51
|
Hu Y, Li Q, Qiao K, Zhang X, Chen B, Yang Z. PhiPipe: A multi-modal MRI data processing pipeline with test-retest reliability and predicative validity assessments. Hum Brain Mapp 2023; 44:2062-2084. [PMID: 36583399 PMCID: PMC9980895 DOI: 10.1002/hbm.26194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/20/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022] Open
Abstract
Magnetic resonance imaging (MRI) has been one of the primary instruments to measure the properties of the human brain non-invasively in vivo. MRI data generally needs to go through a series of processing steps (i.e., a pipeline) before statistical analysis. Currently, the processing pipelines for multi-modal MRI data are still rare, in contrast to single-modal pipelines. Furthermore, the reliability and validity of the output of the pipelines are critical for the MRI studies. However, the reliability and validity measures are not available or adequate for almost all pipelines. Here, we present PhiPipe, a multi-modal MRI processing pipeline. PhiPipe could process T1-weighted, resting-state BOLD, and diffusion-weighted MRI data and generate commonly used brain features in neuroimaging. We evaluated the test-retest reliability of PhiPipe's brain features by computing intra-class correlations (ICC) in four public datasets with repeated scans. We further evaluated the predictive validity by computing the correlation of brain features with chronological age in three public adult lifespan datasets. The multivariate reliability and predictive validity of the PhiPipe results were also evaluated. The results of PhiPipe were consistent with previous studies, showing comparable or better reliability and validity when compared with two popular single-modality pipelines, namely DPARSF and PANDA. The publicly available PhiPipe provides a simple-to-use solution to multi-modal MRI data processing. The accompanied reliability and validity assessments could help researchers make informed choices in experimental design and statistical analysis. Furthermore, this study provides a framework for evaluating the reliability and validity of image processing pipelines.
Collapse
Affiliation(s)
- Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingfeng Li
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kaini Qiao
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaochen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bing Chen
- Jing Hengyi School of EducationHangzhou Normal UniversityZhejiangChina
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Psychological and Behavioral SciencesShanghai Jiao Tong UniversityShanghaiChina
- Brain Science and Technology Research CenterShanghai Jiao Tong UniversityShanghaiChina
- Beijing University of Posts and TelecommunicationsBeijingChina
| |
Collapse
|
52
|
Schmidt SA, Shahsavarani S, Khan RA, Tai Y, Granato EC, Willson CM, Ramos P, Sherman P, Esquivel C, Sutton BP, Husain F. An examination of the reliability of seed-to-seed resting state functional connectivity in tinnitus patients. NEUROIMAGE: REPORTS 2023. [DOI: 10.1016/j.ynirp.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
53
|
Van de Winckel A, Zhang L, Hendrickson T, Lim KO, Mueller BA, Philippus A, Monden KR, Oh J, Huang Q, Sertic JVL, Ruen J, Konczak J, Evans R, Bronfort G. Identifying body awareness-related brain network changes after Spring Forest Qigong™ practice or P.Volve low-intensity exercise in adults with chronic low back pain: a feasibility Phase I Randomized Clinical Trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.11.23285808. [PMID: 36824785 PMCID: PMC9949220 DOI: 10.1101/2023.02.11.23285808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background Chronic low back pain (cLBP) affects the quality of life of 52 million Americans and leads to an enormous personal and economic burden. A multidisciplinary approach to cLBP management is recommended. Since medication has limited efficacy and there are mounting concerns about opioid addiction, the American College of Physicians and American Pain Society recommend non-pharmacological interventions, such as mind and body approaches (e.g., Qigong, yoga, Tai Chi) before prescribing medications. Of those, Qigong practice might be most accessible given its gentle movements and because it can be performed standing, sitting, or lying down. The three available Qigong studies in adults with cLBP showed that Qigong reduced pain more than waitlist and equally well than exercise. Yet, the duration and/or frequency of Qigong practice were low (<12 weeks or less than 3x/week). The objectives of this study were to investigate the feasibility of practicing Spring Forest Qigong™ or performing P.Volve low intensity exercises 3x/week for 12 weeks, feasibility of recruitment, data collection, delivery of the intervention as intended, as well as identify estimates of efficacy on brain function and behavioral outcomes after Qigong practice or exercise. To our knowledge, this is the first study investigating the feasibility of the potential effect of Qigong on brain function in adults with cLBP. Methods We conducted a feasibility Phase I Randomized Clinical Trial. Of the 36 adults with cLBP recruited between January 2020 and June 2021, 32 were enrolled and randomized to either 12 weeks of remote Spring Forest Qigong™ practice or remote P.Volve low-intensity exercises. Participants practiced at least 3x/week for 41min/session with online videos. Our main outcome measures were the Numeric Pain Rating Scale (highest, average, and lowest cLBP pain intensity levels in the prior week), assessed weekly and fMRI data (resting-state and task-based fMRI tasks: pain imagery, kinesthetic imagery of a Qigong movement, and robot-guided shape discrimination). We compared baseline resting-state connectivity and brain activation during fMRI tasks in adults with cLBP with data from a healthy control group (n=28) acquired in a prior study. Secondary outcomes included measures of function, disability, body awareness, kinesiophobia, balance, self-efficacy, core muscle strength, and ankle proprioceptive acuity with a custom-build device. Results Feasibility of the study design and methods was demonstrated with 30 participants completing the study (94% retention) and reporting high satisfaction with the programs; 96% adherence to P.Volve low-intensity exercises, and 128% of the required practice intensity for Spring Forest Qigong™ practice. Both groups saw promising reductions in low back pain (effect sizes Cohen's d =1.01-2.22) and in most other outcomes ( d =0.90-2.33). Markers of ankle proprioception were not significantly elevated in the cLBP group after the interventions. Brain imaging analysis showed weaker parietal operculum and insula network connectivity in adults with cLBP (n=26), compared to data from a healthy control group (n=28). The pain imagery task elicited lower brain activation of insula, parietal operculum, angular gyrus and supramarginal gyrus at baseline in adults with cLBP than in healthy adults. Adults with cLBP had lower precentral gyrus activation than healthy adults for the Qigong movement and robot task at baseline. Pre-post brain function changes showed individual variability: Six (out of 13) participants in the Qigong group showed increased activation in the parietal operculum, angular gyrus, supramarginal gyrus, and precentral gyrus during the Qigong fMRI task. Interpretation Our data indicate the feasibility and acceptability of using Spring Forest Qigong™ practice or P.Volve low-intensity exercises for cLBP relief showing promising results in terms of pain relief and associated symptoms. Our brain imaging results indicated brain function improvements after 12 weeks of Qigong practice in some participants, pointing to the need for further investigation in larger studies. Trial registration number ClinicalTrials.gov: NCT04164225 .
Collapse
|
54
|
Narmashiri A, Hatami J, Khosrowabadi R, Sohrabi A. Paranormal believers show reduced resting EEG beta band oscillations and inhibitory control than skeptics. Sci Rep 2023; 13:3258. [PMID: 36828909 PMCID: PMC9958009 DOI: 10.1038/s41598-023-30457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Paranormal believers' thinking is frequently biased by intuitive beliefs. Lack of inhibition of these tempting beliefs is considered a key element in paranormal believers' thinking. However, the brain activity related to inhibitory control in paranormal believers is poorly understood. We examined EEG activities at resting state in alpha, beta, and gamma bands with inhibitory control in paranormal believers and skeptics. The present study shows that paranormal belief is related to the reduced power of the alpha, beta, and gamma frequency bands, and reduced inhibitory control. This study may contribute to understanding the differences between believers and skeptics in brain activity related to inhibitory control in paranormal believers.
Collapse
Affiliation(s)
- Abdolvahed Narmashiri
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- Bio-Intelligence Research Unit, Sharif Brain Center, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran.
- Shahid Beheshti University, Tehran, Iran.
| | | | | | | |
Collapse
|
55
|
Fornaro S, Vallesi A. Functional connectivity abnormalities of brain networks in obsessive–compulsive disorder: a systematic review. CURRENT PSYCHOLOGY 2023. [DOI: 10.1007/s12144-023-04312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Abstract
Obsessive-compulsive disorder (OCD) is characterized by cognitive abnormalities encompassing several executive processes. Neuroimaging studies highlight functional abnormalities of executive fronto-parietal network (FPN) and default-mode network (DMN) in OCD patients, as well as of the prefrontal cortex (PFC) more specifically. We aim at assessing the presence of functional connectivity (FC) abnormalities of intrinsic brain networks and PFC in OCD, possibly underlying specific computational impairments and clinical manifestations. A systematic review of resting-state fMRI studies investigating FC was conducted in unmedicated OCD patients by querying three scientific databases (PubMed, Scopus, PsycInfo) up to July 2022 (search terms: “obsessive–compulsive disorder” AND “resting state” AND “fMRI” AND “function* *connect*” AND “task-positive” OR “executive” OR “central executive” OR “executive control” OR “executive-control” OR “cognitive control” OR “attenti*” OR “dorsal attention” OR “ventral attention” OR “frontoparietal” OR “fronto-parietal” OR “default mode” AND “network*” OR “system*”). Collectively, 20 studies were included. A predominantly reduced FC of DMN – often related to increased symptom severity – emerged. Additionally, intra-network FC of FPN was predominantly increased and often positively related to clinical scores. Concerning PFC, a predominant hyper-connectivity of right-sided prefrontal links emerged. Finally, FC of lateral prefrontal areas correlated with specific symptom dimensions. Several sources of heterogeneity in methodology might have affected results in unpredictable ways and were discussed. Such findings might represent endophenotypes of OCD manifestations, possibly reflecting computational impairments and difficulties in engaging in self-referential processes or in disengaging from cognitive control and monitoring processes.
Collapse
|
56
|
Van de Winckel A, Carpentier ST, Deng W, Bottale S, Zhang L, Hendrickson T, Linnman C, Lim KO, Mueller BA, Philippus A, Monden KR, Wudlick R, Battaglino R, Morse LR. Identifying Body Awareness-Related Brain Network Changes after Cognitive Multisensory Rehabilitation for Neuropathic Pain Relief in Adults with Spinal Cord Injury: Delayed Treatment arm Phase I Randomized Controlled Trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.09.23285713. [PMID: 36798345 PMCID: PMC9934787 DOI: 10.1101/2023.02.09.23285713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background Neuropathic pain after spinal cord injury (SCI) is notoriously hard to treat. Mechanisms of neuropathic pain are unclear, which makes finding effective treatments challenging. Prior studies have shown that adults with SCI have body awareness deficits. Recent imaging studies, including ours, point to the parietal operculum and insula as key areas for both pain perception and body awareness. Cognitive multisensory rehabilitation (CMR) is a physical therapy approach that helps improve body awareness for pain reduction and sensorimotor recovery. Based on our prior brain imaging work in CMR in stroke, we hypothesized that improving body awareness through restoring parietal operculum network connectivity leads to neuropathic pain relief and improved sensorimotor and daily life function in adults with SCI. Thus, the objectives of this study were to (1) determine baseline differences in resting-state and task-based functional magnetic resonance imaging (fMRI) brain function in adults with SCI compared to healthy controls and (2) identify changes in brain function and behavioral pain and pain-associated outcomes in adults with SCI after CMR. Methods Healthy adults underwent a one-time MRI scan and completed questionnaires. We recruited community-dwelling adults with SCI-related neuropathic pain, with complete or incomplete SCI >3 months, and highest neuropathic pain intensity level of >3 on the Numeric Pain Rating Scale (NPRS). Participants with SCI were randomized into two groups, according to a delayed treatment arm phase I randomized controlled trial (RCT): Group A immediately received CMR intervention, 3x/week, 45 min/session, followed by a 6-week and 1-year follow-up. Group B started with a 6-week observation period, then 6 weeks of CMR, and a 1-year follow-up. Highest, average, and lowest neuropathic pain intensity levels were assessed weekly with the NPRS as primary outcome. Other primary outcomes (fMRI resting-state and functional tasks; sensory and motor function with the INSCI AIS exam), as well as secondary outcomes (mood, function, spasms, and other SCI secondary conditions), were assessed at baseline, after the first and second 6-week period. The INSCI AIS exam and questionnaires were repeated at the 1-year follow-up. Findings Thirty-six healthy adults and 28 adults with SCI were recruited between September 2020 and August 2021, and of those, 31 healthy adults and 26 adults with SCI were enrolled in the study. All 26 participants with SCI completed the intervention and pre-post assessments. There were no study-related adverse events. Participants were 52±15 years of age, and 1-56 years post-SCI. During the observation period, group B did not show any reductions in neuropathic pain and did not have any changes in sensation or motor function (INSCI ASIA exam). However, both groups experienced a significant reduction in neuropathic pain after the 6-week CMR intervention. Their highest level of neuropathic pain of 7.81±1.33 on the NPRS at baseline was reduced to 2.88±2.92 after 6 weeks of CMR. Their change scores were 4.92±2.92 (large effect size Cohen's d =1.68) for highest neuropathic pain, 4.12±2.23 ( d =1.85) for average neuropathic pain, and 2.31±2.07 ( d =1.00) for lowest neuropathic pain. Nine participants out of 26 were pain-free after the intervention (34.62%). The results of the INSCI AIS testing also showed significant improvements in sensation, muscle strength, and function after 6 weeks of CMR. Their INSCI AIS exam increased by 8.81±5.37 points ( d =1.64) for touch sensation, 7.50±4.89 points ( d =1.53) for pin prick sensation, and 3.87±2.81 ( d =1.38) for lower limb muscle strength. Functional improvements after the intervention included improvements in balance for 17 out of 18 participants with balance problems at baseline; improved transfers for all of them and a returned ability to stand upright with minimal assistance in 12 out of 20 participants who were unable to stand at baseline. Those improvements were maintained at the 1-year follow-up. With regard to brain imaging, we confirmed that the resting-state parietal operculum and insula networks had weaker connections in adults with SCI-related neuropathic pain (n=20) compared to healthy adults (n=28). After CMR, stronger resting-state parietal operculum network connectivity was found in adults with SCI. Also, at baseline, as expected, right toe sensory stimulation elicited less brain activation in adults with SCI (n=22) compared to healthy adults (n=26). However, after CMR, there was increased brain activation in relevant sensorimotor and parietal areas related to pain and mental body representations (i.e., body awareness and visuospatial body maps) during the toe stimulation fMRI task. These brain function improvements aligned with the AIS results of improved touch sensation, including in the feet. Interpretation Adults with chronic SCI had significant neuropathic pain relief and functional improvements, attributed to the recovery of sensation and movement after CMR. The results indicate the preliminary efficacy of CMR for restoring function in adults with chronic SCI. CMR is easily implementable in current physical therapy practice. These encouraging impressive results pave the way for larger randomized clinical trials aimed at testing the efficacy of CMR to alleviate neuropathic pain in adults with SCI. Clinical Trial registration ClinicalTrials.gov Identifier: NCT04706208. Funding AIRP2-IND-30: Academic Investment Research Program (AIRP) University of Minnesota School of Medicine. National Center for Advancing Translational Sciences of the National Institutes of Health Award Number UL1TR002494; the Biotechnology Research Center: P41EB015894, the National Institute of Neurological Disorders & Stroke Institutional Center Core Grants to Support Neuroscience Research: P30 NS076408; and theHigh-Performancee Connectome Upgrade for Human 3T MR Scanner: 1S10OD017974.
