51
|
Wilson PH, Smits-Engelsman B, Caeyenberghs K, Steenbergen B, Sugden D, Clark J, Mumford N, Blank R. Cognitive and neuroimaging findings in developmental coordination disorder: new insights from a systematic review of recent research. Dev Med Child Neurol 2017; 59:1117-1129. [PMID: 28872667 DOI: 10.1111/dmcn.13530] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2017] [Indexed: 11/29/2022]
Abstract
AIM To better understand the neural and performance factors that may underlie developmental coordination disorder (DCD), and implications for a multi-component account. METHOD A systematic review of the experimental literature published between June 2011 and September 2016 was conducted using a modified PICOS (population, intervention, comparison, outcomes, and study type) framework. A total of 106 studies were included. RESULTS Behavioural data from 91 studies showed a broad cluster of deficits in the anticipatory control of movement, basic processes of motor learning, and cognitive control. Importantly, however, performance issues in DCD were often shown to be moderated by task type and difficulty. As well, we saw new evidence of compensatory processes and strategies in several studies. Neuroimaging data (15 studies, including electroencephalography) showed reduced cortical thickness in the right medial orbitofrontal cortex and altered brain activation patterns across functional networks involving prefrontal, parietal, and cerebellar regions in children with DCD than those in comparison groups. Data from diffusion-weighted magnetic resonance imaging suggested reduced white matter organization involving sensorimotor structures and altered structural connectivity across the whole brain network. INTERPRETATION Taken together, results support the hypothesis that children with DCD show differences in brain structure and function compared with typically developing children. Behaviourally, these differences may affect anticipatory planning and reduce automatization of movement skill, prompting greater reliance on slower feedback-based control and compensatory strategies. Implications for future research, theory development, and clinical practice are discussed.
Collapse
Affiliation(s)
- Peter H Wilson
- School of Psychology, Australian Catholic University, Melbourne, Victoria, Australia.,Centre for Disability and Development Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Bouwien Smits-Engelsman
- Department of Health and Rehabilitation Services, University of Cape Town, Cape Town, South Africa
| | - Karen Caeyenberghs
- School of Psychology, Australian Catholic University, Melbourne, Victoria, Australia.,Centre for Disability and Development Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Bert Steenbergen
- Centre for Disability and Development Research, Australian Catholic University, Melbourne, Victoria, Australia.,Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - David Sugden
- School of Special Needs Education, University of Leeds, Leeds, UK
| | - Jane Clark
- School of Public Health, University of Maryland, College Park, MD, USA
| | - Nick Mumford
- Centre for Disability and Development Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Rainer Blank
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany.,Child Centre, Maulbronn, Germany
| |
Collapse
|
52
|
Abstract
OBJECTIVES This study examines the selective, sustained, and executive attention abilities of very preterm (VPT) born children in relation to concurrent structural magnetic resonance imaging (MRI) measures of regional gray matter development at age 12 years. METHODS A regional cohort of 110 VPT (≤32 weeks gestation) and 113 full term (FT) born children were assessed at corrected age 12 years on the Test of Everyday Attention-Children. They also had a structural MRI scan that was subsequently analyzed using voxel-based morphometry to quantify regional between-group differences in cerebral gray matter development, which were then related to attention measures using multivariate methods. RESULTS VPT children obtained similar selective (p=.85), but poorer sustained (p=.02) and executive attention (p=.01) scores than FT children. VPT children were also characterized by reduced gray matter in the bilateral parietal, temporal, prefrontal and posterior cingulate cortices, bilateral thalami, and left hippocampus; and increased gray matter in the occipital and anterior cingulate cortices (family-wise error-corrected p<.05). Poorer sustained auditory attention was associated with increased gray matter in the anterior cingulate cortex (p=.04). Poor executive shifting attention was associated with reduced gray matter in the right superior temporal cortex (p=.04) and bilateral thalami (p=.05). Poorer executive divided attention was associated with reduced gray matter in the occipital (p=.001), posterior cingulate (p=.02), and left temporal (p=.01) cortices; and increased gray matter in the anterior cingulate cortex (p=.001). CONCLUSIONS Disturbances in regional gray matter development appear to contribute, at least in part, to the poorer attentional performance of VPT children at school age. (JINS, 2017, 23, 539-550).
