51
|
Boulad F, Maggio A, Wang X, Moi P, Acuto S, Kogel F, Takpradit C, Prockop S, Mansilla-Soto J, Cabriolu A, Odak A, Qu J, Thummar K, Du F, Shen L, Raso S, Barone R, Di Maggio R, Pitrolo L, Giambona A, Mingoia M, Everett JK, Hokama P, Roche AM, Cantu VA, Adhikari H, Reddy S, Bouhassira E, Mohandas N, Bushman FD, Rivière I, Sadelain M. Lentiviral globin gene therapy with reduced-intensity conditioning in adults with β-thalassemia: a phase 1 trial. Nat Med 2022; 28:63-70. [PMID: 34980909 PMCID: PMC9380046 DOI: 10.1038/s41591-021-01554-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/23/2021] [Indexed: 01/05/2023]
Abstract
β-Thalassemias are inherited anemias that are caused by the absent or insufficient production of the β chain of hemoglobin. Here we report 6-8-year follow-up of four adult patients with transfusion-dependent β-thalassemia who were infused with autologous CD34+ cells transduced with the TNS9.3.55 lentiviral globin vector after reduced-intensity conditioning (RIC) in a phase 1 clinical trial ( NCT01639690) . Patients were monitored for insertional mutagenesis and the generation of a replication-competent lentivirus (safety and tolerability of the infusion product after RIC-primary endpoint) and engraftment of genetically modified autologous CD34+ cells, expression of the transduced β-globin gene and post-transplant transfusion requirements (efficacy-secondary endpoint). No unexpected safety issues occurred during conditioning and cell product infusion. Hematopoietic gene marking was very stable but low, reducing transfusion requirements in two patients, albeit not achieving transfusion independence. Our findings suggest that non-myeloablative conditioning can achieve durable stem cell engraftment but underscore a minimum CD34+ cell transduction requirement for effective therapy. Moderate clonal expansions were associated with integrations near cancer-related genes, suggestive of non-erythroid activity of globin vectors in stem/progenitor cells. These correlative findings highlight the necessity of cautiously monitoring patients harboring globin vectors.
Collapse
Affiliation(s)
- Farid Boulad
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aurelio Maggio
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Xiuyan Wang
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Moi
- Ospedale Pediatrico Microcitemie 'A.Cao', A.O. 'G.Brotzu', Cagliari, Italy
| | - Santina Acuto
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Friederike Kogel
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chayamon Takpradit
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Susan Prockop
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Annalisa Cabriolu
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashlesha Odak
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinrong Qu
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Keyur Thummar
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fang Du
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lingbo Shen
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simona Raso
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Rita Barone
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Rosario Di Maggio
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Lorella Pitrolo
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Antonino Giambona
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Maura Mingoia
- Ospedale Pediatrico Microcitemie 'A.Cao', A.O. 'G.Brotzu', Cagliari, Italy
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pascha Hokama
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aoife M Roche
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vito Adrian Cantu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hriju Adhikari
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, New York, NY, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
52
|
Scott S, Hallwirth CV, Hartkopf F, Grigson S, Jain Y, Alexander IE, Bauer DC, O W Wilson L. Isling: a tool for detecting integration of wild-type viruses and clinical vectors. J Mol Biol 2021; 434:167408. [PMID: 34929203 DOI: 10.1016/j.jmb.2021.167408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Detecting viral and vector integration events is a key step when investigating interactions between viral and host genomes. This is relevant in several fields, including virology, cancer research and gene therapy. For example, investigating integrations of wild-type viruses such as human papillomavirus and hepatitis B virus has proven to be crucial for understanding the role of these integrations in cancer. Furthermore, identifying the extent of vector integration is vital for determining the potential for genotoxicity in gene therapies. To address these questions, we developed isling, the first tool specifically designed for identifying viral integrations in both wild-type and vector from next-generation sequencing data. Isling addresses complexities in integration behaviour including integration of fragmented genomes and integration junctions with ambiguous locations in a host or vector genome, and can also flag possible vector recombinations. We show that isling is up to 1.6-fold faster and up to 170% more accurate than other viral integration tools, and performs well on both simulated and real datasets. Isling is therefore an efficient and application-agnostic tool that will enable a broad range of investigations into viral and vector integration. These include comparisons between integrations of wild-type viruses and gene therapy vectors, as well as assessing the genotoxicity of vectors and understanding the role of viruses in cancer.
Collapse
Affiliation(s)
- Suzanne Scott
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, North Ryde, Australia; Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, Australia; The Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, Australia; The Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Felix Hartkopf
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Susanna Grigson
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Yatish Jain
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, North Ryde, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, Australia; The Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia; Discipline of Child and Adolescent Health,Faculty of Medicine and Health,The University of Sydney, Sydney, New South Wales, Australia
| | - Denis C Bauer
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, North Ryde, Australia; Discipline of Child and Adolescent Health,Faculty of Medicine and Health,The University of Sydney, Sydney, New South Wales, Australia; Macquarie University, Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie Park, Australia.
| | - Laurence O W Wilson
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, North Ryde, Australia; Macquarie University, Applied BioSciences, Faculty of Science and Engineering, Macquarie Park, Australia.
| |
Collapse
|
53
|
Van Looveren D, Giacomazzi G, Thiry I, Sampaolesi M, Gijsbers R. Improved functionality and potency of next generation BinMLV viral vectors toward safer gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:51-67. [PMID: 34553002 PMCID: PMC8433069 DOI: 10.1016/j.omtm.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/16/2021] [Indexed: 10/27/2022]
Abstract
To develop safer retroviral murine leukemia virus (MLV)-based vectors, we previously mutated and re-engineered the MLV integrase: the W390A mutation abolished the interaction with its cellular tethering factors, BET proteins, and a retargeting peptide (the chromodomain of the CBX1 protein) was fused C-terminally. The resulting BET-independent MLVW390A-CBX was shown to integrate efficiently and more randomly, away from typical retroviral markers. In this study, we assessed the functionality and stability of expression of the redistributed MLVW390A-CBX vector in more depth, and evaluated safety using a clinically more relevant vector design encompassing a self-inactivated (SIN) LTR and a weak internal elongation factor 1α short (EFS) promoter. MLVW390A-CBX-EFS produced like MLVWT and efficiently transduced laboratory cells and primary human CD34+ hematopoetic stem cells (HSC) without transgene silencing over time, while displaying a more preferred, redistributed, and safer integration pattern. In a human mesoangioblast (MAB) stem cell model, the myogenic fusion capacity was hindered following MLVWT transduction, while this remained unaffected when applying MLVW390A-CBX. Likewise, smooth muscle cell differentiation of MABs was unaltered by MLVW390A-CBX-EFS. Taken together, our results underscore the potential of MLVW390A-CBX-EFS as a clinically relevant viral vector for ex-vivo gene therapy, combining efficient production with a preferable integration site distribution profile and stable expression over time.
Collapse
Affiliation(s)
- Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Giorgia Giacomazzi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Irina Thiry
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
54
|
Bushman FD, Cantu A, Everett J, Sabatino D, Berry C. Challenges in estimating numbers of vectors integrated in gene-modified cells using DNA sequence information. Mol Ther 2021; 29:3328-3331. [PMID: 34717818 PMCID: PMC8636165 DOI: 10.1016/j.ymthe.2021.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Adrian Cantu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Denise Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Berry
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
55
|
Reinhardt B, Habib O, Shaw KL, Garabedian E, Carbonaro-Sarracino DA, Terrazas D, Fernandez BC, De Oliveira S, Moore TB, Ikeda AK, Engel BC, Podsakoff GM, Hollis RP, Fernandes A, Jackson C, Shupien S, Mishra S, Davila A, Mottahedeh J, Vitomirov A, Meng W, Rosenfeld AM, Roche AM, Hokama P, Reddy S, Everett J, Wang X, Luning Prak ET, Cornetta K, Hershfield MS, Sokolic R, De Ravin SS, Malech HL, Bushman FD, Candotti F, Kohn DB. Long-term outcomes after gene therapy for adenosine deaminase severe combined immune deficiency. Blood 2021; 138:1304-1316. [PMID: 33974038 PMCID: PMC8525336 DOI: 10.1182/blood.2020010260] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Patients lacking functional adenosine deaminase activity have severe combined immunodeficiency (ADA SCID), which can be treated with ADA enzyme replacement therapy (ERT), allogeneic hematopoietic stem cell transplantation (HSCT), or autologous HSCT with gene-corrected cells (gene therapy [GT]). A cohort of 10 ADA SCID patients, aged 3 months to 15 years, underwent GT in a phase 2 clinical trial between 2009 and 2012. Autologous bone marrow CD34+ cells were transduced ex vivo with the MND (myeloproliferative sarcoma virus, negative control region deleted, dl587rev primer binding site)-ADA gammaretroviral vector (gRV) and infused following busulfan reduced-intensity conditioning. These patients were monitored in a long-term follow-up protocol over 8 to 11 years. Nine of 10 patients have sufficient immune reconstitution to protect against serious infections and have not needed to resume ERT or proceed to secondary allogeneic HSCT. ERT was restarted 6 months after GT in the oldest patient who had no evidence of benefit from GT. Four of 9 evaluable patients with the highest gene marking and B-cell numbers remain off immunoglobulin replacement therapy and responded to vaccines. There were broad ranges of responses in normalization of ADA enzyme activity and adenine metabolites in blood cells and levels of cellular and humoral immune reconstitution. Outcomes were generally better in younger patients and those receiving higher doses of gene-marked CD34+ cells. No patient experienced a leukoproliferative event after GT, despite persisting prominent clones with vector integrations adjacent to proto-oncogenes. These long-term findings demonstrate enduring efficacy of GT for ADA SCID but also highlight risks of genotoxicity with gRVs. This trial was registered at www.clinicaltrials.gov as #NCT00794508.