Collapse
|
57
|
Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences. Brain Sci 2023; 13:brainsci13010122. [PMID: 36672103 PMCID: PMC9857293 DOI: 10.3390/brainsci13010122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Resting state networks comprise several brain regions that exhibit complex patterns of interaction. Switching from eyes closed (EC) to eyes open (EO) during the resting state modifies these patterns of connectivity, but precisely how these change remains unclear. Here we use functional magnetic resonance imaging to scan healthy participants in two resting conditions (viz., EC and EO). Seven resting state networks were chosen for this study: salience network (SN), default mode network (DMN), central executive network (CEN), dorsal attention network (DAN), visual network (VN), motor network (MN) and auditory network (AN). We performed functional connectivity (FC) analysis for each network, comparing the FC maps for both EC and EO. Our results show increased connectivity between most networks during EC relative to EO, thereby suggesting enhanced integration during EC and greater modularity or specialization during EO. Among these networks, SN is distinctive: during the transition from EO to EC it evinces increased connectivity with DMN and decreased connectivity with VN. This change might imply that SN functions in a manner analogous to a circuit switch, modulating resting state relations with DMN and VN, when transitioning between EO and EC.
Collapse
|
58
|
Bacon EJ, Jin C, He D, Hu S, Wang L, Li H, Qi S. Functional and effective connectivity analysis of drug-resistant epilepsy: a resting-state fMRI analysis. Front Neurosci 2023; 17:1163111. [PMID: 37152592 PMCID: PMC10157077 DOI: 10.3389/fnins.2023.1163111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Objective Epilepsy is considered as a neural network disorder. Seizure activity in epilepsy may disturb brain networks and damage brain functions. We propose using resting-state functional magnetic resonance imaging (rs-fMRI) data to characterize connectivity patterns in drug-resistant epilepsy. Methods This study enrolled 47 participants, including 28 with drug-resistant epilepsy and 19 healthy controls. Functional and effective connectivity was employed to assess drug-resistant epilepsy patients within resting state networks. The resting state functional connectivity (FC) analysis was performed to assess connectivity between each patient and healthy controls within the default mode network (DMN) and the dorsal attention network (DAN). In addition, dynamic causal modeling was used to compute effective connectivity (EC). Finally, a statistical analysis was performed to evaluate our findings. Results The FC analysis revealed significant connectivity changes in patients giving 64.3% (18/28) and 78.6% (22/28) for DMN and DAN, respectively. Statistical analysis of FC was significant between the medial prefrontal cortex, posterior cingulate cortex, and bilateral inferior parietal cortex for DMN. For DAN, it was significant between the left and the right intraparietal sulcus and the frontal eye field. For the DMN, the patient group showed significant EC connectivity in the right inferior parietal cortex and the medial prefrontal cortex for the DMN. There was also bilateral connectivity between the medial prefrontal cortex and the posterior cingulate cortex, as well as between the left and right inferior parietal cortex. For DAN, patients showed significant connectivity in the right frontal eye field and the right intraparietal sulcus. Bilateral connectivity was also found between the left frontal eye field and the left intraparietal sulcus, as well as between the right frontal eye field and the right intraparietal sulcus. The statistical analysis of the EC revealed a significant result in the medial prefrontal cortex and the right intraparietal cortex for the DMN. The DAN was found significant in the left frontal eye field, as well as the left and right intraparietal sulcus. Conclusion Our results provide preliminary evidence to support that the combination of functional and effective connectivity analysis of rs-fMRI can aid in diagnosing epilepsy in the DMN and DAN networks.
Collapse
Affiliation(s)
- Eric Jacob Bacon
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Dianning He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shuaishuai Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Han Li,
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
- Shouliang Qi,
| |
Collapse
|
59
|
Van de Winckel A, Carpentier S, Deng W, Bottale S, Hendrickson T, Zhang L, Wudlick R, Linnman C, Battaglino R, Morse L. Identifying Body Awareness-Related Brain Network Changes After Cognitive Multisensory Rehabilitation for Neuropathic Pain Relief in Adults With Spinal Cord Injury: Protocol of a Phase I Randomized Controlled Trial. Top Spinal Cord Inj Rehabil 2022; 28:33-43. [PMID: 36457363 PMCID: PMC9678218 DOI: 10.46292/sci22-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background About 69% of the 299,000 Americans living with spinal cord injury (SCI) experience long-term debilitating neuropathic pain. New treatments are needed because current treatments do not provide enough pain relief. We have found that insular-opercular brain network alterations may contribute to neuropathic pain and that restoring this network could reduce neuropathic pain. Here, we outline a study protocol using a physical therapy approach, cognitive multisensory rehabilitation (CMR), which has been shown to restore OP1/OP4 connections in adults post stroke, to test our hypothesis that CMR can normalize pain perception through restoring OP1/OP4 connectivity in adults with SCI and relieve neuropathic pain. Objectives To compare baseline brain function via resting-state and task-based functional magnetic resonance imaging in adults with SCI versus uninjured controls, and to identify changes in brain function and behavioral pain outcomes after CMR in adults with SCI. Methods In this phase I randomized controlled trial, adults with SCI will be randomized into two groups: Group A will receive 6 weeks of CMR followed by 6 weeks of standard of care (no therapy) at home. Group B will start with 6 weeks of standard of care (no therapy) at home and then receive 6 weeks of CMR. Neuroimaging and behavioral measures are collected at baseline, after the first 6 weeks (A: post therapy, B: post waitlist), and after the second 6 weeks (A: post-therapy follow-up, B: post therapy), with follow-up of both groups up to 12 months. Conclusion The successful outcome of our study will be a critical next step toward implementing CMR in clinical care to improve health in adults with SCI.
Collapse
Affiliation(s)
- Ann Van de Winckel
- Division of Physical Therapy, Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Sydney Carpentier
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Wei Deng
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Sara Bottale
- Centro Studi di Riabilitazione Neurocognitiva - Villa Miari (Study Center for Cognitive Multisensory Rehabilitation), Santorso, Italy
| | - Timothy Hendrickson
- University of Minnesota Informatics Institute, Office of the Vice President for Research, University of Minnesota, Minneapolis, Minnesota
| | - Lin Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Rob Wudlick
- Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Clas Linnman
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ricardo Battaglino
- Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Leslie Morse
- Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
60
|
Park CA, Lee YB, Kang CK. Resting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging. Basic Clin Neurosci 2022; 13:855-864. [PMID: 37323958 PMCID: PMC10262291 DOI: 10.32598/bcn.2022.2534.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 02/23/2021] [Accepted: 10/03/2021] [Indexed: 06/17/2023] Open
Abstract
Introduction This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods Eleven subjects participated in this experiment in which the controlled "Nose" and "Mouth" breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of interest (ROI)-to-ROI connectome maps were analyzed in both "Nose>Mouth" and "Mouth>Nose" contrasts. Results As a result, there were more connection pairs in the "Mouth" breathing condition, i.e., 14 seeds and 14 connecting pairs in the "Mouth>Nose" contrast, compared to 7 seeds and 4 connecting pairs in the "Nose>Mouth" contrast (false discovery rate [FDR] of P<0.05). Conclusion The present study demonstrated that mouth breathing with controlled respiratory cycles could significantly induce alterations in functional connectivity in the resting-state network, suggesting that it can differently affect resting brain function; in particular, the brain can hardly rest during mouth breathing, as opposed to conventional nasal breathing.
Collapse
Affiliation(s)
- Chan-A Park
- Biomedical Engineering Research Center, Gachon University, Incheon, Republic of Korea
| | - Yeong-Bae Lee
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Chang-Ki Kang
- Department of Radiological Sciences, College of Health Sciences, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
61
|
Wang G, Liu L. Amblyopia: progress and promise of functional magnetic resonance imaging. Graefes Arch Clin Exp Ophthalmol 2022; 261:1229-1246. [PMID: 36282454 DOI: 10.1007/s00417-022-05826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Amblyopia is a neurodevelopmental disorder characterized by functional deficits in the visual cortex. Functional magnetic resonance imaging (fMRI) is the most commonly used neuroimaging technique for investigating amblyopia. Herein, we systematically searched a PubMed database from inception to December 2021 to highlight the current progress and promises about fMRI technology in amblyopia; amblyopia's neural mechanism, the comparison of different types of amblyopia, and the evaluation of the therapeutic effect were explored. Relevant articles published in English and appropriate cross-references were considered for inclusion, including basic studies, imaging techniques, clinical diagnostic and therapeutic studies, case series, and reviews.
Collapse
Affiliation(s)
- Guiqu Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
62
|
Gonzalez-Castillo J, Fernandez IS, Handwerker DA, Bandettini PA. Ultra-slow fMRI fluctuations in the fourth ventricle as a marker of drowsiness. Neuroimage 2022; 259:119424. [PMID: 35781079 PMCID: PMC9377091 DOI: 10.1016/j.neuroimage.2022.119424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022] Open
Abstract
Wakefulness levels modulate estimates of functional connectivity (FC), and, if unaccounted for, can become a substantial confound in resting-state fMRI. Unfortunately, wakefulness is rarely monitored due to the need for additional concurrent recordings (e.g., eye tracking, EEG). Recent work has shown that strong fluctuations around 0.05Hz, hypothesized to be CSF inflow, appear in the fourth ventricle (FV) when subjects fall asleep, and that they correlate significantly with the global signal. The analysis of these fluctuations could provide an easy way to evaluate wakefulness in fMRI-only data and improve our understanding of FC during sleep. Here we evaluate this possibility using the 7T resting-state sample from the Human Connectome Project (HCP). Our results replicate the observation that fourth ventricle ultra-slow fluctuations (∼0.05Hz) with inflow-like characteristics (decreasing in intensity for successive slices) are present in scans during which subjects did not comply with instructions to keep their eyes open (i.e., drowsy scans). This is true despite the HCP data not being optimized for the detection of inflow-like effects. In addition, time-locked BOLD fluctuations of the same frequency could be detected in large portions of grey matter with a wide range of temporal delays and contribute in significant ways to our understanding of how FC changes during sleep. First, these ultra-slow fluctuations explain half of the increase in global signal that occurs during descent into sleep. Similarly, global shifts in FC between awake and sleep states are driven by changes in this slow frequency band. Second, they can influence estimates of inter-regional FC. For example, disconnection between frontal and posterior components of the Defulat Mode Network (DMN) typically reported during sleep were only detectable after regression of these ultra-slow fluctuations. Finally, we report that the temporal evolution of the power spectrum of these ultra-slow FV fluctuations can help us reproduce sample-level sleep patterns (e.g., a substantial number of subjects descending into sleep 3 minutes following scanning onset), partially rank scans according to overall drowsiness levels, and predict individual segments of elevated drowsiness (at 60 seconds resolution) with 71% accuracy.