Collapse
|
53
|
Goldstein IS, Erickson DJ, Sleeper LA, Haynes RL, Kinney HC. The Lateral Temporal Lobe in Early Human Life. J Neuropathol Exp Neurol 2017; 76:424-438. [PMID: 28498956 DOI: 10.1093/jnen/nlx026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abnormalities of lateral temporal lobe development are associated with a spectrum of genetic and environmental pathologic processes, but more normative data are needed for a better understanding of gyrification in this brain region. Here, we begin to establish guidelines for the analysis of the lateral temporal lobe in humans in early life. We present quantitative methods for measuring gyrification at autopsy using photographs of the gross brain and simple computer-based quantitative tools in a cohort of 28 brains ranging in age from 27 to 70 postconceptional weeks (end of infancy). We provide normative ranges for different indices of gyrification and identify a constellation of qualitative features that should also be considered in these analyses. The ratio of the temporal area to the whole brain area increased dramatically in the second half of gestation, but then decelerated after birth before increasing linearly around 50 postconceptional weeks. Tertiary gyrification continued beyond birth in a linear process through infancy with considerable variation in patterns. Analysis of 2 brains with gyral disorders of the lateral temporal lobe demonstrated proof-of-principle that the proposed methods are of diagnostic value. These guidelines are proposed for assessments of temporal lobe pathology in pediatric brains in early life.
Collapse
Affiliation(s)
- Isabel S Goldstein
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School (ISG, DJE, RLH, HCK); and Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA (LAS)
| | - Drexel J Erickson
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School (ISG, DJE, RLH, HCK); and Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA (LAS)
| | - Lynn A Sleeper
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School (ISG, DJE, RLH, HCK); and Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA (LAS)
| | - Robin L Haynes
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School (ISG, DJE, RLH, HCK); and Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA (LAS)
| | - Hannah C Kinney
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School (ISG, DJE, RLH, HCK); and Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA (LAS)
| |
Collapse
|
54
|
Grothe MJ, Scheef L, Bäuml J, Meng C, Daamen M, Baumann N, Zimmer C, Teipel S, Bartmann P, Boecker H, Wolke D, Wohlschläger A, Sorg C. Reduced Cholinergic Basal Forebrain Integrity Links Neonatal Complications and Adult Cognitive Deficits After Premature Birth. Biol Psychiatry 2017; 82:119-126. [PMID: 28129944 DOI: 10.1016/j.biopsych.2016.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/23/2016] [Accepted: 12/09/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Prematurely born individuals have an increased risk for long-term neurocognitive impairments. In animal models, development of the cholinergic basal forebrain (cBF) is selectively vulnerable to adverse effects of perinatal stressors, and impaired cBF integrity results in lasting cognitive deficits. We hypothesized that cBF integrity is impaired in prematurely born individuals and mediates adult cognitive impairments associated with prematurity. METHODS We used magnetic resonance imaging-based volumetric assessments of a cytoarchitectonically defined cBF region of interest to determine differences in cBF integrity between 99 adults who were born very preterm and/or with very low birth weight and 106 term-born control subjects from the same birth cohort. Magnetic resonance imaging-derived cBF volumes were studied in relation to neonatal clinical complications after delivery and intelligence measures (IQ) in adulthood. RESULTS In adults who were born very preterm and/or with very low birth weight, cBF volumes were significantly reduced compared with term-born adults (-4.5% [F1,202 = 11.82, p = .001]). Lower cBF volume in adults who were born very preterm and/or with very low birth weight was specifically associated with both neonatal complications (rpart,92 = -.35, p < .001) and adult IQ (rpart,88 = .33, p = .001) even after controlling for global gray matter and white matter volume. In a path analytic model, cBF volume significantly mediated the association between neonatal complications and adult cognitive deficits. CONCLUSIONS We provide first-time evidence in humans that cBF integrity is impaired after premature birth and links neonatal complications with long-term cognitive outcome. Data suggest that cholinergic system abnormalities may play a relevant role for long-term neurocognitive impairments associated with premature delivery.
