadem University
- 2Department of Neurosurgery, Bakirkoy Research & Training Hospital for Psychiatry, Neurology, and Neurosurgery
| | - Şevki Serhat Baydın
- 3Department of Neurosurgery, Kanuni Sultan Süleyman Research & Training Hospital
| | - Vanessa M Holanda
- 4Department of Neurosurgery, University of Florida, Gainesville, Florida; and
| | | | - Cihan Isler
- 6Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Bekir Tugcu
- 2Department of Neurosurgery, Bakirkoy Research & Training Hospital for Psychiatry, Neurology, and Neurosurgery
| | - Kelly Foote
- 4Department of Neurosurgery, University of Florida, Gainesville, Florida; and
| | - Necmettin Tanriover
- 6Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
56
|
Jonkman LE, Kenkhuis B, Geurts JJG, van de Berg WDJ. Post-Mortem MRI and Histopathology in Neurologic Disease: A Translational Approach. Neurosci Bull 2019; 35:229-243. [PMID: 30790214 DOI: 10.1007/s12264-019-00342-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023] Open
Abstract
In this review, combined post-mortem brain magnetic resonance imaging (MRI) and histology studies are highlighted, illustrating the relevance of translational approaches to define novel MRI signatures of neuropathological lesions in neuroinflammatory and neurodegenerative disorders. Initial studies combining post-mortem MRI and histology have validated various MRI sequences, assessing their sensitivity and specificity as diagnostic biomarkers in neurologic disease. More recent studies have focused on defining new radiological (bio)markers and implementing them in the clinical (research) setting. By combining neurological and neuroanatomical expertise with radiological development and pathological validation, a cycle emerges that allows for the discovery of novel MRI biomarkers to be implemented in vivo. Examples of this cycle are presented for multiple sclerosis, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. Some applications have been shown to be successful, while others require further validation. In conclusion, there is much to explore with post-mortem MRI and histology studies, which can eventually be of high relevance for clinical practice.
Collapse
Affiliation(s)
- Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
57
|
Jonkman LE, Graaf YGD, Bulk M, Kaaij E, Pouwels PJW, Barkhof F, Rozemuller AJM, van der Weerd L, Geurts JJG, van de Berg WDJ. Normal Aging Brain Collection Amsterdam (NABCA): A comprehensive collection of postmortem high-field imaging, neuropathological and morphometric datasets of non-neurological controls. NEUROIMAGE-CLINICAL 2019; 22:101698. [PMID: 30711684 PMCID: PMC6360607 DOI: 10.1016/j.nicl.2019.101698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 12/18/2022]
Abstract
Well-characterized, high-quality brain tissue of non-neurological control subjects is a prerequisite to study the healthy aging brain, and can serve as a control for the study of neurological disorders. The Normal Aging Brain Collection Amsterdam (NABCA) provides a comprehensive collection of post-mortem (ultra-)high-field MRI (3Tesla and 7 Tesla) and neuropathological datasets of non-neurological controls. By providing MRI within the pipeline, NABCA uniquely stimulates translational neurosciences; from molecular and morphometric tissue studies to the clinical setting. We describe our pipeline, including a description of our on-call autopsy team, donor selection, in situ and ex vivo post-mortem MRI protocols, brain dissection and neuropathological diagnosis. A demographic, radiological and pathological overview of five selected cases on all these aspects is provided. Additionally, information is given on data management, data and tissue application procedures, including review by a scientific advisory board, and setting up a material transfer agreement before distribution of tissue. Finally, we focus on future prospects, which includes laying the foundation for a unique platform for neuroanatomical, histopathological and neuro-radiological education, of professionals, students and the general (lay) audience. NABCA provides a collection of correlative post-mortem MRI and pathological datasets. Non-neurological control brains for studies on aging and neurological disorders. Stimulating micro- to macroscale structural exploration within same patient Post-mortem MRI data and tissue available for integrated advanced data analytics
Collapse
Affiliation(s)
- Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Yvon Galis-de Graaf
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marjolein Bulk
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Eliane Kaaij
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Department of radiology and nuclear medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of radiology and nuclear medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institutes of neurology and healthcare engineering, University College London, London, United Kingdom
| | - Annemieke J M Rozemuller
- Department of pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
58
|
Wu Y. Research on feature point extraction and matching machine learning method based on light field imaging. Neural Comput Appl 2019. [DOI: 10.1007/s00521-018-3962-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
59
|
Senova S, Clair AH, Palfi S, Yelnik J, Domenech P, Mallet L. Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder: Towards an Individualized Approach. Front Psychiatry 2019; 10:905. [PMID: 31920754 PMCID: PMC6923766 DOI: 10.3389/fpsyt.2019.00905] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder featuring repetitive intrusive thoughts and behaviors associated with a significant handicap. Of patients, 20% are refractory to medication and cognitive behavioral therapy. Refractory OCD is associated with suicidal behavior and significant degradation of social and professional functioning, with high health costs. Deep brain stimulation (DBS) has been proposed as a reversible and controllable method to treat refractory patients, with meta-analyses showing 60% response rate following DBS, whatever the target: anterior limb of the internal capsule (ALIC), ventral capsule/ventral striatum (VC/VS), nucleus accumbens (NAcc), anteromedial subthalamic nucleus (amSTN), or inferior thalamic peduncle (ITP). But how do we choose the "best" target? Functional neuroimaging studies have shown that ALIC-DBS requires the modulation of the fiber tract within the ventral ALIC via the ventral striatum, bordering the bed nucleus of the stria terminalis and connecting the medial prefrontal cortex with the thalamus to be successful. VC/VS effective sites of stimulation were found within the VC and primarily connected to the medial orbitofrontal cortex (OFC) dorsomedial thalamus, amygdala, and the habenula. NAcc-DBS has been found to reduce OCD symptoms by decreasing excessive fronto-striatal connectivity between NAcc and the lateral and medial prefrontal cortex. The amSTN effective stimulation sites are located at the inferior medial border of the STN, primarily connected to lateral OFC, dorsal anterior cingulate, and dorsolateral prefrontal cortex. Finally, ITP-DBS recruits a bidirectional fiber pathway between the OFC and the thalamus. Thus, these functional connectivity studies show that the various DBS targets lie within the same diseased neural network. They share similar efficacy profiles on OCD symptoms as estimated on the Y-BOCS, the amSTN being the target supported by the strongest evidence in the literature. VC/VS-DBS, amSTN-DBS, and ALIC-DBS were also found to improve mood, behavioral adaptability and potentially both, respectively. Because OCD is such a heterogeneous disease with many different symptom dimensions, the ultimate aim should be to find the most appropriate DBS target for a given refractory patient. This quest will benefit from further investigation and understanding of the individual functional connectivity of OCD patients.
Collapse
Affiliation(s)
- Suhan Senova
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,IMRB UPEC/INSERM U 955 Team 14, Créteil, France
| | - Anne-Hélène Clair
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Stéphane Palfi
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,IMRB UPEC/INSERM U 955 Team 14, Créteil, France
| | - Jérôme Yelnik
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Philippe Domenech
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Luc Mallet
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France.,Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, Geneva, Switzerland
| |
Collapse
|
60
|
Horn A, Li N, Dembek TA, Kappel A, Boulay C, Ewert S, Tietze A, Husch A, Perera T, Neumann WJ, Reisert M, Si H, Oostenveld R, Rorden C, Yeh FC, Fang Q, Herrington TM, Vorwerk J, Kühn AA. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 2019; 184:293-316. [PMID: 30179717 PMCID: PMC6286150 DOI: 10.1016/j.neuroimage.2018.08.068] [Citation(s) in RCA: 503] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
Deep brain stimulation (DBS) is a highly efficacious treatment option for movement disorders and a growing number of other indications are investigated in clinical trials. To ensure optimal treatment outcome, exact electrode placement is required. Moreover, to analyze the relationship between electrode location and clinical results, a precise reconstruction of electrode placement is required, posing specific challenges to the field of neuroimaging. Since 2014 the open source toolbox Lead-DBS is available, which aims at facilitating this process. The tool has since become a popular platform for DBS imaging. With support of a broad community of researchers worldwide, methods have been continuously updated and complemented by new tools for tasks such as multispectral nonlinear registration, structural/functional connectivity analyses, brain shift correction, reconstruction of microelectrode recordings and orientation detection of segmented DBS leads. The rapid development and emergence of these methods in DBS data analysis require us to revisit and revise the pipelines introduced in the original methods publication. Here we demonstrate the updated DBS and connectome pipelines of Lead-DBS using a single patient example with state-of-the-art high-field imaging as well as a retrospective cohort of patients scanned in a typical clinical setting at 1.5T. Imaging data of the 3T example patient is co-registered using five algorithms and nonlinearly warped into template space using ten approaches for comparative purposes. After reconstruction of DBS electrodes (which is possible using three methods and a specific refinement tool), the volume of tissue activated is calculated for two DBS settings using four distinct models and various parameters. Finally, four whole-brain tractography algorithms are applied to the patient's preoperative diffusion MRI data and structural as well as functional connectivity between the stimulation volume and other brain areas are estimated using a total of eight approaches and datasets. In addition, we demonstrate impact of selected preprocessing strategies on the retrospective sample of 51 PD patients. We compare the amount of variance in clinical improvement that can be explained by the computer model depending on the preprocessing method of choice. This work represents a multi-institutional collaborative effort to develop a comprehensive, open source pipeline for DBS imaging and connectomics, which has already empowered several studies, and may facilitate a variety of future studies in the field.
Collapse
Affiliation(s)
- Andreas Horn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany.
| | - Ningfei Li
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Till A Dembek
- Department of Neurology, University Hospital of Cologne, Germany
| | - Ari Kappel
- Wayne State University, Department of Neurosurgery, Detroit, Michigan, USA
| | | | - Siobhan Ewert
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité - University Medicine Berlin, Germany
| | - Andreas Husch
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Interventional Neuroscience Group, Belvaux, Luxembourg
| | - Thushara Perera
- Bionics Institute, East Melbourne, Victoria, Australia; Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| | - Wolf-Julian Neumann
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany; Institute of Neuroradiology, Charité - University Medicine Berlin, Germany
| | - Marco Reisert
- Medical Physics, Department of Radiology, Faculty of Medicine, University Freiburg, Germany
| | - Hang Si
- Numerical Mathematics and Scientific Computing, Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Germany
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, NL, Netherlands; NatMEG, Karolinska Institutet, Stockholm, SE, Sweden
| | - Christopher Rorden
- McCausland Center for Brain Imaging, University of South Carolina, Columbia, SC, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh PA, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Vorwerk
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, USA
| | - Andrea A Kühn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| |
Collapse
|
61
|
Sébille SB, Rolland AS, Faillot M, Perez-Garcia F, Colomb-Clerc A, Lau B, Dumas S, Vidal SF, Welter ML, Francois C, Bardinet E, Karachi C. Normal and pathological neuronal distribution of the human mesencephalic locomotor region. Mov Disord 2018; 34:218-227. [PMID: 30485555 DOI: 10.1002/mds.27578] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/10/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Deep brain stimulation of the pedunculopontine nucleus has been performed to treat dopamine-resistant gait and balance disorders in patients with degenerative diseases. The outcomes, however, are variable, which may be the result of the lack of a well-defined anatomical target. OBJECTIVES The objectives of this study were to identify the main neuronal populations of the pedunculopontine and the cuneiform nuclei that compose the human mesencephalic locomotor region and to compare their 3-dimensional distribution with those found in patients with Parkinson's disease and progressive supranuclear palsy. METHODS We used high-field MRI, immunohistochemistry, and in situ hybridization to characterize the distribution of the different cell types, and we developed software to merge all data within a common 3-dimensional space. RESULTS We found that cholinergic, GABAergic, and glutamatergic neurons comprised the main cell types of the mesencephalic locomotor region, with the peak densities of cholinergic and GABAergic neurons similarly located within the rostral pedunculopontine nucleus. Cholinergic and noncholinergic neuronal losses were homogeneous in the mesencephalic locomotor region of patients, with the peak density of remaining neurons at the same location as in controls. The degree of denervation of the pedunculopontine nucleus was highest in patients with progressive supranuclear palsy, followed by Parkinson's disease patients with falls. CONCLUSIONS The peak density of cholinergic and GABAergic neurons was located similarly within the rostral pedunculopontine nucleus not only in controls but also in pathological cases. The neuronal loss was homogeneously distributed and highest in the pedunculopontine nucleus of patients with falls, which suggests a potential pathophysiological link. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sophie B Sébille
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, Cnrs, Inserm, AP-HP Pitié-Salpêtrière hospital, Brain and Spinal Cord Institute, Paris, France.,Centre de Neuro-Imagerie de Recherche, Paris, France
| | - Anne-Sophie Rolland
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, Cnrs, Inserm, AP-HP Pitié-Salpêtrière hospital, Brain and Spinal Cord Institute, Paris, France
| | - Matthieu Faillot
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, Cnrs, Inserm, AP-HP Pitié-Salpêtrière hospital, Brain and Spinal Cord Institute, Paris, France.,Neurosurgical Department, La Pitié-Salpêtrière University Hospital, Paris, France
| | | | - Antoine Colomb-Clerc
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, Cnrs, Inserm, AP-HP Pitié-Salpêtrière hospital, Brain and Spinal Cord Institute, Paris, France
| | - Brian Lau
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, Cnrs, Inserm, AP-HP Pitié-Salpêtrière hospital, Brain and Spinal Cord Institute, Paris, France
| | | | | | - Marie-Laure Welter
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, Cnrs, Inserm, AP-HP Pitié-Salpêtrière hospital, Brain and Spinal Cord Institute, Paris, France.,Neurosurgical Department, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Chantal Francois
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, Cnrs, Inserm, AP-HP Pitié-Salpêtrière hospital, Brain and Spinal Cord Institute, Paris, France
| | - Eric Bardinet
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, Cnrs, Inserm, AP-HP Pitié-Salpêtrière hospital, Brain and Spinal Cord Institute, Paris, France.,Centre de Neuro-Imagerie de Recherche, Paris, France
| | - Carine Karachi
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, Cnrs, Inserm, AP-HP Pitié-Salpêtrière hospital, Brain and Spinal Cord Institute, Paris, France.,Neurosurgical Department, La Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
62
|
Najdenovska E, Alemán-Gómez Y, Battistella G, Descoteaux M, Hagmann P, Jacquemont S, Maeder P, Thiran JP, Fornari E, Bach Cuadra M. In-vivo probabilistic atlas of human thalamic nuclei based on diffusion- weighted magnetic resonance imaging. Sci Data 2018; 5:180270. [PMID: 30480664 PMCID: PMC6257045 DOI: 10.1038/sdata.2018.270] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/12/2018] [Indexed: 11/23/2022] Open
Abstract
The thalamic nuclei are involved in many neurodegenerative diseases and therefore, their identification is of key importance in numerous clinical treatments. Automated segmentation of thalamic subparts is currently achieved by exploring diffusion-weighted magnetic resonance imaging (DW-MRI), but in absence of such data, atlas-based segmentation can be used as an alternative. Currently, there is a limited number of available digital atlases of the thalamus. Moreover, all atlases are created using a few subjects only, thus are prone to errors due to the inter-subject variability of the thalamic morphology. In this work, we present a probabilistic atlas of anatomical subparts of the thalamus built upon a relatively large dataset where the individual thalamic parcellation was done by employing a recently proposed automatic diffusion-based clustering method. Our analyses, comparing the segmentation performance between the atlas-based and the clustering method, demonstrate the ability of the provided atlas to substitute the automated diffusion-based subdivision in the individual space when the DW-MRI is not available.