Collapse
Affiliation(s)
- Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD.
| | - Isabel S Fernandez
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD; Functional MRI Core, National Institutes of Health, Bethesda, MD
| |
Collapse
|
63
|
Fernandez Z, Scheel N, Baker JH, Zhu DC. Functional connectivity of cortical resting-state networks is differentially affected by rest conditions. Brain Res 2022; 1796:148081. [PMID: 36100086 DOI: 10.1016/j.brainres.2022.148081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Optimal conditions for resting-state functional magnetic resonance imaging (rs-fMRI) are still highly debated. Here, we comprehensively assessed the effects of various rest conditions on all cortical resting-state networks (RSNs) defined by an established atlas. Twenty-two healthy college students (22 ± 4 years old, 12 females) were scanned on a GE 3T MRI scanner. Rs-fMRI datasets were collected under four different conditions for each subject: (1) eyes open in dim light (Eyes-Open), (2) eyes closed and awake (Eyes-Closed), (3) eyes closed while remembering four numbers through the scan session (Eyes-Closed-Number) and (4) asked to watch a movie (Movie). We completed a thorough examination of the 17 functional RSNs defined by Yeo and colleagues. Importantly, the movie led to changes in global connectivity and should be avoided as a rest condition. Conversely, there were no significant connectivity differences between conditions within the frontoparietal control and limbic networks and the following subnetworks as defined by Yeo et al.: default-B, dorsal-attention-B and salience/ventral-attention-B. These were not even significant when compared to the highly stimulative Movie condition. A significant difference was not found between Eyes-Closed and Eyes-Closed-Number conditions in whole-brain, within-network and between-network comparisons. When considering other rest conditions, however, we observed connectivity changes in some subnetworks, including those of the default-mode network. Overall, we found conditions with more external stimulation led to more changes in functional connectivity during rs-fMRI. In conclusion, the comprehensive results of our study can aid in choosing rest conditions for the study of overall and specific functional networks.
Collapse
Affiliation(s)
- Zachary Fernandez
- Department of Radiology, Michigan State University, USA; Neuroscience Program, Michigan State University, USA; Cognitive Imaging Research Center, Michigan State University, USA
| | - Norman Scheel
- Department of Radiology, Michigan State University, USA; Cognitive Imaging Research Center, Michigan State University, USA
| | - Joshua H Baker
- Department of Radiology, Michigan State University, USA; Neuroscience Program, Michigan State University, USA; College of Osteopathic Medicine, Michigan State University, USA; Cognitive Imaging Research Center, Michigan State University, USA
| | - David C Zhu
- Department of Radiology, Michigan State University, USA; Neuroscience Program, Michigan State University, USA; Cognitive Imaging Research Center, Michigan State University, USA.
| |
Collapse
|
64
|
Petro NM, Ott LR, Penhale SH, Rempe MP, Embury CM, Picci G, Wang YP, Stephen JM, Calhoun VD, Wilson TW. Eyes-closed versus eyes-open differences in spontaneous neural dynamics during development. Neuroimage 2022; 258:119337. [PMID: 35636737 PMCID: PMC9385211 DOI: 10.1016/j.neuroimage.2022.119337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Assessing brain activity during rest has become a widely used approach in developmental neuroscience. Extant literature has measured resting brain activity both during eyes-open and eyes-closed conditions, but the difference between these conditions has not yet been well characterized. Studies, limited to fMRI and EEG, have suggested that eyes-open versus -closed conditions may differentially impact neural activity, especially in visual cortices. METHODS Spontaneous cortical activity was recorded using MEG from 108 typically developing youth (9-15 years-old; 55 female) during separate sessions of eyes-open and eyes-closed rest. MEG source images were computed, and the strength of spontaneous neural activity was estimated in the canonical delta, theta, alpha, beta, and gamma bands, respectively. Power spectral density maps for eyes-open were subtracted from eyes-closed rest, and then submitted to vertex-wise regression models to identify spatially specific differences between conditions and as a function of age and sex. RESULTS Relative alpha power was weaker in the eyes-open compared to -closed condition, but otherwise eyes-open was stronger in all frequency bands, with differences concentrated in the occipital cortex. Relative theta power became stronger in the eyes-open compared to the eyes-closed condition with increasing age in frontal cortex. No differences were observed between males and females. CONCLUSIONS The differences in relative power from eyes-closed to -open conditions are consistent with changes observed in task-based visual sensory responses. Age differences occurred in relatively late developing frontal regions, consistent with canonical attention regions, suggesting that these differences could be reflective of developmental changes in attention processes during puberty. Taken together, resting-state paradigms using eyes-open versus -closed produce distinct results and, in fact, can help pinpoint sensory related brain activity.
Collapse
Affiliation(s)
- Nathan M Petro
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Lauren R Ott
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Samantha H Penhale
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Maggie P Rempe
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christine M Embury
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Giorgia Picci
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Vince D Calhoun
- Mind Research Network, Albuquerque, NM, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Tony W Wilson
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
65
|
Garcia-Ramos C, Nair V, Maganti R, Mathis J, Conant LL, Prabhakaran V, Binder JR, Meyerand B, Hermann B, Struck AF. Network phenotypes and their clinical significance in temporal lobe epilepsy using machine learning applications to morphological and functional graph theory metrics. Sci Rep 2022; 12:14407. [PMID: 36002603 PMCID: PMC9402557 DOI: 10.1038/s41598-022-18495-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/12/2022] [Indexed: 02/08/2023] Open
Abstract
Machine learning analyses were performed on graph theory (GT) metrics extracted from brain functional and morphological data from temporal lobe epilepsy (TLE) patients in order to identify intrinsic network phenotypes and characterize their clinical significance. Participants were 97 TLE and 36 healthy controls from the Epilepsy Connectome Project. Each imaging modality (i.e., Resting-state functional Magnetic Resonance Imaging (RS-fMRI), and structural MRI) rendered 2 clusters: one comparable to controls and one deviating from controls. Participants were minimally overlapping across the identified clusters, suggesting that an abnormal functional GT phenotype did not necessarily mean an abnormal morphological GT phenotype for the same subject. Morphological clusters were associated with a significant difference in the estimated lifetime number of generalized tonic-clonic seizures and functional cluster membership was associated with age. Furthermore, controls exhibited significant correlations between functional GT metrics and cognition, while for TLE participants morphological GT metrics were linked to cognition, suggesting a dissociation between higher cognitive abilities and GT-derived network measures. Overall, these findings demonstrate the existence of clinically meaningful minimally overlapping phenotypes of morphological and functional GT networks. Functional network properties may underlie variance in cognition in healthy brains, but in the pathological state of epilepsy the cognitive limits might be primarily related to structural cerebral network properties.
Collapse
Affiliation(s)
- Camille Garcia-Ramos
- grid.14003.360000 0001 2167 3675Department of Medical Physics, University of Wisconsin-Madison, Madison, USA ,grid.14003.360000 0001 2167 3675Department of Neurology, University of Wisconsin-Madison, Madison, USA
| | - Veena Nair
- grid.14003.360000 0001 2167 3675Department of Radiology, University of Wisconsin-Madison, Madison, USA
| | - Rama Maganti
- grid.14003.360000 0001 2167 3675Department of Neurology, University of Wisconsin-Madison, Madison, USA
| | - Jedidiah Mathis
- grid.30760.320000 0001 2111 8460Department of Neurology, Medical College of Wisconsin, Milwaukee, USA
| | - Lisa L. Conant
- grid.14003.360000 0001 2167 3675Department of Neurology, University of Wisconsin-Madison, Madison, USA
| | - Vivek Prabhakaran
- grid.14003.360000 0001 2167 3675Department of Radiology, University of Wisconsin-Madison, Madison, USA
| | - Jeffrey R. Binder
- grid.30760.320000 0001 2111 8460Department of Neurology, Medical College of Wisconsin, Milwaukee, USA
| | - Beth Meyerand
- grid.14003.360000 0001 2167 3675Department of Medical Physics, University of Wisconsin-Madison, Madison, USA
| | - Bruce Hermann
- grid.14003.360000 0001 2167 3675Department of Neurology, University of Wisconsin-Madison, Madison, USA
| | - Aaron F. Struck
- grid.14003.360000 0001 2167 3675Department of Neurology, University of Wisconsin-Madison, Madison, USA ,grid.417123.20000 0004 0420 6882William S Middleton VA Hospital, Madison, WI USA
| |
Collapse
|
66
|
Vedaei F, Alizadeh M, Romo V, Mohamed FB, Wu C. The effect of general anesthesia on the test–retest reliability of resting-state fMRI metrics and optimization of scan length. Front Neurosci 2022; 16:937172. [PMID: 36051647 PMCID: PMC9425911 DOI: 10.3389/fnins.2022.937172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 01/01/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) has been known as a powerful tool in neuroscience. However, exploring the test–retest reliability of the metrics derived from the rs-fMRI BOLD signal is essential, particularly in the studies of patients with neurological disorders. Here, two factors, namely, the effect of anesthesia and scan length, have been estimated on the reliability of rs-fMRI measurements. A total of nine patients with drug-resistant epilepsy (DRE) requiring interstitial thermal therapy (LITT) were scanned in two states. The first scan was performed in an awake state before surgery on the same patient. The second scan was performed 2 weeks later under general anesthesia necessary for LITT surgery. At each state, two rs-fMRI sessions were obtained that each one lasted 15 min, and the effect of scan length was evaluated. Voxel-wise rs-fMRI metrics, including the amplitude of low-frequency fluctuation (ALFF), the fractional amplitude of low-frequency fluctuation (fALFF), functional connectivity (FC), and regional homogeneity (ReHo), were measured. Intraclass correlation coefficient (ICC) was calculated to estimate the reliability of the measurements in two states of awake and under anesthesia. Overall, it appeared that the reliability of rs-fMRI metrics improved under anesthesia. From the 15-min data, we found mean ICC values in awake state including 0.81, 0.51, 0.65, and 0.84 for ALFF, fALFF, FC, and ReHo, respectively, as well as 0.80, 0.59, 0.83, and 0.88 for ALFF, fALFF, FC, and ReHo, respectively, under anesthesia. Additionally, our findings revealed that reliability increases as the function of scan length. We showed that the optimized scan length to achieve less variability of rs-fMRI measurements was 3.1–7.5 min shorter in an anesthetized, compared to a wakeful state.
Collapse
Affiliation(s)
- Faezeh Vedaei
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Faezeh Vedaei
| | - Mahdi Alizadeh
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Victor Romo
- Department of Anesthesiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B. Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chengyuan Wu
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
67
|
Shu H, Chen G, Ward BD, Chen G, Wang Z, Liu D, Su F, Gu L, Xu Z, Li SJ, Zhang Z. Imminent cognitive decline in normal elderly individuals is associated with hippocampal hyperconnectivity in the variant neural correlates of episodic memory. Eur Arch Psychiatry Clin Neurosci 2022; 272:783-792. [PMID: 34363508 DOI: 10.1007/s00406-021-01310-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/19/2021] [Indexed: 01/06/2023]
Abstract
The secondary prevention trials of Alzheimer's disease (AD) require an enrichment strategy to recruit individuals with imminent cognitive decline at the preclinical stage. Previously, we demonstrated a variant neural correlates of episodic memory (EM) function in apolipoprotein E (APOE) ε4 carriers. Herein, we investigated whether this variation was associated with longitudinal EM performance. This 3-year longitudinal study included 88 normal elderly subjects with EM assessment and resting-state functional MRI data at baseline; 48 subjects (27 ε3 homozygotes and 21 ε4 carriers) underwent follow-up EM assessment. In the identified EM neural correlates, multivariable regression models examined the association between hippocampal functional connectivity (HFC) and longitudinal EM change. Independent validation was performed using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. At baseline, the EM neural correlates were characterized in the Papez circuit regions in the ε3 homozygotes, but in the sensorimotor cortex and cuneus in the ε4 carriers. Longitudinally, the ε4 carriers exhibited a negative association of the baseline HFC strength in the EM neural correlates with annual rate of EM change (R2 = 0.25, p = 0.05). This association also showed a trend in the ADNI dataset (R2 = 0.42, p = 0.06). These results indicate that hippocampal hyperconnectivity in the variant EM neural correlates is associated with imminent EM decline in ε4 carriers, which may serve as a promising enrichment strategy for secondary prevention trials of AD.