Collapse
Affiliation(s)
- Bryanna Reinhardt
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Omar Habib
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kit L Shaw
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Elizabeth Garabedian
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Denise A Carbonaro-Sarracino
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Dayna Terrazas
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Beatriz Campo Fernandez
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Satiro De Oliveira
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Theodore B Moore
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Alan K Ikeda
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Barbara C Engel
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Roger P Hollis
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Augustine Fernandes
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Connie Jackson
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Sally Shupien
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Suparna Mishra
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Alejandra Davila
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Jack Mottahedeh
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Andrej Vitomirov
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine and
| | | | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Pascha Hokama
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Everett
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyan Wang
- Department of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | | | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Michael S Hershfield
- Departments of Medicine and Biochemistry, Duke University School of Medicine, Durham, NC
| | - Robert Sokolic
- Department of Medicine, Alpert Medical School, Brown University, Providence, RI
| | - Suk See De Ravin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Harry L Malech
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
56
|
Simonetti FR, Zhang H, Soroosh GP, Duan J, Rhodehouse K, Hill AL, Beg SA, McCormick K, Raymond HE, Nobles CL, Everett JK, Kwon KJ, White JA, Lai J, Margolick JB, Hoh R, Deeks SG, Bushman FD, Siliciano JD, Siliciano RF. Antigen-driven clonal selection shapes the persistence of HIV-1-infected CD4+ T cells in vivo. J Clin Invest 2021; 131:145254. [PMID: 33301425 DOI: 10.1172/jci145254] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Clonal expansion of infected CD4+ T cells is a major mechanism of HIV-1 persistence and a barrier to achieving a cure. Potential causes are homeostatic proliferation, effects of HIV-1 integration, and interaction with antigens. Here, we show that it is possible to link antigen responsiveness, the full proviral sequence, the integration site, and the T cell receptor β-chain (TCRβ) sequence to examine the role of recurrent antigenic exposure in maintaining the HIV-1 reservoir. We isolated CMV- and Gag-responding CD4+ T cells from 10 treated individuals. Proviral populations in CMV-responding cells were dominated by large clones, including clones harboring replication-competent proviruses. TCRβ repertoires showed high clonality driven by converging adaptive responses. Although some proviruses were in genes linked to HIV-1 persistence (BACH2, STAT5B, MKL1), the proliferation of infected cells under antigenic stimulation occurred regardless of the site of integration. Paired TCRβ and integration site analysis showed that infection could occur early or late in the course of a clone's response to antigen and could generate infected cell populations too large to be explained solely by homeostatic proliferation. Together, these findings implicate antigen-driven clonal selection as a major factor in HIV-1 persistence, a finding that will be a difficult challenge to eradication efforts.
Collapse
Affiliation(s)
- Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Garshasb P Soroosh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiayi Duan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyle Rhodehouse
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison L Hill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Subul A Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin McCormick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hayley E Raymond
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher L Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, UCSF, San Francisco, California, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
57
|
Dawes JC, Uren AG. Forward and Reverse Genetics of B Cell Malignancies: From Insertional Mutagenesis to CRISPR-Cas. Front Immunol 2021; 12:670280. [PMID: 34484175 PMCID: PMC8414522 DOI: 10.3389/fimmu.2021.670280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer genome sequencing has identified dozens of mutations with a putative role in lymphomagenesis and leukemogenesis. Validation of driver mutations responsible for B cell neoplasms is complicated by the volume of mutations worthy of investigation and by the complex ways that multiple mutations arising from different stages of B cell development can cooperate. Forward and reverse genetic strategies in mice can provide complementary validation of human driver genes and in some cases comparative genomics of these models with human tumors has directed the identification of new drivers in human malignancies. We review a collection of forward genetic screens performed using insertional mutagenesis, chemical mutagenesis and exome sequencing and discuss how the high coverage of subclonal mutations in insertional mutagenesis screens can identify cooperating mutations at rates not possible using human tumor genomes. We also compare a set of independently conducted screens from Pax5 mutant mice that converge upon a common set of mutations observed in human acute lymphoblastic leukemia (ALL). We also discuss reverse genetic models and screens that use CRISPR-Cas, ORFs and shRNAs to provide high throughput in vivo proof of oncogenic function, with an emphasis on models using adoptive transfer of ex vivo cultured cells. Finally, we summarize mouse models that offer temporal regulation of candidate genes in an in vivo setting to demonstrate the potential of their encoded proteins as therapeutic targets.
Collapse
Affiliation(s)
- Joanna C Dawes
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anthony G Uren
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
58
|
Pawlicki JM, Cookmeyer DL, Maseda D, Everett JK, Wei F, Kong H, Zhang Q, Wang HY, Tobias JW, Walter DM, Zullo KM, Javaid S, Watkins A, Wasik MA, Bushman FD, Riley JL. NPM-ALK-Induced Reprogramming of Mature TCR-Stimulated T Cells Results in Dedifferentiation and Malignant Transformation. Cancer Res 2021; 81:3241-3254. [PMID: 33619116 PMCID: PMC8260452 DOI: 10.1158/0008-5472.can-20-2297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/28/2020] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Fusion genes including NPM-ALK can promote T-cell transformation, but the signals required to drive a healthy T cell to become malignant remain undefined. In this study, we introduce NPM-ALK into primary human T cells and demonstrate induction of the epithelial-to-mesenchymal transition (EMT) program, attenuation of most T-cell effector programs, reemergence of an immature epigenomic profile, and dynamic regulation of c-Myc, E2F, and PI3K/mTOR signaling pathways early during transformation. A mutant of NPM-ALK failed to bind several signaling complexes including GRB2/SOS, SHC1, SHC4, and UBASH3B and was unable to transform T cells. Finally, T-cell receptor (TCR)-generated signals were required to achieve T-cell transformation, explaining how healthy individuals can harbor T cells with NPM-ALK translocations. These findings describe the fundamental mechanisms of NPM-ALK-mediated oncogenesis and may serve as a model to better understand factors that regulate tumor formation. SIGNIFICANCE: This investigation into malignant transformation of T cells uncovers a requirement for TCR triggering, elucidates integral signaling complexes nucleated by NPM-ALK, and delineates dynamic transcriptional changes as a T cell transforms.See related commentary by Spasevska and Myklebust, p. 3160.
Collapse
MESH Headings
- Apoptosis
- Cell Dedifferentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cellular Reprogramming
- Humans
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/immunology
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Phosphorylation
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jan M Pawlicki
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Cookmeyer
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Damian Maseda
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John K Everett
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fang Wei
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Kong
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qian Zhang
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Y Wang
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Walter
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly M Zullo
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah Javaid
- Merck Research Laboratories, Boston, Massachusetts
| | | | - Mariusz A Wasik
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James L Riley
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
59
|
GS-9822, a preclinical LEDGIN candidate, displays a block-and-lock phenotype in cell culture. Antimicrob Agents Chemother 2021; 65:AAC.02328-20. [PMID: 33619061 PMCID: PMC8092873 DOI: 10.1128/aac.02328-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ability of HIV to integrate into the host genome and establish latent reservoirs is the main hurdle preventing an HIV cure. LEDGINs are small-molecule integrase inhibitors that target the binding pocket of LEDGF/p75, a cellular cofactor that substantially contributes to HIV integration site selection. They are potent antivirals that inhibit HIV integration and maturation. In addition, they retarget residual integrants away from transcription units and towards a more repressive chromatin environment. As a result, treatment with the LEDGIN CX14442 yielded residual provirus that proved more latent and more refractory to reactivation, supporting the use of LEDGINs as research tools to study HIV latency and a functional cure strategy. In this study we compared GS-9822, a potent, pre-clinical lead compound, with CX14442 with respect to antiviral potency, integration site selection, latency and reactivation. GS-9822 was more potent than CX14442 in most assays. For the first time, the combined effects on viral replication, integrase-LEDGF/p75 interaction, integration sites, epigenetic landscape, immediate latency and latency reversal was demonstrated at nanomolar concentrations achievable in the clinic. GS-9822 profiles as a preclinical candidate for future functional cure research.
Collapse
|
60
|
Espinoza DA, Mortlock RD, Koelle SJ, Wu C, Dunbar CE. Interrogation of clonal tracking data using barcodetrackR. NATURE COMPUTATIONAL SCIENCE 2021; 1:280-289. [PMID: 37621673 PMCID: PMC10449013 DOI: 10.1038/s43588-021-00057-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 08/26/2023]
Abstract
Clonal tracking methods provide quantitative insights into the cellular output of genetically labelled progenitor cells across time and cellular compartments. In the context of gene and cell therapies, clonal tracking methods have enabled the tracking of progenitor cell output both in humans receiving therapies and in corresponding animal models, providing valuable insight into lineage reconstitution, clonal dynamics, and vector genotoxicity. However, the absence of a toolbox for analysis of clonal tracking data has precluded the development of standardized analytical frameworks within the field. Thus, we developed barcodetrackR, an R package and accompanying Shiny app containing diverse tools for the analysis and visualization of clonal tracking data. We demonstrate the utility of barcodetrackR in exploring longitudinal clonal patterns and lineage relationships in a number of clonal tracking studies of hematopoietic stem and progenitor cells (HSPCs) in humans receiving HSPC gene therapy and in animals receiving lentivirally transduced HSPC transplants or tumor cells.