Collapse
Affiliation(s)
- Elena Najdenovska
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Centre d’Imagerie BioMédicale (CIBM), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Centre d’Imagerie BioMédicale (CIBM), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Giovanni Battistella
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Universite de Sherbrooke, Sherbrooke, Canada
| | - Patric Hagmann
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Sebastien Jacquemont
- Department of Pediatrics, University Hospital Center Sainte-Justine, Montreal H3T 1C5, Canada
| | - Philippe Maeder
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eleonora Fornari
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Centre d’Imagerie BioMédicale (CIBM), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Centre d’Imagerie BioMédicale (CIBM), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
63
|
Nowacki A, Nguyen TAK, Tinkhauser G, Petermann K, Debove I, Wiest R, Pollo C. Accuracy of different three-dimensional subcortical human brain atlases for DBS -lead localisation. Neuroimage Clin 2018; 20:868-874. [PMID: 30282063 PMCID: PMC6169097 DOI: 10.1016/j.nicl.2018.09.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 11/05/2022]
Abstract
BACKGROUND Accurate interindividual comparability of deep brain stimulation (DBS) lead locations in relation to the surrounding anatomical structures is of eminent importance to define and understand effective stimulation areas. The objective of the current work is to compare the accuracy of the DBS lead localisation relative to the STN in native space with four recently developed three-dimensional subcortical brain atlases in the MNI template space. Accuracy is reviewed by anatomical and volumetric analysis as well as intraoperative electrophysiological data. METHODS Postoperative lead localisations of 10 patients (19 hemispheres) were analysed in each individual patient based on Brainlab software (native space) and after normalization into the MNI space and application of 4 different human brain atlases using Lead-DBS toolbox within Matlab (template space). Each patient's STN was manually segmented and the relation between the reconstructed lead and the STN was compared to the 4 atlas-based STN models by applying the Dice coefficient. The length of intraoperative electrophysiological STN activity along different microelectrode recording tracks was measured and compared to reconstructions in native and template space. Descriptive non-parametric statistical tests were used to calculate differences between the 4 different atlases. RESULTS The mean STN volume of the study cohort was 153.3 ± 40.3 mm3 (n = 19). This is similar to the STN volume of the DISTAL atlas (166 mm3; p = .22), but significantly larger compared to the other atlases tested in this study. The anatomical overlap of the lead-STN-reconstruction was highest for the DISTAL atlas (0.56 ± 0.18) and lowest for the PD25 atlas (0.34 ± 0.17). A total number of 47 MER trajectories through the STN were analysed. There was a statistically significant discrepancy of the electrophysiogical STN activity compared to the reconstructed STN of all four atlases (p < .0001). CONCLUSION Lead reconstruction after normalization into the MNI template space and application of four different atlases led to different results in terms of the DBS lead position relative to the STN. Based on electrophysiological and imaging data, the DISTAL atlas led to the most accurate display of the reconstructed DBS lead relative to the DISTAL-based STN.
Collapse
Affiliation(s)
- Andreas Nowacki
- Department of Neurosurgery, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland.
| | - T A-K Nguyen
- Department of Neurosurgery, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland
| | - Gerd Tinkhauser
- Department of Neurology, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland; Medical Research Council Brain Network Dynamics Unit and Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Katrin Petermann
- Department of Neurology, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland
| | - Roland Wiest
- Department of diagnostic and interventional Neuroradiology, Inselspital, University Hospital Bernand University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland
| |
Collapse
|
64
|
Pichat J, Iglesias JE, Yousry T, Ourselin S, Modat M. A Survey of Methods for 3D Histology Reconstruction. Med Image Anal 2018; 46:73-105. [DOI: 10.1016/j.media.2018.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
|
65
|
Alho EJL, Alho ATDL, Grinberg L, Amaro E, Dos Santos GAB, da Silva RE, Neves RC, Alegro M, Coelho DB, Teixeira MJ, Fonoff ET, Heinsen H. High thickness histological sections as alternative to study the three-dimensional microscopic human sub-cortical neuroanatomy. Brain Struct Funct 2018; 223:1121-1132. [PMID: 29094303 PMCID: PMC5899898 DOI: 10.1007/s00429-017-1548-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
Stereotaxy is based on the precise image-guided spatial localization of targets within the human brain. Even with the recent advances in MRI technology, histological examination renders different (and complementary) information of the nervous tissue. Although several maps have been selected as a basis for correlating imaging results with the anatomical locations of sub-cortical structures, technical limitations interfere in a point-to-point correlation between imaging and anatomy due to the lack of precise correction for post-mortem tissue deformations caused by tissue fixation and processing. We present an alternative method to parcellate human brain cytoarchitectural regions, minimizing deformations caused by post-mortem and tissue-processing artifacts and enhancing segmentation by means of modified high thickness histological techniques and registration with MRI of the same specimen and into MNI space (ICBM152). A three-dimensional (3D) histological atlas of the human thalamus, basal ganglia, and basal forebrain cholinergic system is displayed. Structure's segmentations were performed in high-resolution dark-field and light-field microscopy. Bidimensional non-linear registration of the histological slices was followed by 3D registration with in situ MRI of the same subject. Manual and automated registration procedures were adopted and compared. To evaluate the quality of the registration procedures, Dice similarity coefficient and normalized weighted spectral distance were calculated and the results indicate good overlap between registered volumes and a small shape difference between them in both manual and automated registration methods. High thickness high-resolution histological slices in combination with registration to in situ MRI of the same subject provide an effective alternative method to study nuclear boundaries in the human brain, enhancing segmentation and demanding less resources and time for tissue processing than traditional methods.
Collapse
Affiliation(s)
- Eduardo Joaquim Lopes Alho
- Morphological Brain Research Unit, Department of Psychiatry, University of Würzburg, Würzburg, Germany.
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.
- Department of Radiology, University of São Paulo Medical School, Rua Dr. Ovidio Pires de Campos, 785, São Paulo, 01060-970, Brazil.
- , Rua Pamplona, 1585, Apto 53, São Paulo, 01405-002, Brazil.
| | - Ana Tereza Di Lorenzo Alho
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
- Department of Radiology, University of São Paulo Medical School, Rua Dr. Ovidio Pires de Campos, 785, São Paulo, 01060-970, Brazil
| | - Lea Grinberg
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
- Sandler Neurosciences Center, Memory and Aging Center, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Edson Amaro
- Department of Radiology, University of São Paulo Medical School, Rua Dr. Ovidio Pires de Campos, 785, São Paulo, 01060-970, Brazil
| | - Gláucia Aparecida Bento Dos Santos
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
- Department of Radiology, University of São Paulo Medical School, Rua Dr. Ovidio Pires de Campos, 785, São Paulo, 01060-970, Brazil
| | - Rafael Emídio da Silva
- Department of Radiology, University of São Paulo Medical School, Rua Dr. Ovidio Pires de Campos, 785, São Paulo, 01060-970, Brazil
| | - Ricardo Caires Neves
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Maryana Alegro
- Department of Radiology, University of São Paulo Medical School, Rua Dr. Ovidio Pires de Campos, 785, São Paulo, 01060-970, Brazil
- Sandler Neurosciences Center, Memory and Aging Center, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Daniel Boari Coelho
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Erich Talamoni Fonoff
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Helmut Heinsen
- Morphological Brain Research Unit, Department of Psychiatry, University of Würzburg, Würzburg, Germany
- Department of Radiology, University of São Paulo Medical School, Rua Dr. Ovidio Pires de Campos, 785, São Paulo, 01060-970, Brazil
| |
Collapse
|
66
|
Milchenko M, Norris SA, Poston K, Campbell MC, Ushe M, Perlmutter JS, Snyder AZ. 7T MRI subthalamic nucleus atlas for use with 3T MRI. J Med Imaging (Bellingham) 2018; 5:015002. [PMID: 29340288 DOI: 10.1117/1.jmi.5.1.015002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces motor symptoms in most patients with Parkinson disease (PD), yet may produce untoward effects. Investigation of DBS effects requires accurate localization of the STN, which can be difficult to identify on magnetic resonance images collected with clinically available 3T scanners. The goal of this study is to develop a high-quality STN atlas that can be applied to standard 3T images. We created a high-definition STN atlas derived from seven older participants imaged at 7T. This atlas was nonlinearly registered to a standard template representing 56 patients with PD imaged at 3T. This process required development of methodology for nonlinear multimodal image registration. We demonstrate mm-scale STN localization accuracy by comparison of our 3T atlas with a publicly available 7T atlas. We also demonstrate less agreement with an earlier histological atlas. STN localization error in the 56 patients imaged at 3T was less than 1 mm on average. Our methodology enables accurate STN localization in individuals imaged at 3T. The STN atlas and underlying 3T average template in MNI space are freely available to the research community. The image registration methodology developed in the course of this work may be generally applicable to other datasets.