Collapse
Affiliation(s)
| | - Lukas Scheef
- Functional Neuroimaging Group, University Hospital Bonn, Bonn
| | - Josef Bäuml
- Department of Neuroradiology, Technische Universität München, Munich, Germany; Technische Universität München-Neuroimaging Center of Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Chun Meng
- Department of Neuroradiology, Technische Universität München, Munich, Germany; Technische Universität München-Neuroimaging Center of Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, University Hospital Bonn, Bonn
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Claus Zimmer
- Department of Neuroradiology, Technische Universität München, Munich, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Peter Bartmann
- Department of Radiology, and Department of Neonatology, University Hospital Bonn, Bonn
| | - Henning Boecker
- Functional Neuroimaging Group, University Hospital Bonn, Bonn
| | - Dieter Wolke
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Afra Wohlschläger
- Technische Universität München-Neuroimaging Center of Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Sorg
- Department of Psychiatry, Technische Universität München, Munich, Germany
| |
Collapse
|
55
|
Watanabe H, Shitara Y, Aoki Y, Inoue T, Tsuchida S, Takahashi N, Taga G. Hemoglobin phase of oxygenation and deoxygenation in early brain development measured using fNIRS. Proc Natl Acad Sci U S A 2017; 114:E1737-E1744. [PMID: 28196885 PMCID: PMC5338505 DOI: 10.1073/pnas.1616866114] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A crucial issue in neonatal medicine is the impact of preterm birth on the developmental trajectory of the brain. Although a growing number of studies have shown alterations in the structure and function of the brain in preterm-born infants, we propose a method to detect subtle differences in neurovascular and metabolic functions in neonates and infants. Functional near-infrared spectroscopy (fNIRS) was used to obtain time-averaged phase differences between spontaneous low-frequency (less than 0.1 Hz) oscillatory changes in oxygenated hemoglobin (oxy-Hb) and those in deoxygenated hemoglobin (deoxy-Hb). This phase difference was referred to as hemoglobin phase of oxygenation and deoxygenation (hPod) in the cerebral tissue of sleeping neonates and infants. We examined hPod in term, late preterm, and early preterm infants with no evidence of clinical issues and found that all groups of infants showed developmental changes in the values of hPod from an in-phase to an antiphase pattern. Comparison of hPod among the groups revealed that developmental changes in hPod in early preterm infants precede those in late preterm and term infants at term equivalent age but then, progress at a slower pace. This study suggests that hPod measured using fNIRS is sensitive to the developmental stage of the integration of circular, neurovascular, and metabolic functions in the brains of neonates and infants.
Collapse
Affiliation(s)
- Hama Watanabe
- Graduate School of Education, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Yoshihiko Shitara
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshinori Aoki
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takanobu Inoue
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinya Tsuchida
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoto Takahashi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Gentaro Taga
- Graduate School of Education, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
56
|
Pagnozzi AM, Dowson N, Fiori S, Doecke J, Bradley AP, Boyd RN, Rose S. Alterations in regional shape on ipsilateral and contralateral cortex contrast in children with unilateral cerebral palsy and are predictive of multiple outcomes. Hum Brain Mapp 2016; 37:3588-603. [PMID: 27259165 DOI: 10.1002/hbm.23262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/07/2022] Open
Abstract
Congenital brain lesions result in a wide range of cerebral tissue alterations observed in children with cerebral palsy (CP) that are associated with a range of functional impairments. The relationship between injury severity and functional outcomes, however, remains poorly understood. This research investigates the differences in cortical shape between children with congenital brain lesions and typically developing children (TDC) and investigates the correlations between cortical shape and functional outcome in a large cohort of patients diagnosed with unilateral CP. Using 139 structural magnetic resonance images, including 95 patients with clinically diagnosed CP and 44 TDC, cortical segmentations were obtained using a modified expectation maximization algorithm. Three shape characteristics (cortical thickness, curvature, and sulcal depth) were computed within a number of cortical regions. Significant differences in these shape measures compared to the TDC were observed on both the injured hemisphere of children with CP (P < 0.004), as well as on the apparently uninjured hemisphere, illustrating potential compensatory mechanisms in these children. Furthermore, these shape measures were significantly correlated with several functional outcomes, including motor, cognition, vision, and communication (P < 0.012), with three out of these four models performing well on test set validation. This study highlights that cortical neuroplastic effects may be quantified using MR imaging, allowing morphological changes to be studied longitudinally, including any influence of treatment. Ultimately, such approaches could be used for the long term prediction of outcomes and the tailoring of treatment to individuals. Hum Brain Mapp 37:3588-3603, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alex M Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia.,The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Nicholas Dowson