Collapse
Affiliation(s)
- Diego A. Espinoza
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryland D. Mortlock
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samson J. Koelle
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
61
|
Dahl M, Smith EM, Warsi S, Rothe M, Ferraz MJ, Aerts JM, Golipour A, Harper C, Pfeifer R, Pizzurro D, Schambach A, Mason C, Karlsson S. Correction of pathology in mice displaying Gaucher disease type 1 by a clinically-applicable lentiviral vector. Mol Ther Methods Clin Dev 2021; 20:312-323. [PMID: 33511245 PMCID: PMC7806948 DOI: 10.1016/j.omtm.2020.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/28/2020] [Indexed: 12/02/2022]
Abstract
Gaucher disease type 1 (GD1) is an inherited lysosomal disorder with multisystemic effects in patients. Hallmark symptoms include hepatosplenomegaly, cytopenias, and bone disease with varying degrees of severity. Mutations in a single gene, glucosidase beta acid 1 (GBA1), are the underlying cause for the disorder, resulting in insufficient activity of the enzyme glucocerebrosidase, which in turn leads to a progressive accumulation of the lipid component glucocerebroside. In this study, we treat mice with signs consistent with GD1, with hematopoietic stem/progenitor cells transduced with a lentiviral vector containing an RNA transcript that, after reverse transcription, results in codon-optimized cDNA that, upon its integration into the genome encodes for functional human glucocerebrosidase. Five months after gene transfer, a highly significant reduction in glucocerebroside accumulation with subsequent reversal of hepatosplenomegaly, restoration of blood parameters, and a tendency of increased bone mass and density was evident in vector-treated mice compared to non-treated controls. Furthermore, histopathology revealed a prominent reduction of Gaucher cell infiltration after gene therapy. The vector displayed an oligoclonal distribution pattern but with no sign of vector-induced clonal dominance and a typical lentiviral vector integration profile. Cumulatively, our findings support the initiation of the first clinical trial for GD1 using the lentiviral vector described here.
Collapse
Affiliation(s)
- Maria Dahl
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | - Emma M.K. Smith
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | - Sarah Warsi
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | - Michael Rothe
- Hannover Medical School, Institute of Experimental Hematology, Hannover, Germany
| | - Maria J. Ferraz
- Department of Medical Biochemistry, Leiden University, Leiden, the Netherlands
| | | | | | | | | | | | - Axel Schambach
- Hannover Medical School, Institute of Experimental Hematology, Hannover, Germany
- Division of Hematology/Oncology, Boston’s Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chris Mason
- AVROBIO, Inc., Cambridge, MA, USA
- University College London, Advanced Centre for Biochemical Engineering, London, UK
| | - Stefan Karlsson
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| |
Collapse
|
62
|
Spector LP, Tiffany M, Ferraro NM, Abell NS, Montgomery SB, Kay MA. Evaluating the Genomic Parameters Governing rAAV-Mediated Homologous Recombination. Mol Ther 2021; 29:1028-1046. [PMID: 33248247 PMCID: PMC7934627 DOI: 10.1016/j.ymthe.2020.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have the unique ability to promote targeted integration of transgenes via homologous recombination at specified genomic sites, reaching frequencies of 0.1%-1%. We studied genomic parameters that influence targeting efficiencies on a large scale. To do this, we generated more than 1,000 engineered, doxycycline-inducible target sites in the human HAP1 cell line and infected this polyclonal population with a library of AAV-DJ targeting vectors, with each carrying a unique barcode. The heterogeneity of barcode integration at each target site provided an assessment of targeting efficiency at that locus. We compared targeting efficiency with and without target site transcription for identical chromosomal positions. Targeting efficiency was enhanced by target site transcription, while chromatin accessibility was associated with an increased likelihood of targeting. ChromHMM chromatin states characterizing transcription and enhancers in wild-type K562 cells were also associated with increased AAV-HR efficiency with and without target site transcription, respectively. Furthermore, the amenability of a site to targeting was influenced by the endogenous transcriptional level of intersecting genes. These results define important parameters that may not only assist in designing optimal targeting vectors for genome editing, but also provide new insights into the mechanism of AAV-mediated homologous recombination.
Collapse
Affiliation(s)
- Laura P Spector
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Tiffany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole M Ferraro
- Biomedical Informatics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan S Abell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark A Kay
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
63
|
Breda L, Ghiaccio V, Tanaka N, Jarocha D, Ikawa Y, Abdulmalik O, Dong A, Casu C, Raabe TD, Shan X, Danet-Desnoyers GA, Doto AM, Everett J, Bushman FD, Radaelli E, Assenmacher CA, Tarrant JC, Hoepp N, Kurita R, Nakamura Y, Guzikowski V, Smith-Whitley K, Kwiatkowski JL, Rivella S. Lentiviral vector ALS20 yields high hemoglobin levels with low genomic integrations for treatment of beta-globinopathies. Mol Ther 2021; 29:1625-1638. [PMID: 33515514 DOI: 10.1016/j.ymthe.2020.12.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022] Open
Abstract
Ongoing clinical trials for treatment of beta-globinopathies by gene therapy involve the transfer of the beta-globin gene, which requires integration of three to four copies per genome in most target cells. This high proviral load may increase genome toxicity, potentially limiting the safety of this therapy and relegating its use to total body myeloablation. We hypothesized that introducing an additional hypersensitive site from the locus control region, the complete sequence of the second intron of the beta-globin gene, and the ankyrin insulator may enhance beta-globin expression. We identified a construct, ALS20, that synthesized significantly higher adult hemoglobin levels than those of other constructs currently used in clinical trials. These findings were confirmed in erythroblastic cell lines and in primary cells isolated from sickle cell disease patients. Bone marrow transplantation studies in beta-thalassemia mice revealed that ALS20 was curative at less than one copy per genome. Injection of human CD34+ cells transduced with ALS20 led to safe, long-term, and high polyclonal engraftment in xenograft experiments. Successful treatment of beta-globinopathies with ALS20 could potentially be achieved at less than two copies per genome, minimizing the risk of cytotoxic events and lowering the intensity of myeloablation.
Collapse
Affiliation(s)
- Laura Breda
- Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Valentina Ghiaccio
- Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Naoto Tanaka
- Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Danuta Jarocha
- Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Yasuhiro Ikawa
- Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Osheiza Abdulmalik
- Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Alisa Dong
- Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Carla Casu
- Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Tobias D Raabe
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaochuan Shan
- Stem and Xenograft Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gwenn A Danet-Desnoyers
- Stem and Xenograft Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aoife M Doto
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles A Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James C Tarrant
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Natalie Hoepp
- Clinical Pathology Laboratory, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryo Kurita
- RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | | | - Virginia Guzikowski
- Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Kim Smith-Whitley
- Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janet L Kwiatkowski
- Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefano Rivella
- Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology Affinity Group (CAMB), University of Pennsylvania, Philadelphia, PA, USA; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, CHOP, Philadelphia, PA, USA; Penn Center for Musculoskeletal Disorders, CHOP, Philadelphia, PA, USA.
| |
Collapse
|
64
|
Liu Y, Dahl M, Debnath S, Rothe M, Smith EM, Grahn THM, Warsi S, Chen J, Flygare J, Schambach A, Karlsson S. Successful gene therapy of Diamond-Blackfan anemia in a mouse model and human CD34+ cord blood hematopoietic stem cells using a clinically applicable lentiviral vector. Haematologica 2021; 107:446-456. [PMID: 33440921 PMCID: PMC8804567 DOI: 10.3324/haematol.2020.269142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 11/22/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure disorder in which pure red blood cell aplasia is associated with physical malformations and a predisposition to cancer. Twentyfive percent of patients with DBA have mutations in a gene encoding ribosomal protein S19 (RPS19). Our previous proof-of-concept studies demonstrated that DBA phenotype could be successfully treated using lentiviral vectors in Rps19-deficient DBA mice. In our present study, we developed a clinically applicable single gene, self-inactivating lentiviral vector, containing the human RPS19 cDNA driven by the human elongation factor 1αshort promoter, which can be used for clinical gene therapy development for RPS19-deficient DBA. We examined the efficacy and safety of the vector in a Rps19-deficient DBA mouse model and in human primary RPS19- deficient CD34+ cord blood cells. We observed that transduced Rps19-deficient bone marrow cells could reconstitute mice long-term and rescue the bone marrow failure and severe anemia observed in Rps19-deficient mice, with a low risk of mutagenesis and a highly polyclonal insertion site pattern. More importantly, the vector can also rescue impaired erythroid differentiation in human primary RPS19-deficient CD34+ cord blood hematopoietic stem cells. Collectively, our results demonstrate the efficacy and safety of using a clinically applicable lentiviral vector for the successful treatment of Rps19-deficient DBA in a mouse model and in human primary CD34+ cord blood cells. These findings show that this vector can be used to develop clinical gene therapy for RPS19-deficient DBA patients.
