51
|
Shin J, Kang DM, Yoo J, Heo J, Jeong K, Chung JH, Han YS, Kim S. Superoxide-responsive fluorogenic molecular probes for optical bioimaging of neurodegenerative events in Alzheimer's disease. Analyst 2021; 146:4748-4755. [PMID: 34231563 DOI: 10.1039/d1an00692d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since oxidative stress has been recognized as a major factor contributing to the progression of several neurodegenerative disorders, reactive oxygen species (ROS) including superoxide have received great attention as a representative molecular marker for the diagnosis of Alzheimer's disease (AD). Here, superoxide-sensitive fluorogenic molecular probes, benzenesulfonylated resorufin derivatives (BSRs), were newly devised for optical bioimaging of oxidative events in neurodegenerative processes. BSRs, fluorescence-quenched benzenesulfonylated derivatives of resorufin, were designed to recover their fluorescence upon exposure to superoxide through a selective nucleophilic uncaging reaction of the benzenesulfonyl cage. Among BSRs, BSR6 presented the best sensitivity and selectivity to superoxide likely due to the optimal reactivity matching between the nucleophilicity of superoxide and its electrophilicity ascribed to the highly electron-withdrawing pentafluoro-substitution on the benzenesulfonyl cage. Fluorescence imaging of inflammatory cells and animal models presented the potential of BSR6 for optical sensing of superoxide in vitro and in vivo. Furthermore, microglial cell (Bv2) imaging with BSR6 enabled the optical monitoring of intracellular oxidative events upon treatment with an oxidative stimulus (amyloid beta, Aβ) or the byproduct of oxidative stress (4-hydroxynonenal, HNE).
Collapse
Affiliation(s)
- Jawon Shin
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Exercise renovates H 2S and Nrf2-related antioxidant pathways to suppress apoptosis in the natural ageing process of male rat cortex. Biogerontology 2021; 22:495-506. [PMID: 34251569 DOI: 10.1007/s10522-021-09929-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/30/2021] [Indexed: 01/17/2023]
Abstract
Ageing is a complex biological process that increases the probability of disease and death, which affects the organs of all species. The accumulation of oxidative damage in the brain contributes to a progressive loss of cognitive functions or even declined the energy metabolism. In this study, we tested the effects of exercise training on the apoptosis, survival, and antioxidant signaling pathways in the cerebral cortex of three age groups of male rats; 3, 12, and 18 months. We observed that H2S and the expression of Nrf2-related antioxidant pathways declined with age and increased after exercise training. IGF1R survival pathway was less increased in middle-aged rats; however, significantly increased after exercise training. The expression of mitochondrial-dependent apoptotic pathway components, such as Bak, cytochrome C, and caspase 3 in the ageing control group, were much higher than those of the exercise training groups. This study demonstrated that exercise training could reduce the apoptosis and oxidative stress that accrues throughout ageing, which causes brain damage.
Collapse
|
53
|
Petrovic D, Kouroussis E, Vignane T, Filipovic MR. The Role of Protein Persulfidation in Brain Aging and Neurodegeneration. Front Aging Neurosci 2021; 13:674135. [PMID: 34248604 PMCID: PMC8261153 DOI: 10.3389/fnagi.2021.674135] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrogen sulfide (H2S), originally considered a toxic gas, is now a recognized gasotransmitter. Numerous studies have revealed the role of H2S as a redox signaling molecule that controls important physiological/pathophysiological functions. The underlying mechanism postulated to serve as an explanation of these effects is protein persulfidation (P-SSH, also known as S-sulfhydration), an oxidative posttranslational modification of cysteine thiols. Protein persulfidation has remained understudied due to its instability and chemical reactivity similar to other cysteine modifications, making it very difficult to selectively label. Recent developments of persulfide labeling techniques have started unraveling the role of this modification in (patho)physiology. PSSH levels are important for the cellular defense against oxidative injury, albeit they decrease with aging, leaving proteins vulnerable to oxidative damage. Aging is one of the main risk factors for many neurodegenerative diseases. Persulfidation has been shown to be dysregulated in Parkinson's, Alzheimer's, Huntington's disease, and Spinocerebellar ataxia 3. This article reviews the latest discoveries that link protein persulfidation, aging and neurodegeneration, and provides future directions for this research field that could result in development of targeted drug design.
Collapse
Affiliation(s)
- Dunja Petrovic
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Emilia Kouroussis
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Thibaut Vignane
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Milos R Filipovic
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| |
Collapse
|
54
|
Hydrogen sulfide is neuroprotective in Alzheimer's disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proc Natl Acad Sci U S A 2021; 118:2017225118. [PMID: 33431651 DOI: 10.1073/pnas.2017225118] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia and neurodegeneration in the elderly, is characterized by deterioration of memory and executive and motor functions. Neuropathologic hallmarks of AD include neurofibrillary tangles (NFTs), paired helical filaments, and amyloid plaques. Mutations in the microtubule-associated protein Tau, a major component of the NFTs, cause its hyperphosphorylation in AD. We have shown that signaling by the gaseous molecule hydrogen sulfide (H2S) is dysregulated during aging. H2S signals via a posttranslational modification termed sulfhydration/persulfidation, which participates in diverse cellular processes. Here we show that cystathionine γ-lyase (CSE), the biosynthetic enzyme for H2S, binds wild type Tau, which enhances its catalytic activity. By contrast, CSE fails to bind Tau P301L, a mutant that is present in the 3xTg-AD mouse model of AD. We further show that CSE is depleted in 3xTg-AD mice as well as in human AD brains, and that H2S prevents hyperphosphorylation of Tau by sulfhydrating its kinase, glycogen synthase kinase 3β (GSK3β). Finally, we demonstrate that sulfhydration is diminished in AD, while administering the H2S donor sodium GYY4137 (NaGYY) to 3xTg-AD mice ameliorates motor and cognitive deficits in AD.
Collapse
|
55
|
Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
56
|
Hydrogen Sulfide Ameliorates Lipopolysaccharide-Induced Memory Impairment in Mice by Reducing Apoptosis, Oxidative, and Inflammatory Effects. Neurotox Res 2021; 39:1310-1322. [PMID: 34021860 DOI: 10.1007/s12640-021-00374-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) is reported to have a neuroprotective activity; however, the role of H2S in neuroinflammation-induced neuronal damage is ambiguous. Here, we aimed to evaluate the underlying mechanisms for the neuroprotective effect of NaHS, a known H2S donor, against lipopolysaccharide (LPS)-induced memory impairment (MI). All the treatments were administered for 28 days, and LPS (0.25 mg/kg i.p.) was co-administered intermittently for 7 days from days 15 to 21. Morris water maze (MWM) and Y-maze tests were performed to evaluate MI. Neurodegeneration was histopathologically examined, and the brain homogenates were characterized for reduced glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor (TNF)-α, interleukin (IL)-6, caspase-3, c-Jun, and acetylcholinesterase (AChE) by biochemical analysis. H2S administration significantly improved spatial and working memory in MWM and Y-maze tasks, respectively. Exogenous H2S significantly reversed LPS-induced oxidative stress as evidenced by improved GSH, MDA, and SOD levels. H2S pretreatment significantly attenuated LPS-induced apoptosis and inflammation by decreasing c-Jun and caspase-3 levels and inhibiting TNF-α and IL-6, respectively. The decrease in these markers was supported by H&E and Nissl staining, which confirmed the anti-necrotic activity of H2S. However, there was no significant improvement in LPS-induced increase in AChE activity. These results indicate that chronic systemic inflammation leads to neurodegeneration and MI and H2S exerts its neuroprotective effect due to its anti-oxidative, anti-inflammatory, and anti-apoptotic potential via modulation of JNK and extrinsic apoptosis pathways.