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | | | - James Doecke
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Andrew P Bradley
- The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Roslyn N Boyd
- School of Medicine, The University of Queensland, Queensland Cerebral Palsy and Rehabilitation Research Centre, Brisbane, Australia
| | - Stephen Rose
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| |
Collapse
|
57
|
Rand KM, Austin NC, Inder TE, Bora S, Woodward LJ. Neonatal Infection and Later Neurodevelopmental Risk in the Very Preterm Infant. J Pediatr 2016; 170:97-104. [PMID: 26707582 DOI: 10.1016/j.jpeds.2015.11.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/01/2015] [Accepted: 11/06/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To document associations between confirmed and suspected neonatal infection and motor, cognitive, educational, and mental health outcomes of very preterm (VPT)-born children at 9 years of age; to examine the potential intervening role of cerebral white matter abnormalities (WMAs) and structural development on term magnetic resonance imaging. STUDY DESIGN A regional cohort of 110 infants born VPT in Christchurch, New Zealand were studied from birth to age of 9 years. Confirmed infection was defined as positive blood, cerebrospinal fluid or urine culture, and/or necrotizing enterocolitis ≥ stage 2. Suspected infection was defined as ≥ 5 days of antibiotics with evidence of clinical correlates. At term gestational equivalence, infants underwent structural magnetic resonance imaging. At age 9 years, neuromotor function, IQ, educational achievement, and mental health were assessed. RESULTS During hospitalization, 25% of VPT infants had confirmed and 23% had suspected infection. Longer-term neurodevelopmental impairments were largely confined to infants with confirmed infection (relative risk 1.4-3.1, vs uninfected). After accounting for other neonatal factors, these infants were at increased risk of severe motor impairment (OR 3.3, 95% CI 1.3-8), attention deficit hyperactivity disorder (ADHD) (OR 3.6, 95% CI 1.6-8), and IQ delay (OR 2.0, 95% CI 1-3.9). Cerebral WMAs contributed to associations between confirmed infection and motor and IQ impairments but not to ADHD (P = .005). CONCLUSIONS Confirmed neonatal infection heightens VPT infants' risk for neurodevelopmental impairment. WMA appears to be an important intervening factor linking infection and severe motor and IQ impairments. Further analysis of the neurologic mechanism accounting for ADHD in infants with infection is needed.
Collapse
Affiliation(s)
- Katherine M Rand
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA
| | - Nicola C Austin
- Christchurch Women's Hospital, Christchurch, New Zealand; University of Otago, Dunedin, New Zealand
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Samudragupta Bora
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Lianne J Woodward
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| |
Collapse
|
58
|
Thinner Retinal Nerve Fiber Layer in Very Preterm Versus Term Infants and Relationship to Brain Anatomy and Neurodevelopment. Am J Ophthalmol 2015; 160:1296-1308.e2. [PMID: 26386157 DOI: 10.1016/j.ajo.2015.09.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 01/02/2023]
Abstract
PURPOSE To assess retinal nerve fiber layer (RNFL) thickness at term-equivalent age in very preterm (<32 weeks gestational age) vs term-born infant cohorts, and compare very preterm infant RNFL thickness with brain anatomy and neurodevelopment. DESIGN Cohort study. METHODS RNFL was semi-automatically segmented (1 eye per infant) in 57 very preterm and 50 term infants with adequate images from bedside portable, handheld spectral-domain optical coherence tomography imaging at 37-42 weeks postmenstrual age. Mean RNFL thickness was calculated for the papillomacular bundle (-15 degrees to +15 degrees) and temporal quadrant (-45 degrees to +45 degrees) relative to the fovea-optic nerve axis. Brain magnetic resonance imaging (MRI) scans clinically obtained in 26 very preterm infants were scored for global structural abnormalities by an expert masked to data except for age. Cognitive, language, and motor skills were assessed in 33 of the very preterm infants at 18-24 months corrected age. RESULTS RNFL was thinner for very preterm vs term infants at the papillomacular bundle ([mean ± standard deviation] 61 ± 17 vs 72 ± 13 μm, P < .001) and temporal quadrant (72 ± 21 vs 82 ± 16 μm, P = .005). In very preterm infants, thinner papillomacular bundle RNFL correlated with higher global brain MRI lesion burden index (R(2) = 0.35, P = .001) and lower cognitive (R(2) = 0.18, P = .01) and motor (R(2) = 0.17, P = .02) scores. Relationships were similar for temporal quadrant. CONCLUSIONS Thinner RNFL in very preterm infants relative to term-born infants may relate to brain structure and neurodevelopment.
