51
|
de Castro TF, de Assis Manoel F, Figueiredo DH, Figueiredo DH, Machado FA. Effects of chronic beetroot juice supplementation on maximum oxygen uptake, velocity associated with maximum oxygen uptake, and peak velocity in recreational runners: a double-blinded, randomized and crossover study. Eur J Appl Physiol 2019; 119:1043-1053. [DOI: 10.1007/s00421-019-04094-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/06/2019] [Indexed: 12/17/2022]
|
52
|
Jo E, Fischer M, Auslander AT, Beigarten A, Daggy B, Hansen K, Kessler L, Osmond A, Wang H, Wes R. The Effects of Multi-Day vs. Single Pre-exercise Nitrate Supplement Dosing on Simulated Cycling Time Trial Performance and Skeletal Muscle Oxygenation. J Strength Cond Res 2019; 33:217-224. [PMID: 28445231 DOI: 10.1519/jsc.0000000000001958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Jo, E, Fischer, M, Auslander, AT, Beigarten, A, Daggy, B, Hansen, K, Kessler, L, Osmond, A, Wang, H, and Wes, R. The effects of multiday vs. single pre-exercise nitrate supplement dosing on simulated cycling time trial performance and skeletal muscle oxygenation. J Strength Cond Res 33(1): 217-224, 2019-A transient augmentation in the metabolic efficiency of skeletal muscle is the purported basis for dietary nitrate supplementation amongst competitive and recreational athletes alike. Previous studies support the ergogenic effects of nitrate supplementation, as findings indicated improved microvascular blood flow, exercise economy, and performance with relatively short-term supplementation. As with most ergogenic aids, the optimum duration of supplementation before performance or competition, i.e., loading phase, is a critical determinant for efficacy. Therefore, the purpose of this study was to investigate the effects of long-term vs. single dosing nitrate supplementation on skeletal muscle oxygenation and cycling performance. In a randomized, placebo controlled, double blind, parallel design study, healthy, recreationally active men (n = 15) and women (n = 14) subjects (age = 18-29 years) completed an 8 km (5 mi) simulated cycling time trial before and after a 14-day supplementation period with either a nitrate supplement (Multi-Day Dosing Group) (n = 14) or placebo (Single Pre-Exercise Dosing Group; SD) (n = 15). Both groups consumed a single dose of the nitrate supplement 2 hours before the post-treatment time trial. In addition, skeletal muscle oxygenation was measured via near-infrared spectroscopy during each time trial. Multiday nitrate supplementation significantly decreased time to completion (p = 0.01) and increased average power (p = 0.04) and speed (p = 0.02) from pre-to post-treatment, while a single dosing produced no significant changes to these measures. There were no significant differences over time and across treatments for any other measures including muscle oxygenation variables. Overall, long-term nitrate supplementation appears to have an advantage over a single pre-exercise dosing on cycling performance and metabolic efficiency as indicated by an increase in power output with no change in oxygenation.
Collapse
Affiliation(s)
- Edward Jo
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| | - Michelle Fischer
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| | - Alexandra T Auslander
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| | - Alan Beigarten
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| | - Bruce Daggy
- Research and Development, Shaklee Corporation, Pleasanton, California
| | - Ken Hansen
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| | - Lisa Kessler
- Department of Human Nutrition and Food Science, California State Polytechnic University, Pomona, Pomona, California
| | - Adam Osmond
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| | - Hong Wang
- Research and Development, Shaklee Corporation, Pleasanton, California
| | - Rachel Wes
- Human Performance Research Laboratory, Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, California
| |
Collapse
|
53
|
Chronic high-dose beetroot juice supplementation improves time trial performance of well-trained cyclists in normoxia and hypoxia. Nitric Oxide 2019; 85:44-52. [PMID: 30685420 DOI: 10.1016/j.niox.2019.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 11/21/2022]
Abstract
Dietary nitrate (NO3-) supplementation via beetroot juice (BR) is known to improve endurance performance in untrained and moderately trained individuals. However, conflicting results exist in well-trained individuals. Evidence suggests that the effects of NO3- are augmented during conditions of reduced oxygen availability (e.g., hypoxia), thereby increasing the probability of performance improvements for well-trained athletes in hypoxia vs. normoxia. This randomized, double-blinded, counterbalanced-crossover study examined the effects of 7 days of BR supplementation with 12.4 mmol NO3- per day on 10-km cycling time trial (TT) performance in 12 well-trained cyclists in normoxia (N) and normobaric hypoxia (H). Linear mixed models for repeated measures revealed increases in plasma NO3- and NO2- after supplementation with BR (both p < 0.001). Further, TT performance increased with BR supplementation (∼1.6%, p < 0.05), with no difference between normoxia and hypoxia (p = 0.92). For respiratory variables there were significant effects of supplementation on VO2 (p < 0.05) and VE (p < 0.05) such that average VO2 and VE during the TT increased with BR, with no difference between normoxia and hypoxia (p ≥ 0.86). We found no effect of supplementation on heart rate, oxygen saturation or muscle oxygenation during the TT. Our results provide new evidence that chronic high-dose NO3- supplementation improves cycling performance of well-trained cyclists in both normoxia and hypoxia.
Collapse
|
54
|
Richards JC, Racine ML, Hearon CM, Kunkel M, Luckasen GJ, Larson DG, Allen JD, Dinenno FA. Acute ingestion of dietary nitrate increases muscle blood flow via local vasodilation during handgrip exercise in young adults. Physiol Rep 2019; 6. [PMID: 29380952 PMCID: PMC5789727 DOI: 10.14814/phy2.13572] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/04/2022] Open
Abstract
Dietary nitrate (NO3−) is converted to nitrite (NO2−) and can be further reduced to the vasodilator nitric oxide (NO) amid a low O2 environment. Accordingly, dietary NO3− increases hind limb blood flow in rats during treadmill exercise; however, the evidence of such an effect in humans is unclear. We tested the hypothesis that acute dietary NO3− (via beetroot [BR] juice) increases forearm blood flow (FBF) via local vasodilation during handgrip exercise in young adults (n = 11; 25 ± 2 years). FBF (Doppler ultrasound) and blood pressure (Finapres) were measured at rest and during graded handgrip exercise at 5%, 15%, and 25% maximal voluntary contraction (MVC) lasting 4 min each. At the highest workload (25% MVC), systemic hypoxia (80% SaO2) was induced and exercise continued for three additional minutes. Subjects ingested concentrated BR (12.6 mmol nitrate (n = 5) or 16.8 mmol nitrate (n = 6) and repeated the exercise bout either 2 (12.6 mmol) or 3 h (16.8 mmol) postconsumption. Compared to control, BR significantly increased FBF at 15% MVC (184 ± 15 vs. 164 ± 15 mL/min), 25% MVC (323 ± 27 vs. 286 ± 28 mL/min), and 25% + hypoxia (373 ± 39 vs. 343 ± 32 mL/min) and this was due to increases in vascular conductance (i.e., vasodilation). The effect of BR on hemodynamics was not different between the two doses of BR ingested. Forearm VO2 was also elevated during exercise at 15% and 25% MVC. We conclude that acute increases in circulating NO3− and NO2− via BR increases muscle blood flow during moderate‐ to high‐intensity handgrip exercise via local vasodilation. These findings may have important implications for aging and diseased populations that demonstrate impaired muscle perfusion and exercise intolerance.
Collapse
Affiliation(s)
- Jennifer C Richards
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| | - Matthew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher M Hearon
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| | - Megan Kunkel
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| | - Gary J Luckasen
- Medical Center of the Rockies Foundation, Poudre Valley Health System, Loveland, Colorado, USA
| | - Dennis G Larson
- Medical Center of the Rockies Foundation, Poudre Valley Health System, Loveland, Colorado, USA
| | - Jason D Allen
- Department of Kinesiology, Curry School of Education, University of Virginia, Charlottesville, Virginia, USA.,Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
55
|
Coggan AR, Broadstreet SR, Mikhalkova D, Bole I, Leibowitz JL, Kadkhodayan A, Park S, Thomas DP, Thies D, Peterson LR. Dietary nitrate-induced increases in human muscle power: high versus low responders. Physiol Rep 2019; 6. [PMID: 29368802 PMCID: PMC5789728 DOI: 10.14814/phy2.13575] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/26/2023] Open
Abstract
Maximal neuromuscular power is an important determinant of athletic performance and also quality of life, independence, and perhaps even mortality in patient populations. We have shown that dietary nitrate (NO3−), a source of nitric oxide (NO), improves muscle power in some, but not all, subjects. The present investigation was designed to identify factors contributing to this interindividual variability. Healthy men (n = 13) and women (n = 7) 22–79 year of age and weighing 52.1–114.9 kg were studied using a randomized, double‐blind, placebo‐controlled, crossover design. Subjects were tested 2 h after ingesting beetroot juice (BRJ) either containing or devoid of 12.3 ± 0.8 mmol of NO3−. Plasma NO3− and nitrite (NO2−) were measured as indicators of NO bioavailability and maximal knee extensor speed (Vmax), power (Pmax), and fatigability were determined via isokinetic dynamometry. On average, dietary NO3− increased (P < 0.05) Pmax by 4.4 ± 8.1%. Individual changes, however, ranged from −9.6 to +26.8%. This interindividual variability was not significantly correlated with age, body mass (inverse of NO3− dose per kg), body mass index (surrogate for body composition) or placebo trial Vmax or fatigue index (in vivo indicators of muscle fiber type distribution). In contrast, the relative increase in Pmax was significantly correlated (r = 0.60; P < 0.01) with the relative increase in plasma NO2− concentration. In multivariable analysis female sex also tended (P = 0.08) to be associated with a greater increase in Pmax. We conclude that the magnitude of the dietary NO3−‐induced increase in muscle power is dependent upon the magnitude of the resulting increase in plasma NO2− and possibly female sex.