Collapse
|
57
|
Wang SE, Wu CH. Tau phosphorylation and cochlear apoptosis cause hearing loss in 3×Tg-AD Mouse Model of Alzheimer's Disease. CHINESE J PHYSIOL 2021; 64:61-71. [PMID: 33938816 DOI: 10.4103/cjp.cjp_79_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Clinically typical dementia Alzheimer's disease (AD) is associated with abnormal auditory processing. However, possible molecular mechanisms responsible for the auditory pathology of AD patients are not known. According to our past research findings that the thresholds of auditory brainstem response, but not distortion product otoacoustic emissions, were significantly increased in AD mice from 9 months of age and thereafter. Thus, we further explored the possible mechanism of auditory degradation of 3×Tg-AD mice in this study. Our histochemical staining evidence showed the cochlear spiral ganglion neurons (SGN), but not the cochlear hair cells, were lost significantly in the cochlea of 3×Tg-AD mice from 9 months of age and thereafter. Our immunostaining and western blotting evidence showed that phosphorylated tau protein (p-Tau), p-glycogen synthase kinase 3, neurofilament, and apoptosis-related p53, Bcl2-associated X protein, cytochrome c, caspase-9, and caspase-3 were gradually increased, but B-cell lymphoma 2 was gradually decreased with age growth in the cochlea of 3×Tg-AD mice. We suggested that tau hyperphosphorylation and p-Tau 181 aggregation, and mitochondria- and endoplasmic reticulum stress-mediated apoptosis may play a role in the degeneration of SGN in the cochlea. Progressive SGN degeneration in the cochlea may contribute to hearing loss of aging 3×Tg-AD mice.
Collapse
Affiliation(s)
- Sheue-Er Wang
- School of Life Sciences, National Taiwan Normal University, Taipei; Department of Pathological, Saint Paul's Hospital, Taoyuan City, Taiwan
| | - Chung-Hsin Wu
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
58
|
Dallas ML, Al-Owais MM, Hettiarachchi NT, Vandiver MS, Jarosz-Griffiths HH, Scragg JL, Boyle JP, Steele D, Peers C. Hydrogen sulfide regulates hippocampal neuron excitability via S-sulfhydration of Kv2.1. Sci Rep 2021; 11:8194. [PMID: 33854181 PMCID: PMC8046973 DOI: 10.1038/s41598-021-87646-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Hydrogen sulfide (H2S) is gaining interest as a mammalian signalling molecule with wide ranging effects. S-sulfhydration is one mechanism that is emerging as a key post translational modification through which H2S acts. Ion channels and neuronal receptors are key target proteins for S-sulfhydration and this can influence a range of neuronal functions. Voltage-gated K+ channels, including Kv2.1, are fundamental components of neuronal excitability. Here, we show that both recombinant and native rat Kv2.1 channels are inhibited by the H2S donors, NaHS and GYY4137. Biochemical investigations revealed that NaHS treatment leads to S-sulfhydration of the full length wild type Kv2.1 protein which was absent (as was functional regulation by H2S) in the C73A mutant form of the channel. Functional experiments utilising primary rat hippocampal neurons indicated that NaHS augments action potential firing and thereby increases neuronal excitability. These studies highlight an important role for H2S in shaping cellular excitability through S-sulfhydration of Kv2.1 at C73 within the central nervous system.
Collapse
Affiliation(s)
- Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK.
| | - Moza M Al-Owais
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK.
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nishani T Hettiarachchi
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Scott Vandiver
- Department of Neuroscience, John's Hopkins University School of Medicine, Baltimore, USA
| | | | - Jason L Scragg
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - John P Boyle
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Derek Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Chris Peers
- Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| |
Collapse
|
59
|
Paul BD. Neuroprotective Roles of the Reverse Transsulfuration Pathway in Alzheimer's Disease. Front Aging Neurosci 2021; 13:659402. [PMID: 33796019 PMCID: PMC8007787 DOI: 10.3389/fnagi.2021.659402] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
The reverse transsulfuration pathway has emerged as a central hub that integrates the metabolism of sulfur-containing amino acids and redox homeostasis. Transsulfuration involves the transfer of sulfur from homocysteine to cysteine. Cysteine serves as the precursor for several sulfur-containing molecules, which play diverse roles in cellular processes. Recent evidence shows that disruption of the flux through the pathway has deleterious consequences. In this review article, I will discuss the actions and regulation of the reverse transsulfuration pathway and its links to other metabolic pathways, which are disrupted in Alzheimer’s disease (AD). The potential nodes of therapeutic intervention are also discussed, which may pave the way for the development of novel treatments.
Collapse
Affiliation(s)
- Bindu Diana Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
60
|
Disbrow E, Stokes KY, Ledbetter C, Patterson J, Kelley R, Pardue S, Reekes T, Larmeu L, Batra V, Yuan S, Cvek U, Trutschl M, Kilgore P, Alexander JS, Kevil CG. Plasma hydrogen sulfide: A biomarker of Alzheimer's disease and related dementias. Alzheimers Dement 2021; 17:1391-1402. [PMID: 33710769 PMCID: PMC8451930 DOI: 10.1002/alz.12305] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/29/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
While heart disease remains a common cause of mortality, cerebrovascular disease also increases with age, and has been implicated in Alzheimer's disease and related dementias (ADRD). We have described hydrogen sulfide (H2S), a signaling molecule important in vascular homeostasis, as a biomarker of cardiovascular disease. We hypothesize that plasma H2S and its metabolites also relate to vascular and cognitive dysfunction in ADRD. We used analytical biochemical methods to measure plasma H2S metabolites and MRI to evaluate indicators of microvascular disease in ADRD. Levels of total H2S and specific metabolites were increased in ADRD versus controls. Cognition and microvascular disease indices were correlated with H2S levels. Total plasma sulfide was the strongest indicator of ADRD, and partially drove the relationship between cognitive dysfunction and white matter lesion volume, an indicator of microvascular disease. Our findings show that H2S is dysregulated in dementia, providing a potential biomarker for diagnosis and intervention.
Collapse
Affiliation(s)
- Elizabeth Disbrow
- Department of Neurology, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Pharmacology, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Karen Y Stokes
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Christina Ledbetter
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Neurosurgery, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - James Patterson
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Roger Kelley
- Department of Neurology, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Sibile Pardue
- Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Tyler Reekes
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Pharmacology, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Lana Larmeu
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Neurosurgery, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Vinita Batra
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Shuai Yuan
- Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Urska Cvek
- Dept. of Computer Science, Laboratory for Advanced Biomedical Informatics, Louisiana State University Shreveport, Shreveport, Louisiana, USA
| | - Marjan Trutschl
- Dept. of Computer Science, Laboratory for Advanced Biomedical Informatics, Louisiana State University Shreveport, Shreveport, Louisiana, USA
| | - Phillip Kilgore
- Dept. of Computer Science, Laboratory for Advanced Biomedical Informatics, Louisiana State University Shreveport, Shreveport, Louisiana, USA
| | - J Steven Alexander
- Department of Neurology, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Christopher G Kevil
- Center for Brain Health, LSU Health Shreveport, Shreveport, Louisiana, USA.,Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, Shreveport, Louisiana, USA.,Department of Pathology and Translational Pathobiology, Department of Pathology, and Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
61
|
Investigating Different Forms of Hydrogen Sulfide in Cerebrospinal Fluid of Various Neurological Disorders. Metabolites 2021; 11:metabo11030152. [PMID: 33800163 PMCID: PMC7998212 DOI: 10.3390/metabo11030152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 01/09/2023] Open
Abstract
Over the past 30 years a considerable amount of data has accumulated on the multifaceted role of hydrogen sulfide (H2S) in the central nervous system. Depending on its concentrations, H2S has opposite actions, ranging from neuromodulator to neurotoxic. Nowadays, accurate determination of H2S is still an important challenge to understand its biochemistry and functions. In this perspective, this study aims to explore H2S levels in cerebrospinal fluid (CSF), key biofluid for neurological studies, and to assess alleged correlations with neuroinflammatory and neurodegenerative mechanisms. A validated analytical determination combining selective electrochemical detection with ion chromatography was developed to measure free and bound sulfur forms of H2S. A first cohort of CSF samples (n = 134) was analyzed from patients with inflammatory and demyelinating disorders (acute disseminated encephalomyelitis; multiple sclerosis), chronic neurodegenerative diseases (Alzheimer disease; Parkinson disease), and motor neuron disease (Amyotrophic lateral sclerosis). Given its analytical features, the chromatographic method resulted sensitive, reproducible and robust. We also explored low molecular weight-proteome linked to sulphydration by proteomics analysis on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). This study is a first clinical report on CSF H2S concentrations from neurological diseases and opens up new perspectives on the potential clinical relevance of H2S and its potential therapeutic application.