Collapse
Affiliation(s)
- Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Neuropsychiatric Institute, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China.,Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Gang Chen
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - B Douglas Ward
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Guangyu Chen
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Neuropsychiatric Institute, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Duan Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Neuropsychiatric Institute, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Neuropsychiatric Institute, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Lihua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Neuropsychiatric Institute, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Zhan Xu
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Shi-Jiang Li
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Neuropsychiatric Institute, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China.
| | | |
Collapse
|
68
|
Thams F, Külzow N, Flöel A, Antonenko D. Modulation of network centrality and gray matter microstructure using multi-session brain stimulation and memory training. Hum Brain Mapp 2022; 43:3416-3426. [PMID: 35373873 PMCID: PMC9248322 DOI: 10.1002/hbm.25857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022] Open
Abstract
Neural mechanisms of behavioral improvement induced by repeated transcranial direct current stimulation (tDCS) combined with cognitive training are yet unclear. Previously, we reported behavioral effects of a 3-day visuospatial memory training with concurrent anodal tDCS over the right temporoparietal cortex in older adults. To investigate intervention-induced neural alterations we here used functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) datasets available from 35 participants of this previous study, acquired before and after the intervention. To delineate changes in whole-brain functional network architecture, we employed eigenvector centrality mapping. Gray matter alterations were analyzed using DTI-derived mean diffusivity (MD). Network centrality in the bilateral posterior temporooccipital cortex was reduced after anodal compared to sham stimulation. This focal effect is indicative of decreased functional connectivity of the brain region underneath the anodal electrode and its left-hemispheric homolog with other "relevant" (i.e., highly connected) brain regions, thereby providing evidence for reorganizational processes within the brain's network architecture. Examining local MD changes in these clusters, an interaction between stimulation condition and training success indicated a decrease of MD in the right (stimulated) temporooccipital cluster in individuals who showed superior behavioral training benefits. Using a data-driven whole-brain network approach, we provide evidence for targeted neuromodulatory effects of a combined tDCS-and-training intervention. We show for the first time that gray matter alterations of microstructure (assessed by DTI-derived MD) may be involved in tDCS-enhanced cognitive training. Increased knowledge on how combined interventions modulate neural networks in older adults, will help the development of specific therapeutic interventions against age-associated cognitive decline.
Collapse
Affiliation(s)
- Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Nadine Külzow
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.,Neurological Rehabilitation Clinic, Kliniken Beelitz GmbH, Beelitz, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
69
|
Brain Reactions to Opening and Closing the Eyes: Salivary Cortisol and Functional Connectivity. Brain Topogr 2022; 35:375-397. [PMID: 35666364 PMCID: PMC9334428 DOI: 10.1007/s10548-022-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
Abstract
This study empirically assessed the strength and duration of short-term effects induced by brain reactions to closing/opening the eyes on a few well-known resting-state networks. We also examined the association between these reactions and subjects’ cortisol levels. A total of 55 young adults underwent 8-min resting-state fMRI (rs-fMRI) scans under 4-min eyes-closed and 4-min eyes-open conditions. Saliva samples were collected from 25 of the 55 subjects before and after the fMRI sessions and assayed for cortisol levels. Our empirical results indicate that when the subjects were relaxed with their eyes closed, the effect of opening the eyes on conventional resting-state networks (e.g., default-mode, frontal-parietal, and saliency networks) lasted for roughly 60-s, during which we observed a short-term increase in activity in rs-fMRI time courses. Moreover, brain reactions to opening the eyes had a pronounced effect on time courses in the temporo-parietal lobes and limbic structures, both of which presented a prolonged decrease in activity. After controlling for demographic factors, we observed a significantly positive correlation between pre-scan cortisol levels and connectivity in the limbic structures under both conditions. Under the eyes-closed condition, the temporo-parietal lobes presented significant connectivity to limbic structures and a significantly positive correlation with pre-scan cortisol levels. Future research on rs-fMRI could consider the eyes-closed condition when probing resting-state connectivity and its neuroendocrine correlates, such as cortisol levels. It also appears that abrupt instructions to open the eyes while the subject is resting quietly with eyes closed could be used to probe brain reactivity to aversive stimuli in the ventral hippocampus and other limbic structures.
Collapse
|
70
|
Seok D, Tadayonnejad R, Wong WW, O'Neill J, Cockburn J, Bari AA, O'Doherty JP, Feusner JD. Neurocircuit dynamics of arbitration between decision-making strategies across obsessive-compulsive and related disorders. Neuroimage Clin 2022; 35:103073. [PMID: 35689978 PMCID: PMC9192960 DOI: 10.1016/j.nicl.2022.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
Abstract
Obsessive-compulsive and related disorders (OCRD) include OCD and BDD. Neural differences in decision-making arbitration may underlie OCRD symptoms. Resting-state effective connectivity was used to assess arbitration circuitry. Greater left putamen inhibition via left ventrolateral prefrontal cortex in OCRD. Stronger left putamen inhibition was correlated with less severe symptoms.
Obsessions and compulsions are central components of obsessive–compulsive disorder (OCD) and obsessive–compulsive related disorders such as body dysmorphic disorder (BDD). Compulsive behaviours may result from an imbalance of habitual and goal-directed decision-making strategies. The relationship between these symptoms and the neural circuitry underlying habitual and goal-directed decision-making, and the arbitration between these strategies, remains unknown. This study examined resting state effective connectivity between nodes of these systems in two cohorts with obsessions and compulsions, each compared with their own corresponding healthy controls: OCD (nOCD = 43; nhealthy = 24) and BDD (nBDD = 21; nhealthy = 16). In individuals with OCD, the left ventrolateral prefrontal cortex, a node of the arbitration system, exhibited more inhibitory causal influence over the left posterolateral putamen, a node of the habitual system, compared with controls. Inhibitory causal influence in this connection showed a trend for a similar pattern in individuals with BDD compared with controls. Those with stronger negative connectivity had lower obsession and compulsion severity in both those with OCD and those with BDD. These relationships were not evident within the habitual or goal-directed circuits, nor were they associated with depressive or anxious symptomatology. These results suggest that abnormalities in the arbitration system may represent a shared neural phenotype across these two related disorders that is specific to obsessive–compulsive symptoms. In addition to nosological implications, these results identify potential targets for novel, circuit-specific treatments.
Collapse
Affiliation(s)
- Darsol Seok
- Division of Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Reza Tadayonnejad
- Division of Neuromodulation, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 1200 E. California Blvd., Code 228-77, Pasadena, CA 91125, USA
| | - Wan-Wa Wong
- Division of Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Joseph O'Neill
- Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Jeff Cockburn
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 1200 E. California Blvd., Code 228-77, Pasadena, CA 91125, USA
| | - Ausaf A Bari
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - John P O'Doherty
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 1200 E. California Blvd., Code 228-77, Pasadena, CA 91125, USA; Computation & Neural Systems Program, California Institute of Technology, Pasadena, CA, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Jamie D Feusner
- Division of Cognitive Neuroscience, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Temerty Faculty of Medicine, Department of Psychiatry, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada; Department of Women's and Children's Health, The Karolinska Institute, Tomtebodavägen 18A, 171 77 Solna, Sweden.
| |
Collapse
|
71
|
Wang Y, Li J, Zeng L, Wang H, Yang T, Shao Y, Weng X. Open Eyes Increase Neural Oscillation and Enhance Effective Brain Connectivity of the Default Mode Network: Resting-State Electroencephalogram Research. Front Neurosci 2022; 16:861247. [PMID: 35573310 PMCID: PMC9092973 DOI: 10.3389/fnins.2022.861247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
The default mode network (DMN) has a unique activity pattern in the resting brain. Studies on resting-state brain activity are helpful to identify various brain dynamic characteristics of patients with mental diseases and those of healthy people. The brain produces a series of changes in different eye states. However, the relationship between eye states and the DMN, which is closely related to the resting state, has not been widely examined. This study recruited 42 healthy students aged 17–22. Participants completed the Profile of Mood States questionnaire. Thereafter, the electroencephalogram data was collected with the patients’ eyes open and closed. Changes in neural oscillation and the DMN’s information transmission during different eye openness states were compared. The results showed that the neural oscillation activities of the parietal-occipital network such as the superior parietal lobule and precuneus were significantly enhanced in the eyes open state. In addition, the effective connectivity within the DMN was enhanced during opened eyes, especially from the left precuneus to the left posterior cingulate cortex, and this connectivity was negatively correlated with the Vigor-Activity mood state in the eyes open state. The activity of the DMN in the resting-state is regulated by eye states, which may relate to mood and emotional perception.
Collapse
Affiliation(s)
- Yi Wang
- Department of Physical Education, Renmin University of China, Beijing, China.,School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Jialu Li
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Lingjing Zeng
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Haiteng Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Tianyi Yang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xiechuan Weng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
72
|
Varela-López B, Cruz-Gómez ÁJ, Lojo-Seoane C, Díaz F, Pereiro A, Zurrón M, Lindín M, Galdo-Álvarez S. Cognitive reserve, neurocognitive performance, and high-order resting-state networks in cognitively unimpaired aging. Neurobiol Aging 2022; 117:151-164. [DOI: 10.1016/j.neurobiolaging.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
|
73
|
Hlinka J, Děchtěrenko F, Rydlo J, Androvičová R, Vejmelka M, Jajcay L, Tintěra J, Lukavský J, Horáček J. The intra-session reliability of functional connectivity during naturalistic viewing conditions. Psychophysiology 2022; 59:e14075. [PMID: 35460523 DOI: 10.1111/psyp.14075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
Abstract
Functional connectivity analysis is a common approach to the characterization of brain function. While studies of functional connectivity have predominantly focused on resting-state fMRI, naturalistic paradigms, such as movie watching, are increasingly being used. This ecologically valid, yet relatively unconstrained acquisition state has been shown to improve subject compliance and, potentially, enhance individual differences. However, unlike the reliability of resting-state functional connectivity, the reliability of functional connectivity during naturalistic viewing has not yet been fully established. The current study investigates the intra-session reliability of functional connectivity during naturalistic viewing sessions to extend its understanding. Using fMRI data of 24 subjects measured at rest as well as during six naturalistic viewing conditions, we quantified the split-half reliability of each condition, as well as cross-condition reliabilities. We find that intra-session reliability is relatively high for all conditions. While cross-condition reliabilities are higher for pairings of two naturalistic viewing conditions, split-half reliability is highest for the resting state. Potential sources of variability across the conditions, as well as the strengths and limitations of using intra-session reliability as a measure in naturalistic viewing, are discussed.
Collapse
Affiliation(s)
- Jaroslav Hlinka
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.,National Institute of Mental Health, Klecany, Czech Republic
| | - Filip Děchtěrenko
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.,Institute of Psychology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Rydlo
- National Institute of Mental Health, Klecany, Czech Republic.,Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Martin Vejmelka
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Jajcay
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.,National Institute of Mental Health, Klecany, Czech Republic.,Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
| | - Jaroslav Tintěra
- National Institute of Mental Health, Klecany, Czech Republic.,Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jiří Lukavský
- Institute of Psychology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Horáček
- National Institute of Mental Health, Klecany, Czech Republic.,Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
74
|
Nonuniformity of Whole-Cerebral Neural Resource Allocation, a Neuromarker of the Broad-Task Attention. eNeuro 2022; 9:ENEURO.0358-21.2022. [PMID: 35228309 PMCID: PMC8925723 DOI: 10.1523/eneuro.0358-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
The neural basis of attention is thought to involve the allocation of limited neural resources. However, the quantitative validation of this hypothesis remains challenging. Here, we provide quantitative evidence that the nonuniform allocation of neural resources across the whole cerebral gray matter reflects the broad-task process of sustained attention. We propose a neural measure for the nonuniformity of whole-cerebral allocation using functional magnetic resonance imaging. We found that this measure was significantly correlated with conventional indicators of attention level, such as task difficulty and pupil dilation. We further found that the broad-task neural correlates of the measure belong to frontoparietal and dorsal attention networks. Finally, we found that patients with attention-deficit/hyperactivity disorder showed abnormal decreases in the level of the proposed measure, reflecting the executive dysfunction. This study proposes a neuromarker suggesting that the nonuniform allocation of neural resources may be the broad-task neural basis of sustained attention.
Collapse
|
75
|
Functional connectivity using high density EEG shows competitive reliability and agreement across test/retest sessions. J Neurosci Methods 2022; 367:109424. [PMID: 34826504 DOI: 10.1016/j.jneumeth.2021.109424] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Electrophysiological resting state functional connectivity using high density electroencephalography (hdEEG) is gaining momentum. The increased resolution offered by hdEEG, usually either 128 or 256 channels, permits source localization of EEG signals on the cortical surface. However, the number of methodological options for the acquisition and analysis of resting state hdEEG is extremely large. These include acquisition duration, eyes open/closed, channel density, source localization methods, and functional connectivity metric. NEW METHODS We undertake an extensive examination of the test-retest reliability and methodological agreement of all these options for regional measures of functional connectivity. RESULTS Power envelope connectivity shows larger test-retest reliability than imaginary coherence across all bands. While channel density doesn't strongly impact reliability or agreement, source localization methods produce systematically different functional connectivity, highlighting an important obstacle for replicating results in the literature. Most importantly, reliability and agreement often plateaus at or after 6 minutes of acquisition, well beyond the typical duration of 3 minutes. Finally, our study demonstrates that resting EEG can be as or more reliable than resting fMRI acquired in the same individuals. CONCLUSIONS The competitive reliability and agreement of power envelope connectivity greatly increases our confidence in measuring resting state connectivity using EEG and its capacity to find individual differences.