Collapse
Affiliation(s)
- Andrew R Coggan
- Departments of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana.,Cellular and Integrative Physiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana.,Departments of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Seth R Broadstreet
- Departments of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Deana Mikhalkova
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Indra Bole
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua L Leibowitz
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ana Kadkhodayan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Soo Park
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Deepak P Thomas
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Dakkota Thies
- Departments of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Linda R Peterson
- Departments of Radiology, Washington University School of Medicine, St. Louis, Missouri.,Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
56
|
de Castro TF, Manoel FDA, Figueiredo DH, Figueiredo DH, Machado FA. Effect of beetroot juice supplementation on 10-km performance in recreational runners. Appl Physiol Nutr Metab 2019; 44:90-94. [DOI: 10.1139/apnm-2018-0277] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the effects of chronic beetroot juice (BRJ) supplementation on 10-km running performance in recreational runners. In a double-blind, placebo-controlled, crossover-designed study, 14 male recreational runners (age, 27.8 ± 3.4 years) performed three 10-km running tests, at baseline and under the conditions of BRJ supplementation and placebo (PLA). Supplementation was administered for 3 days, and on the days of the assessments, the ingestion occurred 2 h before the test and consisted of a dose of 420 mL of BRJ in natura (8.4 mmol inorganic nitrate (NO3−)·day−1) or PLA with depleted NO3− (0.01 mmol NO3−·day−1). The mean velocity (MV) was calculated, and the following variables were determined: maximal heart rate, maximal rating of perceived exertion, blood glucose concentration (analyzed before and after the test), and lactate peak. There was no main effect between conditions regarding 10-km running time performance (BRJ: 50.1 ± 5.3 min; PLA: 51.0 ± 5.1 min; P = 0.391) and total MV (BRJ: 12.1 ± 1.3 km·h−1; PLA: 11.9 ± 1.2 km·h−1; P = 0.321) or in the other analyzed variables. The time to complete the first half of the test (5 km) was statistically lower in the BRJ group than in the PLA group (P = 0.027). In conclusion, chronic supplementation with BRJ increased MV in the first half of the test and improved the final test times of 10 of the 14 runners, although we did not find a statistically significant difference in the performance of the 10-km run.
Collapse
Affiliation(s)
- Talitha Fernandes de Castro
- Post-graduate Program of Physiological Sciences, Department of Physiological Sciences, State University of Maringá, 87020-900 Maringá-PR, Brazil
| | - Francisco de Assis Manoel
- Associate Post-graduate Program in Physical Education UEM/UEL, Department of Physical Education, State University of Maringá, 87020-900 Maringá-PR, Brazil
| | - Diogo Hilgemberg Figueiredo
- Associate Post-graduate Program in Physical Education UEM/UEL, Department of Physical Education, State University of Maringá, 87020-900 Maringá-PR, Brazil
| | - Diego Hilgemberg Figueiredo
- Associate Post-graduate Program in Physical Education UEM/UEL, Department of Physical Education, State University of Maringá, 87020-900 Maringá-PR, Brazil
| | - Fabiana Andrade Machado
- Post-graduate Program of Physiological Sciences, Department of Physiological Sciences, State University of Maringá, 87020-900 Maringá-PR, Brazil
- Associate Post-graduate Program in Physical Education UEM/UEL, Department of Physical Education, State University of Maringá, 87020-900 Maringá-PR, Brazil
| |
Collapse
|
57
|
Caldwell JT, Sutterfield SL, Post HK, Craig JC, Baumfalk DR, Copp SW, Ade CJ. Impact of Acute Dietary Nitrate Supplementation during Exercise in Hypertensive Women. Med Sci Sports Exerc 2018; 51:1014-1021. [PMID: 30531488 DOI: 10.1249/mss.0000000000001857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION the aim of the current investigation was to examine if dietary nitrate supplementation would improve vascular control in hypertensive postmenopausal women (PMW). We tested the hypotheses that acute dietary nitrate supplementation would 1) significantly decrease arterial blood pressure (BP) at rest and during exercise, 2) increase limb blood flow during steady-state (SS) exercise, and 3) improve functional sympatholysis during SS exercise. METHODS Ten hypertensive PMW underwent a randomized, double-blind, placebo-controlled trial with a nitrate-rich (NR) or nitrate-poor (NP) supplement. Beat-by-beat BP and heart rate were recorded throughout the trial on the nonexercising limb. Forearm blood flow was measured via ultrasonography on the brachial artery of the exercising limb. All patients performed a resting cold pressor test (CPT) (2 min) and then 7 min of submaximal handgrip exercise with a CPT applied during minutes 5-7. RESULTS SS systolic (NR, 170 ± 7; NP, 171 ± 37 mm Hg), diastolic (NR, 89 ± 2; NP, 92 ± 2 mm Hg), and mean arterial (NR, 121 ± 4; NP, 123 ± 2 mm Hg) pressures were not different between NP and NR treatment conditions (P > 0.05). During SS exercise, forearm blood flow (NR, 189 ± 8; NP, 218 ± 8 mL·min; P = 0.03) in the NR treatment was significantly lower compared with NP. When the CPT was applied during minutes 6-7 of exercise, forearm vascular conductance was reduced by 15% in the NR condition, but only 7% in the NR condition. CONCLUSIONS In summary, an acute NR supplement improved functional sympatholysis by ~50% versus an NP placebo condition. Improvements in functional sympatholysis may have important implications regarding exercise tolerance in hypertensive PMW.
Collapse
Affiliation(s)
- Jacob T Caldwell
- Department of Kinesiology, Kansas State University, Manhattan, KS
| | | | | | | | | | | | | |
Collapse
|
58
|
Carriker CR, Rombach P, Stevens BM, Vaughan RA, Gibson AL. Acute dietary nitrate supplementation does not attenuate oxidative stress or the hemodynamic response during submaximal exercise in hypobaric hypoxia. Appl Physiol Nutr Metab 2018; 43:1268-1274. [DOI: 10.1139/apnm-2017-0813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to investigate changes in oxidative stress, arterial oxygen saturation (SaO2), blood pressure (BP), and heart rate (HR) during exercise in hypobaric hypoxia following acute dietary nitrate supplementation. Nine well-trained (maximal oxygen consumption, 60.8 ± 7.8 mL·kg−1·min−1) males (age, 29 ± 7 years) visited the laboratory on 3 occasions, each separated by 1 week. Visit 1 included a maximal aerobic cycling test and five 5-min increasing-intensity exercise bouts in a normobaric environment (1600 m). A single dose of either a nitrate-depleted placebo (PL) or a nitrate-rich beverage (NR; 12.8 mmol nitrate) was consumed 2.5 h prior to exercise during visits 2 and 3 (3500 m) in a double-blind, placebo-controlled, crossover study consisting of a 5-min cycling warm-up and 4 bouts, each 5 min in duration, separated by 4-min periods of passive rest. Exercise wattages were determined during visit 1 and corresponded to 25%, 40%, 50%, 60%, and 70% of normobaric maximal oxygen consumption. Catalase and 8-isoprostane were measured before and after exercise (immediately before and 1 h postexercise, respectively). NR increased plasma nitrite (1.53 ± 0.83 μmol·L−1) compared with PL (0.88 ± 0.56 μmol·L−1) (p < 0.05). In both conditions, postexercise (3500 m) 8-isoprostane (PL, 23.49 ± 3.38 to 60.90 ± 14.95 pg·mL−1; NR, 23.23 ± 4.12 to 52.11 ± 19.76 pg·mL−1) and catalase (PL, 63.89 ± 25.69 to 128.15 ± 41.80 mmol·min−1·mL−1; NR, 78.89 ± 30.95 to 109.96 ± 35.05 mmol·min−1·mL−1) were elevated compared with baseline resting values (p < 0.05). However, both 8-isoprostane and catalase were similar in the 2 groups (PL and NR) (p = 0.217 and p = 0.080, respectively). We concluded that an acute, pre-exercise dose of dietary nitrate yielded no beneficial changes in oxidative stress, SaO2, BP, or HR in healthy, aerobically fit men exercising at 3500 m.