Collapse
|
62
|
Hydrogen Sulfide and Pathophysiology of the CNS. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
63
|
McCarty MF, DiNicolantonio JJ, Lerner A. A Fundamental Role for Oxidants and Intracellular Calcium Signals in Alzheimer's Pathogenesis-And How a Comprehensive Antioxidant Strategy May Aid Prevention of This Disorder. Int J Mol Sci 2021; 22:2140. [PMID: 33669995 PMCID: PMC7926325 DOI: 10.3390/ijms22042140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and increased cytoplasmic calcium are key mediators of the detrimental effects on neuronal function and survival in Alzheimer's disease (AD). Pathways whereby these perturbations arise, and then prevent dendritic spine formation, promote tau hyperphosphorylation, further amplify amyloid β generation, and induce neuronal apoptosis, are described. A comprehensive program of nutraceutical supplementation, comprised of the NADPH oxidase inhibitor phycocyanobilin, phase two inducers, the mitochondrial antioxidant astaxanthin, and the glutathione precursor N-acetylcysteine, may have important potential for antagonizing the toxic effects of amyloid β on neurons and thereby aiding prevention of AD. Moreover, nutraceutical antioxidant strategies may oppose the adverse impact of amyloid β oligomers on astrocyte clearance of glutamate, and on the ability of brain capillaries to export amyloid β monomers/oligomers from the brain. Antioxidants, docosahexaenoic acid (DHA), and vitamin D, have potential for suppressing microglial production of interleukin-1β, which potentiates the neurotoxicity of amyloid β. Epidemiology suggests that a health-promoting lifestyle, incorporating a prudent diet, regular vigorous exercise, and other feasible measures, can cut the high risk for AD among the elderly by up to 60%. Conceivably, complementing such lifestyle measures with long-term adherence to the sort of nutraceutical regimen outlined here may drive down risk for AD even further.
Collapse
Affiliation(s)
| | | | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel
| |
Collapse
|
64
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
65
|
Mohammed RA, Mansour SM. Sodium hydrogen sulfide upregulates cystathionine β-synthase and protects striatum against 3-nitropropionic acid-induced neurotoxicity in rats. J Pharm Pharmacol 2021; 73:310-321. [PMID: 33793881 DOI: 10.1093/jpp/rgaa072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/29/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Hydrogen sulfide (H2S) is a neuromodulator that plays a protective role in multiple neurodegenerative diseases including Alzheimer's (AD) and Parkinson's (PD). However, the precise mechanisms underlying its effects against Huntington's disease (HD) are still questioned.This study aimed to examine the neuroprotective effects of sodium hydrogen sulfide (NaHS; H2S donor) against 3-nitropropionic acid (3NP)-induced HD like pathology in rats. Methods: Male Wistar rats were randomly allocated into four groups; (1) normal control receiving saline; (2) NaHS control receiving (0.5 mg/kg/day, i.p.) for 14 days; (3,4) receiving 3NP (10 mg/kg/day, i.p.) for 14 days, with NaHS 30 min later in group 4. KEY FINDINGS NaHS improved cognitive and locomotor deficits induced by 3NP as confirmed by the striatal histopathological findings. These former events were biochemically supported by the increment in cystathionine β-synthase (CBS) gene expression, reduction of glutamate (Glu), dopamine (DA), malondialdehyde (MDA), tumour necrosis factor-alpha (TNF-α), cytochrome-c, cleaved caspase-3 and pc-FOS indicating antioxidant, anti-inflammatory as well as anti-apoptotic effects. Furthermore, NaHS pretreatment improved cholinergic dysfunction and increased brain-derived neurotropic factor (BDNF) and nuclear factor erythroid-2-related factor 2 (Nrf2). CONCLUSIONS These findings suggest that appropriate protection with H2S donors might represent a novel approach to slow down HD-like symptoms.
Collapse
Affiliation(s)
- Reham A Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Suzan M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
66
|
Ma Y, Xu M, Wang Y, Liu Z, Ye B. A highly sensitive and adjustable colorimetric assay of hydrogen sulfide by signal amplification based on G-quadruplex-Cu 2+ peroxidase mimetics. Analyst 2021; 145:2995-3001. [PMID: 32129377 DOI: 10.1039/d0an00093k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This work reports the first example of a colorimetric H2S sensor constructed through G-quadruplex-Cu2+ (G4-Cu2+) peroxidase mimetics employing Cu2+ ions and G-rich DNA with signal amplification. In the hydrogen peroxide (H2O2)-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), the catalytic capacity of Cu2+ can be greatly improved in the presence of 22AG DNA, where 22AG DNA acts as a signal amplifier. However, G4-Cu2+ peroxidase mimetics lose their catalytic abilities after reacting with H2S. This is employed to develop a colorimetric assay of H2S without complex synthesis and instrumentation, with a linear range from 0.01 μM to 150 μM and a detection limit of 7.5 nM. The sensitivity of the sensor can also be adjusted by changing the concentration of Cu2+. Moreover, the developed sensor is successfully applied for the quantitative determination of H2S in human serum samples.
Collapse
Affiliation(s)
- Yu Ma
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China. and Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongxiang Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China.
| | - Zi Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Baoxian Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
67
|
Li H, Fang Y, Yan J, Ren X, Zheng C, Wu B, Wang S, Li Z, Hua H, Wang P, Li D. Small-molecule fluorescent probes for H2S detection: Advances and perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116117] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
68
|
Przybyłowska M, Dzierzbicka K, Kowalski S, Chmielewska K, Inkielewicz-Stepniak I. Therapeutic Potential of Multifunctional Derivatives of Cholinesterase Inhibitors. Curr Neuropharmacol 2021; 19:1323-1344. [PMID: 33342413 PMCID: PMC8719290 DOI: 10.2174/1570159x19666201218103434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/07/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of this work is to review tacrine analogues from the last three years, which were not included in the latest review work, donepezil and galantamine hybrids from 2015 and rivastigmine derivatives from 2014. In this account, we summarize the efforts toward the development and characterization of non-toxic inhibitors of cholinesterases based on mentioned drugs with various interesting additional properties such as antioxidant, decreasing β-amyloid plaque aggregation, nitric oxide production, pro-inflammatory cytokines release, monoamine oxidase-B activity, cytotoxicity and oxidative stress in vitro and in animal model that classify these hybrids as potential multifunctional therapeutic agents for Alzheimer's disease. Moreover, herein, we have described the cholinergic hypothesis, mechanisms of neurodegeneration and current pharmacotherapy of Alzheimer's disease based on the restoration of cholinergic function through blocking enzymes that break down acetylcholine.