Collapse
Affiliation(s)
- Yang Liu
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184.
| | - Maria Dahl
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Shubhranshu Debnath
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625
| | - Emma M Smith
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Tan Hooi Min Grahn
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Sarah Warsi
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Jun Chen
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Johan Flygare
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston
| | - Stefan Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund 22184.
| |
Collapse
|
65
|
Nguyen GN, Everett JK, Kafle S, Roche AM, Raymond HE, Leiby J, Wood C, Assenmacher CA, Merricks EP, Long CT, Kazazian HH, Nichols TC, Bushman FD, Sabatino DE. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol 2021; 39:47-55. [PMID: 33199875 PMCID: PMC7855056 DOI: 10.1038/s41587-020-0741-7] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Nine dogs with hemophilia A were treated with adeno-associated viral (AAV) gene therapy and followed for up to 10 years. Administration of AAV8 or AAV9 vectors expressing canine factor VIII (AAV-cFVIII) corrected the FVIII deficiency to 1.9-11.3% of normal FVIII levels. In two of nine dogs, levels of FVIII activity increased gradually starting about 4 years after treatment. None of the dogs showed evidence of tumors or altered liver function. Analysis of integration sites in liver samples from six treated dogs identified 1,741 unique AAV integration events in genomic DNA and expanded cell clones in five dogs, with 44% of the integrations near genes involved in cell growth. All recovered integrated vectors were partially deleted and/or rearranged. Our data suggest that the increase in FVIII protein expression in two dogs may have been due to clonal expansion of cells harboring integrated vectors. These results support the clinical development of liver-directed AAV gene therapy for hemophilia A, while emphasizing the importance of long-term monitoring for potential genotoxicity.
Collapse
Affiliation(s)
- Giang N Nguyen
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samita Kafle
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hayley E Raymond
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Leiby
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Wood
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C Tyler Long
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haig H Kazazian
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
66
|
Ha TC, Stahlhut M, Rothe M, Paul G, Dziadek V, Morgan M, Brugman M, Fehse B, Kustikova O, Schambach A, Baum C. Multiple Genes Surrounding Bcl-xL, a Common Retroviral Insertion Site, Can Influence Hematopoiesis Individually or in Concert. Hum Gene Ther 2020; 32:458-472. [PMID: 33012194 DOI: 10.1089/hum.2019.344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retroviral insertional mutagenesis (RIM) is both a relevant risk in gene therapy and a powerful tool for identifying genes that enhance the competitiveness of repopulating hematopoietic stem and progenitor cells (HSPCs). However, focusing only on the gene closest to the retroviral vector insertion site (RVIS) may underestimate the effects of RIM, as dysregulation of distal and/or multiple genes by a single insertion event was reported in several studies. As a proof of concept, we examined the common insertion site (CIS) Bcl-xL, which revealed seven genes located within ±150 kb from the RVIS for our study. We confirmed that Bcl-xL enhanced the competitiveness of HSPCs, whereas the Bcl-xL neighbor Id1 hindered HSPC long-term repopulation. This negative influence of Id1 could be counteracted by co-expressing Bcl-xL. Interestingly, >90% of early reconstituted myeloid cells were found to originate from transduced HSPCs upon simultaneous overexpression of Bcl-xL and Id1, which implies that Bcl-xL and Id1 can collaborate to rapidly replenish the myeloid compartment under stress conditions. To directly compare the competitiveness of HSPCs conveyed by multiple transgenes, we developed a multiple competitor competitive repopulation (MCCR) assay to simultaneously screen effects on HSPC repopulating capacity in a single mouse. The MCCR assay revealed that multiple genes within a CIS can have positive or negative impact on hematopoiesis. Furthermore, these data highlight the importance of studying multiple genes located within the proximity of an insertion site to understand complex biological effects, especially as the number of gene therapy patients increases.
Collapse
Affiliation(s)
- Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany.,Hannover Biomedical Research School, Hannover, Germany
| | - Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Gabi Paul
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Martijn Brugman
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UKE) Hamburg-Eppendorf, Hamburg, Germany
| | - Olga Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
67
|
Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs. Blood 2020; 135:1219-1231. [PMID: 32040546 DOI: 10.1182/blood.2019002350] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
In gene therapy with human hematopoietic stem and progenitor cells (HSPCs), each gene-corrected cell and its progeny are marked in a unique way by the integrating vector. This feature enables lineages to be tracked by sampling blood cells and using DNA sequencing to identify the vector integration sites. Here, we studied 5 cell lineages (granulocytes, monocytes, T cells, B cells, and natural killer cells) in patients having undergone HSPC gene therapy for Wiskott-Aldrich syndrome or β hemoglobinopathies. We found that the estimated minimum number of active, repopulating HSPCs (which ranged from 2000 to 50 000) was correlated with the number of HSPCs per kilogram infused. We sought to quantify the lineage output and dynamics of gene-modified clones; this is usually challenging because of sparse sampling of the various cell types during the analytical procedure, contamination during cell isolation, and different levels of vector marking in the various lineages. We therefore measured the residual contamination and corrected our statistical models accordingly to provide a rigorous analysis of the HSPC lineage output. A cluster analysis of the HSPC lineage output highlighted the existence of several stable, distinct differentiation programs, including myeloid-dominant, lymphoid-dominant, and balanced cell subsets. Our study evidenced the heterogeneous nature of the cell lineage output from HSPCs and provided methods for analyzing these complex data.
Collapse
|
68
|
Wu VH, Nobles CL, Kuri-Cervantes L, McCormick K, Everett JK, Nguyen S, Del Rio Estrada PM, González-Navarro M, Torres-Ruiz F, Ávila-Ríos S, Reyes-Terán G, Bushman FD, Betts MR. Assessment of HIV-1 integration in tissues and subsets across infection stages. JCI Insight 2020; 5:139783. [PMID: 32970634 PMCID: PMC7605534 DOI: 10.1172/jci.insight.139783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The integration of HIV DNA into the host genome contributes to lifelong infection in most individuals. Few studies have examined integration in lymphoid tissue, where HIV predominantly persists before and after antiretroviral treatment (ART). Of particular interest is whether integration site distributions differ between infection stages with paired blood and tissue comparisons. Here, we profiled HIV integration site distributions in sorted memory, tissue-resident, and/or follicular helper CD4+ T cell subsets from paired blood and lymphoid tissue samples from acute, chronic, and ART-treated individuals. We observed minor differences in the frequency of nonintronic and nondistal intergenic sites, varying with tissue and residency phenotypes during ART. Genomic and epigenetic annotations were generally similar. Clonal expansion of cells marked by identical integration sites was detected, with increased detection in chronic and ART-treated individuals. However, overlap between or within CD4+ T cell subsets or tissue compartments was only observed in 8 unique sites of the 3540 sites studied. Together, these findings suggest that shared integration sites between blood and tissue may, depending on the tissue site, be the exception rather than the rule and indicate that additional studies are necessary to fully understand the heterogeneity of tissue-sequestered HIV reservoirs.
Collapse
Affiliation(s)
- Vincent H Wu
- Department of Microbiology and.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Leticia Kuri-Cervantes
- Department of Microbiology and.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Son Nguyen
- Department of Microbiology and.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Perla M Del Rio Estrada
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Mauricio González-Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Michael R Betts
- Department of Microbiology and.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
69
|
Abdel-Mohsen M, Richman D, Siliciano RF, Nussenzweig MC, Howell BJ, Martinez-Picado J, Chomont N, Bar KJ, Yu XG, Lichterfeld M, Alcami J, Hazuda D, Bushman F, Siliciano JD, Betts MR, Spivak AM, Planelles V, Hahn BH, Smith DM, Ho YC, Buzon MJ, Gaebler C, Paiardini M, Li Q, Estes JD, Hope TJ, Kostman J, Mounzer K, Caskey M, Fox L, Frank I, Riley JL, Tebas P, Montaner LJ. Recommendations for measuring HIV reservoir size in cure-directed clinical trials. Nat Med 2020; 26:1339-1350. [PMID: 32895573 PMCID: PMC7703694 DOI: 10.1038/s41591-020-1022-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
Therapeutic strategies are being clinically tested either to eradicate latent HIV reservoirs or to achieve virologic control in the absence of antiretroviral therapy. Attaining this goal will require a consensus on how best to measure the numbers of persistently infected cells with the potential to cause viral rebound after antiretroviral-therapy cessation in assessing the results of cure-directed strategies in vivo. Current measurements assess various aspects of the HIV provirus and its functionality and produce divergent results. Here, we provide recommendations from the BEAT-HIV Martin Delaney Collaboratory on which viral measurements should be prioritized in HIV-cure-directed clinical trials.
Collapse
Affiliation(s)
| | - Douglas Richman
- VA San Diego Healthcare System and University of California, San Diego, CA, USA
| | | | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | | | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid and Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | - Davey M Smith
- VA San Diego Healthcare System and University of California, San Diego, CA, USA
| | - Ya-Chi Ho
- Yale School of Medicine, New Haven, CT, USA
| | - Maria J Buzon
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid and Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Qingsheng Li
- School of Biological Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health and Science University (OHSU), Beaverton, OR, USA
| | | | - Jay Kostman
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | - Karam Mounzer
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | | | - Lawrence Fox
- Division of AIDS, NIAID, NIH, North Bethesda, MD, USA
| | - Ian Frank
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Pablo Tebas
- University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
70
|
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy is a promising frontier of immunoengineering and cancer immunotherapy. Methods that detect, quantify, track, and visualize the CAR, have catalyzed the rapid advancement of CAR-T cell therapy from preclinical models to clinical adoption. For instance, CAR-staining/labeling agents have enabled flow cytometry analysis, imaging applications, cell sorting, and high-dimensional clinical profiling. Molecular assays, such as quantitative polymerase chain reaction, integration site analysis, and RNA-sequencing, have characterized CAR transduction, expression, and in vivo CAR-T cell expansion kinetics. In vitro visualization methods, including confocal and total internal reflection fluorescence microscopy, have captured the molecular details underlying CAR immunological synapse formation, signaling, and cytotoxicity. In vivo tracking methods, including two-photon microscopy, bioluminescence imaging, and positron emission tomography scanning, have monitored CAR-T cell biodistribution across blood, tissue, and tumor. Here, we review the plethora of CAR detection methods, which can operate at the genomic, transcriptomic, proteomic, and organismal levels. For each method, we discuss: (1) what it measures; (2) how it works; (3) its scientific and clinical importance; (4) relevant examples of its use; (5) specific protocols for CAR detection; and (6) its strengths and weaknesses. Finally, we consider current scientific and clinical needs in order to provide future perspectives for improved CAR detection.