Collapse
|
76
|
Champagne AA, Coverdale NS, Allen MD, Tremblay JC, MacPherson REK, Pyke KE, Olver TD, Cook DJ. The physiological basis underlying functional connectivity differences in older adults: A multi-modal analysis of resting-state fMRI. Brain Imaging Behav 2022; 16:1575-1591. [PMID: 35092574 DOI: 10.1007/s11682-021-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/27/2021] [Indexed: 11/02/2022]
Abstract
The purpose of this study was to determine if differences in functional connectivity strength (FCS) with age were confounded by vascular parameters including resting cerebral blood flow (CBF0), cerebrovascular reactivity (CVR), and BOLD-CBF coupling. Neuroimaging data were collected from 13 younger adults (24 ± 2 years) and 14 older adults (71 ± 4 years). A dual-echo resting state pseudo-continuous arterial spin labeling sequence was performed, as well as a BOLD breath-hold protocol. A group independent component analysis was used to identify networks, which were amalgamated into a region of interest (ROI). Within the ROI, FC strength (FCS) was computed for all voxels and compared across the groups. CBF0, CVR and BOLD-CBF coupling were examined within voxels where FCS was different between young and older adults. FCS was greater in old compared to young (P = 0.001). When the effect of CBF0, CVR and BOLD-CBF coupling on FCS was examined, BOLD-CBF coupling had a significant effect (P = 0.003) and group differences in FCS were not present once all vascular parameters were considered in the statistical model (P = 0.07). These findings indicate that future studies of FCS should consider vascular physiological markers in order to improve our understanding of aging processes on brain connectivity.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, ON, Canada.,School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Physical Medicine and Rehabilitation, Providence Care Hospital, 752 King St., Ontario, West Kingston, Canada
| | - Joshua C Tremblay
- School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada
| | - Kyra E Pyke
- School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - T Dylan Olver
- Biomedical Sciences, Western College of Veterinarian Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada. .,Department of Surgery, Queen's University, Room 232, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
77
|
Hsu AL, Li CW, Qin P, Lo MT, Wu CW. Localizing Spectral Interactions in the Resting State Network Using the Hilbert-Huang Transform. Brain Sci 2022; 12:140. [PMID: 35203903 PMCID: PMC8870154 DOI: 10.3390/brainsci12020140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Brain synchronizations are orchestrated from neuronal oscillations through frequency interactions, such as the alpha rhythm during relaxation. Nevertheless, how the intrinsic interaction forges functional integrity across brain segregations remains elusive, thereby motivating recent studies to localize frequency interactions of resting-state fMRI (rs-fMRI). To this point, we aim to unveil the fMRI-based spectral interactions using the time-frequency (TF) analysis; however, Fourier-based TF analyses impose restrictions on revealing frequency interactions given the limited time points in fMRI signals. Instead of using the Fourier-based wavelet analysis to identify the fMRI frequency of interests, we employed the Hilbert-Huang transform (HHT) for probing the specific frequency contribution to the functional integration, called ensemble spectral interaction (ESI). By simulating data with time-variant frequency changes, we demonstrated the Hilbert TF maps with high spectro-temporal resolution and full accessibility in comparison with the wavelet TF maps. By detecting amplitude-to-amplitude frequency couplings (AAC) across brain regions, we elucidated the ESI disparity between the eye-closed (EC) and eye-open (EO) conditions in rs-fMRI. In the visual network, the strength of the spectral interaction within 0.03-0.04 Hz was amplified in EC compared with that in EO condition, whereas a canonical connectivity analysis did not present differences between conditions. Collectively, leveraging from the instantaneous frequency of HHT, we firstly addressed the ESI technique to map the fMRI-based functional connectivity in a brand-new AAC perspective. The ESI possesses potential in elucidating the functional connectivity at specific frequency bins, thereby providing additional diagnostic merits for future clinical neuroscience.
Collapse
Affiliation(s)
- Ai-Ling Hsu
- Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan 33305, Taiwan;
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University, Ministry of Education), Center for Studies of Psychological Application and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China;
- Pazhou Lab, Guangzhou 510335, China
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32049, Taiwan;
| | - Changwei W. Wu
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei 11031, Taiwan
- Brain and Consciousness Research Center, Shuang Ho Hospital-Taipei Medical University, New Taipei 23561, Taiwan
| |
Collapse
|
78
|
Cauzzo S, Singh K, Stauder M, García-Gomar MG, Vanello N, Passino C, Staab J, Indovina I, Bianciardi M. Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI. Neuroimage 2022; 250:118925. [PMID: 35074504 DOI: 10.1016/j.neuroimage.2022.118925] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/24/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Despite remarkable advances in mapping the functional connectivity of the cortex, the functional connectivity of subcortical regions is understudied in living humans. This is the case for brainstem nuclei that control vital processes, such as autonomic, limbic, nociceptive and sensory functions. This is because of the lack of precise brainstem nuclei localization, of adequate sensitivity and resolution in the deepest brain regions, as well as of optimized processing for the brainstem. To close the gap between the cortex and the brainstem, on 20 healthy subjects, we computed a correlation-based functional connectome of 15 brainstem nuclei involved in autonomic, limbic, nociceptive, and sensory function (superior and inferior colliculi, ventral tegmental area-parabrachial pigmented nucleus complex, microcellular tegmental nucleus-prabigeminal nucleus complex, lateral and medial parabrachial nuclei, vestibular and superior olivary complex, superior and inferior medullary reticular formation, viscerosensory motor nucleus, raphe magnus, pallidus, and obscurus, and parvicellular reticular nucleus - alpha part) with the rest of the brain. Specifically, we exploited 1.1mm isotropic resolution 7 Tesla resting-state fMRI, ad-hoc coregistration and physiological noise correction strategies, and a recently developed probabilistic template of brainstem nuclei. Further, we used 2.5mm isotropic resolution resting-state fMRI data acquired on a 3 Tesla scanner to assess the translatability of our results to conventional datasets. We report highly consistent correlation coefficients across subjects, confirming available literature on autonomic, limbic, nociceptive and sensory pathways, as well as high interconnectivity within the central autonomic network and the vestibular network. Interestingly, our results showed evidence of vestibulo-autonomic interactions in line with previous work. Comparison of 7 Tesla and 3 Tesla findings showed high translatability of results to conventional settings for brainstem-cortical connectivity and good yet weaker translatability for brainstem-brainstem connectivity. The brainstem functional connectome might bring new insight in the understanding of autonomic, limbic, nociceptive and sensory function in health and disease.
Collapse
Affiliation(s)
- Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew Stauder
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nicola Vanello
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Claudio Passino
- Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy; Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Jeffrey Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States; Department of Otorhinolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, MN, United States
| | - Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy; Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Sleep Medicine, Harvard University, Boston, MA.
| |
Collapse
|
79
|
Chow R, Rabi R, Paracha S, Hasher L, Anderson CPsych ND, Alain C. Default mode network and neural phase synchronization in healthy aging: A resting state EEG study. Neuroscience 2022; 485:116-128. [PMID: 35051530 DOI: 10.1016/j.neuroscience.2022.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/23/2023]
Abstract
Aging is associated with altered brain connectivity within the default mode network (DMN). Although research using functional magnetic resonance imaging has quantified age-related alterations in functional connectivity within this network during resting state, it is less clear how this may be reflected in electrophysiological measures, and how this relates to cognitive performance in older adults. The aim of this study was to quantify age differences in phase synchrony of the DMN during resting state, with particular focus on connectivity between the anterior node (i.e., medial prefrontal cortex, or mPFC) and other associated regions in this network. Electroencephalography was recorded from 55 younger adults (18-30 years, 28 females) and 34 older adults (64-88 years, 16 females) in two resting state conditions (eyes-open and -closed). Source-level functional connectivity was quantified using phase-locking value (PLV) with a spatial filter of six sources of interest, and were subjected to data-driven permutation testing between groups from 1 to 50 Hz. Older adults also completed tests of memory, language, executive functioning, and processing speed. Findings indicated decreased connectivity in the alpha2 range for older than younger adults between the mPFC and other DMN regions including the left angular gyrus and bilateral lateral temporal cortices, the latter of which were associated with lower performance in semantic fluency and executive functioning in older adults. Furthermore, greater PLV in theta and beta bands between the mPFC and posterior cingulate regions was found in older than younger adults. These results suggest age-related changes in DMN functional connectivity are non-uniform and frequency-dependent, and may reflect poorer performance in cognitive domains thought to decline with aging.
Collapse
Affiliation(s)
- Ricky Chow
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6A 2E1, Canada
| | - Rahel Rabi
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6A 2E1, Canada
| | - Shahier Paracha
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6A 2E1, Canada
| | - Lynn Hasher
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6A 2E1, Canada; Department of Psychology, University of Toronto, Ontario M5S 3G3, Canada
| | - Nicole D Anderson CPsych
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6A 2E1, Canada; Department of Psychology, University of Toronto, Ontario M5S 3G3, Canada; Department of Psychiatry, University of Toronto, Ontario M5T 1R8, Canada
| | - Claude Alain
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6A 2E1, Canada; Department of Psychology, University of Toronto, Ontario M5S 3G3, Canada; Institute of Medical Sciences, University of Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
80
|
Broulidakis MJ, Golm D, Cortese S, Fairchild G, Sonuga-Barke E. ssDefault mode network connectivity and attention-deficit/hyperactivity disorder in adolescence: Associations with delay aversion and temporal discounting, but not mind wandering. Int J Psychophysiol 2022; 173:38-44. [PMID: 35032471 DOI: 10.1016/j.ijpsycho.2022.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/27/2021] [Accepted: 01/09/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) has been associated with reduced resting state connectivity in the core subsystem of the default mode network (DMN; medial prefrontal cortex - posterior cingulate cortex). However, the neuropsychological consequences of this hypoconnectivity remain to be determined. Building on recent theoretical models of DMN function, we tested the association between DMN hypo-connectivity and three neuropsychological processes previously implicated in ADHD: (i) excessive task-unrelated spontaneous thought (i.e., mind-wandering); (ii) sub-optimal decision-making due to exaggerated temporal discounting; and (iii) delay aversion - a heightened emotional response to the imposition or experience of delay. METHODS Twenty male adolescents with a clinical diagnosis of ADHD and 18 typically developing adolescents (all aged 11-16 years) underwent a resting-state fMRI scan to assess DMN connectivity. An experimental paradigm was used to assess temporal discounting and self-report questionnaires were used to measure mind wandering and delay aversion. RESULTS ADHD was significantly associated with DMN hypo-connectivity specifically in the core subsystem, elevated levels of mind-wandering, delay aversion, and temporal discounting. Mediation analysis suggested that DMN hypoconnectivity mediated the link between ADHD and delay aversion. CONCLUSION The results provide initial evidence that disturbances in the DMN may impair ability to regulate delay-related negative affect in adolescents with ADHD.
Collapse
Affiliation(s)
- M John Broulidakis
- Department of Psychiatry, University of Southampton, United States of America; Department of psychology, College of Science, Northeastern University, Boston, MA, United States of America
| | - Dennis Golm
- Department of Psychology, University of Southampton, United States of America
| | - Samuele Cortese
- Department of Psychology, University of Southampton, United States of America; Solent NHS Trust, Southampton, United States of America; Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, United States of America; Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, UK
| | | | - Edmund Sonuga-Barke
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Department of Child & Adolescent Psychiatry, Aarhus University, Denmark.
| |
Collapse
|
81
|
Singh K, Cauzzo S, García-Gomar MG, Stauder M, Vanello N, Passino C, Bianciardi M. Functional connectome of arousal and motor brainstem nuclei in living humans by 7 Tesla resting-state fMRI. Neuroimage 2022; 249:118865. [PMID: 35031472 DOI: 10.1016/j.neuroimage.2021.118865] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023] Open
Abstract
Brainstem nuclei play a pivotal role in many functions, such as arousal and motor control. Nevertheless, the connectivity of arousal and motor brainstem nuclei is understudied in living humans due to the limited sensitivity and spatial resolution of conventional imaging, and to the lack of atlases of these deep tiny regions of the brain. For a holistic comprehension of sleep, arousal and associated motor processes, we investigated in 20 healthy subjects the resting-state functional connectivity of 18 arousal and motor brainstem nuclei in living humans. To do so, we used high spatial-resolution 7 Tesla resting-state fMRI, as well as a recently developed in-vivo probabilistic atlas of these nuclei in stereotactic space. Further, we verified the translatability of our brainstem connectome approach to conventional (e.g. 3 Tesla) fMRI. Arousal brainstem nuclei displayed high interconnectivity, as well as connectivity to the thalamus, hypothalamus, basal forebrain and frontal cortex, in line with animal studies and as expected for arousal regions. Motor brainstem nuclei showed expected connectivity to the cerebellum, basal ganglia and motor cortex, as well as high interconnectivity. Comparison of 3 Tesla to 7 Tesla connectivity results indicated good translatability of our brainstem connectome approach to conventional fMRI, especially for cortical and subcortical (non-brainstem) targets and to a lesser extent for brainstem targets. The functional connectome of 18 arousal and motor brainstem nuclei with the rest of the brain might provide a better understanding of arousal, sleep and accompanying motor function in living humans in health and disease.