Collapse
Affiliation(s)
- Mikhail Milchenko
- Washington University in St. Louis School of Medicine, Mallinckgrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Scott A Norris
- Washington University in St. Louis School of Medicine, Department of Neurology, St. Louis, Missouri, United States
| | - Kathleen Poston
- Stanford University Medical Center, Department of Neurology & Neurological Sciences, Palo Alto, California, United States
| | - Meghan C Campbell
- Washington University in St. Louis School of Medicine, Department of Neurology, St. Louis, Missouri, United States
| | - Mwiza Ushe
- Washington University in St. Louis School of Medicine, Department of Neurology, St. Louis, Missouri, United States
| | - Joel S Perlmutter
- Washington University in St. Louis School of Medicine, Department of Neurology, St. Louis, Missouri, United States
| | - Abraham Z Snyder
- Washington University in St. Louis School of Medicine, Mallinckgrodt Institute of Radiology, St. Louis, Missouri, United States.,Washington University in St. Louis School of Medicine, Department of Neurology, St. Louis, Missouri, United States
| |
Collapse
|
67
|
Richieri R, Borius PY, Cermolacce M, Millet B, Lançon C, Régis J. A Case of Recovery After Delayed Intracranial Hemorrhage After Deep Brain Stimulation for Treatment-Resistant Depression. Biol Psychiatry 2018; 83:e11-e13. [PMID: 28527567 DOI: 10.1016/j.biopsych.2017.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Raphaëlle Richieri
- Department of Psychiatry, Addictology and Child Psychiatry, La Conception University Hospital, Public Assistance Marseille Hospitals, Marseille, France; Health, Chronic Diseases and Quality of Life, EA 3279 Research Unit, Aix Marseille University, Marseille, France.
| | - Pierre-Yves Borius
- Department of Neurosurgery, Pitié-Salpétrière University Hospital, Public Assistance Paris Hospitals, Paris, France
| | - Michel Cermolacce
- Department of Psychiatry, Addictology and Child Psychiatry, La Conception University Hospital, Public Assistance Marseille Hospitals, Marseille, France
| | - Bruno Millet
- Department of Psychiatry, Pitié-Salpétrière University Hospital, Public Assistance Paris Hospitals, Paris, France
| | - Christophe Lançon
- Department of Psychiatry, Addictology and Child Psychiatry, La Conception University Hospital, Public Assistance Marseille Hospitals, Marseille, France; Health, Chronic Diseases and Quality of Life, EA 3279 Research Unit, Aix Marseille University, Marseille, France
| | - Jean Régis
- Department of Neurosurgery, La Timone Hospital, Public Assistance Marseille Hospitals, Marseille, France; Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale UMR 1106, Aix Marseille University, Marseille, France
| |
Collapse
|
68
|
Abstract
We have recently witnessed an explosion of large-scale initiatives and projects addressing mapping, modeling, simulation and atlasing of the human brain, including the BRAIN Initiative, the Human Brain Project, the Human Connectome Project (HCP), the Big Brain, the Blue Brain Project, the Allen Brain Atlas, the Brainnetome, among others. Besides these large and international initiatives, there are numerous mid-size and small brain atlas-related projects. My contribution to these global efforts has been to create adult human brain atlases in health and disease, and to develop atlas-based applications. For over two decades with my R&D lab I developed 35 brain atlases, licensed to 67 companies and made available in about 100 countries. This paper has two objectives. First, it provides an overview of the state of the art in brain atlasing. Second, as it is already 20 years from the release of our first brain atlas, I summarise my past and present efforts, share my experience in atlas creation, validation and commercialisation, compare with the state of the art, and propose future directions.
Collapse
Affiliation(s)
- Wieslaw L Nowinski
- John Paull II Center for Virtual Anatomy and Surgical Simulation, University of Cardinal Stefan Wyszynski in Warsaw, Poland
| |
Collapse
|
69
|
Clarençon F, Bardinet É, Martinerie J, Pelbarg V, Menjot de Champfleur N, Gupta R, Tollard E, Soto-Ares G, Ibarrola D, Schmitt E, Tourdias T, Degos V, Yelnik J, Dormont D, Puybasset L, Galanaud D. Lesions in deep gray nuclei after severe traumatic brain injury predict neurologic outcome. PLoS One 2017; 12:e0186641. [PMID: 29095850 PMCID: PMC5667824 DOI: 10.1371/journal.pone.0186641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study evaluates the correlation between injuries to deep gray matter nuclei, as quantitated by lesions in these nuclei on MR T2 Fast Spin Echo (T2 FSE) images, with 6-month neurological outcome after severe traumatic brain injury (TBI). MATERIALS AND METHODS Ninety-five patients (80 males, mean age = 36.7y) with severe TBI were prospectively enrolled. All patients underwent a MR scan within the 45 days after the trauma that included a T2 FSE acquisition. A 3D deformable atlas of the deep gray matter was registered to this sequence; deep gray matter lesions (DGML) were evaluated using a semi-quantitative classification scheme. The 6-month outcome was dichotomized into unfavorable (death, vegetative or minimally conscious state) or favorable (minimal or no neurologic deficit) outcome. RESULTS Sixty-six percent of the patients (63/95) had both satisfactory registration of the 3D atlas on T2 FSE and available clinical follow-up. Patients without DGML had an 89% chance (P = 0.0016) of favorable outcome while those with bilateral DGML had an 80% risk of unfavorable outcome (P = 0.00008). Multivariate analysis based on DGML accurately classified patients with unfavorable neurological outcome in 90.5% of the cases. CONCLUSION Lesions in deep gray matter nuclei may predict long-term outcome after severe TBI with high sensitivity and specificity.
Collapse
Affiliation(s)
- Frédéric Clarençon
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, Paris, France
- Paris VI University, Pierre et Marie Curie, Paris, France
- * E-mail:
| | - Éric Bardinet
- Institut du Cerveau et de la Moelle épinière–ICM. CNRS UMR 7225
| | | | - Vincent Pelbarg
- Bioinformatics and Biostatistics Plateform, IHU-A-ICM, Brain and Spine Institute (ICM), Paris, France
| | | | - Rajiv Gupta
- Department of Neuroradiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eléonore Tollard
- Department of Neuroradiology, Rouen University Hospital, Rouen, France
| | - Gustavo Soto-Ares
- Department of Neuroradiology, Roger Salengro Hospital, Lille, France
| | - Danielle Ibarrola
- CERMEP, Pierre Wertheimer Neurological & Neurosurgical Hospital, Bron, France
| | | | - Thomas Tourdias
- Department of Neuroradiology, Bordeaux University Hospital, Bordeaux, France
| | - Vincent Degos
- Paris VI University, Pierre et Marie Curie, Paris, France
- Neurosurgical Intensive Care Unit, Pitié-Salpêtrière Hospital, Paris VI University, Paris, France
| | - Jérome Yelnik
- INSERM U679, Pitié-Salpêtrière Hospital, Paris VI University, Paris. France
| | - Didier Dormont
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, Paris, France
- Paris VI University, Pierre et Marie Curie, Paris, France
| | - Louis Puybasset
- Paris VI University, Pierre et Marie Curie, Paris, France
- Neurosurgical Intensive Care Unit, Pitié-Salpêtrière Hospital, Paris VI University, Paris, France
| | - Damien Galanaud
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, Paris, France
- Paris VI University, Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
70
|
Bourlon C, Urbanski M, Quentin R, Duret C, Bardinet E, Bartolomeo P, Bourgeois A. Cortico-thalamic disconnection in a patient with supernumerary phantom limb. Exp Brain Res 2017; 235:3163-3174. [PMID: 28752330 DOI: 10.1007/s00221-017-5044-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022]
Abstract
Supernumerary phantom limb (SPL) designates the experience of an illusory additional limb occurring after brain damage. Functional neuroimaging during SPL movements documented increased response in the ipsilesional supplementary motor area (SMA), premotor cortex (PMC), thalamus and caudate. This suggested that motor circuits are important for bodily related cognition, but anatomical evidence is sparse. Here, we tested this hypothesis by studying an extremely rare patient with chronic SPL, still present 3 years after a vascular stroke affecting cortical and subcortical right-hemisphere structures. Anatomical analysis included an advanced in vivo reconstruction of white matter tracts using diffusion-based spherical deconvolution. This reconstruction demonstrated a massive and relatively selective disconnection between anatomically preserved SMA/PMC and the thalamus. Our results provide strong anatomical support for the hypothesis that cortico-thalamic loops involving motor-related circuits are crucial to integrate sensorimotor processing with bodily self-awareness.
Collapse
Affiliation(s)
- Clémence Bourlon
- Unité de Neurorééducation, Centre de Rééducation Fonctionnelle Les Trois Soleils, 77310, Boissise Le Roi, France. .,Service de Médecine et de Réadaptation gériatrique et neurologique, Hôpitaux de Saint-Maurice, 94410, Saint-Maurice, France. .,Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, Brain and Spine Institute, Groupe Hospitalier Pitié-Salpêtrière, 75013, Paris, France.
| | - Marika Urbanski
- Service de Médecine et de Réadaptation gériatrique et neurologique, Hôpitaux de Saint-Maurice, 94410, Saint-Maurice, France.,Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, Brain and Spine Institute, Groupe Hospitalier Pitié-Salpêtrière, 75013, Paris, France
| | - Romain Quentin
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Christophe Duret
- Unité de Neurorééducation, Centre de Rééducation Fonctionnelle Les Trois Soleils, 77310, Boissise Le Roi, France.,Centre Hospitalier Sud Francilien, Neurologie, 91100, Corbeil-Essonnes, France
| | - Eric Bardinet
- Centre de NeuroImagerie de Recherche-CENIR, Institut du Cerveau et de la Moelle épinière-ICM, 75013, Paris, France
| | - Paolo Bartolomeo
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, Brain and Spine Institute, Groupe Hospitalier Pitié-Salpêtrière, 75013, Paris, France
| | - Alexia Bourgeois
- Laboratory for Behavioral Neurology and Imaging of Cognition, Neuroscience Department, University of Geneva, Geneva, Switzerland
| |
Collapse
|
71
|
Akram H, Sotiropoulos SN, Jbabdi S, Georgiev D, Mahlknecht P, Hyam J, Foltynie T, Limousin P, De Vita E, Jahanshahi M, Hariz M, Ashburner J, Behrens T, Zrinzo L. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease. Neuroimage 2017; 158:332-345. [PMID: 28711737 DOI: 10.1016/j.neuroimage.2017.07.012] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Firstly, to identify subthalamic region stimulation clusters that predict maximum improvement in rigidity, bradykinesia and tremor, or emergence of side-effects; and secondly, to map-out the cortical fingerprint, mediated by the hyperdirect pathways which predict maximum efficacy. METHODS High angular resolution diffusion imaging in twenty patients with advanced Parkinson's disease was acquired prior to bilateral subthalamic nucleus deep brain stimulation. All contacts were screened one-year from surgery for efficacy and side-effects at different amplitudes. Voxel-based statistical analysis of volumes of tissue activated models was used to identify significant treatment clusters. Probabilistic tractography was employed to identify cortical connectivity patterns associated with treatment efficacy. RESULTS All patients responded well to treatment (46% mean improvement off medication UPDRS-III [p < 0.0001]) without significant adverse events. Cluster corresponding to maximum improvement in tremor was in the posterior, superior and lateral portion of the nucleus. Clusters corresponding to improvement in bradykinesia and rigidity were nearer the superior border in a further medial and posterior location. The rigidity cluster extended beyond the superior border to the area of the zona incerta and Forel-H2 field. When the clusters where averaged, the coordinates of the area with maximum overall efficacy was X = -10(-9.5), Y = -13(-1) and Z = -7(-3) in MNI(AC-PC) space. Cortical connectivity to primary motor area was predictive of higher improvement in tremor; whilst that to supplementary motor area was predictive of improvement in bradykinesia and rigidity; and connectivity to prefrontal cortex was predictive of improvement in rigidity. INTERPRETATION These findings support the presence of overlapping stimulation sites within the subthalamic nucleus and its superior border, with different cortical connectivity patterns, associated with maximum improvement in tremor, rigidity and bradykinesia.
Collapse
Affiliation(s)
- Harith Akram
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
| | - Stamatios N Sotiropoulos
- Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, OX3 9DU, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK
| | - Saad Jbabdi
- Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Dejan Georgiev
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Philipp Mahlknecht
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jonathan Hyam
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Enrico De Vita
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
| | - Marjan Jahanshahi
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Tim Behrens
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
72
|
Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage 2017; 170:271-282. [PMID: 28536045 DOI: 10.1016/j.neuroimage.2017.05.015] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/09/2017] [Indexed: 01/08/2023] Open
Abstract
Three-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. For instance, they can be used to study the position and shape of the three most common deep brain stimulation (DBS) targets, the subthalamic nucleus (STN), internal part of the pallidum (GPi) and ventral intermediate nucleus of the thalamus (VIM) in spatial relationship to DBS electrodes. Here, we present a composite atlas based on manual segmentations of a multimodal high resolution brain template, histology and structural connectivity. In a first step, four key structures were defined on the template itself using a combination of multispectral image analysis and manual segmentation. Second, these structures were used as anchor points to coregister a detailed histological atlas into standard space. Results show that this approach significantly improved coregistration accuracy over previously published methods. Finally, a sub-segmentation of STN and GPi into functional zones was achieved based on structural connectivity. The result is a composite atlas that defines key nuclei on the template itself, fills the gaps between them using histology and further subdivides them using structural connectivity. We show that the atlas can be used to segment DBS targets in single subjects, yielding more accurate results compared to priorly published atlases. The atlas will be made publicly available and constitutes a resource to study DBS electrode localizations in combination with modern neuroimaging methods.