Collapse
Affiliation(s)
- Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Szymon Kowalski
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
69
|
Sichamnan A, Yong N, Sillapaprayoon S, Pimtong W, Tang IM, Maneeprakorn W, Pon-On W. Fabrication of biocompatible magneto-fluorescence nanoparticles as a platform for fluorescent sensor and magnetic hyperthermia applications. RSC Adv 2021; 11:35258-35267. [PMID: 35493192 PMCID: PMC9042993 DOI: 10.1039/d1ra07389c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Multifunctional nanoparticles with special magnetic and optical properties have been attracting a great deal of attention due to their important applications in the bioanalytical and biomedical fields. In this study, we report the fabrication of biocompatible magneto-fluorescence nanoparticles consisting of carbon dots (CDots) and silica-coated cobalt–manganese nanoferrites (Co0.5Mn0.5Fe2O4) (CoMnF@Si@CDots) (MagSiCDots) by a facile hydrothermal method. The as-prepared MagSiCDots have a particle size of 100–120 nm and show a negative zeta potential of −35.50 mV at a neutral pH. The fluorescence spectrum of the MagSiCDots nanoparticles consists of sharp excitation at 365 nm and broad blue light emission with a maximum wavelength of 442.5 nm and the MagSiCDots exhibit superparamagnetic behaviour with a saturation magnetization of 11.6 emu g−1. The potential of MagSiCDots as a fluorescent sensor and be used for magnetic hyperthermia applications. It is seen that the fluorescent intensity of a colloidal solution (a hydrogen sulfide (H2S) solution containing MagSiCDots nanoparticles) has a linear relationship with the H2S concentration range of 0.2–2 μM. The limit of detection (LOD) of H2S by our MagSiCDots particles is 0.26 μM and they remain stable for at least 90 min. To test the suitability of the MagSiCDots nanoparticles for use in hyperthermia application, induction heating using an AMF was done. It was observed that these nanoparticles had a specific absorption rate (SAR) of 28.25 W g−1. The in vitro and in vivo cytotoxicity of MagSiCDots were tested on HeLa cells lines. The results show a cell viability of about 85% when exposed to 100 μg mL−1 concentration of the particles. The in vivo cytotoxicity using zebrafish assay also confirmed the non-toxicity and biocompatibility of the nanoparticles to living cells. The reported data demonstrate that by combining CoMnF@Si and fluorescent CDots into a single system, not only nontoxic multifunctional nanomaterials but also multimodal nanoparticles for several applications, such as hazard gas detection and acting as a biocompatible heat source for therapeutic treatment of cancer, are provided. Multifunctional nanoparticles with special magnetic and optical properties have been attracting a great deal of attention due to their important applications in the bioanalytical and biomedical fields.![]()
Collapse
Affiliation(s)
- Arphaphon Sichamnan
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nararat Yong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwapech Sillapaprayoon
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - I.-Ming Tang
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Weerakanya Maneeprakorn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Weeraphat Pon-On
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
70
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review comprehensively summarises stimulus-cleavable linkers from various research areas and their cleavage mechanisms, thus provides an insightful guideline to extend their potential applications to controlled drug release from nanomaterials.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton
- Victoria 3168
- Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| |
Collapse
|
71
|
Yan XJ, Wang ZG, Wang Y, Huang YY, Liu HB, Xie CZ, Li QZ, Xu JY. A dual-functional fluorescent probe for sequential determination of Cu 2+/S 2- and its applications in biological systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118797. [PMID: 32799193 DOI: 10.1016/j.saa.2020.118797] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
A new acylhydrazine-derived Schiff base fluorescence probe DMI based on "ON-OFF-ON" fluorescence strategy was presented in this paper. Probe DMI could detect Cu2+ selectively and sensitively with dramatic fluorescence quenching in CH3OH-PBS (v/v = 3:7) mixed solution. Once the complex DMI-Cu2+ interacted with S2-, 10.67-folds fluorescence increase was induced via a displacement mechanism under the same experimental conditions. The corresponding detection limits for Cu2+ and S2- were calculated to be 1.52 × 10-8 M and 1.79 × 10-8 M, respectively. The structures of DMI and DMI-Cu2+ were systematically characterized by Job's plot analysis, ESI-MS, IR, X-ray diffraction and density functional theory calculations. Furthermore, fluorescence imaging in MCF-7 cells and zebrafish demonstrated the probe DMI could act as a useful tool to monitor and track intracellular Cu2+ and S2-, which was encouraged by remarkable fluorescence performance and low cytotoxicity. Importantly, the complex DMI-Cu2+ could be applied to detect corrupt blood samples, which could estimate the time of death.
Collapse
Affiliation(s)
- Xiao-Jing Yan
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Zhi-Gang Wang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Yang Wang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Yu-Ying Huang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Hai-Bo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, PR China.
| | - Cheng-Zhi Xie
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China.
| | - Qing-Zhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China.
| |
Collapse
|
72
|
Carrazzone RJ, Foster JC, Li Z, Matson JB. Tuning small molecule release from polymer micelles: Varying H 2S release through cross linking in the micelle core. Eur Polym J 2020; 141:110077. [PMID: 33162563 PMCID: PMC7643851 DOI: 10.1016/j.eurpolymj.2020.110077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polymer micelles, used extensively as vehicles in the delivery of active pharmaceutical ingredients, represent a versatile polymer architecture in drug delivery systems. We hypothesized that degree of crosslinking in the hydrophobic core of amphiphilic block copolymer micelles could be used to tune the rate of release of the biological signaling gas (gasotransmitter) hydrogen sulfide (H2S), a potential therapeutic. To test this hypothesis, we first synthesized amphiphilic block copolymers of the structure PEG-b-P(FBEA) (PEG = poly(ethylene glycol), FBEA = 2-(4-formylbenzoyloxy)ethyl acrylate). Using a modified arm-first approach, we then varied the crosslinking percentage in the core-forming block via addition of a 'O,O'-alkanediyl bis(hydroxylamine) crosslinking agent. We followed incorporation of the crosslinker by 1H NMR spectroscopy, monitoring the appearance of the oxime signal resulting from reaction of pendant aryl aldehydes on the block copolymer with hydroxylamines on the crosslinker, which revealed crosslinking percentages of 5, 10, and 15%. We then installed H2S-releasing S-aroylthiooxime (SATO) groups on the crosslinked polymers, yielding micelles with SATO units in their hydrophobic cores after self-assembly in water. H2S release studies in water, using cysteine (Cys) as a trigger to induce H2S release from the SATO groups in the micelle core, revealed increasing half-lives of H2S release, from 117 ± 6 min to 210 ± 30 min, with increasing crosslinking density in the micelle core. This result was consistent with our hypothesis, and we speculate that core crosslinking limits the rate of Cys diffusion into the micelle core, decreasing the release rate. This method for tuning the release of covalently linked small molecules through modulation of micelle core crosslinking density may extend beyond H2S to other drug delivery systems where precise control of release rate is needed.
Collapse
Affiliation(s)
- Ryan J. Carrazzone
- Department of Chemistry, Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Jeffrey C. Foster
- Department of Chemistry, Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Zhao Li
- Department of Chemistry, Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| | - John B. Matson
- Department of Chemistry, Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| |
Collapse
|
73
|
Li X, Zhuang YY, Wu L, Xie M, Gu HF, Wang B, Tang XQ. Hydrogen Sulfide Ameliorates Cognitive Dysfunction in Formaldehyde-Exposed Rats: Involvement in the Upregulation of Brain-Derived Neurotrophic Factor. Neuropsychobiology 2020; 79:119-130. [PMID: 31550727 DOI: 10.1159/000501294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/04/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate whether hydrogen sulfide (H2S) counteracts formaldehyde (FA)-induced cognitive defects and whether the underlying mechanism is involved in the upregulation of hippocampal brain-derived neurotrophic factor (BDNF) expression. METHODS The cognitive function of rats was evaluated by the Morris water maze (MWM) test and the novel object recognition test. The content of superoxide dismutase (SOD) and malondialdehyde (MDA) in the hippocampus were detected by enzyme-linked immunosorbent assay (ELISA). The neuronal apoptosis in the hippocampal CA1 region was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end (TUNEL) staining. The expression of the BDNF protein was detected by Western blot and immunohistochemistry. RESULTS We found that sodium hydrosulfide (NaHS, a donor of H2S) significantly reversed the impairment in the function of learning and memory in the MWM test and the novel objective recognition task induced by intracerebroventricular injection of FA. We also showed that NaHS significantly reduced the level of MDA, elevated the level of SOD, and decreased the amount of TUNEL-positive neurons in the hippocampus of FA-exposed rats. Moreover, NaHS markedly increased the expression of hippocampal BDNF in FA-exposed rats. CONCLUSIONS H2S attenuates FA-induced dysfunction of cognition and the underlying mechanism is involved in the reduction of hippocampal oxidative damage and apoptosis as well as upregulation of hippocampal BDNF.