Collapse
Affiliation(s)
- Colin R. Carriker
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Paige Rombach
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Brooke M. Stevens
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Roger A. Vaughan
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Ann L. Gibson
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
59
|
Shannon OM, McGawley K, Nybäck L, Duckworth L, Barlow MJ, Woods D, Siervo M, O'Hara JP. "Beet-ing" the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude. Sports Med 2018; 47:2155-2169. [PMID: 28577258 PMCID: PMC5633647 DOI: 10.1007/s40279-017-0744-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea level. Recently, dietary nitrate (NO3−) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3− supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3− supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/performance. Conversely, current evidence suggests that NO3− supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3− at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3− supplementation. No effects of NO3− supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided.
Collapse
Affiliation(s)
- Oliver Michael Shannon
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Linn Nybäck
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Lauren Duckworth
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Matthew John Barlow
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - David Woods
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.,Defence Medical Services, Royal Centre for Defence Medicine, Birmingham, B152TH, UK
| | - Mario Siervo
- Institute of Cellular Medicine, University of Newcastle, Newcastle upon Tyne, NE45PL, UK
| | - John Paul O'Hara
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| |
Collapse
|
60
|
Thompson C, Vanhatalo A, Kadach S, Wylie LJ, Fulford J, Ferguson SK, Blackwell JR, Bailey SJ, Jones AM. Discrete physiological effects of beetroot juice and potassium nitrate supplementation following 4-wk sprint interval training. J Appl Physiol (1985) 2018; 124:1519-1528. [DOI: 10.1152/japplphysiol.00047.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The physiological and exercise performance adaptations to sprint interval training (SIT) may be modified by dietary nitrate ([Formula: see text]) supplementation. However, it is possible that different types of [Formula: see text] supplementation evoke divergent physiological and performance adaptations to SIT. The purpose of this study was to compare the effects of 4-wk SIT with and without concurrent dietary [Formula: see text] supplementation administered as either [Formula: see text]-rich beetroot juice (BR) or potassium [Formula: see text] (KNO3). Thirty recreationally active subjects completed a battery of exercise tests before and after a 4-wk intervention in which they were allocated to one of three groups: 1) SIT undertaken without dietary [Formula: see text] supplementation (SIT); 2) SIT accompanied by concurrent BR supplementation (SIT + BR); or 3) SIT accompanied by concurrent KNO3 supplementation (SIT + KNO3). During severe-intensity exercise, V̇o2peak and time to task failure were improved to a greater extent with SIT + BR than SIT and SIT + KNO3 ( P < 0.05). There was also a greater reduction in the accumulation of muscle lactate at 3 min of severe-intensity exercise in SIT + BR compared with SIT + KNO3 ( P < 0.05). Plasma [Formula: see text] concentration fell to a greater extent during severe-intensity exercise in SIT + BR compared with SIT and SIT + KNO3 ( P < 0.05). There were no differences between groups in the reduction in the muscle phosphocreatine recovery time constant from pre- to postintervention ( P > 0.05). These findings indicate that 4-wk SIT with concurrent BR supplementation results in greater exercise capacity adaptations compared with SIT alone and SIT with concurrent KNO3 supplementation. This may be the result of greater NO-mediated signaling in SIT + BR compared with SIT + KNO3. NEW & NOTEWORTHY We compared the influence of different forms of dietary nitrate supplementation on the physiological and performance adaptations to sprint interval training (SIT). Compared with SIT alone, supplementation with nitrate-rich beetroot juice, but not potassium [Formula: see text], enhanced some physiological adaptations to training.
Collapse
Affiliation(s)
| | - Anni Vanhatalo
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Stefan Kadach
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Lee J. Wylie
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Jonathan Fulford
- University of Exeter Medical School and National Institute for Health Research, Exeter Clinical Research Facility, Exeter, United Kingdom
| | - Scott K. Ferguson
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | | | - Stephen J. Bailey
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew M. Jones
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
61
|
Tan R, Wylie LJ, Thompson C, Blackwell JR, Bailey SJ, Vanhatalo A, Jones AM. Beetroot juice ingestion during prolonged moderate-intensity exercise attenuates progressive rise in O2 uptake. J Appl Physiol (1985) 2018; 124:1254-1263. [DOI: 10.1152/japplphysiol.01006.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nitrate-rich beetroot juice (BR) supplementation has been shown to increase biomarkers of nitric oxide availability with implications for the physiological responses to exercise. We hypothesized that BR supplementation before and during prolonged moderate-intensity exercise would maintain an elevated plasma nitrite concentration ([[Formula: see text]]), attenuate the expected progressive increase in V̇o2 over time, and improve performance in a subsequent time trial (TT). In a double-blind, randomized, crossover design, 12 men completed 2 h of moderate-intensity cycle exercise followed by a 100-kJ TT in three conditions: 1) BR before and 1 h into exercise (BR + BR); 2) BR before and placebo (PL) 1 h into exercise (BR + PL); and 3) PL before and 1 h into exercise (PL + PL). During the 2-h moderate-intensity exercise bout, plasma [[Formula: see text]] declined by ~17% in BR + PL but increased by ~8% in BR + BR such that, at 2 h, plasma [[Formula: see text]] was greater in BR + BR than both BR + PL and PL + PL ( P < 0.05). V̇o2 was not different among conditions over the first 90 min of exercise but was lower at 120 min in BR + BR (1.73 ± 0.24 l/min) compared with BR + PL (1.80 ± 0.21 l/min; P = 0.08) and PL + PL (1.83 ± 0.27 l/min; P < 0.01). The decline in muscle glycogen concentration over the 2-h exercise bout was attenuated in BR + BR (~28% decline) compared with BR + PL (~44% decline) and PL + PL (~44% decline; n = 9, P < 0.05). TT performance was not different among conditions ( P > 0.05). BR supplementation before and during prolonged moderate-intensity exercise attenuated the progressive rise in V̇o2 over time and appeared to reduce muscle glycogen depletion but did not enhance subsequent TT performance. NEW & NOTEWORTHY We show for the first time that ingestion of nitrate during exercise preserves elevated plasma [nitrite] and negates the progressive rise in O2 uptake during prolonged moderate-intensity exercise.
Collapse
Affiliation(s)
- Rachel Tan
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Lee J. Wylie
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Christopher Thompson
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Jamie R. Blackwell
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Stephen J. Bailey
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Anni Vanhatalo
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Andrew M. Jones
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
62
|
Woessner MN, McIlvenna LC, Ortiz de Zevallos J, Neil CJ, Allen JD. Dietary nitrate supplementation in cardiovascular health: an ergogenic aid or exercise therapeutic? Am J Physiol Heart Circ Physiol 2018; 314:H195-H212. [DOI: 10.1152/ajpheart.00414.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oral consumption of inorganic nitrate, which is abundant in green leafy vegetables and roots, has been shown to increase circulating plasma nitrite concentration, which can be converted to nitric oxide in low oxygen conditions. The associated beneficial physiological effects include a reduction in blood pressure, modification of platelet aggregation, and increases in limb blood flow. There have been numerous studies of nitrate supplementation in healthy recreational and competitive athletes; however, the ergogenic benefits are currently unclear due to a variety of factors including small sample sizes, different dosing regimens, variable nitrate conversion rates, the heterogeneity of participants’ initial fitness levels, and the types of exercise tests used. In clinical populations, the study results seem more promising, particularly in patients with cardiovascular diseases who typically present with disruptions in the ability to transport oxygen from the atmosphere to working tissues and reduced exercise tolerance. Many of these disease-related, physiological maladaptations, including endothelial dysfunction, increased reactive oxygen species, reduced tissue perfusion, and muscle mitochondrial dysfunction, have been previously identified as potential targets for nitric oxide restorative effects. This review is the first of its kind to outline the current evidence for inorganic nitrate supplementation as a therapeutic intervention to restore exercise tolerance and improve quality of life in patients with cardiovascular diseases. We summarize the factors that appear to limit or maximize its effectiveness and present a case for why it may be more effective in patients with cardiovascular disease than as ergogenic aid in healthy populations.