Collapse
Affiliation(s)
- Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
71
|
Hu H, Xiao A, Zhang S, Li Y, Shi X, Jiang T, Zhang L, Zhang L, Zeng J. DeepHINT: understanding HIV-1 integration via deep learning with attention. Bioinformatics 2020; 35:1660-1667. [PMID: 30295703 DOI: 10.1093/bioinformatics/bty842] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/07/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023] Open
Abstract
MOTIVATION Human immunodeficiency virus type 1 (HIV-1) genome integration is closely related to clinical latency and viral rebound. In addition to human DNA sequences that directly interact with the integration machinery, the selection of HIV integration sites has also been shown to depend on the heterogeneous genomic context around a large region, which greatly hinders the prediction and mechanistic studies of HIV integration. RESULTS We have developed an attention-based deep learning framework, named DeepHINT, to simultaneously provide accurate prediction of HIV integration sites and mechanistic explanations of the detected sites. Extensive tests on a high-density HIV integration site dataset showed that DeepHINT can outperform conventional modeling strategies by automatically learning the genomic context of HIV integration from primary DNA sequence alone or together with epigenetic information. Systematic analyses on diverse known factors of HIV integration further validated the biological relevance of the prediction results. More importantly, in-depth analyses of the attention values output by DeepHINT revealed intriguing mechanistic implications in the selection of HIV integration sites, including potential roles of several DNA-binding proteins. These results established DeepHINT as an effective and explainable deep learning framework for the prediction and mechanistic study of HIV integration. AVAILABILITY AND IMPLEMENTATION DeepHINT is available as an open-source software and can be downloaded from https://github.com/nonnerdling/DeepHINT. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hailin Hu
- School of Medicine, Tsinghua University, Beijing, China
| | - An Xiao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Sai Zhang
- Department of Genetics, Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yangyang Li
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA.,Bioinformatics Division, BNRIST/Department of Computer Science and Technology, Tsinghua University, Beijing, China.,Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Lei Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
72
|
Wang W, Fasolino M, Cattau B, Goldman N, Kong W, Frederick MA, McCright SJ, Kiani K, Fraietta JA, Vahedi G. Joint profiling of chromatin accessibility and CAR-T integration site analysis at population and single-cell levels. Proc Natl Acad Sci U S A 2020; 117:5442-5452. [PMID: 32094195 PMCID: PMC7071901 DOI: 10.1073/pnas.1919259117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T immunotherapy has yielded impressive results in several B cell malignancies, establishing itself as a powerful means to redirect the natural properties of T lymphocytes. In this strategy, the T cell genome is modified by the integration of lentiviral vectors encoding CAR that direct tumor cell killing. However, this therapeutic approach is often limited by the extent of CAR-T cell expansion in vivo. A major outstanding question is whether or not CAR-T integration itself enhances the proliferative competence of individual T cells by rewiring their regulatory landscape. To address this question, it is critical to define the identity of an individual CAR-T cell and simultaneously chart where the CAR-T vector integrates into the genome. Here, we report the development of a method called EpiVIA (https://github.com/VahediLab/epiVIA) for the joint profiling of the chromatin accessibility and lentiviral integration site analysis at the population and single-cell levels. We validate our technique in clonal cells with previously defined integration sites and further demonstrate the ability to measure lentiviral integration sites and chromatin accessibility of host and viral genomes at the single-cell resolution in CAR-T cells. We anticipate that EpiVIA will enable the single-cell deconstruction of gene regulation during CAR-T therapy, leading to the discovery of cellular factors associated with durable treatment.
Collapse
Affiliation(s)
- Wenliang Wang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Maria Fasolino
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Benjamin Cattau
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Naomi Goldman
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Weimin Kong
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Abramson Family Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Megan A Frederick
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Sam J McCright
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Karun Kiani
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Joseph A Fraietta
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Abramson Family Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Abramson Family Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
73
|
Wells DW, Guo S, Shao W, Bale MJ, Coffin JM, Hughes SH, Wu X. An analytical pipeline for identifying and mapping the integration sites of HIV and other retroviruses. BMC Genomics 2020; 21:216. [PMID: 32151239 PMCID: PMC7063773 DOI: 10.1186/s12864-020-6647-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND All retroviruses, including human immunodeficiency virus (HIV), must integrate a DNA copy of their genomes into the genome of the infected host cell to replicate. Although integrated retroviral DNA, known as a provirus, can be found at many sites in the host genome, integration is not random. The adaption of linker-mediated PCR (LM-PCR) protocols for high-throughput integration site mapping, using randomly-sheared genomic DNA and Illumina paired-end sequencing, has dramatically increased the number of mapped integration sites. Analysis of samples from human donors has shown that there is clonal expansion of HIV infected cells and that clonal expansion makes an important contribution to HIV persistence. However, analysis of HIV integration sites in samples taken from patients requires extensive PCR amplification and high-throughput sequencing, which makes the methodology prone to certain specific artifacts. RESULTS To address the problems with artifacts, we use a comprehensive approach involving experimental procedures linked to a bioinformatics analysis pipeline. Using this combined approach, we are able to reduce the number of PCR/sequencing artifacts that arise and identify the ones that remain. Our streamlined workflow combines random cleavage of the DNA in the samples, end repair, and linker ligation in a single step. We provide guidance on primer and linker design that reduces some of the common artifacts. We also discuss how to identify and remove some of the common artifacts, including the products of PCR mispriming and PCR recombination, that have appeared in some published studies. Our improved bioinformatics pipeline rapidly parses the sequencing data and identifies bona fide integration sites in clonally expanded cells, producing an Excel-formatted report that can be used for additional data processing. CONCLUSIONS We provide a detailed protocol that reduces the prevalence of artifacts that arise in the analysis of retroviral integration site data generated from in vivo samples and a bioinformatics pipeline that is able to remove the artifacts that remain.
Collapse
Affiliation(s)
- Daria W Wells
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21702, USA
| | - Shuang Guo
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21702, USA
| | - Wei Shao
- Advanced Biomedical Computational Science, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael J Bale
- HIV Dynamics and Replication Program, National Cancer Institute Frederick, National Institutes of Health, Frederick, MD, USA
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, National Cancer Institute Frederick, National Institutes of Health, Frederick, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21702, USA.
| |
Collapse
|
74
|
Calabria A, Beretta S, Merelli I, Spinozzi G, Brasca S, Pirola Y, Benedicenti F, Tenderini E, Bonizzoni P, Milanesi L, Montini E. γ-TRIS: a graph-algorithm for comprehensive identification of vector genomic insertion sites. Bioinformatics 2020; 36:1622-1624. [PMID: 31589304 PMCID: PMC7703754 DOI: 10.1093/bioinformatics/btz747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023] Open
Abstract
Summary Retroviruses and their vector derivatives integrate semi-randomly in the genome of host cells and are inherited by their progeny as stable genetic marks. The retrieval and mapping of the sequences flanking the virus-host DNA junctions allows the identification of insertion sites in gene therapy or virally infected patients, essential for monitoring the evolution of genetically modified cells in vivo. However, since ∼30% of insertions land in low complexity or repetitive regions of the host cell genome, they cannot be correctly assigned and are currently discarded, limiting the accuracy and predictive power of clonal tracking studies. Here, we present γ-TRIS, a new graph-based genome-free alignment tool for identifying insertion sites even if embedded in low complexity regions. By using γ-TRIS to reanalyze clinical studies, we observed improvements in clonal quantification and tracking. Availability and implementation Source code at https://bitbucket.org/bereste/g-tris. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Stefano Beretta
- Università degli Studi di Milano Bicocca, Dipartimento di Informatica Sistemistica e Comunicazione (DiSCO), Viale Sarca, 336, 20126, Milano, Italy.,National Research Council, Institute for Biomedical Technologies, Via Fratelli Cervi, 93, 20090, Segrate, Italy
| | - Ivan Merelli
- National Research Council, Institute for Biomedical Technologies, Via Fratelli Cervi, 93, 20090, Segrate, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.,Università degli Studi di Milano Bicocca, Dipartimento di Informatica Sistemistica e Comunicazione (DiSCO), Viale Sarca, 336, 20126, Milano, Italy
| | - Stefano Brasca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Yuri Pirola
- Università degli Studi di Milano Bicocca, Dipartimento di Informatica Sistemistica e Comunicazione (DiSCO), Viale Sarca, 336, 20126, Milano, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Erika Tenderini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Paola Bonizzoni
- Università degli Studi di Milano Bicocca, Dipartimento di Informatica Sistemistica e Comunicazione (DiSCO), Viale Sarca, 336, 20126, Milano, Italy
| | - Luciano Milanesi
- National Research Council, Institute for Biomedical Technologies, Via Fratelli Cervi, 93, 20090, Segrate, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| |
Collapse
|
75
|
Dawes JC, Webster P, Iadarola B, Garcia-Diaz C, Dore M, Bolt BJ, Dewchand H, Dharmalingam G, McLatchie AP, Kaczor J, Caceres JJ, Paccanaro A, Game L, Parrinello S, Uren AG. LUMI-PCR: an Illumina platform ligation-mediated PCR protocol for integration site cloning, provides molecular quantitation of integration sites. Mob DNA 2020; 11:7. [PMID: 32042315 PMCID: PMC7001329 DOI: 10.1186/s13100-020-0201-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ligation-mediated PCR protocols have diverse uses including the identification of integration sites of insertional mutagens, integrating vectors and naturally occurring mobile genetic elements. For approaches that employ NGS sequencing, the relative abundance of integrations within a complex mixture is typically determined through the use of read counts or unique fragment lengths from a ligation of sheared DNA; however, these estimates may be skewed by PCR amplification biases and saturation of sequencing coverage. RESULTS Here we describe a modification of our previous splinkerette based ligation-mediated PCR using a novel Illumina-compatible adapter design that prevents amplification of non-target DNA and incorporates unique molecular identifiers. This design reduces the number of PCR cycles required and improves relative quantitation of integration abundance for saturating sequencing coverage. By inverting the forked adapter strands from a standard orientation, the integration-genome junction can be sequenced without affecting the sequence diversity required for cluster generation on the flow cell. Replicate libraries of murine leukemia virus-infected spleen samples yielded highly reproducible quantitation of clonal integrations as well as a deep coverage of subclonal integrations. A dilution series of DNAs bearing integrations of MuLV or piggyBac transposon shows linearity of the quantitation over a range of concentrations. CONCLUSIONS Merging ligation and library generation steps can reduce total PCR amplification cycles without sacrificing coverage or fidelity. The protocol is robust enough for use in a 96 well format using an automated liquid handler and we include programs for use of a Beckman Biomek liquid handling workstation. We also include an informatics pipeline that maps reads, builds integration contigs and quantitates integration abundance using both fragment lengths and unique molecular identifiers. Suggestions for optimizing the protocol to other target DNA sequences are included. The reproducible distinction of clonal and subclonal integration sites from each other allows for analysis of populations of cells undergoing selection, such as those found in insertional mutagenesis screens.