Collapse
Affiliation(s)
- Xiang Li
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yuan-Yuan Zhuang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Lei Wu
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Ming Xie
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Hong-Feng Gu
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China, .,Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China, .,Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China,
| |
Collapse
|
74
|
Oxidative Stress in Alzheimer's Disease: In Vitro Therapeutic Effect of Amniotic Fluid Stem Cells Extracellular Vesicles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2785343. [PMID: 33193997 PMCID: PMC7641262 DOI: 10.1155/2020/2785343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is characterized by abnormal protein aggregation, deposition of extracellular β-amyloid proteins (Aβ), besides an increase of oxidative stress. Amniotic fluid stem cells (AFSCs) should have a therapeutic potential for neurodegenerative disorders, mainly through a paracrine effect mediated by extracellular vesicles (EV). Here, we examined the effect of EV derived from human AFSCs (AFSC-EV) on the disease phenotypes in an AD neuron primary culture. We observed a positive effect of AFSC-EV on neuron morphology, viability, and Aβ and phospho-Tau levels. This could be due to the apoptotic and autophagic pathway modulation derived from the decrease in oxidative stress. Indeed, reactive oxygen species (ROS) were reduced, while GSH levels were enhanced. This modulation could be ascribed to the presence of ROS regulating enzymes, such as SOD1 present into the AFSC-EV themselves. This study describes the ROS-modulating effects of extracellular vesicles alone, apart from their deriving stem cell, in an AD in vitro model, proposing AFSC-EV as a therapeutic tool to stop the progression of AD.
Collapse
|
75
|
Wang J, Huo F, Yue Y, Yin C. A review: Red/near-infrared (NIR) fluorescent probes based on nucleophilic reactions of H 2 S since 2015. LUMINESCENCE 2020; 35:1156-1173. [PMID: 32954618 DOI: 10.1002/bio.3831] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
The topics of human health and disease are always the focus of much attention. Hydrogen sulfide (H2 S), as a double-edged sword, plays an important role in biological systems. Studies have revealed that endogenous H2 S is important to maintain normal physiological functions. Conversely, abnormal levels of H2 S may contribute to various diseases. Due to the importance of H2 S in physiology and pathology, research into the effects of H2 S has been active in recent years. Fluorescent probes with red/near-infrared (NIR) emissions (620-900 nm) are more suitable for imaging applications in vivo, because of their negligible photodamage, deep tissue penetration, and maximum lack of interference from background autofluorescence. H2 S, an 'evil and positive' molecule, is not only toxic, but also produces significant effects; a 'greedy' molecule, is not only a strong nucleophile under physiological conditions, but also undergoes a continuous double nucleophilic reaction. Therefore, in this tutorial review, we will highlight recent advances made since 2015 in the development and application of red/NIR fluorescent probes based on nucleophilic reactions of H2 S.
Collapse
Affiliation(s)
- JunPing Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
76
|
Muthusamy S, Rajalakshmi K, Xu Q, Chen Y, Zhao L, Zhu W. An azido coumarin-quinoline conjugated fluorogenic dye: Utilizing amide-iminol tautomerism for H 2S detection in live MCF-7 cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118345. [PMID: 32387916 DOI: 10.1016/j.saa.2020.118345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Detection of H2S to analyze some diseases in living lives demands fast response, high selectivity and biocompatibility. Here we designed an azide containing coumarin attached with 8-aminoquinoline via amide backbone (ACAQ) fluorophore as the H2S sensing probe. Excellent response time of 6 min, high sensitivity with the limit of detection (LOD) of 14.6 nM and high selectivity with other possible interferences are revealed for ACAQ after characterized by spectroscopy, 1H NMR titration and LC-MS measurements. The sensing strategy is explained by amide-iminol tautomerism and azide reduction. In addition, the successful visualization measurement suggests the practicability of the probe ACAQ for H2S detection in live samples.
Collapse
Affiliation(s)
- Selvaraj Muthusamy
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kanagaraj Rajalakshmi
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qingxiang Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yan Chen
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Long Zhao
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Weihua Zhu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
77
|
Aroca A, Gotor C, Bassham DC, Romero LC. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants (Basel) 2020; 9:E621. [PMID: 32679888 PMCID: PMC7402122 DOI: 10.3390/antiox9070621] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) has always been considered toxic, but a huge number of articles published more recently showed the beneficial biochemical properties of its endogenous production throughout all regna. In this review, the participation of H2S in many physiological and pathological processes in animals is described, and its importance as a signaling molecule in plant systems is underlined from an evolutionary point of view. H2S quantification methods are summarized and persulfidation is described as the underlying mechanism of action in plants, animals and bacteria. This review aims to highlight the importance of its crosstalk with other signaling molecules and its fine regulation for the proper function of the cell and its survival.
Collapse
Affiliation(s)
- Angeles Aroca
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Luis C. Romero
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| |
Collapse
|
78
|
Lin Z, Huang S, Yu H, Sun J, Huang P, Zhong Y. Analysis of Plasma Hydrogen Sulfide, Homocysteine, and L-Cysteine in Open-Angle Glaucoma Patients. J Ocul Pharmacol Ther 2020; 36:649-657. [PMID: 32493106 DOI: 10.1089/jop.2020.0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose: To compare the plasma levels of hydrogen sulfide (H2S), homocysteine (Hcy), and L-cysteine (Cys) among primary open-angle glaucoma (POAG), normal tension glaucoma (NTG), ocular hypertension (OHT), and normal individuals. To explore associated factors and evaluate their diagnostic abilities in glaucoma. Methods: POAG, NTG, OHT, and normal subjects were recruited from Ruijin Hospital between December 2016 and December 2018. All subjects underwent thorough ophthalmological examinations, and fasting venous blood was taken to determine the concentrations of H2S, Hcy, and Cys. Results: Forty-two POAG, 20 NTG, 52 OHT, and 78 controls were enrolled. The H2S levels in POAG group were significantly lower than those in OHT group (P = 0.036) and normal group (P < 0.001), while the Hcy and Cys levels in POAG and NTG groups were significantly higher (P = 0.007-0.043). The concentrations of H2S, Hcy, and Cys in glaucoma patients with different stages were not significantly different (all P > 0.05). POAG patients with longer duration of diagnosis had lower concentrations (P = 0.026, P = 0.001, P < 0.001), but no significant differences in NTG patients (all P > 0.05). The Hcy and Cys levels in NTG patients showed negative but weak correlations with mean deviation (r = -0.450, P = 0.047; r = -0.478, P = 0.033). All these concentrations showed significant but poor diagnostic values in POAG-Normal group [area under curve (AUC) = 0.642-0.721, P < 0.05]. The H2S level showed poor diagnostic power in POAG-OHT group (AUC = 0.657, P < 0.01). Conclusion: Decreased levels of H2S and increased levels of Hcy and Cys may be associated with glaucoma, especially in POAG. However, the H2S/Hcy metabolic pathway is not sufficiently sensitive to be used as a reliable biomarker in glaucoma.