Collapse
Affiliation(s)
- Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew Stauder
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nicola Vanello
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Sleep Medicine, Harvard University, Boston, MA.
| |
Collapse
|
82
|
Jacob MS, Roach BJ, Sargent KS, Mathalon DH, Ford JM. Aperiodic measures of neural excitability are associated with anticorrelated hemodynamic networks at rest: A combined EEG-fMRI study. Neuroimage 2021; 245:118705. [PMID: 34798229 DOI: 10.1016/j.neuroimage.2021.118705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
The hallmark of resting EEG spectra are distinct rhythms emerging from a broadband, aperiodic background. This aperiodic neural signature accounts for most of total EEG power, although its significance and relation to functional neuroanatomy remains obscure. We hypothesized that aperiodic EEG reflects a significant metabolic expenditure and therefore might be associated with the default mode network while at rest. During eyes-open, resting-state recordings of simultaneous EEG-fMRI, we find that aperiodic and periodic components of EEG power are only minimally associated with activity in the default mode network. However, a whole-brain analysis identifies increases in aperiodic power correlated with hemodynamic activity in an auditory-salience-cerebellar network, and decreases in aperiodic power are correlated with hemodynamic activity in prefrontal regions. Desynchronization in residual alpha and beta power is associated with visual and sensorimotor hemodynamic activity, respectively. These findings suggest that resting-state EEG signals acquired in an fMRI scanner reflect a balance of top-down and bottom-up stimulus processing, even in the absence of an explicit task.
Collapse
Affiliation(s)
- Michael S Jacob
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States.
| | - Kaia S Sargent
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States.
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| |
Collapse
|
83
|
Classification of ASD based on fMRI data with deep learning. Cogn Neurodyn 2021; 15:961-974. [PMID: 34790264 DOI: 10.1007/s11571-021-09683-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neuro-developmental disorder that affects the social abilities of patients. Studies have shown that a small number of abnormal functional connections (FCs) exist in the cerebral hemisphere of ASD patients. The identification of these abnormal FCs provides a biological ground for the diagnosis of ASD. In this paper, we propose a combined deep feature selection (DFS) and graph convolutional network method to classify ASD. Firstly, in the DFS process, a sparse one-to-one layer is added between the input and the first hidden layer of a multilayer perceptron, thus each functional connection (FC) feature can be weighted and a subset of FC features can be selected accordingly. Then based on the selected FCs and the phenotypic information of subjects, a graph convolutional network is constructed to classify ASD and typically developed controls. Finally, we test our proposed method on the ABIDE database and compare it with some other methods in the literature. Experimental results indicate that the DFS can effectively select critical FC features for classification according to the weights of input FC features. With DFS, the performance of GCN classifier can be improved dramatically. The proposed method achieves state-of-the-art performance with an accuracy of 79.5% and an area under the receiver operating characteristic curve (AUC) of 0.85 on the preprocessed ABIDE dataset; it is superior to the other methods. Further studies on the top-ranked thirty FCs obtained by DFS show that these FCs are widespread over the cerebral hemisphere, and the ASD group appears a significantly higher number of weak connections compared to the typically developed group.
Collapse
|
84
|
Increased decision latency in alcohol use disorder reflects altered resting-state synchrony in the anterior salience network. Sci Rep 2021; 11:19581. [PMID: 34599268 PMCID: PMC8486863 DOI: 10.1038/s41598-021-99211-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Increased decision latency in alcohol use disorder (AUD) has been generally explained in terms of psychomotor slowing. Recent results suggest that AUD patients' slowed decision-making might rather reflect alterations in the neural circuitry underlying the engagement of controlled processing by salient stimuli. We addressed this hypothesis by testing a relationship between decision latency at the Cambridge Gambling Task (CGT) and intrinsic brain activity in 22 individuals with AUD and 19 matched controls. CGT deliberation time was related to two complementary facets of resting-state fMRI activity, i.e. coherence and intensity, representing early biomarkers of functional changes in the intrinsic brain architecture. For both metrics, we assessed a multiple regression (to test a relationship with deliberation time in the whole sample), and an interaction analysis (to test a significantly different relationship with decision latency across groups). AUD patients' slowed deliberation time (p < 0.025) reflected distinct facets of altered intrinsic activity in the cingulate node of the anterior salience network previously associated with the "output" motor stage of response selection. Its heightened activity in AUD patients compared with controls, tracking choice latency (p < 0.025 corrected), might represent a compensation mechanism counterbalancing the concurrent decrease of its internal coherent activity (p < 0.025 corrected). These findings provide novel insights into the intrinsic neural mechanisms underlying increased decision latency in AUD, involving decreased temporal synchronicity in networks promoting executive control by behaviourally relevant stimuli. These results pave the way to further studies assessing more subtle facets of decision-making in AUD, and their possible changes with rehabilitative treatment.
Collapse
|
85
|
Neuhaus E, Lowry SJ, Santhosh M, Kresse A, Edwards LA, Keller J, Libsack EJ, Kang VY, Naples A, Jack A, Jeste S, McPartland JC, Aylward E, Bernier R, Bookheimer S, Dapretto M, Van Horn JD, Pelphrey K, Webb SJ. Resting state EEG in youth with ASD: age, sex, and relation to phenotype. J Neurodev Disord 2021; 13:33. [PMID: 34517813 PMCID: PMC8439051 DOI: 10.1186/s11689-021-09390-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Identification of ASD biomarkers is a key priority for understanding etiology, facilitating early diagnosis, monitoring developmental trajectories, and targeting treatment efforts. Efforts have included exploration of resting state encephalography (EEG), which has a variety of relevant neurodevelopmental correlates and can be collected with minimal burden. However, EEG biomarkers may not be equally valid across the autism spectrum, as ASD is strikingly heterogeneous and individual differences may moderate EEG-behavior associations. Biological sex is a particularly important potential moderator, as females with ASD appear to differ from males with ASD in important ways that may influence biomarker accuracy. METHODS We examined effects of biological sex, age, and ASD diagnosis on resting state EEG among a large, sex-balanced sample of youth with (N = 142, 43% female) and without (N = 138, 49% female) ASD collected across four research sites. Absolute power was extracted across five frequency bands and nine brain regions, and effects of sex, age, and diagnosis were analyzed using mixed-effects linear regression models. Exploratory partial correlations were computed to examine EEG-behavior associations in ASD, with emphasis on possible sex differences in associations. RESULTS Decreased EEG power across multiple frequencies was associated with female sex and older age. Youth with ASD displayed decreased alpha power relative to peers without ASD, suggesting increased neural activation during rest. Associations between EEG and behavior varied by sex. Whereas power across various frequencies correlated with social skills, nonverbal IQ, and repetitive behavior for males with ASD, no such associations were observed for females with ASD. CONCLUSIONS Research using EEG as a possible ASD biomarker must consider individual differences among participants, as these features influence baseline EEG measures and moderate associations between EEG and important behavioral outcomes. Failure to consider factors such as biological sex in such research risks defining biomarkers that misrepresent females with ASD, hindering understanding of the neurobiology, development, and intervention response of this important population.
Collapse
Affiliation(s)
- Emily Neuhaus
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave, CURE-03, Seattle, WA, 98101, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
| | - Sarah J Lowry
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave, CURE-03, Seattle, WA, 98101, USA
| | - Megha Santhosh
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave, CURE-03, Seattle, WA, 98101, USA
| | - Anna Kresse
- Mailman School of Public Health, Columbia University, New York, USA
| | - Laura A Edwards
- School of Medicine, Emory University, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jack Keller
- Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, USA
| | - Erin J Libsack
- Department of Psychology, Stony Brook University, Stony Brook, USA
| | - Veronica Y Kang
- Department of Special Education, University of Illinois at Chicago, Chicago, USA
| | - Adam Naples
- Yale Child Study Center, Yale University, New Haven, USA
| | - Allison Jack
- Department of Psychology, George Mason University, Fairfax, USA
| | - Shafali Jeste
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles School of Medicine, Los Angeles, USA
- Intellectual and Developmental Disabilities Research Center, University of California Los Angeles, Los Angeles, USA
| | | | - Elizabeth Aylward
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
| | - Susan Bookheimer
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles School of Medicine, Los Angeles, USA
- Intellectual and Developmental Disabilities Research Center, University of California Los Angeles, Los Angeles, USA
| | - Mirella Dapretto
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles School of Medicine, Los Angeles, USA
- Intellectual and Developmental Disabilities Research Center, University of California Los Angeles, Los Angeles, USA
| | - John D Van Horn
- Department of Psychology, University of Virginia, Charlottesville, USA
- School of Data Science, University of Virginia, Charlottesville, USA
| | - Kevin Pelphrey
- Department of Psychology, University of Virginia, Charlottesville, USA
- Department of Neurology, Brain Institute and School of Education and Human Development, University of Virginia, Charlottesville, USA
| | - Sara Jane Webb
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave, CURE-03, Seattle, WA, 98101, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA.
- Intellectual and Developmental Disabilities Research Center, University of Washington, Seattle, USA.
| |
Collapse
|
86
|
Kanno S, Ogawa KI, Kikuchi H, Toyoshima M, Abe N, Sato K, Miyazawa K, Oshima R, Ohtomo S, Arai H, Shibuya S, Suzuki K. Reduced default mode network connectivity relative to white matter integrity is associated with poor cognitive outcomes in patients with idiopathic normal pressure hydrocephalus. BMC Neurol 2021; 21:353. [PMID: 34517828 PMCID: PMC8436532 DOI: 10.1186/s12883-021-02389-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate whether default mode network (DMN) connectivity and brain white matter integrity at baseline were associated with severe cognitive impairments at baseline and poor cognitive outcomes after shunt placement in patients with idiopathic normal pressure hydrocephalus (iNPH). METHODS Twenty consecutive patients with iNPH whose symptoms were followed for 6 months after shunt placement and 10 healthy controls (HCs) were enrolled. DMN connectivity and brain white matter integrity at baseline in the patients with iNPH and HCs were detected by using resting-state functional magnetic resonance imaging (MRI) with independent component analysis and diffusion tensor imaging, respectively, and these MRI indexes were compared between the patients with iNPH and HCs. Performance on neuropsychological tests for memory and executive function and on the gait test was assessed in the patients with iNPH at baseline and 6 months after shunt placement. We divided the patients with iNPH into the relatively preserved and reduced DMN connectivity groups using the MRI indexes for DMN connectivity and brain white matter integrity, and the clinical measures were compared between the relatively preserved and reduced DMN connectivity groups. RESULTS Mean DMN connectivity in the iNPH group was significantly lower than that in the HC group and was significantly positively correlated with Rey auditory verbal learning test (RAVLT) immediate recall scores and frontal assessment battery (FAB) scores. Mean fractional anisotropy of the whole-brain white matter skeleton in the iNPH group was significantly lower than that in the HC group. The reduced DMN connectivity group showed significantly worse performance on the RAVLT at baseline and significantly worse improvement in the RAVLT immediate recall and recognition scores and the FAB scores than the preserved DMN connectivity group. Moreover, the RAVLT recognition score highly discriminated patients with relatively preserved DMN connectivity from those with relatively reduced DMN connectivity. CONCLUSIONS Our findings indicated that iNPH patients with reduced DMN connectivity relative to the severity of brain white matter disruption have severe memory deficits at baseline and poorer cognitive outcomes after shunt placement. However, further larger-scale studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Shigenori Kanno
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Miyagi, 980-8575, Sendai, Japan. .,Department of Neurology, South Miyagi Medical Center, Shibata, Japan.
| | - Kun-Ichi Ogawa
- Department of Radiology, South Miyagi Medical Center, Shibata, Japan
| | - Hiroaki Kikuchi
- Healthcare Center, South Miyagi Medical Center, Shibata, Japan
| | - Masako Toyoshima
- Department of Rehabilitation, South Miyagi Medical Center, Shibata, Japan
| | - Nobuhito Abe
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Kazushi Sato
- Department of Radiology, South Miyagi Medical Center, Shibata, Japan
| | - Koichi Miyazawa
- Department of Neurology, South Miyagi Medical Center, Shibata, Japan.,Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ryuji Oshima
- Department of Neurology, South Miyagi Medical Center, Shibata, Japan
| | - Satoru Ohtomo
- Department of Neurosurgery, South Miyagi Medical Center, Shibata, Japan
| | - Hiroaki Arai
- Department of Neurosurgery, South Miyagi Medical Center, Shibata, Japan
| | - Satoshi Shibuya
- Department of Neurology, South Miyagi Medical Center, Shibata, Japan.,Department of Neurology, Moriyama Memorial Hospital, Edogawa, Japan
| | - Kyoko Suzuki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Miyagi, 980-8575, Sendai, Japan
| |
Collapse
|
87
|
Raimondo L, Oliveira ĹAF, Heij J, Priovoulos N, Kundu P, Leoni RF, van der Zwaag W. Advances in resting state fMRI acquisitions for functional connectomics. Neuroimage 2021; 243:118503. [PMID: 34479041 DOI: 10.1016/j.neuroimage.2021.118503] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023] Open
Abstract
Resting state functional magnetic resonance imaging (rs-fMRI) is based on spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal, which occur simultaneously in different brain regions, without the subject performing an explicit task. The low-frequency oscillations of the rs-fMRI signal demonstrate an intrinsic spatiotemporal organization in the brain (brain networks) that may relate to the underlying neural activity. In this review article, we briefly describe the current acquisition techniques for rs-fMRI data, from the most common approaches for resting state acquisition strategies, to more recent investigations with dedicated hardware and ultra-high fields. Specific sequences that allow very fast acquisitions, or multiple echoes, are discussed next. We then consider how acquisition methods weighted towards specific parts of the BOLD signal, like the Cerebral Blood Flow (CBF) or Volume (CBV), can provide more spatially specific network information. These approaches are being developed alongside the commonly used BOLD-weighted acquisitions. Finally, specific applications of rs-fMRI to challenging regions such as the laminae in the neocortex, and the networks within the large areas of subcortical white matter regions are discussed. We finish the review with recommendations for acquisition strategies for a range of typical applications of resting state fMRI.