Collapse
Affiliation(s)
- Joanna C. Dawes
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Philip Webster
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Barbara Iadarola
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Claudia Garcia-Diaz
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, WC1E 6DD, London, UK
| | - Marian Dore
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Bruce J. Bolt
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Hamlata Dewchand
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Gopuraja Dharmalingam
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | | | - Jakub Kaczor
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Juan J. Caceres
- Centre for Systems and Synthetic Biology, Department of Computer Science, Royal Holloway, University of London, London, UK
| | - Alberto Paccanaro
- Centre for Systems and Synthetic Biology, Department of Computer Science, Royal Holloway, University of London, London, UK
| | - Laurence Game
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, WC1E 6DD, London, UK
| | - Anthony G. Uren
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| |
Collapse
|
76
|
Nobles CL, Sherrill-Mix S, Everett JK, Reddy S, Fraietta JA, Porter DL, Frey N, Gill SI, Grupp SA, Maude SL, Siegel DL, Levine BL, June CH, Lacey SF, Melenhorst JJ, Bushman FD. CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. J Clin Invest 2020; 130:673-685. [PMID: 31845905 PMCID: PMC6994131 DOI: 10.1172/jci130144] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor-engineered T cells targeting CD19 (CART19) provide an effective treatment for pediatric acute lymphoblastic leukemia but are less effective for chronic lymphocytic leukemia (CLL), focusing attention on improving efficacy. CART19 harbor an engineered receptor, which is delivered through lentiviral vector integration, thereby marking cell lineages and modifying the cellular genome by insertional mutagenesis. We recently reported that vector integration within the host TET2 gene was associated with CLL remission. Here, we investigated clonal population structure and therapeutic outcomes in another 39 patients by high-throughput sequencing of vector-integration sites. Genes at integration sites enriched in responders were commonly found in cell-signaling and chromatin modification pathways, suggesting that insertional mutagenesis in these genes promoted therapeutic T cell proliferation. We also developed a multivariate model based on integration-site distributions and found that data from preinfusion products forecasted response in CLL successfully in discovery and validation cohorts and, in day 28 samples, reported responders to CLL therapy with high accuracy. These data clarify how insertional mutagenesis can modulate cell proliferation in CART19 therapy and how data on integration-site distributions can be linked to treatment outcomes.
Collapse
MESH Headings
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Female
- Genetic Vectors
- Humans
- Immunotherapy, Adoptive
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
| | | | | | | | - Joseph A. Fraietta
- Department of Microbiology
- Center for Cellular Immunotherapies
- Department of Pathology and Laboratory Medicine, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David L. Porter
- Center for Cellular Immunotherapies
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Noelle Frey
- Center for Cellular Immunotherapies
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saar I. Gill
- Center for Cellular Immunotherapies
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephan A. Grupp
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shannon L. Maude
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Donald L. Siegel
- Center for Cellular Immunotherapies
- Department of Pathology and Laboratory Medicine, and
| | - Bruce L. Levine
- Center for Cellular Immunotherapies
- Department of Pathology and Laboratory Medicine, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carl H. June
- Center for Cellular Immunotherapies
- Department of Pathology and Laboratory Medicine, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Simon F. Lacey
- Center for Cellular Immunotherapies
- Department of Pathology and Laboratory Medicine, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J. Joseph Melenhorst
- Center for Cellular Immunotherapies
- Department of Pathology and Laboratory Medicine, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
77
|
Kohn DB, Booth C, Kang EM, Pai SY, Shaw KL, Santilli G, Armant M, Buckland KF, Choi U, De Ravin SS, Dorsey MJ, Kuo CY, Leon-Rico D, Rivat C, Izotova N, Gilmour K, Snell K, Dip JXB, Darwish J, Morris EC, Terrazas D, Wang LD, Bauser CA, Paprotka T, Kuhns DB, Gregg J, Raymond HE, Everett JK, Honnet G, Biasco L, Newburger PE, Bushman FD, Grez M, Gaspar HB, Williams DA, Malech HL, Galy A, Thrasher AJ. Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat Med 2020; 26:200-206. [PMID: 31988463 PMCID: PMC7115833 DOI: 10.1038/s41591-019-0735-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022]
Abstract
Chronic granulomatous disease (CGD) is a rare inherited disorder of phagocytic cells1,2. We report the initial results of nine severely affected X-linked CGD (X-CGD) patients who received ex vivo autologous CD34+ hematopoietic stem and progenitor cell-based lentiviral gene therapy following myeloablative conditioning in first-in-human studies (trial registry nos. NCT02234934 and NCT01855685). The primary objectives were to assess the safety and evaluate the efficacy and stability of biochemical and functional reconstitution in the progeny of engrafted cells at 12 months. The secondary objectives included the evaluation of augmented immunity against bacterial and fungal infection, as well as assessment of hematopoietic stem cell transduction and engraftment. Two enrolled patients died within 3 months of treatment from pre-existing comorbidities. At 12 months, six of the seven surviving patients demonstrated stable vector copy numbers (0.4-1.8 copies per neutrophil) and the persistence of 16-46% oxidase-positive neutrophils. There was no molecular evidence of either clonal dysregulation or transgene silencing. Surviving patients have had no new CGD-related infections, and six have been able to discontinue CGD-related antibiotic prophylaxis. The primary objective was met in six of the nine patients at 12 months follow-up, suggesting that autologous gene therapy is a promising approach for CGD patients.
Collapse
Affiliation(s)
| | - Claire Booth
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Elizabeth M Kang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sung-Yun Pai
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kit L Shaw
- University of California, Los Angeles, CA, USA
| | - Giorgia Santilli
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Myriam Armant
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karen F Buckland
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Diego Leon-Rico
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Christine Rivat
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Natalia Izotova
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Kimberly Gilmour
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Katie Snell
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Jinhua Xu-Bayford Dip
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Jinan Darwish
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Emma C Morris
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Leo D Wang
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- City of Hope, Beckman Research Institute, Duarte, CA, USA
| | | | | | - Douglas B Kuhns
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John Gregg
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Luca Biasco
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | | | | | - H Bobby Gaspar
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK
- Orchard Therapeutics, London, UK
| | - David A Williams
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anne Galy
- Genethon, Evry, France
- Inserm, University of Evry, Université Paris Saclay Genethon, Evry, France
| | - Adrian J Thrasher
- Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
78
|
Straetemans T, Janssen A, Jansen K, Doorn R, Aarts T, van Muyden ADD, Simonis M, Bergboer J, de Witte M, Sebestyen Z, Kuball J. TEG001 Insert Integrity from Vector Producer Cells until Medicinal Product. Mol Ther 2019; 28:561-571. [PMID: 31882320 DOI: 10.1016/j.ymthe.2019.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Despite extensive usage of gene therapy medicinal products (GTMPs) in clinical studies and recent approval of chimeric antigen receptor (CAR) T cell therapy, little information has been made available on the precise molecular characterization and possible variations in terms of insert integrity and vector copy numbers of different GTMPs during the complete production chain. Within this context, we characterize αβT cells engineered to express a defined γδT cell engineered to express a defined γδT receptor (TEG) currently used in a first-in-human clinical study (NTR6541). Utilizing targeted locus amplification in combination with next generation sequencing for the vector producer clone and TEG001 products, we report on five single-nucleotide variants and nine intact vector copies integrated in the producer clone. The vector copy number in TEG001 cells was on average a factor 0.72 (SD 0.11) below that of the producer cell clone. All nucleotide variants were transferred to TEG001 without having an effect on cellular proliferation during extensive in vitro culture. Based on an environmental risk assessment of the five nucleotide variants present in the non-coding viral region of the TEG001 insert, there was no altered environmental impact of TEG001 cells. We conclude that TEG001 cells do not have an increased risk for malignant transformation in vivo.