Collapse
Affiliation(s)
- Zhongjing Lin
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
79
|
Yan C, Liu D, An L, Wang Y, Tian Q, Lin J, Yang S. Magnetic–Photoacoustic Dual-Mode Probe for the Visualization of H2S in Colorectal Cancer. Anal Chem 2020; 92:8254-8261. [DOI: 10.1021/acs.analchem.0c00504] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chenglin Yan
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Donglin Liu
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Lu An
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Yurui Wang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Qiwei Tian
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
80
|
Berry T, Abohamza E, Moustafa AA. A disease-modifying treatment for Alzheimer's disease: focus on the trans-sulfuration pathway. Rev Neurosci 2020; 31:319-334. [PMID: 31751299 DOI: 10.1515/revneuro-2019-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
Abstract
High homocysteine levels in Alzheimer's disease (AD) result from low activity of the trans-sulfuration pathway. Glutathione levels are also low in AD. L-cysteine is required for the synthesis of glutathione. The synthesis of coenzyme A (CoA) requires L-cysteine, which is synthesized via the trans-sulfuration pathway. CoA is required for the synthesis of acetylcholine and appropriate cholinergic neurotransmission. L-cysteine is required for the synthesis of molybdenum-containing proteins. Sulfite oxidase (SUOX), which is a molybdenum-containing protein, could be dysregulated in AD. SUOX detoxifies the sulfites. Glutaminergic neurotransmission could be dysregulated in AD due to low levels of SUOX and high levels of sulfites. L-cysteine provides sulfur for iron-sulfur clusters. Oxidative phosphorylation (OXPHOS) is heavily dependent on iron-sulfur proteins. The decrease in OXPHOS seen in AD could be due to dysregulations of the trans-sulfuration pathway. There is a decrease in aconitase 1 (ACO1) in AD. ACO1 is an iron-sulfur enzyme in the citric acid cycle that upon loss of an iron-sulfur cluster converts to iron regulatory protein 1 (IRP1). With the dysregulation of iron-sulfur cluster formation ACO1 will convert to IRP1 which will decrease the 2-oxglutarate synthesis dysregulating the citric acid cycle and also dysregulating iron metabolism. Selenomethionine is also metabolized by the trans-sulfuration pathway. With the low activity of the trans-sulfuration pathway in AD selenoproteins will be dysregulated in AD. Dysregulation of selenoproteins could lead to oxidant stress in AD. In this article, we propose a novel treatment for AD that addresses dysregulations resulting from low activity of the trans-sulfuration pathway and low L-cysteine.
Collapse
Affiliation(s)
- Thomas Berry
- School of Social Sciences and Psychology, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia
| | - Eid Abohamza
- Department of Social Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia
| |
Collapse
|
81
|
Yuan DS, Huang YQ, Fu YJ, Xie J, Huang YL, Zhou SS, Sun PY, Tang XQ. Hydrogen sulfide alleviates cognitive deficiency and hepatic dysfunction in a mouse model of acute liver failure. Exp Ther Med 2020; 20:671-677. [PMID: 32509026 DOI: 10.3892/etm.2020.8680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Acute liver failure (ALF) is a devastating clinical syndrome with a high mortality rate if not treated promptly. Previous studies have demonstrated the beneficial effects of hydrogen sulfide (H2S) on the brain and liver. The present study aimed to investigate the potential protective effects of H2S in ALF. A mouse model of ALF was established following treatment with thioacetamide (TAA). Mice with TAA-induced ALF were intraperitoneally injected with 30 or 100 µmol/kg/day sodium hydrosulfide (NaHS; a H2S donor drug) for two weeks. According to results from novel object recognition and Y-maze tests, in the present study, NaHS treatment alleviated cognitive deficiency and preserved spatial orientation learning ability in TAA-induced ALF mice compared with those of untreated mice. In addition, NaHS treatment reduced serum levels of aspartate transaminase (AST), alanine transaminase (ALT) and the concentration of ammonia compared with those that received control treatment, resulting in weight loss prevention. These findings suggested a beneficial effect of H2S on liver function. In conclusion, results from the present study suggested that H2S treatment may alleviate cognitive deficiency and hepatic dysfunction in mice with ALF, indicating the potential therapeutic benefits of applying H2S for the treatment of ALF.
Collapse
Affiliation(s)
- Da-Sen Yuan
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yue-Qi Huang
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuan-Ji Fu
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Xie
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuan-Lu Huang
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shi-Shan Zhou
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Pei-Yuan Sun
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Qing Tang
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
82
|
Wu L, Chen L, Kou M, Dong Y, Deng W, Ge L, Bao H, Chen Q, Li D. The ratiometric fluorescent probes for monitoring the reactive inorganic sulfur species (RISS) signal in the living cell. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118141. [PMID: 32062515 DOI: 10.1016/j.saa.2020.118141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
RSSs (reactive sulfur species) and their metabolites, such as H2S, Sn2-, SO32-/HSO3-, S2O42- and S2O52- (Reactive Inorganic Sulfur Species, RISSs), play a crucial role in the cushion against oxidative stress and the other physiological events. The molecular mechanisms how they affect cellular signaling and other physiological events remain largely unknown. To address their physiological functions, the techniques that can track their levels should be invaluable. Herein, six coumarin hemicyanine scaffolds (CH-RISSs) were synthesized and their fast and strong responses upon H2S, Sn2-, SO32-, HSO3-, S2O42- and S2O52- (Reactive Inorganic Sulfur Species, RISSs) were clarified in the absorption (colorimetric) and fluorescence (ratiometric) spectra, which showed good stability in the physiological pH (7.4). Upon the analytes, the maxima absorption of CH-RISSs switched from ~580 nm to ~400 nm in the absorption spectra. The fluorescence of CH-RISSs depleted at 650-660 nm and increased at 480-505 nm upon the RISSs. Both of coumarin hemicyanine structures with C12 alkyl chain (CH-RISS-3 and CH-RISS-6) showed quick and robust ratiometric fluorescence switch in the living cell imaging. Access to the fluorescent probes for RISSs sets the stage for applying the developing technologies to probe reactive sulfur biology in living systems.
Collapse
Affiliation(s)
- Linye Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou 350117, PR China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China
| | - Langjun Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou 350117, PR China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China
| | - Meng Kou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou 350117, PR China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China
| | - Yanqiu Dong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou 350117, PR China
| | - Weili Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou 350117, PR China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China
| | - Liang Ge
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, PR China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou 350117, PR China.
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou 350117, PR China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
83
|
Sontisiri P, Yingyuad P, Thongyoo P. A highly selective “Turn On” fluorescent probe based on FRET mechanism for hydrogen sulfide detection in living cells. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
84
|
Persistent peroxidase mimics of graphene oxide anchored cerium molybdate sensor: An effective colorimetric detection of S2− and Sn2+ ions. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
85
|
Su D, Cheng D, Lv Y, Ren X, Wu Q, Yuan L. A unique off-on near-infrared QCy7-derived probe for selective detection and imaging of hydrogen sulfide in cells and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117635. [PMID: 31605973 DOI: 10.1016/j.saa.2019.117635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S) has been found to be an important biological regulator that plays important roles in many physiological and pathological processes. Near-infrared (NIR) fluorescent probes capable of selectively detecting H2S in vivo will be useful tools to understand its mechanisms in biological processes. Herein, we reported an easily synthesized and stimuli-responsive NIR fluorescent probe (QCy7-HS) for selective evaluation of endogenous H2S in the living cells and mice. In response to cellular H2S stimulus, QCy7-HS is converted to QCy7 and shows a unique off-on near-infrared fluorescence signal change. The results of selectivity and kinetic studies indicated that our probe has high H2S binding capacity. Therefore, this probe was used for the fluorescence detection of H2S in cells. Moreover, the probe was applied for study exogenous and endogenous H2S in live mice, indicating that the new probe can be used as an efficient tool on H2S related events in living animals.