Collapse
Affiliation(s)
- Luisa Raimondo
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Ĺcaro A F Oliveira
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | | | - Prantik Kundu
- Hyperfine Research Inc, Guilford, CT, United States; Icahn School of Medicine at Mt. Sinai, New York, United States
| | - Renata Ferranti Leoni
- InBrain, Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
88
|
Greenwood P, Dudley J, Hutton J, DiFrancesco M, Farah R, Horowitz-Kraus T. Higher maternal education is related to negative functional connectivity between attention system networks and reading-related regions in children with reading difficulties compared to typical readers. Brain Res 2021; 1766:147532. [PMID: 34033755 PMCID: PMC8214310 DOI: 10.1016/j.brainres.2021.147532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Ten to 15% of school-age children have reading difficulties (RD, or dyslexia), defined by deficits in phonological processing, fluency, and executive functions (EFs). Although RD is referred to as a genetic disorder, reading ability may also be affected by environmental factors such as inadequate exposure to literacy and a lack of parental involvement. These environmental components are a part of the socioeconomic status (SES) measure, which is defined by parental occupation, educational attainment, and household income and are positively correlated to reading ability. The goal of the current study was to relate maternal education, a construct of SES to executive functions (EFs) that relate to reading in children with RD compared to typical readers (TRs) using behavioral and neurobiological resting-state fMRI data. The results show that higher maternal education is negatively correlated to inhibitory control for TRs and not for children with RD. Higher maternal education was also associated with negative functional connectivity of the frontal-parietal network to the left central opercular cortex and left occipital gyrus for children with RD compared to TRs. These results suggest that higher maternal education has contrasting roles on the behavioral and neurobiological correlates of EFs for children with RD compared to TRs. We conclude that higher education levels for mothers may provide their children with a structured environment and educational resources that may assist their children with RD and TRs with cognitive development based on their reading profile.
Collapse
Affiliation(s)
- Paige Greenwood
- Reading and Literacy Discovery Center, Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jonathan Dudley
- Reading and Literacy Discovery Center, Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - John Hutton
- Reading and Literacy Discovery Center, Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Mark DiFrancesco
- Reading and Literacy Discovery Center, Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rola Farah
- Educational Neuroimaging Center, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Tzipi Horowitz-Kraus
- Reading and Literacy Discovery Center, Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Educational Neuroimaging Center, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Haifa, Israel.
| |
Collapse
|
89
|
Alpha-band cortico-cortical phase synchronization is associated with effective connectivity in the motor network. Clin Neurophysiol 2021; 132:2473-2480. [PMID: 34454275 DOI: 10.1016/j.clinph.2021.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Communication-through-coherence proposes that the phase synchronization (PS) of neural oscillations between cortical areas supports neural communication. In this study, we exploited transcranial magnetic stimulation (TMS)-evoked potentials (TEPs) to test this hypothesis at the macroscale level, i.e., whether PS between cortical areas supports interarea communication. TEPs are electroencephalographic (EEG) responses time-locked to TMS pulses reflecting interarea communication, as they are generated by the transmission of neural activity from the stimulated area to connected regions. If interarea PS is important for communication, it should be associated with the TEP amplitude in the connected areas. METHODS TMS was delivered over the left primary motor cortex (M1) of fourteen healthy volunteers, and 70-channel EEG was recorded. Early TEP components were source-localized to identify their generators, i.e., distant brain regions activated by M1 through effective connections. Next, linear regressions were used to test the relationship between the TEP amplitude and the pre-stimulus PS between the M1 and the connected regions in four frequency bands (range 4-45 Hz). RESULTS Pre-stimulus interarea PS in the alpha-band was positively associated with the amplitude of early TEP components, namely, the N15 (ipsilateral supplementary motor area), P25 (contralateral M1) and P60 (ipsilateral parietal cortex). CONCLUSIONS Alpha-band PS predicts the response amplitude of the distant brain regions effectively connected to M1. SIGNIFICANCE Our study supports the role of EEG-PS in interarea communication, as theorized by communication-through-coherence.
Collapse
|
90
|
Sherwood MS, McIntire L, Madaris AT, Kim K, Ranganath C, McKinley RA. Intensity-Dependent Changes in Quantified Resting Cerebral Perfusion With Multiple Sessions of Transcranial DC Stimulation. Front Hum Neurosci 2021; 15:679977. [PMID: 34456695 PMCID: PMC8397582 DOI: 10.3389/fnhum.2021.679977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) to the left prefrontal cortex has been shown to produce broad behavioral effects including enhanced learning and vigilance. Still, the neural mechanisms underlying such effects are not fully understood. Furthermore, the neural underpinnings of repeated stimulation remain understudied. In this work, we evaluated the effects of the repetition and intensity of tDCS on cerebral perfusion [cerebral blood flow (CBF)]. A cohort of 47 subjects was randomly assigned to one of the three groups. tDCS of 1- or 2-mA was applied to the left prefrontal cortex on three consecutive days, and resting CBF was quantified before and after stimulation using the arterial spin labeling MRI and then compared with a group that received sham stimulation. A widespread decreased CBF was found in a group receiving sham stimulation across the three post-stimulation measures when compared with baseline. In contrast, only slight decreases were observed in the group receiving 2-mA stimulation in the second and third post-stimulation measurements, but more prominent increased CBF was observed across several brain regions including the locus coeruleus (LC). The LC is an integral region in the production of norepinephrine and the noradrenergic system, and an increased norepinephrine/noradrenergic activity could explain the various behavioral findings from the anodal prefrontal tDCS. A decreased CBF was observed in the 1-mA group across the first two post-stimulation measurements, similar to the sham group. This decreased CBF was apparent in only a few small clusters in the third post-stimulation scan but was accompanied by an increased CBF, indicating that the neural effects of stimulation may persist for at least 24 h and that the repeated stimulation may produce cumulative effects.
Collapse
Affiliation(s)
| | | | - Aaron T. Madaris
- Infoscitex, Inc., Beavercreek, OH, United States
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH, United States
| | - Kamin Kim
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Charan Ranganath
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - R. Andy McKinley
- Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, United States
| |
Collapse
|
91
|
Kucikova L, Goerdten J, Dounavi ME, Mak E, Su L, Waldman AD, Danso S, Muniz-Terrera G, Ritchie CW. Resting-state brain connectivity in healthy young and middle-aged adults at risk of progressive Alzheimer's disease. Neurosci Biobehav Rev 2021; 129:142-153. [PMID: 34310975 DOI: 10.1016/j.neubiorev.2021.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 11/15/2022]
Abstract
Functional brain connectivity of the resting-state networks has gained recent attention as a possible biomarker of Alzheimer's Disease (AD). In this paper, we review the literature of functional connectivity differences in young adults and middle-aged cognitively intact individuals with non-modifiable risk factors of AD (n = 17). We focus on three main intrinsic resting-state networks: The Default Mode network, Executive network, and the Salience network. Overall, the evidence from the literature indicated early vulnerability of functional connectivity across different at-risk groups, particularly in the Default Mode Network. While there was little consensus on the interpretation on directionality, the topography of the findings showed frequent overlap across studies, especially in regions that are characteristic of AD (i.e., precuneus, posterior cingulate cortex, and medial prefrontal cortex areas). We conclude that while resting-state functional connectivity markers have great potential to identify at-risk individuals, implementing more data-driven approaches, further longitudinal and cross-validation studies, and the analysis of greater sample sizes are likely to be necessary to fully establish the effectivity and utility of resting-state network-based analyses.
Collapse
Affiliation(s)
- Ludmila Kucikova
- Edinburgh Dementia Prevention and Centre for Clinical Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom.
| | - Jantje Goerdten
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Adam D Waldman
- Edinburgh Dementia Prevention and Centre for Clinical Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel Danso
- Edinburgh Dementia Prevention and Centre for Clinical Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention and Centre for Clinical Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Craig W Ritchie
- Edinburgh Dementia Prevention and Centre for Clinical Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
92
|
Xu N, Shan W, Qi J, Wu J, Wang Q. Presurgical Evaluation of Epilepsy Using Resting-State MEG Functional Connectivity. Front Hum Neurosci 2021; 15:649074. [PMID: 34276321 PMCID: PMC8283278 DOI: 10.3389/fnhum.2021.649074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Epilepsy is caused by abnormal electrical discharges (clinically identified by electrophysiological recording) in a specific part of the brain [originating in only one part of the brain, namely, the epileptogenic zone (EZ)]. Epilepsy is now defined as an archetypical hyperexcited neural network disorder. It can be investigated through the network analysis of interictal discharges, ictal discharges, and resting-state functional connectivity. Currently, there is an increasing interest in embedding resting-state connectivity analysis into the preoperative evaluation of epilepsy. Among the various neuroimaging technologies employed to achieve brain functional networks, magnetoencephalography (MEG) with the excellent temporal resolution is an ideal tool for estimating the resting-state connectivity between brain regions, which can reveal network abnormalities in epilepsy. What value does MEG resting-state functional connectivity offer for epileptic presurgical evaluation? Regarding this topic, this paper introduced the origin of MEG and the workflow of constructing source-space functional connectivity based on MEG signals. Resting-state functional connectivity abnormalities correlate with epileptogenic networks, which are defined by the brain regions involved in the production and propagation of epileptic activities. This paper reviewed the evidence of altered epileptic connectivity based on low- or high-frequency oscillations (HFOs) and the evidence of the advantage of using simultaneous MEG and intracranial electroencephalography (iEEG) recordings. More importantly, this review highlighted that MEG-based resting-state functional connectivity has the potential to predict postsurgical outcomes. In conclusion, resting-state MEG functional connectivity has made a substantial progress toward serving as a candidate biomarker included in epileptic presurgical evaluations.
Collapse
Affiliation(s)
- Na Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Qi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| |
Collapse
|
93
|
Fraenz C, Schlüter C, Friedrich P, Jung RE, Güntürkün O, Genç E. Interindividual differences in matrix reasoning are linked to functional connectivity between brain regions nominated by Parieto-Frontal Integration Theory. INTELLIGENCE 2021. [DOI: 10.1016/j.intell.2021.101545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
94
|
Guerreiro MJS, Linke M, Lingareddy S, Kekunnaya R, Röder B. The effect of congenital blindness on resting-state functional connectivity revisited. Sci Rep 2021; 11:12433. [PMID: 34127748 PMCID: PMC8203782 DOI: 10.1038/s41598-021-91976-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Lower resting-state functional connectivity (RSFC) between 'visual' and non-'visual' neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition-as well as to evaluate the effect of resting state condition on group differences in RSFC-, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between 'visual' and non-'visual' circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.
Collapse
Affiliation(s)
- Maria J S Guerreiro
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany.