Collapse
Affiliation(s)
- Trudy Straetemans
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Anke Janssen
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Koen Jansen
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ruud Doorn
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Tineke Aarts
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anna D D van Muyden
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | | | - Moniek de Witte
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Zsolt Sebestyen
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jurgen Kuball
- Department of Hematology, Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
79
|
Cooney AL, Singh BK, Loza LM, Thornell IM, Hippee CE, Powers LS, Ostedgaard LS, Meyerholz DK, Wohlford-Lenane C, Stoltz DA, B McCray P, Sinn PL. Widespread airway distribution and short-term phenotypic correction of cystic fibrosis pigs following aerosol delivery of piggyBac/adenovirus. Nucleic Acids Res 2019; 46:9591-9600. [PMID: 30165523 PMCID: PMC6182177 DOI: 10.1093/nar/gky773] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/22/2018] [Indexed: 11/14/2022] Open
Abstract
Cystic fibrosis (CF) is a common genetic disease caused by mutations in the gene coding for cystic fibrosis transmembrane conductance regulator (CFTR). Although CF affects multiple organ systems, chronic bacterial infections and inflammation in the lung are the leading causes of morbidity and mortality in people with CF. Complementation with a functional CFTR gene repairs this defect, regardless of the disease-causing mutation. In this study, we used a gene delivery system termed piggyBac/adenovirus (Ad), which combines the delivery efficiency of an adenoviral-based vector with the persistent expression of a DNA transposon-based vector. We aerosolized piggyBac/Ad to the airways of pigs and observed widespread pulmonary distribution of vector. We quantified the regional distribution in the airways and observed transduction of large and small airway epithelial cells of non-CF pigs, with ∼30–50% of surface epithelial cells positive for GFP. We transduced multiple cell types including ciliated, non-ciliated, basal, and submucosal gland cells. In addition, we phenotypically corrected CF pigs following delivery of piggyBac/Ad expressing CFTR as measured by anion channel activity, airway surface liquid pH, and bacterial killing ability. Combining an integrating DNA transposon with adenoviral vector delivery is an efficient method for achieving functional CFTR correction from a single vector administration.
Collapse
Affiliation(s)
- Ashley L Cooney
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| | - Brajesh K Singh
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| | - Laura Marquez Loza
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Molecular Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ian M Thornell
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Camilla E Hippee
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| | - Linda S Powers
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Lynda S Ostedgaard
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Chris Wohlford-Lenane
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| | - David A Stoltz
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B McCray
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Molecular Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Patrick L Sinn
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
80
|
Vansant G, Vranckx LS, Zurnic I, Van Looveren D, Van de Velde P, Nobles C, Gijsbers R, Christ F, Debyser Z. Impact of LEDGIN treatment during virus production on residual HIV-1 transcription. Retrovirology 2019; 16:8. [PMID: 30940165 PMCID: PMC6444612 DOI: 10.1186/s12977-019-0472-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/23/2019] [Indexed: 11/24/2022] Open
Abstract
Background Persistence of latent, replication-competent provirus is the main impediment towards the cure of HIV infection. One of the critical questions concerning HIV latency is the role of integration site selection in HIV expression. Inhibition of the interaction between HIV integrase and its chromatin tethering cofactor LEDGF/p75 is known to reduce integration and to retarget residual provirus to regions resistant to reactivation. LEDGINs, small molecule inhibitors of the interaction between HIV integrase and LEDGF/p75, provide an interesting tool to study the underlying mechanisms. During early infection, LEDGINs block the interaction with LEDGF/p75 and allosterically inhibit the catalytic activity of IN (i.e. the early effect). When present during virus production, LEDGINs interfere with proper maturation due to enhanced IN oligomerization in the progeny virions (i.e. the late effect). Results We studied the effect of LEDGINs present during virus production on the transcriptional state of the residual virus. Infection of cells with viruses produced in the presence of LEDGINs resulted in a residual reservoir that was refractory to activation. Integration of residual provirus was less favored near epigenetic markers associated with active transcription. However, integration near H3K36me3 and active genes, both targeted by LEDGF/p75, was not affected. Also in primary cells, LEDGIN treatment induced a reservoir resistant to activation due to a combined early and late effect. Conclusion LEDGINs present a research tool to study the link between integration and transcription, an essential question in retrovirology. LEDGIN treatment during virus production altered integration of residual provirus in a LEDGF/p75-independent manner, resulting in a reservoir that is refractory to activation. Electronic supplementary material The online version of this article (10.1186/s12977-019-0472-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Lenard S Vranckx
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Irena Zurnic
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Belgium
| | - Paulien Van de Velde
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Christopher Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium.
| |
Collapse
|
81
|
A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature 2019; 566:120-125. [PMID: 30700913 PMCID: PMC6447073 DOI: 10.1038/s41586-019-0898-8] [Citation(s) in RCA: 509] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
A stable latent reservoir for HIV-1 in resting CD4+ T-cells precludes cure1–3. Curative strategies targeting the reservoir are being tested4,5 and require accurate, scalable reservoir assays. The reservoir was defined with quantitative viral outgrowth assays (QVOAs) for cells releasing infectious virus following one round of T-cell activation1. However, QVOAs and newer assays for cells producing viral RNA after activation6 may underestimate reservoir size because one round of activation does not induce all proviruses7. Many studies rely on simple PCR-based assays to detect proviral DNA regardless of transcriptional status, but the clinical relevance of these assays is unclear, as the vast majority proviruses are defective7–9. We describe a novel approach that separately quantifies intact and defective proviruses and show that the dynamics of cells carrying intact and defective proviruses are different in vitro and in vivo, a finding with implications for targeting the intact proviruses that are a barrier to cure.
Collapse
|
82
|
Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE, Klichinsky M, Shestova O, Patel PR, Kulikovskaya I, Nazimuddin F, Bhoj VG, Orlando EJ, Fry TJ, Bitter H, Maude SL, Levine BL, Nobles CL, Bushman FD, Young RM, Scholler J, Gill SI, June CH, Grupp SA, Lacey SF, Melenhorst JJ. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med 2018; 24:1499-1503. [PMID: 30275568 PMCID: PMC6511988 DOI: 10.1038/s41591-018-0201-9] [Citation(s) in RCA: 475] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
We report a patient relapsing 9 months after CD19-targeted CAR T cell (CTL019) infusion with CD19- leukemia that aberrantly expressed the anti-CD19 CAR. The CAR gene was unintentionally introduced into a single leukemic B cell during T cell manufacturing, and its product bound in cis to the CD19 epitope on the surface of leukemic cells, masking it from recognition by and conferring resistance to CTL019.
Collapse
Affiliation(s)
- Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cellular Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jun Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Barrett
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cellular Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tyler J Reich
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David E Ambrose
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Klichinsky
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olga Shestova
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Prachi R Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Farzana Nazimuddin
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Vijay G Bhoj
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Elena J Orlando
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Terry J Fry
- University of Colorado, Children's Hospital Colorado, Denver, CO, USA
| | - Hans Bitter
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Shannon L Maude
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher L Nobles
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Saar I Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cellular Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Stephan A Grupp
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
83
|
Clarke EL, Connell AJ, Six E, Kadry NA, Abbas AA, Hwang Y, Everett JK, Hofstaedter CE, Marsh R, Armant M, Kelsen J, Notarangelo LD, Collman RG, Hacein-Bey-Abina S, Kohn DB, Cavazzana M, Fischer A, Williams DA, Pai SY, Bushman FD. T cell dynamics and response of the microbiota after gene therapy to treat X-linked severe combined immunodeficiency. Genome Med 2018; 10:70. [PMID: 30261899 PMCID: PMC6161392 DOI: 10.1186/s13073-018-0580-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mutation of the IL2RG gene results in a form of severe combined immune deficiency (SCID-X1), which has been treated successfully with hematopoietic stem cell gene therapy. SCID-X1 gene therapy results in reconstitution of the previously lacking T cell compartment, allowing analysis of the roles of T cell immunity in humans by comparing before and after gene correction. METHODS Here we interrogate T cell reconstitution using four forms of high throughput analysis. (1) Estimation of the numbers of transduced progenitor cells by monitoring unique positions of integration of the therapeutic gene transfer vector. (2) Estimation of T cell population structure by sequencing of the recombined T cell receptor (TCR) beta locus. (3) Metagenomic analysis of microbial populations in oropharyngeal, nasopharyngeal, and gut samples. (4) Metagenomic analysis of viral populations in gut samples. RESULTS Comparison of progenitor and mature T cell populations allowed estimation of a minimum number of cell divisions needed to generate the observed populations. Analysis of microbial populations showed the effects of immune reconstitution, including normalization of gut microbiota and clearance of viral infections. Metagenomic analysis revealed enrichment of genes for antibiotic resistance in gene-corrected subjects relative to healthy controls, likely a result of higher healthcare exposure. CONCLUSIONS This multi-omic approach enables the characterization of multiple effects of SCID-X1 gene therapy, including T cell repertoire reconstitution, estimation of numbers of cell divisions between progenitors and daughter T cells, normalization of the microbiome, clearance of microbial pathogens, and modulations in antibiotic resistance gene levels. Together, these results quantify several aspects of the long-term efficacy of gene therapy for SCID-X1. This study includes data from ClinicalTrials.gov numbers NCT01410019, NCT01175239, and NCT01129544.