Collapse
Affiliation(s)
- Dongdong Su
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Yun Lv
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xiaojun Ren
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
86
|
Liu J, Liu X, Lu S, Zhang L, Feng L, Zhong S, Zhang N, Bing T, Shangguan D. Ratiometric detection and imaging of hydrogen sulfide in mitochondria based on a cyanine/naphthalimide hybrid fluorescent probe. Analyst 2020; 145:6549-6555. [DOI: 10.1039/d0an01314e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel fluorescent probe (L1) for ratiometric detection and imaging of H2S in mitochondria was developed by combining a H2S-sensitive naphthalimide fluorophore and a mitochondria targeting cyanine fluorophore.
Collapse
Affiliation(s)
- Jing Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Shanshan Lu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Lingling Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Le Feng
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Shilong Zhong
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
87
|
Rajendran K, Rajendran G, Kasthuri J, Kathiravan K, Rajendiran N. Sweet Corn
(Zea mays L. var. rugosa)
Derived Fluorescent Carbon Quantum Dots for Selective Detection of Hydrogen Sulfide and Bioimaging Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201903385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kalimuthu Rajendran
- Department of Polymer ScienceUniversity of MadrasGuindy Campus, Chennai-25, Tamil Nadu India
| | - Ganapathy Rajendran
- Department of BiotechnologyUniversity of MadrasGuindy Campus, Chennai-25, Tamil Nadu India
| | - Jayapalan Kasthuri
- Department of ChemistryQuaid-E- Millath Govt. College for Women, Chennai-2 Tamil Nadu
| | - Krishnan Kathiravan
- Department of BiotechnologyUniversity of MadrasGuindy Campus, Chennai-25, Tamil Nadu India
| | - Nagappan Rajendiran
- Department of Polymer ScienceUniversity of MadrasGuindy Campus, Chennai-25, Tamil Nadu India
| |
Collapse
|
88
|
Lu Z, Zhao T, Tao L, Yu Q, Yang Y, Cheng J, Lu S, Ding Q. Cystathionine β-Synthase-Derived Hydrogen Sulfide Correlates with Successful Aging in Mice. Rejuvenation Res 2019; 22:513-520. [PMID: 30799778 DOI: 10.1089/rej.2018.2166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Zhihong Lu
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianzhi Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Lei Tao
- Department of Anesthesiology, the Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Qian Yu
- Department of Anesthesiology, the Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Yonghui Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Jin Cheng
- Department of Cardiology, the Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Shaoping Lu
- Department of Cardiology, the Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Qian Ding
- Department of Anesthesiology, the Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
89
|
Yu H, Liu C, Li Y, Huang A. Functionalized Metal-Organic Framework UiO-66-NH-BQB for Selective Detection of Hydrogen Sulfide and Cysteine. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41972-41978. [PMID: 31625716 DOI: 10.1021/acsami.9b16529] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule related to many diseases. Thus, H2S has a great impact on the pathological and physiological processes in biological systems. Cysteine (l-Cys) is a building block for proteins and important metabolites. To understand their roles in the physiological metabolic procedures, the measurement of the H2S level and identifying cysteine in the biological system is significant. In this study, through the functionalization of UiO-66-NH2 by 4-(2,2-dicyanoethenyl)benzoic acid (BQB), a novel UiO-66-NH-BQB is successfully synthesized and used as a fluorescence probe to recognize and detect H2S and l-Cys. The fluorescence signals of the probe are enhanced great when it is exposed to H2S or cysteine molecules; thus, it is able to determine quantificationally the H2S concentration in an aqueous solution. The detection limitation of the UiO-66-NH-BQB to H2S concentration is found to be as low as 1.74 μM. The developed fluorescent probe based on UiO-66-NH-BQB displays a high selectivity and excellent biocompatibility, which is very promising for recognition and sensing of biothiols in organisms.
Collapse
Affiliation(s)
- Huazheng Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| | - Chuanyao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| | - Yanhong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| |
Collapse
|
90
|
Tabassum R, Jeong NY. Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. Int J Med Sci 2019; 16:1386-1396. [PMID: 31692944 PMCID: PMC6818192 DOI: 10.7150/ijms.36516] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Oxidative phosphorylation is a source of energy production by which many cells satisfy their energy requirements. Endogenous reactive oxygen species (ROS) are by-products of oxidative phosphorylation. ROS are formed due to the inefficiency of oxidative phosphorylation, and lead to oxidative stress that affects mitochondrial metabolism. Chronic oxidative stress contributes to the onset of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The immediate consequences of oxidative stress include lipid peroxidation, protein oxidation, and mitochondrial deoxyribonucleic acid (mtDNA) mutation, which induce neuronal cell death. Mitochondrial binding of amyloid-β (Aβ) protein has been identified as a contributing factor in AD. In PD and HD, respectively, α-synuclein (α-syn) and huntingtin (Htt) gene mutations have been reported to exacerbate the effects of oxidative stress. Similarly, abnormalities in mitochondrial dynamics and the respiratory chain occur in ALS due to dysregulation of mitochondrial complexes II and IV. However, oxidative stress-induced dysfunctions in neurodegenerative diseases can be mitigated by the antioxidant function of hydrogen sulfide (H2S), which also acts through the potassium (KATP/K+) ion channel and calcium (Ca2+) ion channels to increase glutathione (GSH) levels. The pharmacological activity of H2S is exerted by both inorganic and organic compounds. GSH, glutathione peroxidase (Gpx), and superoxide dismutase (SOD) neutralize H2O2-induced oxidative damage in mitochondria. The main purpose of this review is to discuss specific causes and effects of mitochondrial oxidative stress in neurodegenerative diseases, and how these are impacted by the antioxidant functions of H2S to support the development of advancements in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Rubaiya Tabassum
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
- Department of Medicine, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
- Department of Medicine, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
| |
Collapse
|
91
|
Kumar M, Sandhir R. Hydrogen sulfide suppresses homocysteine-induced glial activation and inflammatory response. Nitric Oxide 2019; 90:15-28. [DOI: 10.1016/j.niox.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/30/2019] [Accepted: 05/26/2019] [Indexed: 11/26/2022]
|
92
|
Cheng XJ, Gu JX, Pang YP, Liu J, Xu T, Li XR, Hua YZ, Newell KA, Huang XF, Yu Y, Liu Y. Tacrine-Hydrogen Sulfide Donor Hybrid Ameliorates Cognitive Impairment in the Aluminum Chloride Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:3500-3509. [PMID: 31244052 DOI: 10.1021/acschemneuro.9b00120] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by progressive loss of memory and cognitive function, and is associated with the deficiency of synaptic acetylcholine, as well as chronic neuroinflmmation. Tacrine, a potent acetylcholinesterase (AChE) inhibitor, was previously a prescribed clinical therapeutic agent for AD, but it was recently withdrawn because it caused widespread hepatotoxicity. Hydrogen sulfide (H2S) has neuroprotective, hepatoprotective, and anti-inflammatory effects. In this study, we synthesized a new compound, a tacrine-H2S donor hybrid (THS) by introducing H2S-releasing moieties (ACS81) to tacrine. Subsequently, pharmacological and biological evaluations of THS were conducted in the aluminum trichloride (AlCl3)-induced AD mice model. We found that THS (15 mmol/kg) improved cognitive and locomotor activity in AD mice in the step-through test and open field test, respectively. THS showed strong AChE inhibitory activity in the serum and hippocampus of AD mice and induced increased hippocampal H2S levels. Furthermore, THS reduced mRNA expression of the proinflammatory cytokines, TNF-α, IL-6, and IL-1β and increased synapse-associated proteins (synaptophysin and postsynaptic density protein 95) in the hippocampus of AD mice. Importantly, THS, unlike tacrine, did not increase liver transaminases (alanine transaminase and aspartate transaminase) or proinflammatory cytokines, indicating THS is much safer than tacrine. Therefore, the multifunctional effects of this new hybrid compound of tacrine and H2S indicate it is a promising compound for further research into the treatment of AD.