- Biological Psychology, Department of Psychology, Carl Von Ossietzky University of Oldenburg, 26111, Oldenburg, Germany.
| | - Madita Linke
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany
| | - Sunitha Lingareddy
- Department of Radiology, Lucid Medical Diagnostics, Banjara Hills, Hyderabad, Telengana, 500082, India
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V. Ramanamma Children's Eye Care Center, Department of Pediatric Ophthalmology, Strabismus, and Neuro-Ophthalmology, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telengana, 500034, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany
| |
Collapse
|
95
|
Warren DE, Rangel AJ, Christopher-Hayes NJ, Eastman JA, Frenzel MR, Stephen JM, Calhoun VD, Wang YP, Wilson TW. Resting-state functional connectivity of the human hippocampus in periadolescent children: Associations with age and memory performance. Hum Brain Mapp 2021; 42:3620-3642. [PMID: 33978276 PMCID: PMC8249892 DOI: 10.1002/hbm.25458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
The hippocampus is necessary for declarative (relational) memory, and the ability to form hippocampal‐dependent memories develops through late adolescence. This developmental trajectory of hippocampal‐dependent memory could reflect maturation of intrinsic functional brain networks, but resting‐state functional connectivity (rs‐FC) of the human hippocampus is not well‐characterized for periadolescent children. Measuring hippocampal rs‐FC in periadolescence would thus fill a gap, and testing covariance of hippocampal rs‐FC with age and memory could inform theories of cognitive development. Here, we studied hippocampal rs‐FC in a cross‐sectional sample of healthy children (N = 96; 59 F; age 9–15 years) using a seed‐based approach, and linked these data with NIH Toolbox measures, the Picture‐Sequence Memory Test (PSMT) and the List Sorting Working Memory Test (LSWMT). The PSMT was expected to rely more on hippocampal‐dependent memory than the LSWMT. We observed hippocampal rs‐FC with an extensive brain network including temporal, parietal, and frontal regions. This pattern was consistent with prior work measuring hippocampal rs‐FC in younger and older samples. We also observed novel, regionally specific variation in hippocampal rs‐FC with age and hippocampal‐dependent memory but not working memory. Evidence consistent with these findings was observed in a second, validation dataset of similar‐age healthy children drawn from the Philadelphia Neurodevelopment Cohort. Further, a cross‐dataset analysis suggested generalizable properties of hippocampal rs‐FC and covariance with age and memory. Our findings connect prior work by describing hippocampal rs‐FC and covariance with age and memory in typically developing periadolescent children, and our observations suggest a developmental trajectory for brain networks that support hippocampal‐dependent memory.
Collapse
Affiliation(s)
- David E Warren
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony J Rangel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Jacob A Eastman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michaela R Frenzel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico, USA.,Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Boys Town National Research Hospital, Boys Town, Nebraska, USA
| |
Collapse
|
96
|
Modular and state-relevant functional network connectivity in high-frequency eyes open vs eyes closed resting fMRI data. J Neurosci Methods 2021; 358:109202. [PMID: 33951454 PMCID: PMC10187826 DOI: 10.1016/j.jneumeth.2021.109202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/11/2021] [Accepted: 04/22/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Resting-state fMRI (rs-fMRI) is employed to assess "functional connections" of signal between brain regions. However, multiple rs-fMRI paradigms and data-filtering strategies have been used, highlighting the need to explore BOLD signal across the spectrum. Rs-fMRI data is typically filtered at frequencies ranging between 0.008∼0.2 Hz to mitigate nuisance signal (e.g. cardiac, respiratory) and maximize neuronal BOLD signal. However, some argue neuronal BOLD signal may be parsed at higher frequencies. NEW METHOD To assess the contributions of rs-fMRI along the BOLD spectra on functional network connectivity (FNC) matrices, a spatially constrained independent component analysis (ICA) was performed at seven different frequency "bins", after which FNC values and FNC measures of matrix-randomness were assessed using linear mixed models. RESULTS Results show FNCs at higher-frequency bins display similar randomness to those from the typical frequency bins (0.01-0.15), while the largest values are in the 0.31-0.46 Hz bin. Eyes open (EO) vs eyes closed (EC) comparison found EC was less random than EO across most frequency bins. Further, FNC was greater in EC across auditory and cognitive control pairings while EO values were greater in somatomotor, visual, and default mode FNC. COMPARISON WITH EXISTING METHODS Effect sizes of frequency and resting-state paradigm vary from small to large, but the most notable results are specific to frequency ranges and resting-state paradigm with artifacts like motion displaying negligible effect sizes. CONCLUSIONS These suggest unique information may be derived from FNC matrices across frequencies and paradigms, but additional data is necessary prior to any definitive conclusions.
Collapse
|
97
|
Sahasrabudhe SA, Silamongkol T, Park YW, Colette A, Eberly LE, Klimes-Dougan B, Coles LD, Cloyd JC, Öz G, Mueller BA, Kartha RV, Cullen KR. Identifying Biological Signatures of N-Acetylcysteine for Non-Suicidal Self-Injury in Adolescents and Young Adults. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2021; 6:e210007. [PMID: 34036177 PMCID: PMC8143039 DOI: 10.20900/jpbs.20210007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prevalence of non-suicidal self-injury (NSSI) is high in adolescents and young adults. However, there is a paucity of evidence-based treatments to address this clinical problem. An open-label, pilot study in the target population showed that treatment with oral N-acetylcysteine (NAC), a widely available dietary supplement, was associated with reduction in NSSI frequency. In preparation for a biologically informed design of an efficacy trial, a critical preliminary step is to clarify NAC's biological signatures, or measures of the mechanisms underlying its clinical effects. Toward that end, we propose a 2-stage project to investigate NAC's biological signatures (changes in glutathione (GSH) and/or glutamate (Glu)) in women with NSSI. The first stage; a double-blind randomized placebo-controlled study will focus on identifying the optimal dose to achieve meaningful change in GSH and Glu during short-term (4 weeks) NAC treatment in 36 women aged 16-24 years with NSSI. Go/No-go criteria to determine if the study will progress to the second stage include pre-specified changes in brain and blood measures of GSH. Changes in the brain GSH are measured through magnetic resonance spectroscopy (MRS). The dose for the stage 2 will be selected based on the biological changes and the tolerability observed in the stage 1. The stage 2 will seek to replicate the biological signature findings in an 8-week trial in a new patient cohort, and examine the relationships among biological signatures, NAC pharmacokinetics and clinical response. This 2-stage project is unique as it unifies clinical psychiatric measurements, quantitative MRS and pharmacological approaches in the first placebo-controlled clinical trial of NAC in young women with NSSI. TRIAL REGISTRATION The stage 1 trial protocol has been registered on https://clinicaltrials.gov/ with ClinicalTrials.gov ID "NCT04005053" (Registered on 02 July 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT04005053).
Collapse
Affiliation(s)
- Siddhee A. Sahasrabudhe
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thanharat Silamongkol
- Department of Psychiatry and Behavioral Sciences, Medical School, University of Minnesota, Minneapolis, MN 55454, USA
| | - Young Woo Park
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alanna Colette
- Department of Psychiatry and Behavioral Sciences, Medical School, University of Minnesota, Minneapolis, MN 55454, USA
| | - Lynn E. Eberly
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bonnie Klimes-Dougan
- Department of Psychology, College of Liberal Arts, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa D. Coles
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - James C. Cloyd
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryon A. Mueller
- Department of Psychiatry and Behavioral Sciences, Medical School, University of Minnesota, Minneapolis, MN 55454, USA
| | - Reena V. Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathryn R. Cullen
- Department of Psychiatry and Behavioral Sciences, Medical School, University of Minnesota, Minneapolis, MN 55454, USA
| |
Collapse
|
98
|
The Effects of Functionally Guided, Connectivity-Based rTMS on Amygdala Activation. Brain Sci 2021; 11:brainsci11040494. [PMID: 33924639 PMCID: PMC8070235 DOI: 10.3390/brainsci11040494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
While repetitive transcranial magnetic stimulation (rTMS) is widely used to treat psychiatric disorders, innovations are needed to improve its efficacy. An important limitation is that while psychiatric disorders are associated with fronto-limbic dysregulation, rTMS does not have sufficient depth penetration to modulate affected subcortical structures. Recent advances in task-related functional connectivity provide a means to better link superficial and deeper cortical sources with the possibility of increasing fronto-limbic modulation to induce stronger therapeutic effects. The objective of this pilot study was to test whether task-related, connectivity-based rTMS could modulate amygdala activation through its connectivity with the medial prefrontal cortex (mPFC). fMRI was collected to identify a node in the mPFC showing the strongest connectivity with the amygdala, as defined by psychophysiological interaction analysis. To promote Hebbian-like plasticity, and potentially stronger modulation, 5 Hz rTMS was applied while participants viewed frightening video-clips that engaged the fronto-limbic network. Significant increases in both the mPFC and amygdala were found for active rTMS compared to sham, offering promising preliminary evidence that functional connectivity-based targeting may provide a useful approach to treat network dysregulation. Further research is needed to better understand connectivity influences on rTMS effects to leverage this information to improve therapeutic applications.
Collapse
|
99
|
Escrichs A, Biarnes C, Garre-Olmo J, Fernández-Real JM, Ramos R, Pamplona R, Brugada R, Serena J, Ramió-Torrentà L, Coll-De-Tuero G, Gallart L, Barretina J, Vilanova JC, Mayneris-Perxachs J, Essig M, Figley CR, Pedraza S, Puig J, Deco G. Whole-Brain Dynamics in Aging: Disruptions in Functional Connectivity and the Role of the Rich Club. Cereb Cortex 2021; 31:2466-2481. [PMID: 33350451 DOI: 10.1093/cercor/bhaa367] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Normal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state functional magnetic resonance imaging studies have found significant age-related alterations in functional connectivity across various networks. Nevertheless, most of the studies have focused mainly on static functional connectivity. Studying the dynamics of resting-state brain activity across the whole-brain functional network can provide a better characterization of age-related changes. Here, we employed two data-driven whole-brain approaches based on the phase synchronization of blood-oxygen-level-dependent signals to analyze resting-state fMRI data from 620 subjects divided into two groups (middle-age group (n = 310); age range, 50-64 years versus older group (n = 310); age range, 65-91 years). Applying the intrinsic-ignition framework to assess the effect of spontaneous local activation events on local-global integration, we found that the older group showed higher intrinsic ignition across the whole-brain functional network, but lower metastability. Using Leading Eigenvector Dynamics Analysis, we found that the older group showed reduced ability to access a metastable substate that closely overlaps with the so-called rich club. These findings suggest that functional whole-brain dynamics are altered in aging, probably due to a deficiency in a metastable substate that is key for efficient global communication in the brain.
Collapse
Affiliation(s)
- Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Carles Biarnes
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Josep Garre-Olmo
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Institut d'Assistència Sanitària, Salt (Girona), Spain
| | - José Manuel Fernández-Real
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Department of Diabetes, Endocrinology and Nutrition, IDIBGI, Hospital Universitari de Girona Dr Josep Trueta, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Girona, Spain
| | - Rafel Ramos
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Vascular Health Research Group of Girona (ISV-Girona), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Spain.,Primary Care Services, Catalan Institute of Health (ICS), Girona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Ramon Brugada
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Cardiovascular Genetics Center, IDIBGI, CIBER-CV, Girona, Spain
| | - Joaquin Serena
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Department of Neurology, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Lluís Ramió-Torrentà
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Department of Neurology, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Gabriel Coll-De-Tuero
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Vascular Health Research Group of Girona (ISV-Girona), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Luís Gallart
- Biobanc, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jordi Barretina
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Joan C Vilanova
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Jordi Mayneris-Perxachs
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Diabetes, Endocrinology and Nutrition, IDIBGI, Hospital Universitari de Girona Dr Josep Trueta, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Girona, Spain
| | - Marco Essig
- Department of Radiology, University of Manitoba, Winnipeg, Canada
| | - Chase R Figley
- Department of Radiology, University of Manitoba, Winnipeg, Canada
| | - Salvador Pedraza
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Josep Puig
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Institucio Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain.,Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany.,Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
100
|
Yuan LX, Zhao N, Wang XQ, Lv YT, He H. Echo Time Dependency of Local Activity Metrics of Resting-State Functional MRI. Front Neurosci 2021; 15:619412. [PMID: 33796007 PMCID: PMC8008056 DOI: 10.3389/fnins.2021.619412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
Local activity metrics of resting-state functional MRI (RS-fMRI), such as the amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), and degree centrality (DC), are widely used to detect brain abnormalities based on signal fluctuations. Although signal changes with echo time (TE) have been widely studied, the effect of TE on local activity metrics has not been investigated. RS-fMRI datasets from 12 healthy subjects with eyes open (EO) and eyes closed (EC) were obtained with a four-echo gradient-echo-planar imaging pulse sequence with the following parameters: repetition time/TE1/TE2/TE3/TE4 = 2,000/13/30.93/48.86/66.79 ms. Six representative regions were selected for simulating the spatial feature of TE dependency of local activity metrics. Moreover, whole-brain local activity metrics were calculated from each echo dataset and compared between EO and EC conditions. Dice overlap coefficient (DOC) was then employed to calculate the overlap between the T maps. We found that all the local activity metrics displayed different TE dependency characteristics, while their overall change patterns were similar: an initial large change followed by a slow variation. The T maps for local activity metrics also varied greatly with TE. For ALFF, fALFF, ReHo, and DC, the DOCs for voxels in four TE datasets were 6.87, 0.73, 5.08, and 0.93%, respectively. Collectively, these findings demonstrate that local metrics are greatly dependent on TE. Therefore, TE should be carefully considered for the optimization of data acquisition and multi-center data analysis in RS-fMRI.
Collapse
Affiliation(s)
- Li-Xia Yuan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Na Zhao
- Unit of Psychiatry, Faculty of Health Sciences, Center for Cognition and Brain Sciences, Institute of Translational Medicine, University of Macau, Macao, China
| | - Xiu-Qin Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Ya-Ting Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| |
Collapse
|