Collapse
Affiliation(s)
- Mary N. Woessner
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Luke C. McIlvenna
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Joaquin Ortiz de Zevallos
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Christopher J. Neil
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Jason D. Allen
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
63
|
Takakura H, Ojino M, Jue T, Yamada T, Furuichi Y, Hashimoto T, Iwase S, Masuda K. Intracellular oxygen tension limits muscle contraction-induced change in muscle oxygen consumption under hypoxic conditions during Hb-free perfusion. Physiol Rep 2017; 5:5/2/e13112. [PMID: 28108649 PMCID: PMC5269414 DOI: 10.14814/phy2.13112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/24/2022] Open
Abstract
Under acute hypoxic conditions, the muscle oxygen uptake (mV˙O2) during exercise is reduced by the restriction in oxygen-supplied volume to the mitochondria within the peripheral tissue. This suggests the existence of a factor restricting the mV˙O2 under hypoxic conditions at the peripheral tissue level. Therefore, this study set out to test the hypothesis that the restriction in mV˙O2 is regulated by the net decrease in intracellular oxygen tension equilibrated with myoglobin oxygen saturation (∆PmbO2) during muscle contraction under hypoxic conditions. The hindlimb of male Wistar rats (8 weeks old, n = 5) was perfused with hemoglobin-free Krebs-Henseleit buffer equilibrated with three different fractions of O2 gas: 95.0%O2, 71.3%O2, and 47.5%O2 The deoxygenated myoglobin (Mb) kinetics during muscle contraction were measured under each oxygen condition with a near-infrared spectroscopy. The ∆[deoxy-Mb] kinetics were converted to oxygen saturation of myoglobin (SmbO2), and the PmbO2 was then calculated based on the SmbO2 and the O2 dissociation curve of the Mb. The SmbO2 and PmbO2 at rest decreased with the decrease in O2 supply, and the muscle contraction caused a further decrease in SmbO2 and PmbO2 under all O2 conditions. The net increase in mV˙O2 from the muscle contraction (∆mV˙O2) gradually decreased as the ∆PmbO2 decreased during muscle contraction. The results of this study suggest that ΔPmbO2 is a key determinant of the ΔmV˙O2.
Collapse
Affiliation(s)
- Hisashi Takakura
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Japan.,Faculty of Human Sciences, Kanazawa University, Kanazawa, Japan
| | - Minoru Ojino
- Faculty of Human Sciences, Kanazawa University, Kanazawa, Japan
| | - Thomas Jue
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California
| | - Tatsuya Yamada
- Faculty of Human Sciences, Kanazawa University, Kanazawa, Japan.,Department of Cell Biology, School of Medicine Johns Hopkins University, Baltimore, Maryland
| | - Yasuro Furuichi
- Faculty of Human Sciences, Kanazawa University, Kanazawa, Japan.,Department of Health Promotion Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Satoshi Iwase
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Kazumi Masuda
- Faculty of Human Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
64
|
Ghiarone T, Ataide-Silva T, Bertuzzi R, McConell GK, Lima-Silva AE. Effect of acute nitrate ingestion on V̇O2 response at different exercise intensity domains. Appl Physiol Nutr Metab 2017; 42:1127-1134. [DOI: 10.1139/apnm-2017-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While nitrate supplementation influences oxygen uptake (V̇O2) response to exercise, this effect may be intensity dependent. The purpose of this study was to investigate the effect of acute nitrate supplementation on V̇O2 response during different exercise intensity domains in humans. Eleven men ingested 10 mg·kg−1 body mass (8.76 ± 1.35 mmol) of sodium nitrate or sodium chloride (placebo) 2.5 h before cycling at moderate (90% of gas exchange threshold; GET), heavy (GET + 40% of the difference between GET and peak oxygen uptake (V̇O2peak), Δ 40) or severe (GET + 80% of the difference between GET and V̇O2peak, Δ 80) exercise intensities. Volunteers performed exercise for 10 min (moderate), 15 min (heavy) or until exhaustion (severe). Acute nitrate supplementation had no effect on any V̇O2 response parameters during moderate and severe exercise intensities. However, the V̇O2 slow amplitude (nitrate: 0.93 ± 0.36 L·min−1 vs. placebo: 1.13 ± 0.59 L·min−1, p = 0.04) and V̇O2 slow gain (nitrate: 5.81 ± 2.37 mL·min–1·W−1 vs. placebo: 7.09 ± 3.67 mL·min–1·W−1, p = 0.04) were significantly lower in nitrate than in placebo during the heavy exercise intensity. There was no effect of nitrate on plasma lactate during any exercise intensity (p > 0.05). Time to exhaustion during the severe exercise intensity was also not affected by nitrate (p > 0.05). In conclusion, acute nitrate supplementation reduced the slow component of V̇O2 only when performing heavy-intensity exercise, which might indicate an intensity-dependent effect of nitrate on V̇O2 response.
Collapse
Affiliation(s)
- Thaysa Ghiarone
- Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco 55608680, Brazil
| | - Thays Ataide-Silva
- Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco 55608680, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), University of Sao Paulo, Sao Paulo 05508-030, Brazil
| | - Glenn Kevin McConell
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria 3011, Australia
| | - Adriano Eduardo Lima-Silva
- Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco 55608680, Brazil
- Human Performance Research Group, Technological Federal University of Parana, Parana 81310900, Brazil
| |
Collapse
|
65
|
Poole DC, Richardson RS, Haykowsky MJ, Hirai DM, Musch TI. Exercise limitations in heart failure with reduced and preserved ejection fraction. J Appl Physiol (1985) 2017; 124:208-224. [PMID: 29051336 DOI: 10.1152/japplphysiol.00747.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The hallmark symptom of chronic heart failure (HF) is severe exercise intolerance. Impaired perfusive and diffusive O2 transport are two of the major determinants of reduced physical capacity and lowered maximal O2 uptake in patients with HF. It has now become evident that this syndrome manifests at least two different phenotypic variations: heart failure with preserved or reduced ejection fraction (HFpEF and HFrEF, respectively). Unlike HFrEF, however, there is currently limited understanding of HFpEF pathophysiology, leading to a lack of effective pharmacological treatments for this subpopulation. This brief review focuses on the disturbances within the O2 transport pathway resulting in limited exercise capacity in both HFpEF and HFrEF. Evidence from human and animal research reveals HF-induced impairments in both perfusive and diffusive O2 conductances identifying potential targets for clinical intervention. Specifically, utilization of different experimental approaches in humans (e.g., small vs. large muscle mass exercise) and animals (e.g., intravital microscopy and phosphorescence quenching) has provided important clues to elucidating these pathophysiological mechanisms. Adaptations within the skeletal muscle O2 delivery-utilization system following established and emerging therapies (e.g., exercise training and inorganic nitrate supplementation, respectively) are discussed. Resolution of the underlying mechanisms of skeletal muscle dysfunction and exercise intolerance is essential for the development and refinement of the most effective treatments for patients with HF.
Collapse
|
66
|
Smith JR, Ferguson SK, Hageman KS, Harms CA, Poole DC, Musch TI. Dietary nitrate supplementation opposes the elevated diaphragm blood flow in chronic heart failure during submaximal exercise. Respir Physiol Neurobiol 2017; 247:140-145. [PMID: 29037770 DOI: 10.1016/j.resp.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/13/2017] [Accepted: 09/29/2017] [Indexed: 02/05/2023]
Abstract
Chronic heart failure (CHF) results in a greater cost of breathing and necessitates an elevated diaphragm blood flow (BF). Dietary nitrate (NO3‾) supplementation lowers the cost of exercise. We hypothesized that dietary NO3‾ supplementation would attenuate the CHF-induced greater cost of breathing and thus the heightened diaphragm BF during exercise. CHF rats received either 5days of NO3‾-rich beetroot (BR) juice (CHF+BR, n=10) or a placebo (CHF, n=10). Respiratory muscle BFs (radiolabeled microspheres) were measured at rest and during submaximal exercise (20m/min, 5% grade). Infarcted left ventricular area and normalized lung weight were not significantly different between groups. During submaximal exercise, diaphragm BF was markedly lower for CHF+BR than CHF (CHF+BR: 195±28; CHF: 309±71mL/min/100g, p=0.04). The change in diaphragm BF from rest to exercise was less (p=0.047) for CHF+BR than CHF. These findings demonstrate that dietary NO3‾ supplementation reduces the elevated diaphragm BF during exercise in CHF rats thus providing additional support for this therapeutic intervention in CHF.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.