Collapse
|
73
|
Horn A, Kühn AA, Merkl A, Shih L, Alterman R, Fox M. Probabilistic conversion of neurosurgical DBS electrode coordinates into MNI space. Neuroimage 2017; 150:395-404. [PMID: 28163141 DOI: 10.1016/j.neuroimage.2017.02.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 10/20/2022] Open
Abstract
In neurosurgical literature, findings such as deep brain stimulation (DBS) electrode positions are conventionally reported in relation to the anterior and posterior commissures of the individual patient (AC/PC coordinates). However, the neuroimaging literature including neuroanatomical atlases, activation patterns, and brain connectivity maps has converged on a different population-based standard (MNI coordinates). Ideally, one could relate these two literatures by directly transforming MRIs from neurosurgical patients into MNI space. However obtaining these patient MRIs can prove difficult or impossible, especially for older studies or those with hundreds of patients. Here, we introduce a methodology for mapping an AC/PC coordinate (such as a DBS electrode position) to MNI space without the need for MRI scans from the patients themselves. We validate our approach using a cohort of DBS patients in which MRIs are available, and test whether several variations on our approach provide added benefit. We then use our approach to convert previously reported DBS electrode coordinates from eight different neurological and psychiatric diseases into MNI space. Finally, we demonstrate the value of such a conversion using the DBS target for essential tremor as an example, relating the site of the active DBS contact to different MNI atlases as well as anatomical and functional connectomes in MNI space.
Collapse
Affiliation(s)
- Andreas Horn
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Charité - University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Germany.
| | - Andrea A Kühn
- Charité - University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Germany
| | - Angela Merkl
- Charité - University Medicine Berlin, Department of Neurology, Movement Disorder and Neuromodulation Unit, Germany
| | - Ludy Shih
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ron Alterman
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Beth Israel Deaconess Medical Center, Neurosurgery Department, Harvard Medical School, Boston, MA 02215
| | - Michael Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
74
|
Philipsson J, Sjöberg RL, Yelnik J, Blomstedt P. Acute severe depression induced by stimulation of the right globus pallidus internus. Neurocase 2017; 23:84-87. [PMID: 28165911 DOI: 10.1080/13554794.2017.1284243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Depressive symptoms may occur after Deep Brain Stimulation (DBS) in the subthalamic nucleus. This is often explained by reduced pharmacological treatment after surgery, and not as a direct effect of DBS. Pallidal DBS seems not to be associated with such side effects and have not, to our knowledge, previously been reported. We present a patient with acute depressive symptoms induced by pallidal DBS. We believe this case strengthen the hypothesis that the basal ganglia and structures involved in the functional connectome of these nucleuses play a role not only in regulation of movement but also in regulation of mood.
Collapse
Affiliation(s)
- Johanna Philipsson
- a Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Rickard L Sjöberg
- a Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Jerome Yelnik
- b Groupe Hospitalier Pitié-Salpêtrière , Assistance Publique-Hôpitaux de Paris , Paris , France
| | - Patric Blomstedt
- a Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| |
Collapse
|
75
|
Ewenczyk C, Mesmoudi S, Gallea C, Welter ML, Gaymard B, Demain A, Yahia Cherif L, Degos B, Benali H, Pouget P, Poupon C, Lehericy S, Rivaud-Péchoux S, Vidailhet M. Antisaccades in Parkinson disease. Neurology 2017; 88:853-861. [DOI: 10.1212/wnl.0000000000003658] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/29/2016] [Indexed: 11/15/2022] Open
Abstract
Objective:To describe the relation between gaze and posture/gait control in Parkinson disease (PD) and to determine the role of the mesencephalic locomotor region (MLR) and cortex-MLR connection in saccadic behavior because this structure is a major area involved in both gait/postural control and gaze control networks.Methods:We recruited 30 patients with PD with or without altered postural control and 25 age-matched healthy controls (HCs). We assessed gait, balance, and neuropsychological status and separately recorded gait initiation and eye movements (visually guided saccades and volitional antisaccades). We identified correlations between the clinical and physiologic parameters that best characterized patients with postural instability. We measured resting-state functional connectivity in 2 pathways involving the frontal oculomotor cortices and the MLR and sought correlations with saccadic behavior.Results:Patients with PD with postural instability showed altered antisaccade latencies that correlated with the stand-walk-sit time (r = 0.78, p < 0.001) and the duration of anticipatory postural adjustments before gait initiation (r = 0.61, p = 0.001). Functional connectivity between the pedunculopontine nucleus (PPN) and the frontal eye field correlated with antisaccade latency in the HCs (r = −0.54, p = 0.02) but not in patients with PD.Conclusions:In PD, impairment of antisaccade latencies, a simple and robust parameter, may be an indirect marker correlated with impaired release of anticipatory postural program. PPN alterations may account for both antisaccade and postural impairments.
Collapse
|
76
|
Pujol S, Cabeen R, Sébille SB, Yelnik J, François C, Fernandez Vidal S, Karachi C, Zhao Y, Cosgrove GR, Jannin P, Kikinis R, Bardinet E. In vivo Exploration of the Connectivity between the Subthalamic Nucleus and the Globus Pallidus in the Human Brain Using Multi-Fiber Tractography. Front Neuroanat 2017; 10:119. [PMID: 28154527 PMCID: PMC5243825 DOI: 10.3389/fnana.2016.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/25/2016] [Indexed: 11/13/2022] Open
Abstract
The basal ganglia is part of a complex system of neuronal circuits that play a key role in the integration and execution of motor, cognitive and emotional function in the human brain. Parkinson’s disease is a progressive neurological disorder of the motor circuit characterized by tremor, rigidity, and slowness of movement. Deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus pars interna provides an efficient treatment to reduce symptoms and levodopa-induced side effects in Parkinson’s disease patients. While the underlying mechanism of action of DBS is still unknown, the potential modulation of white matter tracts connecting the surgical targets has become an active area of research. With the introduction of advanced diffusion MRI acquisition sequences and sophisticated post-processing techniques, the architecture of the human brain white matter can be explored in vivo. The goal of this study is to investigate the white matter connectivity between the subthalamic nucleus and the globus pallidus. Two multi-fiber tractography methods were used to reconstruct pallido-subthalamic, subthalamo-pallidal and pyramidal fibers in five healthy subjects datasets of the Human Connectome Project. The anatomical accuracy of the tracts was assessed by four judges with expertise in neuroanatomy, functional neurosurgery, and diffusion MRI. The variability among subjects was evaluated based on the fractional anisotropy and mean diffusivity of the tracts. Both multi-fiber approaches enabled the detection of complex fiber architecture in the basal ganglia. The qualitative evaluation by experts showed that the identified tracts were in agreement with the expected anatomy. Tract-derived measurements demonstrated relatively low variability among subjects. False-negative tracts demonstrated the current limitations of both methods for clinical decision-making. Multi-fiber tractography methods combined with state-of-the-art diffusion MRI data have the potential to help identify white matter tracts connecting DBS targets in functional neurosurgery intervention.
Collapse
Affiliation(s)
- Sonia Pujol
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA
| | - Ryan Cabeen
- Department of Computer Science, Brown University, Providence RI, USA
| | - Sophie B Sébille
- Institut du Cerveau et de la Moëlle Epinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, University of Paris 06, UMR S 1127 Paris, France
| | - Jérôme Yelnik
- Institut du Cerveau et de la Moëlle Epinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, University of Paris 06, UMR S 1127 Paris, France
| | - Chantal François
- Institut du Cerveau et de la Moëlle Epinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, University of Paris 06, UMR S 1127 Paris, France
| | - Sara Fernandez Vidal
- Institut du Cerveau et de la Moëlle Epinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, University of Paris 06, UMR S 1127Paris, France; Centre de Neuro-Imagerie de Recherche, Institut du Cerveau et de la Moëlle EpinièreParis, France
| | - Carine Karachi
- Institut du Cerveau et de la Moëlle Epinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, University of Paris 06, UMR S 1127Paris, France; Department of Neurosurgery, Pitié-Salpêtrière HospitalParis, France
| | - Yulong Zhao
- LTSI, Inserm UMR 1099 - Université de Rennes Rennes, France
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA
| | - Pierre Jannin
- LTSI, Inserm UMR 1099 - Université de Rennes Rennes, France
| | - Ron Kikinis
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA
| | - Eric Bardinet
- Institut du Cerveau et de la Moëlle Epinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, University of Paris 06, UMR S 1127Paris, France; Centre de Neuro-Imagerie de Recherche, Institut du Cerveau et de la Moëlle EpinièreParis, France
| |
Collapse
|
77
|
Prajapati S, Madrigal E, Friedman MT. Acquisition, Visualization and Potential Applications of 3D Data in Anatomic Pathology. Discoveries (Craiova) 2016; 4:e68. [PMID: 32309587 PMCID: PMC6941555 DOI: 10.15190/d.2016.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although human anatomy and histology are naturally three-dimensional (3D), commonly used diagnostic and educational tools are technologically restricted to providing two-dimensional representations (e.g. gross photography and glass slides). This limitation may be overcome by employing techniques to acquire and display 3D data, which refers to the digital information used to describe a 3D object mathematically. There are several established and experimental strategies to capture macroscopic and microscopic 3D data. In addition, recent hardware and software innovations have propelled the visualization of 3D models, including virtual and augmented reality. Accompanying these advances are novel clinical and non-clinical applications of 3D data in pathology. Medical education and research stand to benefit a great deal from utilizing 3D data as it can change our understanding of complex anatomical and histological structures. Although these technologies are yet to be adopted in routine surgical pathology, forensic pathology has embraced 3D scanning and model reconstruction. In this review, we intend to provide a general overview of the technologies and emerging applications involved with 3D data.
Collapse
Affiliation(s)
- Shyam Prajapati
- Mount Sinai Health System, Department of Diagnostic Pathology and Laboratory Medicine, New York, NY, USA
| | - Emilio Madrigal
- Mount Sinai Health System, Department of Diagnostic Pathology and Laboratory Medicine, New York, NY, USA
| | - Mark T Friedman
- Mount Sinai Health System, Department of Diagnostic Pathology and Laboratory Medicine, New York, NY, USA
| |
Collapse
|
78
|
Xie L, Rong J, Li Q. A Novel Method for Constructing Histological Section Datasets of the Basal Ganglia in Digitized Human Brain. Anat Rec (Hoboken) 2016; 300:1011-1021. [PMID: 27981802 DOI: 10.1002/ar.23526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/14/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022]
Abstract
To investigate the construction of the histological section datasets in the basal ganglia of digitized human brain to provide a reference for the meso-level histological data acquisition. A fresh adult brain from a cadaver with no neurological disease was selected, and tissue blocks of the basal ganglia in the right hemisphere was extracted using the visualization method, followed by pretreatments including gradient dehydrating, gelatin-embedding and setting of calibration points. And then the tissue blocks was cryosectioned into 60-μm-thick coronal sections and the sectional images were captured simultaneously by a digital camera at a fixed position. Two series of sections (one section out of ten) were Nissl-stained with Toluidine blue and immunostained with the calbindin D-28K, respectively. Stained sections were digitized by a high resolution scanner. After alignment and registration, contours of nuclei and different nucleic function divisions in the digital images of stained sections were identified, and then were segmented and labeled using software exploited by ourselves. Datasets of one set of registrated serial sectional images and two sets of registrated histochemically stained images in basal ganglia area were obtained, which provide a histological reference for the neurosurgery and diagnostic imaging. a systematic method of cutting, slicing, staining, data acquisition and image registration of large tissue blocks was established, providing a reference for histological data acquisition on the digital human. Anat Rec, 300:1011-1021, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Department of Anatomy, Third Military Medical University, Chongqing, 400038, China
| | - Jingjing Rong
- Department of Anatomy, Third Military Medical University, Chongqing, 400038, China
| | - Qiyu Li
- Department of Anatomy, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
79
|
Sébille SB, Belaid H, Philippe AC, André A, Lau B, François C, Karachi C, Bardinet E. Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates. Neuroimage 2016; 147:66-78. [PMID: 27956208 DOI: 10.1016/j.neuroimage.2016.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 01/26/2023] Open
Abstract
The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates. Here, we sought to characterise the inputs and outputs of the PPN and CuN to and from the basal ganglia, thalamus, amygdala and cortex, with a specific interest in identifying functional anatomical territories. For this purpose, we used tract-tracing techniques in monkeys and diffusion weighted imaging-based tractography in humans to understand structural connectivity. We found that MLR connections are broadly similar between monkeys and humans. The PPN projects to the sensorimotor, associative and limbic territories of the basal ganglia nuclei, the centre median-parafascicular thalamic nuclei and the central nucleus of the amygdala. The PPN receives motor cortical inputs and less abundant connections from the associative and limbic cortices. In monkeys, we found a stronger connection between the anterior PPN and motor cortex suggesting a topographical organisation of this specific projection. The CuN projected to similar cerebral structures to the PPN in both species. However, these projections were much stronger towards the limbic territories of the basal ganglia and thalamus, to the basal forebrain (extended amygdala) and the central nucleus of the amygdala, suggesting that the CuN is not primarily a motor structure. Our findings highlight the fact that the PPN integrates sensorimotor, cognitive and emotional information whereas the CuN participates in a more restricted network integrating predominantly emotional information.