Collapse
|
59
|
Pagnozzi AM, Gal Y, Boyd RN, Fiori S, Fripp J, Rose S, Dowson N. The need for improved brain lesion segmentation techniques for children with cerebral palsy: A review. Int J Dev Neurosci 2015; 47:229-46. [DOI: 10.1016/j.ijdevneu.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023] Open
Affiliation(s)
- Alex M. Pagnozzi
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
- The University of QueenslandSchool of MedicineSt. LuciaBrisbaneAustralia
| | - Yaniv Gal
- The University of QueenslandCentre for Medical Diagnostic Technologies in QueenslandSt. LuciaBrisbaneAustralia
| | - Roslyn N. Boyd
- The University of QueenslandQueensland Cerebral Palsy and Rehabilitation Research CentreSchool of MedicineBrisbaneAustralia
| | - Simona Fiori
- Department of Developmental NeuroscienceStella Maris Scientific InstitutePisaItaly
| | - Jurgen Fripp
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| | - Stephen Rose
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| | - Nicholas Dowson
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| |
Collapse
|
60
|
Hammer R, Cooke GE, Stein MA, Booth JR. Functional neuroimaging of visuospatial working memory tasks enables accurate detection of attention deficit and hyperactivity disorder. Neuroimage Clin 2015; 9:244-52. [PMID: 26509111 PMCID: PMC4576365 DOI: 10.1016/j.nicl.2015.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 01/30/2023]
Abstract
Finding neurobiological markers for neurodevelopmental disorders, such as attention deficit and hyperactivity disorder (ADHD), is a major objective of clinicians and neuroscientists. We examined if functional Magnetic Resonance Imaging (fMRI) data from a few distinct visuospatial working memory (VSWM) tasks enables accurately detecting cases with ADHD. We tested 20 boys with ADHD combined type and 20 typically developed (TD) boys in four VSWM tasks that differed in feedback availability (feedback, no-feedback) and reward size (large, small). We used a multimodal analysis based on brain activity in 16 regions of interest, significantly activated or deactivated in the four VSWM tasks (based on the entire participants' sample). Dimensionality of the data was reduced into 10 principal components that were used as the input variables to a logistic regression classifier. fMRI data from the four VSWM tasks enabled a classification accuracy of 92.5%, with high predicted ADHD probability values for most clinical cases, and low predicted ADHD probabilities for most TDs. This accuracy level was higher than those achieved by using the fMRI data of any single task, or the respective behavioral data. This indicates that task-based fMRI data acquired while participants perform a few distinct VSWM tasks enables improved detection of clinical cases.
Collapse
Affiliation(s)
- Rubi Hammer
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA ; Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Gillian E Cooke
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA ; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, USA
| | - Mark A Stein
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - James R Booth
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA ; Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA ; Department of Communication Sciences and Disorders, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
61
|
Hammer R, Tennekoon M, Cooke GE, Gayda J, Stein MA, Booth JR. Feedback associated with expectation for larger-reward improves visuospatial working memory performances in children with ADHD. Dev Cogn Neurosci 2015; 14:38-49. [PMID: 26142072 PMCID: PMC4536089 DOI: 10.1016/j.dcn.2015.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 01/05/2023] Open
Abstract
Children with ADHD and normal controls were tested in working memory tasks. Availability of feedback and expectation for monetary reward were manipulated. ADHDs showed improved working memory when feedback was associated with larger-reward. Performance improvement in ADHD was associated with brain activity normalization.
We tested the interactive effect of feedback and reward on visuospatial working memory in children with ADHD. Seventeen boys with ADHD and 17 Normal Control (NC) boys underwent functional magnetic resonance imaging (fMRI) while performing four visuospatial 2-back tasks that required monitoring the spatial location of letters presented on a display. Tasks varied in reward size (large; small) and feedback availability (no-feedback; feedback). While the performance of NC boys was high in all conditions, boys with ADHD exhibited higher performance (similar to those of NC boys) only when they received feedback associated with large-reward. Performance pattern in both groups was mirrored by neural activity in an executive function neural network comprised of few distinct frontal brain regions. Specifically, neural activity in the left and right middle frontal gyri of boys with ADHD became normal-like only when feedback was available, mainly when feedback was associated with large-reward. When feedback was associated with small-reward, or when large-reward was expected but feedback was not available, boys with ADHD exhibited altered neural activity in the medial orbitofrontal cortex and anterior insula. This suggests that contextual support normalizes activity in executive brain regions in children with ADHD, which results in improved working memory.
Collapse
Affiliation(s)
- Rubi Hammer
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States; Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, United States.
| | - Michael Tennekoon
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States; Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, United States
| | - Gillian E Cooke
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States; Beckman Institute for Advanced Science, University of Illinois, Urbana-Champaign, IL, United States
| | - Jessica Gayda
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Mark A Stein
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - James R Booth
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States; Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, United States; Department of Communication Sciences and Disorders, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|