| | - Scott K Ferguson
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Craig A Harms
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
67
|
WHITFIELD JAMIE, GAMU DANIEL, HEIGENHAUSER GEORGEJF, VAN LOON LUCJC, SPRIET LAWRENCEL, TUPLING ARUSSELL, HOLLOWAY GRAHAMP. Beetroot Juice Increases Human Muscle Force without Changing Ca2+-Handling Proteins. Med Sci Sports Exerc 2017; 49:2016-2024. [DOI: 10.1249/mss.0000000000001321] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
68
|
Goulding RP, Roche DM, Marwood S. Prior exercise speeds pulmonary oxygen uptake kinetics and increases critical power during supine but not upright cycling. Exp Physiol 2017. [PMID: 28627041 DOI: 10.1113/ep086304] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? Critical power (CP) represents the highest work rate for which a metabolic steady state is attainable. The physiological determinants of CP are unclear, but research suggests that CP might be related to the time constant of phase II oxygen uptake kinetics (τV̇O2). What is the main finding and its importance? We provide the first evidence that τV̇O2 is mechanistically related to CP. A reduction of τV̇O2 in the supine position was observed alongside a concomitant increase in CP. This effect may be contingent on measures of oxygen availability derived from near-infrared spectroscopy. Critical power (CP) is a fundamental parameter defining high-intensity exercise tolerance and is related to the time constant of phase II pulmonary oxygen uptake kinetics (τV̇O2). To test the hypothesis that this relationship is causal, we determined the impact of prior exercise ('priming') on CP and τV̇O2 in the upright and supine positions. Seventeen healthy men were assigned to either upright or supine exercise groups, whereby CP, τV̇O2 and muscle deoxyhaemoglobin kinetics (τ[HHb] ) were determined via constant-power tests to exhaustion at four work rates with (primed) and without (control) priming exercise at ∼31%Δ. During supine exercise, priming reduced τV̇O2 (control 54 ± 18 s versus primed 39 ± 11 s; P < 0.001), increased τ[HHb] (control 8 ± 4 s versus primed 12 ± 4 s; P = 0.003) and increased CP (control 177 ± 31 W versus primed 185 ± 30 W, P = 0.006) compared with control conditions. However, priming exercise had no effect on τV̇O2 (control 37 ± 12 s versus primed 35 ± 8 s; P = 0.82), τ[HHb] (control 10 ± 5 s versus primed 14 ± 10 s; P = 0.10) or CP (control 235 ± 42 W versus primed 232 ± 35 W; P = 0.57) during upright exercise. The concomitant reduction of τV̇O2 and increased CP following priming in the supine group, effects that were absent in the upright group, provide the first experimental evidence that τV̇O2 is mechanistically related to critical power. The increased τ[HHb+Mb] suggests that this effect was mediated, at least in part, by improved oxygen availability.
Collapse
Affiliation(s)
- Richie P Goulding
- School of Health Sciences, Liverpool Hope University, Hope Park Campus, Liverpool, Merseyside, L16 9JD, UK
| | - Denise M Roche
- School of Health Sciences, Liverpool Hope University, Hope Park Campus, Liverpool, Merseyside, L16 9JD, UK
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Hope Park Campus, Liverpool, Merseyside, L16 9JD, UK
| |
Collapse
|
69
|
Le Roux-Mallouf T, Vibert F, Doutreleau S, Verges S. Effect of acute nitrate and citrulline supplementation on muscle microvascular response to ischemia-reperfusion in healthy humans. Appl Physiol Nutr Metab 2017; 42:901-908. [PMID: 28460182 DOI: 10.1139/apnm-2017-0081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitric oxide (NO) is implicated in vasomotor control mechanisms altering the diameter of the vessels under various physiological and pathological conditions. There are 2 main NO production pathways, 1 NO synthase (NOS) independent (nitrate-nitrite-NO) and the other is NOS dependent (citrulline-arginine-NO). The objective of the study was to evaluate the effect of acute nitrate and citrulline supplementation on post-ischemic vascular response in healthy subjects. Fourteen subjects performed 2-leg vascular occlusion tests, 3 days apart. They were randomly assigned to consume a drink containing 1200 mg (19.4 mmol) of nitrate and 6 g of citrulline (N+C) or a placebo (Pl). Changes in total hemoglobin (Hbtot) and oxyhemoglobin (HbO2) concentrations were recorded by near-infrared spectroscopy on the thigh and calf muscles. No differences between N+C and Pl were observed during the ischemic period. Hbtot increased to a larger extent during the reperfusion period for the thigh (e.g., area under the curve, 821 ± 324 vs. 627 ± 381 mmol·s-1, p = 0.003) and the calf (515 ± 285 vs. 400 ± 275 mmol·s-1, p = 0.029) in the N+C versus Pl conditions. Similar results were found regarding HbO2 for the thigh (e.g., area under the curve, 842 ± 502 vs. 770 ± 491 mmol·s-1, p = 0.077) and the calf (968 ± 536 vs. 865 ± 275 mmol·s-1, p = 0.075). The larger postocclusive Hbtot and HbO2 responses observed after N+C intake suggests a greater post-ischemic vasodilation, which may be due to increased NO availability, via the activation of the 2 main NO production pathways.
Collapse
Affiliation(s)
- Thibault Le Roux-Mallouf
- U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France.,U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France
| | - Florence Vibert
- U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France.,U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France
| | - Stéphane Doutreleau
- U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France.,U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France
| | - Samuel Verges
- U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France.,U1042, INSERM, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France; HP2 Laboratory, Univ. Grenoble Alpes, Jean Roget Building, Faculty of Medicine, F-38042 Grenoble, France
| |
Collapse
|
70
|
Heinonen I, Saltin B, Hellsten Y, Kalliokoski KK. The effect of nitric oxide synthase inhibition with and without inhibition of prostaglandins on blood flow in different human skeletal muscles. Eur J Appl Physiol 2017; 117:1175-1180. [PMID: 28432421 DOI: 10.1007/s00421-017-3604-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/22/2017] [Indexed: 10/24/2022]
Abstract
PURPOSE Animal studies suggest that the inhibition of nitric oxide synthase (NOS) affects blood flow differently in different skeletal muscles according to their muscle fibre type composition (oxidative vs glycolytic). Quadriceps femoris (QF) muscle consists of four different muscle parts: vastus intermedius (VI), rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL) of which VI is located deep within the muscle group and is generally regarded to consist mostly of oxidative muscle fibres. METHODS We studied the effect of NOS inhibition on blood flow in these four different muscles by positron emission tomography in eight young healthy men at rest and during one-leg dynamic exercise, with and without combined blockade with prostaglandins. RESULTS At rest blood flow in the VI (2.6 ± 1.1 ml/100 g/min) was significantly higher than in VL (1.9 ± 0.6 ml/100 g/min, p = 0.015) and RF (1.7 ± 0.6 ml/100 g/min, p = 0.0015), but comparable to VM (2.4 ± 1.1 ml/100 g/min). NOS inhibition alone or with prostaglandins reduced blood flow by almost 50% (p < 0.001), but decrements were similar in all four muscles (drug × muscle interaction, p = 0.43). During exercise blood flow was also the highest in VI (45.4 ± 5.5 ml/100 g/min) and higher compared to VL (35.0 ± 5.5 ml/100 g/min), RF (38.4 ± 7.4 ml/100 g/min), and VM (36.2 ± 6.8 ml/100 g/min). NOS inhibition alone did not reduce exercise hyperemia (p = 0.51), but combined NOS and prostaglandin inhibition reduced blood flow during exercise (p = 0.002), similarly in all muscles (drug × muscle interaction, p = 0.99). CONCLUSION NOS inhibition, with or without prostaglandins inhibition, affects blood flow similarly in different human QF muscles both at rest and during low-to-moderate intensity exercise.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku, PO Box 52, 20521, Turku, Finland. .,Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku, Finland. .,Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Bengt Saltin
- Copenhagen Muscle Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
71
|
Dietary nitrate supplementation enhances short but not longer duration running time-trial performance. Eur J Appl Physiol 2017; 117:775-785. [PMID: 28251402 DOI: 10.1007/s00421-017-3580-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/19/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE This study evaluated the effects of dietary nitrate (NO3-) supplementation on physiological functioning and exercise performance in trained runners/triathletes conducting short and longer-distance treadmill running time-trials (TT). METHOD Eight trained male runners or triathletes completed four exercise performance tests comprising a 10 min warm up followed by either a 1500 or 10,000 m treadmill TT. Exercise performance tests were preceded 3 h before the exercise by supplementation with either 140 ml concentrated nitrate-rich (~12.5 mmol nitrate) (BRJ) or nitrate-deplete (~0.01 mmol nitrate) (PLA) beetroot juice. RESULTS BRJ supplementation significantly elevated plasma [NO2-] (P < 0.05). Resting blood pressure and exercise [Formula: see text] were not significantly different between BRJ and PLA (P > 0.05). However, post-exercise blood [lactate] was significantly greater in BRJ following the 1500 m TT (6.6 ± 1.2 vs. 6.1 ± 1.5 mM; P < 0.05), but not significantly different between conditions in the 10,000 m TT (P > 0.05). Performance in the 1500 m TT was significantly faster in BRJ vs. PLA (319.6 ± 36.2 vs. 325.7 ± 38.8 s; P < 0.05). Conversely, there was no significant difference in 10,000 m TT performance between conditions (2643.1 ± 324. 1 vs. 2649.9 ± 319.8 s, P > 0.05). CONCLUSION Acute BRJ supplementation significantly enhanced 1500 m, but not 10,000 m TT performance. These findings suggest that BRJ might be ergogenic during shorter distance TTs which allow for a high work rate, but not during longer distance TTs, completed at a lower work rate.