Collapse
Affiliation(s)
- Sophie B Sébille
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France
| | - Hayat Belaid
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Département de Neurochirurgie, Hôpital Pitie Salpêtrière, AP-HP, F-75013 Paris, France
| | - Anne-Charlotte Philippe
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France
| | - Arthur André
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Département de Neurochirurgie, Hôpital Pitie Salpêtrière, AP-HP, F-75013 Paris, France
| | - Brian Lau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France
| | - Chantal François
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France
| | - Carine Karachi
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Département de Neurochirurgie, Hôpital Pitie Salpêtrière, AP-HP, F-75013 Paris, France
| | - Eric Bardinet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France; Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France.
| |
Collapse
|
80
|
Baumgarten C, Zhao Y, Sauleau P, Malrain C, Jannin P, Haegelen C. Improvement of Pyramidal Tract Side Effect Prediction Using a Data-Driven Method in Subthalamic Stimulation. IEEE Trans Biomed Eng 2016; 64:2134-2141. [PMID: 27959795 DOI: 10.1109/tbme.2016.2638018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE subthalamic nucleus deep brain stimulation (STN DBS) is limited by the occurrence of a pyramidal tract side effect (PTSE) induced by electrical activation of the pyramidal tract. Predictive models are needed to assist the surgeon during the electrode trajectory preplanning. The objective of the study was to compare two methods of PTSE prediction based on clinical assessment of PTSE induced by STN DBS in patients with Parkinson's disease. METHODS two clinicians assessed PTSE postoperatively in 20 patients implanted for at least three months in the STN. The resulting dataset of electroclinical tests was used to evaluate two methods of PTSE prediction. The first method was based on the volume of tissue activated (VTA) modeling and the second one was a data-driven-based method named Pyramidal tract side effect Model based on Artificial Neural network (PyMAN) developed in our laboratory. This method was based on the nonlinear correlation between the PTSE current threshold and the 3-D electrode coordinates. PTSE prediction from both methods was compared using Mann-Whitney U test. RESULTS 1696 electroclinical tests were used to design and compare the two methods. Sensitivity, specificity, positive- and negative-predictive values were significantly higher with the PyMAN method than with the VTA-based method (P < 0.05). CONCLUSION the PyMAN method was more effective than the VTA-based method to predict PTSE. SIGNIFICANCE this data-driven tool could help the neurosurgeon in predicting adverse side effects induced by DBS during the electrode trajectory preplanning.
Collapse
|
81
|
Lemaire JJ, Pereira B, Derost P, Vassal F, Ulla M, Morand D, Coll G, Gabrillargues J, Marques A, Debilly B, Coste J, Durif F. Subthalamus stimulation in Parkinson disease: Accounting for the bilaterality of contacts. Surg Neurol Int 2016; 7:S837-S847. [PMID: 27990316 PMCID: PMC5134117 DOI: 10.4103/2152-7806.194066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/27/2016] [Indexed: 01/24/2023] Open
Abstract
Background: Deep brain stimulation (DBS) in Parkinson's disease uses bi-hemispheric high-frequency stimulation within the subthalamus, however, the specific impacts of bilaterality of DBS are still not clear. Thus, we aimed to study the individual-level clinical impact of locations of right-left contact pair-up accounting for each subthalamic nucleus (STN) anatomy. Methods: Contact locations and effects at 1 year were studied retrospectively in an unselected series of 53 patients operated between 2004 and 2010. Location of contacts was defined relatively to the main axis of STN used to map longitudinal and transversal positions, and STN membership (out meaning out-of-STN). Contact pairings were described via three methods: (i) Unified contact location (UCL) collapsing DBS into an all-in-one contact; (ii) balance of contact pair-up (BCPU), defined as symmetric or asymmetric regardless of laterality; (iii) hemisphere-wise most frequent contact pair-up (MFCP) regardless of BCPU. Clinical data were: mean levodopa equivalent dose, Unified Parkinson's Disease Rating Scale (UPDRS) motor score III without medication, UPDRS II and III speech sub-scores, UPDRS II freezing sub-score, 1 year versus preoperative values, with and without levodopa. Ad-hoc two-sided tests were used for statistical analysis. Results: Worsening speech, was more frequent for UCL_out patients and when the left MFCP contact was rear and/or superolateral, however, it less frequent for BCPU-asymmetric patients. Worsening freezing was more frequent when the right MFCP contact was rear and superolateral. Conclusions: These results point to strategies for minimizing dysarthria and freezing as adverse effects of DBS.
Collapse
Affiliation(s)
- Jean-Jacques Lemaire
- Service of Neurosurgery, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France; Image-Guided Clinical Neuroscience and Connectomics, Research Team, Auvergne University, Auvergne, France
| | - Bruno Pereira
- Image-Guided Clinical Neuroscience and Connectomics, Research Team, Auvergne University, Auvergne, France; Biostatistics, Clinical Research Direction, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Philippe Derost
- Service of Neurology, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - François Vassal
- Image-Guided Clinical Neuroscience and Connectomics, Research Team, Auvergne University, Auvergne, France
| | - Miguel Ulla
- Service of Neurology, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Dominique Morand
- Biostatistics, Clinical Research Direction, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Guillaume Coll
- Service of Neurosurgery, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France; Image-Guided Clinical Neuroscience and Connectomics, Research Team, Auvergne University, Auvergne, France
| | - Jean Gabrillargues
- Service of Neurosurgery, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France; Service of Radiology, Neuroradiology Unit, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Ana Marques
- Service of Neurology, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Bérangère Debilly
- Service of Neurology, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Jérôme Coste
- Service of Neurosurgery, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France; Image-Guided Clinical Neuroscience and Connectomics, Research Team, Auvergne University, Auvergne, France
| | - Franck Durif
- Service of Neurology, Gabriel Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
82
|
Gargouri F, Messé A, Perlbarg V, Valabregue R, McColgan P, Yahia-Cherif L, Fernandez-Vidal S, Ben Hamida A, Benali H, Tabrizi S, Durr A, Lehéricy S. Longitudinal changes in functional connectivity of cortico-basal ganglia networks in manifests and premanifest huntington's disease. Hum Brain Mapp 2016; 37:4112-4128. [PMID: 27400836 PMCID: PMC6867429 DOI: 10.1002/hbm.23299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 11/08/2022] Open
Abstract
Huntington's disease (HD) is a genetic neurological disorder resulting in cognitive and motor impairments. We evaluated the longitudinal changes of functional connectivity in sensorimotor, associative and limbic cortico-basal ganglia networks. We acquired structural MRI and resting-state fMRI in three visits one year apart, in 18 adult HD patients, 24 asymptomatic mutation carriers (preHD) and 18 gender- and age-matched healthy volunteers from the TRACK-HD study. We inferred topological changes in functional connectivity between 182 regions within cortico-basal ganglia networks using graph theory measures. We found significant differences for global graph theory measures in HD but not in preHD. The average shortest path length (L) decreased, which indicated a change toward the random network topology. HD patients also demonstrated increases in degree k, reduced betweeness centrality bc and reduced clustering C. Changes predominated in the sensorimotor network for bc and C and were observed in all circuits for k. Hubs were reduced in preHD and no longer detectable in HD in the sensorimotor and associative networks. Changes in graph theory metrics (L, k, C and bc) correlated with four clinical and cognitive measures (symbol digit modalities test, Stroop, Burden and UHDRS). There were no changes in graph theory metrics across sessions, which suggests that these measures are not reliable biomarkers of longitudinal changes in HD. preHD is characterized by progressive decreasing hub organization, and these changes aggravate in HD patients with changes in local metrics. HD is characterized by progressive changes in global network interconnectivity, whose network topology becomes more random over time. Hum Brain Mapp 37:4112-4128, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fatma Gargouri
- Institut Du Cerveau Et De La Moelle Épinière - ICM, Centre De NeuroImagerie De Recherche - CENIR, Paris, France
- Institut Du Cerveau Et De La Moelle Épinière - ICM, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
- Advanced Technologies for Medicine and Signals - ATMS, Ecole Nationale D'Ingénieurs De Sfax - ENIS, Sfax Université, Tunisia
| | - Arnaud Messé
- Department of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7371, Inserm UMR_S 1146, Laboratoire D'Imagerie Biomédicale, Paris, F-75013, France
| | - Vincent Perlbarg
- Institut Du Cerveau Et De La Moelle Épinière - ICM, Centre De NeuroImagerie De Recherche - CENIR, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7371, Inserm UMR_S 1146, Laboratoire D'Imagerie Biomédicale, Paris, F-75013, France
- Bioinformatics and Biostatistics platform - ICONICS, Institut Du Cerveau Et De La Moelle Épinière - ICM, Paris, France
| | - Romain Valabregue
- Institut Du Cerveau Et De La Moelle Épinière - ICM, Centre De NeuroImagerie De Recherche - CENIR, Paris, France
- Institut Du Cerveau Et De La Moelle Épinière - ICM, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Peter McColgan
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Lydia Yahia-Cherif
- Institut Du Cerveau Et De La Moelle Épinière - ICM, Centre De NeuroImagerie De Recherche - CENIR, Paris, France
- Institut Du Cerveau Et De La Moelle Épinière - ICM, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Sara Fernandez-Vidal
- Institut Du Cerveau Et De La Moelle Épinière - ICM, Centre De NeuroImagerie De Recherche - CENIR, Paris, France
- Institut Du Cerveau Et De La Moelle Épinière - ICM, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Ahmed Ben Hamida
- Advanced Technologies for Medicine and Signals - ATMS, Ecole Nationale D'Ingénieurs De Sfax - ENIS, Sfax Université, Tunisia
| | - Habib Benali
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7371, Inserm UMR_S 1146, Laboratoire D'Imagerie Biomédicale, Paris, F-75013, France
| | - Sarah Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Alexandra Durr
- Institut Du Cerveau Et De La Moelle Épinière - ICM, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
- Department of Genetics, APHP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- Institut Du Cerveau Et De La Moelle Épinière - ICM, Centre De NeuroImagerie De Recherche - CENIR, Paris, France.
- Institut Du Cerveau Et De La Moelle Épinière - ICM, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France.
- ICM Team Control of Normal and Abnormal Movement.
- Groupe Hospitalier Pitié-Salpêtrière, Service De Neuroradiologie, Paris, France.
| |
Collapse
|
83
|
Garcia-Garcia D, Guridi J, Toledo JB, Alegre M, Obeso JA, Rodríguez-Oroz MC. Stimulation sites in the subthalamic nucleus and clinical improvement in Parkinson's disease: a new approach for active contact localization. J Neurosurg 2016; 125:1068-1079. [DOI: 10.3171/2015.9.jns15868] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is widely used in patients with Parkinson's disease (PD). However, which target area of this region results in the highest antiparkinsonian efficacy is still a matter of debate. The aim of this study was to develop a more accurate methodology to locate the electrodes and the contacts used for chronic stimulation (active contacts) in the subthalamic region, and to determine the position at which stimulation conveys the greatest clinical benefit.
METHODS
The study group comprised 40 patients with PD in whom bilateral DBS electrodes had been implanted in the STN. Based on the Morel atlas, the authors created an adaptable 3D atlas that takes into account individual anatomical variability and divides the STN into functional territories. The locations of the electrodes and active contacts were obtained from an accurate volumetric assessment of the artifact using preoperative and postoperative MR images. Active contacts were positioned in the 3D atlas using stereotactic coordinates and a new volumetric method based on an ellipsoid representation created from all voxels that belong to a set of contacts. The antiparkinsonian benefit of the stimulation was evaluated by the reduction in the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) score and in the levodopa equivalent daily dose (LEDD) at 6 months. A homogeneous group classification for contact position and the respective clinical improvement was applied using a hierarchical clustering method.