Collapse
Affiliation(s)
- Xiao-jing Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-xue Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi-peng Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin-rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu-zhou Hua
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
93
|
McCarty MF, O'Keefe JH, DiNicolantonio JJ. A diet rich in taurine, cysteine, folate, B 12 and betaine may lessen risk for Alzheimer's disease by boosting brain synthesis of hydrogen sulfide. Med Hypotheses 2019; 132:109356. [PMID: 31450076 DOI: 10.1016/j.mehy.2019.109356] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
The gaseous physiological modulator hydrogen sulfide (H2S) has recently been shown to exert a variety of neuroprotective effects. In particular, the treatment of transgenic mouse models of Alzheimer's disease (AD) with agents that release H2S aids preservation of cognitive function, suppresses brain production of amyloid beta, and decreases tau phosphorylation. The possible physiological relevance of these findings is suggested by the finding that brain and plasma levels of H2S are markedly lower in AD patients than matched controls. Hence, nutraceutical strategies which boost brain synthesis or levels of H2S may have potential for prevention of AD. The chief enzyme which synthesizes H2S in brain parenchyma, cystathionine beta-synthase (CBS), employs cysteine as its rate-limiting substrate, and is allosterically activated by S-adenosylmethionine (SAM). Supplemental taurine has been shown to boost expression of this enzyme, as well as that of another H2S source, cystathionine gamma-lyase, in vascular tissue, and to enhance plasma H2S levels; in rats subjected to hemorrhagic stroke, co-administration of taurine has been shown to blunt a marked reduction in brain CBS expression. Brain levels of SAM are about half as high in AD patients as in controls, and this is thought to explain the reduction of brain H2S in these patients. These considerations suggest that supplementation with cysteine, taurine, and agents which promote methyl group availability - such as SAM, folate, vitamin B12, and betaine - may have potential for boosting brain synthesis of H2S and thereby aiding AD prevention. Indeed, most of these agents have already demonstrated utility in mouse AD models - albeit the extent to which increased H2S synthesis contributes to this protection remains unclear. Moreover, prospective epidemiology has associated low dietary or plasma levels of folate, B12, and taurine with increased dementia risk. Rodent studies suggest that effective nutraceutical strategies for boosting brain H2S synthesis may in fact have broad neuroprotective utility, possibly aiding prevention and/or control not only of AD but also Parkinson's disease and glaucoma, while diminishing the neuronal damage associated with brain trauma or stroke.
Collapse
Affiliation(s)
| | - James H O'Keefe
- Saint Luke's Mid America Heart Institute, Kansas City, MO, United States
| | | |
Collapse
|
94
|
Ni-guanidine@MCM-41 NPs: a new catalyst for the synthesis of 4,4ʹ-(arylmethylene)-bis-(3-methyl-1-phenyl-1H-pyrazol-5-ols) and symmetric di-aryl sulfides. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01727-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
95
|
He JT, Li H, Yang L, Cheng KL. Involvement of Endothelin-1, H 2S and Nrf2 in Beneficial Effects of Remote Ischemic Preconditioning in Global Cerebral Ischemia-Induced Vascular Dementia in Mice. Cell Mol Neurobiol 2019; 39:671-686. [PMID: 31025223 DOI: 10.1007/s10571-019-00670-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
The present study explored the role of endothelin-1, H2S, and Nrf2 in remote preconditioning (RIPC)-induced beneficial effects in ischemia-reperfusion (I/R)-induced vascular dementia. Mice were subjected to 20 min of global ischemia by occluding both carotid arteries to develop vascular dementia, which was assessed using Morris water maze test on 7th day. RIPC was given by subjecting hind limb to four cycles of ischemia (5 min) and reperfusion (5 min) and it significantly restored I/R-induced locomotor impairment, neurological severity score, cerebral infarction, apoptosis markers along with deficits in learning and memory. Biochemically, there was increase in the plasma levels of endothelin-1 along with increase in the brain levels of H2S and its biosynthetic enzymes viz., cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CLS). There was also an increase in the expression of Nrf2 and glutathione reductase in the brain in response to RIPC. Pretreatment with bosentan (dual blocker of ETA and ETB receptors), amino-oxyacetic acid (CBS synthase inhibitor), and DL-propargylglycine (CLS inhibitor) significantly attenuated RIPC-mediated beneficial effects and biochemical alterations. The effects of bosentan on behavioral and biochemical parameters were more significant than individual treatments with CBS or CLS inhibitors. Moreover, CBS and CLS inhibitors did not alter the endothelin-1 levels possibly suggesting that endothelin-1 may act as upstream mediator of H2S. It is concluded that RIPC may stimulate the release endothelin-1, which may activate CBS and CLS to increase the levels of H2S and latter may increase the expression of Nrf2 to decrease oxidative stress and prevent vascular dementia.
Collapse
Affiliation(s)
- Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin, China
| | - Haiqi Li
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin, China
| | - Le Yang
- Department of Endocrinology, The People's Hospital of Jilin Province, Changchun, 130031, China.
| | - Kai-Liang Cheng
- Department of Radiology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
96
|
Adalimumab improves cognitive impairment, exerts neuroprotective effects and attenuates neuroinflammation in an Aβ1-40-injected mouse model of Alzheimer's disease. Cytotherapy 2019; 21:671-682. [DOI: 10.1016/j.jcyt.2019.04.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 01/11/2023]
|
97
|
A coumarin-based colorimetric fluorescent probe for rapid response and highly sensitive detection of hydrogen sulfide in living cells. Talanta 2019; 197:122-129. [DOI: 10.1016/j.talanta.2018.12.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/17/2018] [Accepted: 12/25/2018] [Indexed: 01/02/2023]
|
98
|
Yang X, Wang C, Zhang X, Chen S, Chen L, Lu S, Lu S, Yan X, Xiong K, Liu F, Yan J. Redox regulation in hydrogen sulfide action: From neurotoxicity to neuroprotection. Neurochem Int 2019; 128:58-69. [PMID: 31015021 DOI: 10.1016/j.neuint.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Xue Yang
- Department of Forensic Science,Changsha, Hunan, 410013, China
| | - Chudong Wang
- Department of Forensic Science,Changsha, Hunan, 410013, China
| | - Xudong Zhang
- Narcotics Division, Municipal Security Bureau, Changsha, Hunan, 410013, China
| | - Siqi Chen
- Department of Forensic Science,Changsha, Hunan, 410013, China
| | - Liangpei Chen
- Department of Forensic Science,Changsha, Hunan, 410013, China
| | - Shanshan Lu
- Department of Forensic Science,Changsha, Hunan, 410013, China; Histology and Embryology,Changsha, Hunan, 410013, China
| | - Shuang Lu
- Department of Forensic Science,Changsha, Hunan, 410013, China; Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital, Wuhan, 430060, China
| | - Kun Xiong
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Jie Yan
- Department of Forensic Science,Changsha, Hunan, 410013, China; Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China.
| |
Collapse
|
99
|
Role of hydrogen sulfide in cognitive deficits: Evidences and mechanisms. Eur J Pharmacol 2019; 849:146-153. [DOI: 10.1016/j.ejphar.2019.01.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 11/23/2022]
|
100
|
Samanta SK, Ali SS, Gangopadhyay A, Maiti K, Pramanik AK, Guria UN, Ghosh A, Datta P, Mahapatra AK. A highly selective ratiometric fluorescent probe for H 2S based on new heterocyclic ring formation and detection in live cells. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1590573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sandip Kumar Samanta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Syed Samim Ali
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Ankita Gangopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Kalipada Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Ajoy Kumar Pramanik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Uday Narayan Guria
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Aritri Ghosh
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| |
Collapse
|