Collapse
|
72
|
Thompson C, Wylie LJ, Blackwell JR, Fulford J, Black MI, Kelly J, McDonagh STJ, Carter J, Bailey SJ, Vanhatalo A, Jones AM. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training. J Appl Physiol (1985) 2016; 122:642-652. [PMID: 27909231 DOI: 10.1152/japplphysiol.00909.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/13/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and [Formula: see text]-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and [Formula: see text]-rich beetroot juice (~13 mmol [Formula: see text]/day; SIT+BR); or 3) no training and [Formula: see text]-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT.NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training.
Collapse
Affiliation(s)
| | - Lee J Wylie
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Jamie R Blackwell
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Jonathan Fulford
- National Institute for Health Research Exeter Clinical Research Facility, University of Exeter, Exeter, United Kingdom; and
| | - Matthew I Black
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - James Kelly
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | | | - James Carter
- Gatorade Sports Science Institute, PepsiCo Research & Development, Barrington, Illinois
| | - Stephen J Bailey
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Anni Vanhatalo
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom;
| |
Collapse
|
73
|
Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical Power: An Important Fatigue Threshold in Exercise Physiology. Med Sci Sports Exerc 2016; 48:2320-2334. [PMID: 27031742 PMCID: PMC5070974 DOI: 10.1249/mss.0000000000000939] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
: The hyperbolic form of the power-duration relationship is rigorous and highly conserved across species, forms of exercise, and individual muscles/muscle groups. For modalities such as cycling, the relationship resolves to two parameters, the asymptote for power (critical power [CP]) and the so-called W' (work doable above CP), which together predict the tolerable duration of exercise above CP. Crucially, the CP concept integrates sentinel physiological profiles-respiratory, metabolic, and contractile-within a coherent framework that has great scientific and practical utility. Rather than calibrating equivalent exercise intensities relative to metabolically distant parameters such as the lactate threshold or V˙O2max, setting the exercise intensity relative to CP unifies the profile of systemic and intramuscular responses and, if greater than CP, predicts the tolerable duration of exercise until W' is expended, V˙O2max is attained, and intolerance is manifested. CP may be regarded as a "fatigue threshold" in the sense that it separates exercise intensity domains within which the physiological responses to exercise can (CP) be stabilized. The CP concept therefore enables important insights into 1) the principal loci of fatigue development (central vs. peripheral) at different intensities of exercise and 2) mechanisms of cardiovascular and metabolic control and their modulation by factors such as O2 delivery. Practically, the CP concept has great potential application in optimizing athletic training programs and performance as well as improving the life quality for individuals enduring chronic disease.
Collapse
Affiliation(s)
- David C. Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas, U.S.A
| | - Mark Burnley
- School of Sport and Exercise Sciences, University of Kent, Chatham, U.K
| | - Anni Vanhatalo
- Sport and Health Sciences, St. Luke’s Campus, University of Exeter, Exeter, U.K
| | - Harry B. Rossiter
- Faculty of Biological Sciences University of Leeds, Leeds, U.K
- Rehabilitaion Clinical Trials Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, U.S.A
| | - Andrew M. Jones
- Sport and Health Sciences, St. Luke’s Campus, University of Exeter, Exeter, U.K
| |
Collapse
|
74
|
Jones AM, Ferguson SK, Bailey SJ, Vanhatalo A, Poole DC. Fiber Type-Specific Effects of Dietary Nitrate. Exerc Sport Sci Rev 2016; 44:53-60. [PMID: 26829247 DOI: 10.1249/jes.0000000000000074] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dietary nitrate supplementation increases circulating nitrite concentration, and the subsequent reduction of nitrite to nitric oxide is promoted in hypoxic environments. Given that PO2 is lower in Type II compared with Type I muscle, this article examines the hypothesis that the ergogenicity of nitrate supplementation is linked to specific effects on vascular, metabolic, and contractile function in Type II muscle.
Collapse
Affiliation(s)
- Andrew M Jones
- 1Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom; and 2Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | | | | | | | | |
Collapse
|
75
|
Differential vascular reactivity responses acutely following ingestion of a nitrate rich red spinach extract. Eur J Appl Physiol 2016; 116:2267-2279. [DOI: 10.1007/s00421-016-3478-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
|
76
|
Shannon OM, Duckworth L, Barlow MJ, Woods D, Lara J, Siervo M, O'Hara JP. Dietary nitrate supplementation enhances high-intensity running performance in moderate normobaric hypoxia, independent of aerobic fitness. Nitric Oxide 2016; 59:63-70. [DOI: 10.1016/j.niox.2016.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/25/2016] [Accepted: 08/11/2016] [Indexed: 12/31/2022]
|
77
|
Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise. Nutrients 2016; 8:nu8080506. [PMID: 27548212 PMCID: PMC4997419 DOI: 10.3390/nu8080506] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022] Open
Abstract
This study examined the effects of beetroot juice (BTJ) on recovery between two repeated-sprint tests. In an independent groups design, 20 male, team-sports players were randomized to receive either BTJ or a placebo (PLA) (2 × 250 mL) for 3 days after an initial repeated sprint test (20 × 30 m; RST1) and after a second repeated sprint test (RST2), performed 72 h later. Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), reactive strength index (RI), pressure-pain threshold (PPT), creatine kinase (CK), C-reactive protein (hs-CRP), protein carbonyls (PC), lipid hydroperoxides (LOOH) and the ascorbyl free radical (A•−) were measured before, after, and at set times between RST1 and RST2. CMJ and RI recovered quicker in BTJ compared to PLA after RST1: at 72 h post, CMJ and RI were 7.6% and 13.8% higher in BTJ vs. PLA, respectively (p < 0.05). PPT was 10.4% higher in BTJ compared to PLA 24 h post RST2 (p = 0.012) but similar at other time points. No group differences were detected for mean and fastest sprint time or fatigue index. MIVC, or the biochemical markers measured (p > 0.05). BTJ reduced the decrement in CMJ and RI following and RST but had no effect on sprint performance or oxidative stress.
Collapse
|
78
|
Ferguson SK, Holdsworth CT, Colburn TD, Wright JL, Craig JC, Fees A, Jones AM, Allen JD, Musch TI, Poole DC. Dietary nitrate supplementation: impact on skeletal muscle vascular control in exercising rats with chronic heart failure. J Appl Physiol (1985) 2016; 121:661-9. [PMID: 27445296 DOI: 10.1152/japplphysiol.00014.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/15/2016] [Indexed: 01/14/2023] Open
Abstract
Chronic heart failure (CHF) results in central and peripheral derangements that ultimately reduce skeletal muscle O2 delivery and impair exercise tolerance. Dietary nitrate (NO3 (-)) supplementation improves skeletal muscle vascular function and tolerance to exercise. We tested the hypothesis that NO3 (-) supplementation would elevate exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats. Myocardial infarction (MI) was induced (coronary artery ligation) in young adult male rats. After 21 days of recovery, rats randomly received 5 days of NO3 (-)-rich beetroot juice (CHF + BR, n = 10) or a placebo (CHF, n = 10). Mean arterial pressure (carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% grade). CHF-induced dysfunction, as determined by myocardial infarction size (29 ± 3% and 33 ± 4% in CHF and CHF + BR, respectively) and left ventricular end-diastolic pressure (18 ± 2 and 18 ± 2 mmHg in CHF and CHF + BR, respectively), and exercising mean arterial pressure (131 ± 3 and 128 ± 4 mmHg in CHF and CHF + BR, respectively) were not different (P > 0.05) between groups. Total exercising hindlimb skeletal muscle BF (95 ± 5 and 116 ± 9 ml·min(-1)·100 g(-1) in CHF and CHF + BR, respectively) and VC (0.75 ± 0.05 and 0.90 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1) in CHF and CHF + BR, respectively) were 22% and 20% greater in BR-supplemented rats, respectively (P < 0.05). During exercise, BF in 9 and VC in 10 hindlimb muscles and muscle portions were significantly greater in the CHF + BR group. These results provide strong evidence that dietary NO3 (-) supplementation improves skeletal muscle vascular function during exercise in rats with CHF and, thus, support the use of BR as a novel therapeutic modality for the treatment of CHF.