RESULTS
Subthalamic stimulation induced a significant reduction of 58.0% ± 16.5% in the UPDRS-III score (p < 0.001) and 64.9% ± 21.0% in the LEDD (p < 0.001). The greatest reductions in the total and contralateral UPDRS-III scores (64% and 76%, respectively) and in the LEDD (73%) were obtained when the active contacts were placed approximately 12 mm lateral to the midline, with no influence of the position being observed in the anteroposterior and dorsoventral axes. In contrast, contacts located about 10 mm from the midline only reduced the global and contralateral UPDRS-III scores by 47% and 41%, respectively, and the LEDD by 33%. Using the ellipsoid method of location, active contacts with the highest benefit were positioned in the rostral and most lateral portion of the STN and at the interface between this subthalamic region, the zona incerta, and the thalamic fasciculus. Contacts placed in the most medial regions of the motor STN area provided the lowest clinical efficacy.
CONCLUSIONS
The authors report an accurate new methodology to assess the position of electrodes and contacts used for chronic subthalamic stimulation. Using this approach, the highest antiparkinsonian benefit is achieved when active contacts are located within the rostral and the most lateral parts of the motor region of the STN and at the interface of this region and adjacent areas (zona incerta and thalamic fasciculus).
Collapse
Affiliation(s)
- David Garcia-Garcia
- 1Neurosciences Area, CIMA, Department of Neurology and Neurosurgery, Clínica Universidad de Navarra Medical School, Pamplona
- 2Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); and
| | - Jorge Guridi
- 1Neurosciences Area, CIMA, Department of Neurology and Neurosurgery, Clínica Universidad de Navarra Medical School, Pamplona
- 2Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); and
| | - Jon B. Toledo
- 1Neurosciences Area, CIMA, Department of Neurology and Neurosurgery, Clínica Universidad de Navarra Medical School, Pamplona
| | - Manuel Alegre
- 1Neurosciences Area, CIMA, Department of Neurology and Neurosurgery, Clínica Universidad de Navarra Medical School, Pamplona
| | - José A. Obeso
- 1Neurosciences Area, CIMA, Department of Neurology and Neurosurgery, Clínica Universidad de Navarra Medical School, Pamplona
- 2Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); and
| | - María C. Rodríguez-Oroz
- 1Neurosciences Area, CIMA, Department of Neurology and Neurosurgery, Clínica Universidad de Navarra Medical School, Pamplona
- 2Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); and
- 3Neuroscience Unit, BioDonostia Research Institute, University Hospital Donostia, Basque Center on Cognition, Brain and Language (BCBL), San Sebastián; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
84
|
Stadlbauer A, Kaltenhäuser M, Buchfelder M, Brandner S, Neuhuber WL, Renner B. Spatiotemporal Pattern of Human Cortical and Subcortical Activity during Early-Stage Odor Processing. Chem Senses 2016; 41:783-794. [DOI: 10.1093/chemse/bjw074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
85
|
Ohnishi T, Nakamura Y, Tanaka T, Tanaka T, Hashimoto N, Haneishi H, Batchelor TT, Gerstner ER, Taylor JW, Snuderl M, Yagi Y. Deformable image registration between pathological images and MR image via an optical macro image. Pathol Res Pract 2016; 212:927-936. [PMID: 27613662 PMCID: PMC5097673 DOI: 10.1016/j.prp.2016.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 07/02/2016] [Accepted: 07/31/2016] [Indexed: 02/05/2023]
Abstract
Computed tomography (CT) and magnetic resonance (MR) imaging have been widely used for visualizing the inside of the human body. However, in many cases, pathological diagnosis is conducted through a biopsy or resection of an organ to evaluate the condition of tissues as definitive diagnosis. To provide more advanced information onto CT or MR image, it is necessary to reveal the relationship between tissue information and image signals. We propose a registration scheme for a set of PT images of divided specimens and a 3D-MR image by reference to an optical macro image (OM image) captured by an optical camera. We conducted a fundamental study using a resected human brain after the death of a brain cancer patient. We constructed two kinds of registration processes using the OM image as the base for both registrations to make conversion parameters between the PT and MR images. The aligned PT images had shapes similar to the OM image. On the other hand, the extracted cross-sectional MR image was similar to the OM image. From these resultant conversion parameters, the corresponding region on the PT image could be searched and displayed when an arbitrary pixel on the MR image was selected. The relationship between the PT and MR images of the whole brain can be analyzed using the proposed method. We confirmed that same regions between the PT and MR images could be searched and displayed using resultant information obtained by the proposed method. In terms of the accuracy of proposed method, the TREs were 0.56±0.39mm and 0.87±0.42mm. We can analyze the relationship between tissue information and MR signals using the proposed method.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Center for Frontier Medical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Yuka Nakamura
- Graduate School of Engineering, Chiba University, Japan
| | - Toru Tanaka
- Graduate School of Engineering, Chiba University, Japan
| | - Takuya Tanaka
- Graduate School of Engineering, Chiba University, Japan
| | - Noriaki Hashimoto
- Center for Frontier Medical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hideaki Haneishi
- Center for Frontier Medical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tracy T Batchelor
- Massachusetts General Hospital Cancer Center, Boston, MA 02144, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth R Gerstner
- Massachusetts General Hospital Cancer Center, Boston, MA 02144, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Jennie W Taylor
- Massachusetts General Hospital Cancer Center, Boston, MA 02144, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Matija Snuderl
- New York University Langone Medical Center, New York, NY 10016, USA
| | - Yukako Yagi
- Harvard Medical School, Boston, MA 02215, USA; Massachusetts General Hospital Pathology Imaging and Communication Technology (PICT) Center, Boston, MA 02214, USA
| |
Collapse
|
86
|
Abstract
Techniques based on imaging serial sections of brain tissue provide insight into brain structure and function. However, to compare or combine them with results from three dimensional imaging methods, reconstruction into a volumetric form is required. Currently, there are no tools for performing such a task in a streamlined way. Here we propose the Possum volumetric reconstruction framework which provides a selection of 2D to 3D image reconstruction routines allowing one to build workflows tailored to one's specific requirements. The main components include routines for reconstruction with or without using external reference and solutions for typical issues encountered during the reconstruction process, such as propagation of the registration errors due to distorted sections. We validate the implementation using synthetic datasets and actual experimental imaging data derived from publicly available resources. We also evaluate efficiency of a subset of the algorithms implemented. The Possum framework is distributed under MIT license and it provides researchers with a possibility of building reconstruction workflows from existing components, without the need for low-level implementation. As a consequence, it also facilitates sharing and data exchange between researchers and laboratories.
Collapse
Affiliation(s)
- Piotr Majka
- />Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
- />Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Daniel K. Wójcik
- />Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
87
|
Baumgarten C, Zhao Y, Sauleau P, Malrain C, Jannin P, Haegelen C. Image-guided preoperative prediction of pyramidal tract side effect in deep brain stimulation: proof of concept and application to the pyramidal tract side effect induced by pallidal stimulation. J Med Imaging (Bellingham) 2016; 3:025001. [PMID: 27413769 DOI: 10.1117/1.jmi.3.2.025001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/13/2016] [Indexed: 11/14/2022] Open
Abstract
Deep brain stimulation of the medial globus pallidus (GPm) is a surgical procedure for treating patients suffering from Parkinson's disease. Its therapeutic effect may be limited by the presence of pyramidal tract side effect (PTSE). PTSE is a contraction time-locked to the stimulation when the current spreading reaches the motor fibers of the pyramidal tract within the internal capsule. The objective of the study was to propose a preoperative predictive model of PTSE. A machine learning-based method called PyMAN (PTSE model based on artificial neural network) accounting for the current used in stimulation, the three-dimensional electrode coordinates and the angle of the trajectory, was designed to predict the occurrence of PTSE. Ten patients implanted in the GPm have been tested by a clinician to create a labeled dataset of the stimulation parameters that trigger PTSE. The kappa index value between the data predicted by PyMAN and the labeled data was 0.78. Further evaluation studies are desirable to confirm whether PyMAN could be a reliable tool for assisting the surgeon to prevent PTSE during the preoperative planning.
Collapse
Affiliation(s)
- Clement Baumgarten
- French Institute of Health and Medical Research, UMR 1099, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France; University of Rennes 1, Treatment of Signal and Imaging Laboratory, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France
| | - Yulong Zhao
- French Institute of Health and Medical Research, UMR 1099, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France; University of Rennes 1, Treatment of Signal and Imaging Laboratory, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France
| | - Paul Sauleau
- Rennes University Hospital , Department of Neurology, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France
| | - Cecile Malrain
- Rennes University Hospital , Department of Neurology, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France
| | - Pierre Jannin
- French Institute of Health and Medical Research, UMR 1099, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France; University of Rennes 1, Treatment of Signal and Imaging Laboratory, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France
| | - Claire Haegelen
- French Institute of Health and Medical Research, UMR 1099, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France; University of Rennes 1, Treatment of Signal and Imaging Laboratory, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France; Rennes University Hospital, Department of Neurosurgery, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France
| |
Collapse
|
88
|
Gallea C, Popa T, García-Lorenzo D, Valabregue R, Legrand AP, Apartis E, Marais L, Degos B, Hubsch C, Fernández-Vidal S, Bardinet E, Roze E, Lehéricy S, Meunier S, Vidailhet M. Orthostatic tremor: a cerebellar pathology? Brain 2016; 139:2182-97. [PMID: 27329770 PMCID: PMC4958903 DOI: 10.1093/brain/aww140] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/22/2016] [Indexed: 12/24/2022] Open
Abstract
SEE MUTHURAMAN ET AL DOI101093/AWW164 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Primary orthostatic tremor is characterized by high frequency tremor affecting the legs and trunk during the standing position. Cerebellar defects were suggested in orthostatic tremor without direct evidence. We aimed to characterize the anatomo-functional defects of the cerebellar motor pathways in orthostatic tremor. We used multimodal neuroimaging to compare 17 patients with orthostatic tremor and 17 age- and gender-matched healthy volunteers. Nine of the patients with orthostatic tremor underwent repetitive transcranial stimulation applied over the cerebellum during five consecutive days. We quantified the duration of standing position and tremor severity through electromyographic recordings. Compared to healthy volunteers, grey matter volume in patients with orthostatic tremor was (i) increased in the cerebellar vermis and correlated positively with the duration of the standing position; and (ii) increased in the supplementary motor area and decreased in the lateral cerebellum, which both correlated with the disease duration. Functional connectivity between the lateral cerebellum and the supplementary motor area was abnormally increased in patients with orthostatic tremor, and correlated positively with tremor severity. After repetitive transcranial stimulation, tremor severity and functional connectivity between the lateral cerebellum and the supplementary motor area were reduced. We provide an explanation for orthostatic tremor pathophysiology, and demonstrate the functional relevance of cerebello-thalamo-cortical connections in tremor related to cerebellar defects.
Collapse
Affiliation(s)
- Cécile Gallea
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 5 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | - Traian Popa
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Daniel García-Lorenzo
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 5 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | - Romain Valabregue
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 5 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | | | - Emmanuelle Apartis
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 7 AP-HP, Hôpital de Saint-Antoine, Département de Neurologie, Paris, France
| | - Lea Marais
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 5 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | - Bertrand Degos
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 8 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Cecile Hubsch
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 8 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Sara Fernández-Vidal
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Eric Bardinet
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Emmanuel Roze
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 8 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Stéphane Lehéricy
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 5 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | - Sabine Meunier
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Marie Vidailhet
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 8 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| |
Collapse
|
89
|
Xiao Y, Zitella LM, Duchin Y, Teplitzky BA, Kastl D, Adriany G, Yacoub E, Harel N, Johnson MD. Multimodal 7T Imaging of Thalamic Nuclei for Preclinical Deep Brain Stimulation Applications. Front Neurosci 2016; 10:264. [PMID: 27375422 PMCID: PMC4901062 DOI: 10.3389/fnins.2016.00264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/25/2016] [Indexed: 01/14/2023] Open
Abstract
Precise neurosurgical targeting of electrode arrays within the brain is essential to the successful treatment of a range of brain disorders with deep brain stimulation (DBS) therapy. Here, we describe a set of computational tools to generate in vivo, subject-specific atlases of individual thalamic nuclei thus improving the ability to visualize thalamic targets for preclinical DBS applications on a subject-specific basis. A sequential nonlinear atlas warping technique and a Bayesian estimation technique for probabilistic crossing fiber tractography were applied to high field (7T) susceptibility-weighted and diffusion-weighted imaging, respectively, in seven rhesus macaques. Image contrast, including contrast within thalamus from the susceptibility-weighted images, informed the atlas warping process and guided the seed point placement for fiber tractography. The susceptibility-weighted imaging resulted in relative hyperintensity of the intralaminar nuclei and relative hypointensity in the medial dorsal nucleus, pulvinar, and the medial/ventral border of the ventral posterior nuclei, providing context to demarcate borders of the ventral nuclei of thalamus, which are often targeted for DBS applications. Additionally, ascending fiber tractography of the medial lemniscus, superior cerebellar peduncle, and pallidofugal pathways into thalamus provided structural demarcation of the ventral nuclei of thalamus. The thalamic substructure boundaries were validated through in vivo electrophysiological recordings and post-mortem blockface tissue sectioning. Together, these imaging tools for visualizing and segmenting thalamus have the potential to improve the neurosurgical targeting of DBS implants and enhance the selection of stimulation settings through more accurate computational models of DBS.