Collapse
Affiliation(s)
- Erik L Clarke
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - A Jesse Connell
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Emmanuelle Six
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Nadia A Kadry
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Arwa A Abbas
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Young Hwang
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Casey E Hofstaedter
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rebecca Marsh
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Myriam Armant
- Boston Children's Hospital, Karp 08125.3, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Judith Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, Laboratory of Clinical Infectious Diseases, Immune Deficiency Genetics Section, NIAID, NIH, Bethesda, MD, USA
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Salima Hacein-Bey-Abina
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, 78, r. du Général-Leclerc, 94270, Le-Kremlin-Bicêtre, France
- UTCBS CNRS UMR 8258, INSERM U1022, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Chimie Paris-Tech, 4 av. de l'observatoire, 75006, Paris, France
| | - Donald B Kohn
- Departments of Microbiology, Immunology & Molecular Genetics; and Pediatrics, University of California, Los Angeles, USA
| | - Marina Cavazzana
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Alain Fischer
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
- Pediatric Hemato-Immunology Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Collège de France, Paris, France
| | - David A Williams
- Boston Children's Hospital, Karp 08125.3, 300 Longwood Avenue, Boston, MA, 02115, USA
- Havard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sung-Yun Pai
- Boston Children's Hospital, Karp 08125.3, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA.
| |
Collapse
|
84
|
Veenhuis RT, Kwaa AK, Garliss CC, Latanich R, Salgado M, Pohlmeyer CW, Nobles CL, Gregg J, Scully EP, Bailey JR, Bushman FD, Blankson JN. Long-term remission despite clonal expansion of replication-competent HIV-1 isolates. JCI Insight 2018; 3:122795. [PMID: 30232278 DOI: 10.1172/jci.insight.122795] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022] Open
Abstract
Clonal expansion of T cells harboring replication-competent virus has recently been demonstrated in patients on suppressive antiretroviral therapy (ART) regimens. However, there has not been direct evidence of this phenomenon in settings of natural control, including in posttreatment controllers who maintain control of viral replication after treatment when ART is discontinued. We present a case of an individual who has had undetectable viral loads for more than 15 years following the cessation of ART. Using near-full-genome sequence analysis, we demonstrate that 9 of 12 replication-competent isolates cultured from this subject were identical and that this identity was maintained 6 months later. A similar pattern of replication-competent virus clonality was seen in a treatment-naive HLA-B*57 elite controller. In both cases, we show that CD8+ T cells are capable of suppressing the replication of the clonally expanded viruses in vitro. Our data suggest that, while clonal expansion of replication-competent virus can present a barrier to viral eradication, these viral isolates remain susceptible to HIV-specific immune responses and can be controlled in patients with long-term suppression of viral replication.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Department of Medicine and.,Department of Molecular and Comparative Pathobiology, Center for AIDS Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | - Christopher L Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John Gregg
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joel N Blankson
- Department of Medicine and.,Department of Molecular and Comparative Pathobiology, Center for AIDS Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
85
|
Hogan DJ, Zhu JJ, Diago OR, Gammon D, Haghighi A, Lu G, Das A, Gruber HE, Jolly DJ, Ostertag D. Molecular Analyses Support the Safety and Activity of Retroviral Replicating Vector Toca 511 in Patients. Clin Cancer Res 2018; 24:4680-4693. [DOI: 10.1158/1078-0432.ccr-18-0619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/03/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
|
86
|
VISPA2: a scalable pipeline for high-throughput identification and annotation of vector integration sites. BMC Bioinformatics 2017; 18:520. [PMID: 29178837 PMCID: PMC5702242 DOI: 10.1186/s12859-017-1937-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 01/09/2023] Open
Abstract
Background Bioinformatics tools designed to identify lentiviral or retroviral vector insertion sites in the genome of host cells are used to address the safety and long-term efficacy of hematopoietic stem cell gene therapy applications and to study the clonal dynamics of hematopoietic reconstitution. The increasing number of gene therapy clinical trials combined with the increasing amount of Next Generation Sequencing data, aimed at identifying integration sites, require both highly accurate and efficient computational software able to correctly process “big data” in a reasonable computational time. Results Here we present VISPA2 (Vector Integration Site Parallel Analysis, version 2), the latest optimized computational pipeline for integration site identification and analysis with the following features: (1) the sequence analysis for the integration site processing is fully compliant with paired-end reads and includes a sequence quality filter before and after the alignment on the target genome; (2) an heuristic algorithm to reduce false positive integration sites at nucleotide level to reduce the impact of Polymerase Chain Reaction or trimming/alignment artifacts; (3) a classification and annotation module for integration sites; (4) a user friendly web interface as researcher front-end to perform integration site analyses without computational skills; (5) the time speedup of all steps through parallelization (Hadoop free). Conclusions We tested VISPA2 performances using simulated and real datasets of lentiviral vector integration sites, previously obtained from patients enrolled in a hematopoietic stem cell gene therapy clinical trial and compared the results with other preexisting tools for integration site analysis. On the computational side, VISPA2 showed a > 6-fold speedup and improved precision and recall metrics (1 and 0.97 respectively) compared to previously developed computational pipelines. These performances indicate that VISPA2 is a fast, reliable and user-friendly tool for integration site analysis, which allows gene therapy integration data to be handled in a cost and time effective fashion. Moreover, the web access of VISPA2 (http://openserver.itb.cnr.it/vispa/) ensures accessibility and ease of usage to researches of a complex analytical tool. We released the source code of VISPA2 in a public repository (https://bitbucket.org/andreacalabria/vispa2). Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1937-9) contains supplementary material, which is available to authorized users.
Collapse
|
87
|
Gene therapy for Wiskott-Aldrich syndrome in a severely affected adult. Blood 2017; 130:1327-1335. [PMID: 28716862 DOI: 10.1182/blood-2017-04-777136] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/04/2017] [Indexed: 11/20/2022] Open
Abstract
Until recently, hematopoietic stem cell transplantation was the only curative option for Wiskott-Aldrich syndrome (WAS). The first attempts at gene therapy for WAS using a ϒ-retroviral vector improved immunological parameters substantially but were complicated by acute leukemia as a result of insertional mutagenesis in a high proportion of patients. More recently, treatment of children with a state-of-the-art self-inactivating lentiviral vector (LV-w1.6 WASp) has resulted in significant clinical benefit without inducing selection of clones harboring integrations near oncogenes. Here, we describe a case of a presplenectomized 30-year-old patient with severe WAS manifesting as cutaneous vasculitis, inflammatory arthropathy, intermittent polyclonal lymphoproliferation, and significant chronic kidney disease and requiring long-term immunosuppressive treatment. Following reduced-intensity conditioning, there was rapid engraftment and expansion of a polyclonal pool of transgene-positive functional T cells and sustained gene marking in myeloid and B-cell lineages up to 20 months of observation. The patient was able to discontinue immunosuppression and exogenous immunoglobulin support, with improvement in vasculitic disease and proinflammatory markers. Autologous gene therapy using a lentiviral vector is a viable strategy for adult WAS patients with severe chronic disease complications and for whom an allogeneic procedure could present an unacceptable risk. This trial was registered at www.clinicaltrials.gov as #NCT01347242.
Collapse
|
88
|
Berry CC, Nobles C, Six E, Wu Y, Malani N, Sherman E, Dryga A, Everett JK, Male F, Bailey A, Bittinger K, Drake MJ, Caccavelli L, Bates P, Hacein-Bey-Abina S, Cavazzana M, Bushman FD. INSPIIRED: Quantification and Visualization Tools for Analyzing Integration Site Distributions. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:17-26. [PMID: 28344988 PMCID: PMC5363318 DOI: 10.1016/j.omtm.2016.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023]
Abstract
Analysis of sites of newly integrated DNA in cellular genomes is important to several fields, but methods for analyzing and visualizing these datasets are still under development. Here, we describe tools for data analysis and visualization that take as input integration site data from our INSPIIRED pipeline. Paired-end sequencing allows inference of the numbers of transduced cells as well as the distributions of integration sites in target genomes. We present interactive heatmaps that allow comparison of distributions of integration sites to genomic features and that support numerous user-defined statistical tests. To summarize integration site data from human gene therapy samples, we developed a reproducible report format that catalogs sample population structure, longitudinal dynamics, and integration frequency near cancer-associated genes. We also introduce a novel summary statistic, the UC50 (unique cell progenitors contributing the most expanded 50% of progeny cell clones), which provides a single number summarizing possible clonal expansion. Using these tools, we characterize ongoing longitudinal characterization of a patient from the first trial to treat severe combined immunodeficiency-X1 (SCID-X1), showing successful reconstitution for 15 years accompanied by persistence of a cell clone with an integration site near the cancer-associated gene CCND2. Software is available at https://github.com/BushmanLab/INSPIIRED.
Collapse
Affiliation(s)
- Charles C Berry
- Department of Family Medicine and Public Health, UC San Diego, La Jolla, CA 92093, USA
| | - Christopher Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Emmanuelle Six
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France; INSERM 24, Laboratory of Human Lymphohematopoiesis, 75015 Paris, France
| | - Yinghua Wu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Eric Sherman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Anatoly Dryga
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Frances Male
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Aubrey Bailey
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Kyle Bittinger
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Mary J Drake
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Laure Caccavelli
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Salima Hacein-Bey-Abina
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| |
Collapse
|