Collapse
Affiliation(s)
- Scott K Ferguson
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Clark T Holdsworth
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jennifer L Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Alex Fees
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom; and
| | - Jason D Allen
- Institute of Sport Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Timothy I Musch
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
79
|
Dose-dependent effects of dietary nitrate on the oxygen cost of moderate-intensity exercise: Acute vs. chronic supplementation. Nitric Oxide 2016; 57:30-39. [DOI: 10.1016/j.niox.2016.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/04/2016] [Accepted: 04/13/2016] [Indexed: 12/31/2022]
|
80
|
Wylie LJ, Bailey SJ, Kelly J, Blackwell JR, Vanhatalo A, Jones AM. Influence of beetroot juice supplementation on intermittent exercise performance. Eur J Appl Physiol 2015; 116:415-25. [PMID: 26614506 PMCID: PMC4717163 DOI: 10.1007/s00421-015-3296-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/07/2015] [Indexed: 12/18/2022]
Abstract
Purpose This study tested the hypothesis that nitrate (NO3−) supplementation would improve performance during high-intensity intermittent exercise featuring different work and recovery intervals.
Method Ten male team-sport players completed high-intensity intermittent cycling tests during separate 5-day supplementation periods with NO3−-rich beetroot juice (BR; 8.2 mmol NO3− day−1) and NO3−-depleted beetroot juice (PL; 0.08 mmol NO3− day−1). Subjects completed: twenty-four 6-s all-out sprints interspersed with 24 s of recovery (24 × 6-s); seven 30-s all-out sprints interspersed with 240 s of recovery (7 × 30-s); and six 60-s self-paced maximal efforts interspersed with 60 s of recovery (6 × 60-s); on days 3, 4, and 5 of supplementation, respectively. Result Plasma [NO2−] was 237 % greater in the BR trials. Mean power output was significantly greater with BR relative to PL in the 24 × 6-s protocol (568 ± 136 vs. 539 ± 136 W; P < 0.05), but not during the 7 × 30-s (558 ± 95 vs. 562 ± 94 W) or 6 × 60-s (374 ± 57 vs. 375 ± 59 W) protocols (P > 0.05). The increase in blood [lactate] across the 24 × 6-s and 7 × 30-s protocols was greater with BR (P < 0.05), but was not different in the 6 × 60-s protocol (P > 0.05). Conclusion BR might be ergogenic during repeated bouts of short-duration maximal-intensity exercise interspersed with short recovery periods, but not necessarily during longer duration intervals or when a longer recovery duration is applied. These findings suggest that BR might have implications for performance enhancement during some types of intermittent exercise.
Collapse
Affiliation(s)
- Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, Devon, EX1 2LU, UK
| | - Stephen J Bailey
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, Devon, EX1 2LU, UK
| | - James Kelly
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, Devon, EX1 2LU, UK
| | - James R Blackwell
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, Devon, EX1 2LU, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, Devon, EX1 2LU, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, Devon, EX1 2LU, UK.
| |
Collapse
|
81
|
Laughlin MH. Physical activity-induced remodeling of vasculature in skeletal muscle: role in treatment of type 2 diabetes. J Appl Physiol (1985) 2015; 120:1-16. [PMID: 26472876 DOI: 10.1152/japplphysiol.00789.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 01/15/2023] Open
Abstract
This manuscript summarizes and discusses adaptations of skeletal muscle vasculature induced by physical activity and applies this understanding to benefits of exercise in prevention and treatment of type 2 diabetes (T2D). Arteriolar trees of skeletal muscle are heterogeneous. Exercise training increases capillary exchange and blood flow capacities. The distribution of vascular adaptation to different types of exercise training are influenced by muscle fiber type composition and fiber recruitment patterns that produce different modes of exercise. Thus training-induced adaptations in vascular structure and vascular control in skeletal muscle are not homogeneously distributed throughout skeletal muscle or along the arteriolar tree within a muscle. Results summarized indicate that similar principles apply to vascular adaptation in skeletal muscle in T2D. It is concluded that exercise training-induced changes in vascular gene expression differ along the arteriolar tree and by skeletal muscle fiber type composition. Results suggest that it is unlikely that hemodynamic forces are the only exercise-induced signals mediating the regulation of vascular gene expression. In patients with T2D, exercise training is perhaps the most effective treatment of the many related symptoms. Training-induced changes in the vasculature and in insulin signaling in the muscle fibers and vasculature augment glucose and insulin delivery as well as glucose uptake. If these adaptations occur in a sufficient amount of muscle mass, exposure to hyperglycemia and hyperinsulinemia will decrease along with the risk of microvascular complications throughout the body. It is postulated that exercise sessions in programs of sufficient duration, that engage as much skeletal muscle mass as possible, and that recruit as many muscle fibers within each muscle as possible will produce the greatest benefit. The added benefit of combined resistance and aerobic training programs and of high-intensity exercise programs is not simply "more exercise is better".
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Biomedical Sciences, Department of Medical Pharmacology & Physiology, and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
82
|
Jonvik KL, Nyakayiru J, van Loon LJC, Verdijk LB. Can elite athletes benefit from dietary nitrate supplementation? J Appl Physiol (1985) 2015; 119:759-61. [DOI: 10.1152/japplphysiol.00232.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kristin L. Jonvik
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands; and
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Jean Nyakayiru
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands; and
| | - Luc J. C. van Loon
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands; and
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Lex B. Verdijk
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands; and
| |
Collapse
|
83
|
Glean AA, Ferguson SK, Holdsworth CT, Colburn TD, Wright JL, Fees AJ, Hageman KS, Poole DC, Musch TI. Effects of nitrite infusion on skeletal muscle vascular control during exercise in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 2015; 309:H1354-60. [PMID: 26371165 DOI: 10.1152/ajpheart.00421.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
Abstract
Chronic heart failure (CHF) reduces nitric oxide (NO) bioavailability and impairs skeletal muscle vascular control during exercise. Reduction of NO2 (-) to NO may impact exercise-induced hyperemia, particularly in muscles with pathologically reduced O2 delivery. We tested the hypothesis that NO2 (-) infusion would increase exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats with a preferential effect in muscles composed primarily of type IIb + IId/x fibers. CHF (coronary artery ligation) was induced in adult male Sprague-Dawley rats. After a >21-day recovery, mean arterial pressure (MAP; carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% incline) with and without NO2 (-) infusion. The myocardial infarct size (35 ± 3%) indicated moderate CHF. NO2 (-) infusion increased total hindlimb skeletal muscle VC (CHF: 0.85 ± 0.09 ml·min(-1)·100 g(-1)·mmHg(-1) and CHF + NO2 (-): 0.93 ± 0.09 ml·min(-1)·100 g(-1)·mmHg(-1), P < 0.05) without changing MAP (CHF: 123 ± 4 mmHg and CHF + NO2 (-): 120 ± 4 mmHg, P = 0.17). Total hindlimb skeletal muscle BF was not significantly different (CHF: 102 ± 7 and CHF + NO2 (-): 109 ± 7 ml·min(-1)·100 g(-1) ml·min(-1)·100 g(-1), P > 0.05). BF increased in 6 (∼21%) and VC in 8 (∼29%) of the 28 individual muscles and muscle parts. Muscles and muscle portions exhibiting greater BF and VC after NO2 (-) infusion comprised ≥63% type IIb + IId/x muscle fibers. These data demonstrate that NO2 (-) infusion can augment skeletal muscle vascular control during exercise in CHF rats. Given the targeted effects shown herein, a NO2 (-)-based therapy may provide an attractive "needs-based" approach for treatment of the vascular dysfunction in CHF.