Collapse
Affiliation(s)
- YiZi Xiao
- Department of Biomedical Engineering, University of Minnesota Minneapolis, MN, USA
| | - Laura M Zitella
- Department of Biomedical Engineering, University of Minnesota Minneapolis, MN, USA
| | - Yuval Duchin
- Center for Magnetic Resonance Research, University of Minnesota Minneapolis, MN, USA
| | - Benjamin A Teplitzky
- Department of Biomedical Engineering, University of Minnesota Minneapolis, MN, USA
| | - Daniel Kastl
- Department of Biomedical Engineering, University of Minnesota Minneapolis, MN, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota Minneapolis, MN, USA
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota Minneapolis, MN, USA
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of MinnesotaMinneapolis, MN, USA; Institute for Translational Neuroscience, University of MinnesotaMinneapolis, MN, USA
| |
Collapse
|
90
|
Trenado C, Elben S, Petri D, Hirschmann J, Groiss SJ, Vesper J, Schnitzler A, Wojtecki L. Combined Invasive Subcortical and Non-invasive Surface Neurophysiological Recordings for the Assessment of Cognitive and Emotional Functions in Humans. J Vis Exp 2016. [PMID: 27286467 DOI: 10.3791/53466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In spite of the success in applying non-invasive electroencephalography (EEG), magneto-encephalography (MEG) and functional magnetic resonance imaging (fMRI) for extracting crucial information about the mechanism of the human brain, such methods remain insufficient to provide information about physiological processes reflecting cognitive and emotional functions at the subcortical level. In this respect, modern invasive clinical approaches in humans, such as deep brain stimulation (DBS), offer a tremendous possibility to record subcortical brain activity, namely local field potentials (LFPs) representing coherent activity of neural assemblies from localized basal ganglia or thalamic regions. Notwithstanding the fact that invasive approaches in humans are applied only after medical indication and thus recorded data correspond to altered brain circuits, valuable insight can be gained regarding the presence of intact brain functions in relation to brain oscillatory activity and the pathophysiology of disorders in response to experimental cognitive paradigms. In this direction, a growing number of DBS studies in patients with Parkinson's disease (PD) target not only motor functions but also higher level processes such as emotions, decision-making, attention, memory and sensory perception. Recent clinical trials also emphasize the role of DBS as an alternative treatment in neuropsychiatric disorders ranging from obsessive compulsive disorder (OCD) to chronic disorders of consciousness (DOC). Consequently, we focus on the use of combined invasive (LFP) and non-invasive (EEG) human brain recordings in assessing the role of cortical-subcortical structures in cognitive and emotional processing trough experimental paradigms (e.g. speech stimuli with emotional connotation or paradigms of cognitive control such as the Flanker task), for patients undergoing DBS treatment.
Collapse
Affiliation(s)
- Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University
| | - Saskia Elben
- Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - David Petri
- Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Jan Hirschmann
- Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Stefan J Groiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University; Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Jan Vesper
- Department of Neurosurgery, Functional Neurosurgery and Stereotaxy, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University; Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University; Department of Neurology, Center for Movement Disorders and Neuromodulation, University Clinic Düsseldorf;
| |
Collapse
|
91
|
Schneider TM, Deistung A, Biedermann U, Matthies C, Ernestus RI, Volkmann J, Heiland S, Bendszus M, Reichenbach JR. Susceptibility Sensitive Magnetic Resonance Imaging Displays Pallidofugal and Striatonigral Fiber Tracts. Oper Neurosurg (Hagerstown) 2016; 12:330-338. [DOI: 10.1227/neu.0000000000001256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND
The pallidofugal and striatonigral fiber tracts form a functional part of the basal ganglionic neuronal networks. For deep brain stimulation, a surgical procedure applied in the treatment of Parkinson disease and dystonia, precise localization of pallidofugal pathways may be of particular clinical relevance for correct electrode positioning.
OBJECTIVE
To investigate whether the pallidofugal and striatonigral pathways can be visualized with magnetic resonance imaging in vivo by exploiting their intrinsic magnetic susceptibility.
METHODS
Three-dimensional gradient-echo imaging of 5 volunteers was performed on a 7 T magnetic resonance imaging system. To demonstrate that the displayed tubular structures in the vicinity of the subthalamic nucleus and substantia nigra truly represent fiber tracts rather than veins, gradient-echo data of a formalin-fixated brain and a volunteer during inhalation of ambient air and carbogen were collected at 3 T. Susceptibility weighted images, quantitative susceptibility maps, and effective transverse relaxation maps were reconstructed and the depiction of fiber tracts was qualitatively assessed.
RESULTS
High-resolution susceptibility-based magnetic resonance imaging contrasts enabled visualization of pallidofugal and striatonigral fiber tracts noninvasively at 3 T and 7 T. We verified that the stripe-like pattern observed on susceptibility-sensitive images is not caused by veins crossing the internal capsule but by fiber tracts traversing the internal capsule.
CONCLUSION
Pallidofugal and striatonigral fiber tracts have been visualized in vivo for the first time by using susceptibility-sensitive image contrasts. Considering the course of pallidofugal pathways, in particular for deep brain stimulation procedures in the vicinity of the subthalamic nucleus, could provide landmarks for optimal targeting during stereotactic planning.
Collapse
Affiliation(s)
- Till M Schneider
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Jena, Germany
| | - Uta Biedermann
- Institute of Anatomy I, Jena University Hospital—Friedrich Schiller University Jena, Jena, Germany
| | - Cordula Matthies
- Department of Neurosurgery, Würzburg University Hospital, Würzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, Würzburg University Hospital, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, Würzburg University Hospital, Würzburg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
92
|
Fleury V, Pollak P, Gere J, Tommasi G, Romito L, Combescure C, Bardinet E, Chabardes S, Momjian S, Krainik A, Burkhard P, Yelnik J, Krack P. Subthalamic stimulation may inhibit the beneficial effects of levodopa on akinesia and gait. Mov Disord 2016; 31:1389-97. [PMID: 26887333 DOI: 10.1002/mds.26545] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Gait and akinesia deterioration in PD patients during the immediate postoperative period of DBS has been directly related to stimulation in the subthalamic region. The underlying mechanisms remain poorly understood. The aim of the present study was to clinically and anatomically describe this side effect. METHODS PD patients presenting with a worsening of gait and/or akinesia following STN-DBS, that was reversible on stimulation arrest were included. The evaluation included (1) a Stand Walk Sit Test during a monopolar survey of each electrode in the on-drug condition; (2) a 5-condition test with the following conditions: off-drug/off-DBS, off-drug/on-best-compromise-DBS, on-drug/off-DBS, on-drug/on-best-compromise-DBS, and on-drug/on-worsening-DBS, which utilized the contact inducing the most prominent gait deterioration. The following scales were performed: UPDRSIII subscores, Stand Walk Sit Test, and dyskinesia and freezing of gait scales. Localization of contacts was performed using a coregistration method. RESULTS Twelve of 17 patients underwent the complete evaluation. Stimulation of the most proximal contacts significantly slowed down the Stand Walk Sit Test. The on-drug/on-worsening-DBS condition compared with the on-drug/off-DBS condition worsened akinesia (P = 0.02), Stand Walk Sit Test (P = 0.001), freezing of gait (P = 0.02), and improved dyskinesias (P = 0.003). Compared with the off-drug/off-DBS condition, the on-drug/on-worsening-DBS condition improved rigidity (P = 0.007) and tremor (P = 0.007). Worsening contact sites were predominantly dorsal and anterior to the STN in the anterior zona incerta and Forel fields H2. CONCLUSIONS A paradoxical deterioration of gait and akinesia is a rare side effect following STN-DBS. We propose that this may be related to misplaced contacts, and we discuss the pathophysiology and strategies to identify and manage this complication. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vanessa Fleury
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland. .,Movement Disorder Unit, Department of Psychiatry and Neurology, Grenoble University Hospital, Grenoble, France.
| | - Pierre Pollak
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland.,Movement Disorder Unit, Department of Psychiatry and Neurology, Grenoble University Hospital, Grenoble, France
| | - Julien Gere
- Movement Disorder Unit, Department of Psychiatry and Neurology, Grenoble University Hospital, Grenoble, France.,Department of Neurology, Savoie Hospital, Chambery, France
| | - Giorgio Tommasi
- Movement Disorder Unit, Department of Psychiatry and Neurology, Grenoble University Hospital, Grenoble, France.,Department of Neurology, University Hospital of Verona, Verona, Italy
| | - Luigi Romito
- Movement Disorder Unit, Department of Psychiatry and Neurology, Grenoble University Hospital, Grenoble, France.,Department of Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Christophe Combescure
- Department of Health and Community Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Eric Bardinet
- Sorbonne Université, UPMC Univ Paris, Inserm U975, CNRS UMR 7225, Centre de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Stephan Chabardes
- Department of Neurosurgery, Grenoble University Hospital, Grenoble, France
| | - Shahan Momjian
- Department of Neurosurgery, Geneva University Hospital, Geneva, Switzerland
| | - Alexandre Krainik
- US 017, INSERM, UMS 3552, CNRS, Grenoble University Hospital, Neuroradiology and MRI, Grenoble, France
| | - Pierre Burkhard
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Jérôme Yelnik
- Sorbonne Université, UPMC Univ Paris, Inserm U975, CNRS UMR 7225, Centre de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Paul Krack
- Movement Disorder Unit, Department of Psychiatry and Neurology, Grenoble University Hospital, Grenoble, France.,INSERM U836, University Grenoble Alpes, Grenoble Neuroscience Institute, Grenoble, France
| |
Collapse
|
93
|
Liu Y, Dawant BM. Multi-modal Learning-based Pre-operative Targeting in Deep Brain Stimulation Procedures. ... IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS. IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2016; 2016:17-20. [PMID: 27754497 PMCID: PMC5042326 DOI: 10.1109/bhi.2016.7455824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deep brain stimulation, as a primary surgical treatment for various neurological disorders, involves implanting electrodes to stimulate target nuclei within millimeter accuracy. Accurate pre-operative target selection is challenging due to the poor contrast in its surrounding region in MR images. In this paper, we present a learning-based method to automatically and rapidly localize the target using multi-modal images. A learning-based technique is applied first to spatially normalize the images in a common coordinate space. Given a point in this space, we extract a heterogeneous set of features that capture spatial and intensity contextual patterns at different scales in each image modality. Regression forests are used to learn a displacement vector of this point to the target. The target is predicted as a weighted aggregation of votes from various test samples, leading to a robust and accurate solution. We conduct five-fold cross validation using 100 subjects and compare our method to three indirect targeting methods, a state-of-the-art statistical atlas-based approach, and two variations of our method that use only a single modality image. With an overall error of 2.63±1.37mm, our method improves upon the single modality-based variations and statistically significantly outperforms the indirect targeting ones. Our technique matches state-of-the-art registration methods but operates on completely different principles. Both techniques can be used in tandem in processing pipelines operating on large databases or in the clinical flow for automated error detection.