Collapse
Affiliation(s)
- Angela A Glean
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Scott K Ferguson
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and
| | - Clark T Holdsworth
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jennifer L Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and
| | - Alex J Fees
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and
| | - Karen S Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Timothy I Musch
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; and Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
84
|
Hirai DM, Musch TI, Poole DC. Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization. Am J Physiol Heart Circ Physiol 2015; 309:H1419-39. [PMID: 26320036 DOI: 10.1152/ajpheart.00469.2015] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/23/2015] [Indexed: 01/13/2023]
Abstract
Chronic heart failure (CHF) impairs critical structural and functional components of the O2 transport pathway resulting in exercise intolerance and, consequently, reduced quality of life. In contrast, exercise training is capable of combating many of the CHF-induced impairments and enhancing the matching between skeletal muscle O2 delivery and utilization (Q̇mO2 and V̇mO2 , respectively). The Q̇mO2 /V̇mO2 ratio determines the microvascular O2 partial pressure (PmvO2 ), which represents the ultimate force driving blood-myocyte O2 flux (see Fig. 1). Improvements in perfusive and diffusive O2 conductances are essential to support faster rates of oxidative phosphorylation (reflected as faster V̇mO2 kinetics during transitions in metabolic demand) and reduce the reliance on anaerobic glycolysis and utilization of finite energy sources (thus lowering the magnitude of the O2 deficit) in trained CHF muscle. These adaptations contribute to attenuated muscle metabolic perturbations (e.g., changes in [PCr], [Cr], [ADP], and pH) and improved physical capacity (i.e., elevated critical power and maximal V̇mO2 ). Preservation of such plasticity in response to exercise training is crucial considering the dominant role of skeletal muscle dysfunction in the pathophysiology and increased morbidity/mortality of the CHF patient. This brief review focuses on the mechanistic bases for improved Q̇mO2 /V̇mO2 matching (and enhanced PmvO2 ) with exercise training in CHF with both preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). Specifically, O2 convection within the skeletal muscle microcirculation, O2 diffusion from the red blood cell to the mitochondria, and muscle metabolic control are particularly susceptive to exercise training adaptations in CHF. Alternatives to traditional whole body endurance exercise training programs such as small muscle mass and inspiratory muscle training, pharmacological treatment (e.g., sildenafil and pentoxifylline), and dietary nitrate supplementation are also presented in light of their therapeutic potential. Adaptations within the skeletal muscle O2 transport and utilization system underlie improvements in physical capacity and quality of life in CHF and thus take center stage in the therapeutic management of these patients.
Collapse
Affiliation(s)
- Daniel M Hirai
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil; and
| | - Timothy I Musch
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
85
|
Ferguson SK, Glean AA, Holdsworth CT, Wright JL, Fees AJ, Colburn TD, Stabler T, Allen JD, Jones AM, Musch TI, Poole DC. Skeletal Muscle Vascular Control During Exercise: Impact of Nitrite Infusion During Nitric Oxide Synthase Inhibition in Healthy Rats. J Cardiovasc Pharmacol Ther 2015; 21:201-8. [PMID: 26272082 DOI: 10.1177/1074248415599061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/17/2015] [Indexed: 12/26/2022]
Abstract
The nitric oxide synthase (NOS)-independent pathway of nitric oxide (NO) production in which nitrite (NO2 (-)) is reduced to NO may have therapeutic applications for those with cardiovascular diseases in which the NOS pathway is downregulated. We tested the hypothesis that NO2 (-) infusion would reduce mean arterial pressure (MAP) and increase skeletal muscle blood flow (BF) and vascular conductance (VC) during exercise in the face of NOS blockade via L-NAME. Following infusion of L-NAME (10 mg kg(-1), L-NAME), male Sprague-Dawley rats (3-6 months, n = 8) exercised without N(G)-nitro-L arginine methyl ester (L-NAME) and after infusion of sodium NO2 (-) (7 mg kg(-1); L-NAME + NO2 (-)). MAP and hindlimb skeletal muscle BF (radiolabeled microsphere infusions) were measured during submaximal treadmill running (20 m min(-1), 5% grade). Across group comparisons were made with a published control data set (n = 11). Relative to L-NAME, NO2 (-) infusion significantly reduced MAP (P < 0.03). The lower MAP in L-NAME+NO2 (-) was not different from healthy control animals (control: 137 ± 3 L-NAME: 157 ± 7, L-NAME + NO2 (-): 136 ± 5 mm Hg). Also, NO2 (-) infusion significantly increased VC when compared to L-NAME (P < 0.03), ultimately negating any significant differences from control animals (control: 0.78 ± 0.05, L-NAME: 0.57 ± 0.03, L-NAME + NO2 (-); 0.69 ± 0.04 mL min(-1) 100 g(-1) mm Hg(-1)) with no apparent fiber-type preferential effect. Overall, hindlimb BF was decreased significantly by L-NAME; however, in L-NAME + NO2 (-), BF improved to a level not significantly different from healthy controls (control: 108 ± 8, L-NAME: 88 ± 3, L-NAME + NO2 (-): 94 ± 6 mL min(-1) 100 g(-1), P = 0.38 L-NAME vs L-NAME + NO2 (-)). Individuals with diseases that impair NOS activity, and thus vascular function, may benefit from a NO2 (-)-based therapy in which NO bioavailability is elevated in an NOS-independent manner.
Collapse
Affiliation(s)
- Scott K Ferguson
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Angela A Glean
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Clark T Holdsworth
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jennifer L Wright
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Alex J Fees
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Thomas Stabler
- Institute of Sport Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Jason D Allen
- Institute of Sport Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter, United Kingdom
| | - Timothy I Musch
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - David C Poole
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
86
|
Affourtit C, Bailey SJ, Jones AM, Smallwood MJ, Winyard PG. On the mechanism by which dietary nitrate improves human skeletal muscle function. Front Physiol 2015; 6:211. [PMID: 26283970 PMCID: PMC4518145 DOI: 10.3389/fphys.2015.00211] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/14/2015] [Indexed: 12/26/2022] Open
Abstract
Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy vegetables such as spinach and lettuce. Though long believed inert, nitrate can be reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to nitric oxide. Dietary nitrate has thus been associated favorably with nitric-oxide-regulated processes including blood flow and energy metabolism. Indeed, the therapeutic potential of dietary nitrate in cardiovascular disease and metabolic syndrome-both aging-related medical disorders-has attracted considerable recent research interest. We and others have shown that dietary nitrate supplementation lowers the oxygen cost of human exercise, as less respiratory activity appears to be required for a set rate of skeletal muscle work. This striking observation predicts that nitrate benefits the energy metabolism of human muscle, increasing the efficiency of either mitochondrial ATP synthesis and/or of cellular ATP-consuming processes. In this mini-review, we evaluate experimental support for the dietary nitrate effects on muscle bioenergetics and we critically discuss the likelihood of nitric oxide as the molecular mediator of such effects.
Collapse
Affiliation(s)
- Charles Affourtit
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University Plymouth, UK
| | - Stephen J Bailey
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Andrew M Jones
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Miranda J Smallwood
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter Exeter, UK
| | - Paul G Winyard
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter Exeter, UK
| |
Collapse
|
87
|
Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise. Eur J Appl Physiol 2015; 115:1825-34. [PMID: 25846114 DOI: 10.1007/s00421-015-3166-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/28/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED It is possible that dietary nitrate (NO3 (-)) supplementation may improve both physical and cognitive performance via its influence on blood flow and cellular energetics. PURPOSE To investigate the effects of dietary NO3 (-) supplementation on exercise performance and cognitive function during a prolonged intermittent sprint test (IST) protocol, which was designed to reflect typical work patterns during team sports. METHODS In a double-blind randomised crossover study, 16 male team-sport players received NO3 (-)-rich (BR; 140 mL day(-1); 12.8 mmol of NO3 (-)), and NO3 (-)-depleted (PL; 140 mL day(-1); 0.08 mmol NO3 (-)) beetroot juice for 7 days. On day 7 of supplementation, subjects completed the IST (two 40-min "halves" of repeated 2-min blocks consisting of a 6-s "all-out" sprint, 100-s active recovery and 20 s of rest), on a cycle ergometer during which cognitive tasks were simultaneously performed. RESULTS Total work done during the sprints of the IST was greater in BR (123 ± 19 kJ) compared to PL (119 ± 17 kJ; P < 0.05). Reaction time of response to the cognitive tasks in the second half of the IST was improved in BR compared to PL (BR first half: 820 ± 96 vs. second half: 817 ± 86 ms; PL first half: 824 ± 114 vs. second half: 847 ± 118 ms; P < 0.05). There was no difference in response accuracy. CONCLUSIONS These findings suggest that dietary NO3 (-) enhances repeated sprint performance and may attenuate the decline in cognitive function (and specifically reaction time) that may occur during prolonged intermittent exercise.
Collapse
|