Collapse
Affiliation(s)
- Yuan Liu
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Benoit M Dawant
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
94
|
Connections of the dorsolateral prefrontal cortex with the thalamus: a probabilistic tractography study. Surg Radiol Anat 2015; 38:705-10. [DOI: 10.1007/s00276-015-1603-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/05/2015] [Indexed: 01/30/2023]
|
95
|
Delorme C, Rogers A, Lau B, Francisque H, Welter ML, Vidal SF, Yelnik J, Durr A, Grabli D, Karachi C. Deep brain stimulation of the internal pallidum in Huntington's disease patients: clinical outcome and neuronal firing patterns. J Neurol 2015; 263:290-298. [PMID: 26568561 DOI: 10.1007/s00415-015-7968-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 12/31/2022]
Abstract
Deep brain stimulation (DBS) of the internal globus pallidus (GPi) could treat chorea in Huntington's disease patients. The objectives of this study were to evaluate the efficacy of GPi-DBS to reduce abnormal movements of three patients with Huntington's disease and assess tolerability. Three non-demented patients with severe pharmacoresistant chorea underwent bilateral GPi-DBS and were followed for 30, 24, and 12 months, respectively. Primary outcome measure was the change of the chorea and total motor scores of the Unified Huntington's Disease Rating Scale between pre- and last postoperative assessments. Secondary outcome measures were motor changes between ventral versus dorsal and between on- and off- GPi-DBS. GPi neuronal activities were analyzed and compared to those obtained in patients with Parkinson's disease. No adverse effects occurred. Chorea decreased in all patients (13, 67 and 29%) postoperatively. Total motor score decreased in patient 2 (19.6%) and moderately increased in patients 1 and 3 (17.5 and 1.7%), due to increased bradykinesia and dysarthria. Ventral was superior to dorsal GPi-DBS to control chorea. Total motor score increased dramatically off-stimulation compared to ventral GPi-DBS (70, 63 and 19%). Cognitive and psychic functions were overall unchanged. Lower mean rate and less frequent bursting activity were found in Huntington's disease compared to Parkinson's disease patients. Ventral GPi-DBS sustainably reduced chorea, but worsened bradykinesia and dysarthria. Based on these results and previous published reports, we propose to select non-demented HD patients with severe chorea, and a short disease evolution as the best candidates for GPi-DBS.
Collapse
Affiliation(s)
- Cécile Delorme
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Alister Rogers
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France. .,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France. .,Neurosurgery department, Groupe Hospitalier Pitié-Salpêtrière, Brain and Spine Institute, CHU Pitié-Salpêtrière, 47, Bd de L'Hôpital, 75651, Paris Cedex 13, France.
| | - Brian Lau
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Hélène Francisque
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Marie-Laure Welter
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Sara Fernandez Vidal
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France.,Centre de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle épinière, 75013, Paris, France
| | - Jérôme Yelnik
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Alexandra Durr
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - David Grabli
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France
| | - Carine Karachi
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, 75013, Paris, France.,Neurosurgery department, Groupe Hospitalier Pitié-Salpêtrière, Brain and Spine Institute, CHU Pitié-Salpêtrière, 47, Bd de L'Hôpital, 75651, Paris Cedex 13, France
| |
Collapse
|
96
|
Pallavaram S, DʼHaese PF, Lake W, Konrad PE, Dawant BM, Neimat JS. Fully automated targeting using nonrigid image registration matches accuracy and exceeds precision of best manual approaches to subthalamic deep brain stimulation targeting in Parkinson disease. Neurosurgery 2015; 76:756-65. [PMID: 25988929 DOI: 10.1227/neu.0000000000000714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Finding the optimal location for the implantation of the electrode in deep brain stimulation (DBS) surgery is crucial for maximizing the therapeutic benefit to the patient. Such targeting is challenging for several reasons, including anatomic variability between patients as well as the lack of consensus about the location of the optimal target. OBJECTIVE To compare the performance of popular manual targeting methods against a fully automatic nonrigid image registration-based approach. METHODS In 71 Parkinson disease subthalamic nucleus (STN)-DBS implantations, an experienced functional neurosurgeon selected the target manually using 3 different approaches: indirect targeting using standard stereotactic coordinates, direct targeting based on the patient magnetic resonance imaging, and indirect targeting relative to the red nucleus. Targets were also automatically predicted by using a leave-one-out approach to populate the CranialVault atlas with the use of nonrigid image registration. The different targeting methods were compared against the location of the final active contact, determined through iterative clinical programming in each individual patient. RESULTS Targeting by using standard stereotactic coordinates corresponding to the center of the motor territory of the STN had the largest targeting error (3.69 mm), followed by direct targeting (3.44 mm), average stereotactic coordinates of active contacts from this study (3.02 mm), red nucleus-based targeting (2.75 mm), and nonrigid image registration-based automatic predictions using the CranialVault atlas (2.70 mm). The CranialVault atlas method had statistically smaller variance than all manual approaches. CONCLUSION Fully automatic targeting based on nonrigid image registration with the use of the CranialVault atlas is as accurate and more precise than popular manual methods for STN-DBS.
Collapse
Affiliation(s)
- Srivatsan Pallavaram
- *Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee; ‡Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|
97
|
Winterburn J, Pruessner JC, Sofia C, Schira MM, Lobaugh NJ, Voineskos AN, Chakravarty MM. High-resolution In Vivo Manual Segmentation Protocol for Human Hippocampal Subfields Using 3T Magnetic Resonance Imaging. J Vis Exp 2015:e51861. [PMID: 26575133 DOI: 10.3791/51861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The human hippocampus has been broadly studied in the context of memory and normal brain function and its role in different neuropsychiatric disorders has been heavily studied. While many imaging studies treat the hippocampus as a single unitary neuroanatomical structure, it is, in fact, composed of several subfields that have a complex three-dimensional geometry. As such, it is known that these subfields perform specialized functions and are differentially affected through the course of different disease states. Magnetic resonance (MR) imaging can be used as a powerful tool to interrogate the morphology of the hippocampus and its subfields. Many groups use advanced imaging software and hardware (>3T) to image the subfields; however this type of technology may not be readily available in most research and clinical imaging centers. To address this need, this manuscript provides a detailed step-by-step protocol for segmenting the full anterior-posterior length of the hippocampus and its subfields: cornu ammonis (CA) 1, CA2/CA3, CA4/dentate gyrus (DG), strata radiatum/lacunosum/moleculare (SR/SL/SM), and subiculum. This protocol has been applied to five subjects (3F, 2M; age 29-57, avg. 37). Protocol reliability is assessed by resegmenting either the right or left hippocampus of each subject and computing the overlap using the Dice's kappa metric. Mean Dice's kappa (range) across the five subjects are: whole hippocampus, 0.91 (0.90-0.92); CA1, 0.78 (0.77-0.79); CA2/CA3, 0.64 (0.56-0.73); CA4/dentate gyrus, 0.83 (0.81-0.85); strata radiatum/lacunosum/moleculare, 0.71 (0.68-0.73); and subiculum 0.75 (0.72-0.78). The segmentation protocol presented here provides other laboratories with a reliable method to study the hippocampus and hippocampal subfields in vivo using commonly available MR tools.
Collapse
Affiliation(s)
- Julie Winterburn
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Computational Brain Anatomy Laboratory, Douglas Institute, McGill University;
| | | | - Chavez Sofia
- MRI Unit, Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health; Department of Psychiatry, University of Toronto
| | - Mark M Schira
- School of Psychology, University of Wollongong; Neuroscience Research Australia
| | - Nancy J Lobaugh
- MRI Unit, Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health; Department of Medicine, University of Toronto
| | - Aristotle N Voineskos
- Department of Psychiatry, University of Toronto; Kimel Family Translational Imaging Genetics Research Laboratory, Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
| | - M Mallar Chakravarty
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Computational Brain Anatomy Laboratory, Douglas Institute, McGill University
| |
Collapse
|
98
|
Gallea C, Popa T, García-Lorenzo D, Valabregue R, Legrand AP, Marais L, Degos B, Hubsch C, Fernández-Vidal S, Bardinet E, Roze E, Lehéricy S, Vidailhet M, Meunier S. Intrinsic signature of essential tremor in the cerebello-frontal network. Brain 2015; 138:2920-33. [PMID: 26115677 DOI: 10.1093/brain/awv171] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/24/2015] [Indexed: 11/12/2022] Open
Abstract
Essential tremor is a movement disorder characterized by tremor during voluntary movements, mainly affecting the upper limbs. The cerebellum and its connections to the cortex are known to be involved in essential tremor, but no task-free intrinsic signatures of tremor related to structural cerebellar defects have so far been found in the cortical motor network. Here we used voxel-based morphometry, tractography and resting-state functional MRI at 3 T to compare structural and functional features in 19 patients with essential tremor and homogeneous symptoms in the upper limbs, and 19 age- and gender-matched healthy volunteers. Both structural and functional abnormalities were found in the patients' cerebellum and supplementary motor area. Relative to the healthy controls, the essential tremor patients' cerebellum exhibited less grey matter in lobule VIII and less effective connectivity between each cerebellar cortex and the ipsilateral dentate nucleus. The patient's supplementary motor area exhibited (i) more grey matter; (ii) a lower amplitude of low-frequency fluctuation of the blood oxygenation level-dependent signal; (iii) less effective connectivity between each supplementary motor area and the ipsilateral primary motor hand area, and (iv) a higher probability of connection between supplementary motor area fibres and the spinal cord. Structural and functional changes in the supplementary motor area, but not in the cerebellum, correlated with clinical severity. In addition, changes in the cerebellum and supplementary motor area were interrelated, as shown by a correlation between the lower amplitude of low-frequency fluctuation in the supplementary motor area and grey matter loss in the cerebellum. The structural and functional changes observed in the supplementary motor area might thus be a direct consequence of cerebellar defects: the supplementary motor area would attempt to reduce tremor in the motor output by reducing its communication with M1 hand areas and by directly modulating motor output via its corticospinal projections.See Raethjen and Muthuraman (doi:10.1093/brain/awv238) for a scientific commentary on this article.
Collapse
Affiliation(s)
- Cécile Gallea
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Traian Popa
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Daniel García-Lorenzo
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Romain Valabregue
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | | | - Lea Marais
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Bertrand Degos
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 6 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Cecile Hubsch
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 6 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Sara Fernández-Vidal
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Eric Bardinet
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Emmanuel Roze
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 6 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Stéphane Lehéricy
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 7 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | - Marie Vidailhet
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 6 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Sabine Meunier
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| |
Collapse
|
99
|
Nitzsche B, Frey S, Collins LD, Seeger J, Lobsien D, Dreyer A, Kirsten H, Stoffel MH, Fonov VS, Boltze J. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes. Front Neuroanat 2015; 9:69. [PMID: 26089780 PMCID: PMC4455244 DOI: 10.3389/fnana.2015.00069] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/12/2015] [Indexed: 01/18/2023] Open
Abstract
Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.
Collapse
Affiliation(s)
- Björn Nitzsche
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, University of Leipzig Leipzig, Germany
| | - Stephen Frey
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Louis D Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Johannes Seeger
- Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, University of Leipzig Leipzig, Germany
| | - Donald Lobsien
- Department of Neuroradiology, University Hospital of Leipzig Leipzig, Germany
| | - Antje Dreyer
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany
| | - Holger Kirsten
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Faculty of Medicine, Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig Leipzig, Germany ; LIFE Center (Leipzig Interdisciplinary Research Cluster of Genetic Factors, Phenotypes and Environment), University of Leipzig Leipzig, Germany
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern Bern, Switzerland
| | - Vladimir S Fonov
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Johannes Boltze
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany ; Neurovascular Regulation Laboratory at Neuroscience Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
100
|
The Quantitative Measurement of Reversible Acute Depression after Subthalamic Deep Brain Stimulation in a Patient with Parkinson Disease. Case Rep Neurol Med 2015; 2015:165846. [PMID: 26090244 PMCID: PMC4450288 DOI: 10.1155/2015/165846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/30/2015] [Indexed: 12/04/2022] Open
Abstract
Background. Depression is the most commonly reported mood symptom affecting 2–8% of patients after deep brain stimulation (DBS). Usually, symptoms develop gradually; however there have been cases of reproducible events that the mood symptoms were elicited within seconds to minutes after stimulation and were immediately reversible upon cessation of the stimulus. In the current study, we applied a self-reported questionnaire to assess the patient's mood state. Objective. To objectively measure the reversible acute depression induced by DBS in a patient with Parkinson disease (PD). Methods. A statistically validated Spanish version of the Beck Depression Inventory Short Form (BDI-SF) was used. The questionnaire was administered three times. Results. The patient became acutely depressed within ninety seconds of monopolar stimulation on the right side. His symptoms resolved immediately after changing the setting to bipolar stimulation. The BDI-SF scores during stimulation off, on, and off again were 15, 19, and 6, respectively. Conclusions. The BDI-SF scores increased during stimulation and decreased after cessation. This is consistent with a reversible depressive state. The poststimulation BDI-SF score decreased to less than half of the baseline score. This may suggest that the depression was more severe than the patient was able to express during the stimulation.
Collapse
|