51
|
Crosstalk of MicroRNAs and Oxidative Stress in the Pathogenesis of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2415324. [PMID: 32411322 PMCID: PMC7204110 DOI: 10.1155/2020/2415324] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/02/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Oxidative stress refers to an imbalance between reactive oxygen species (ROS) generation and body's capability to detoxify the reactive mediators or to fix the relating damage. MicroRNAs are considered to be important mediators that play essential roles in the regulation of diverse aspects of carcinogenesis. Growing studies have demonstrated that the ROS can regulate microRNA biogenesis and expression mainly through modulating biogenesis course, transcription factors, and epigenetic changes. On the other hand, microRNAs may in turn modulate the redox signaling pathways, altering their integrity, stability, and functionality, thus contributing to the pathogenesis of multiple diseases. Both ROS and microRNAs have been identified to be important regulators and potential therapeutic targets in cancers. However, the information about the interplay between oxidative stress and microRNA regulation is still limited. The present review is aimed at summarizing the current understanding of molecular crosstalk between microRNAs and the generation of ROS in the pathogenesis of cancer.
Collapse
|
52
|
Phenolic Compounds Exerting Lipid-Regulatory, Anti-Inflammatory and Epigenetic Effects as Complementary Treatments in Cardiovascular Diseases. Biomolecules 2020; 10:biom10040641. [PMID: 32326376 PMCID: PMC7226566 DOI: 10.3390/biom10040641] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main process behind cardiovascular diseases (CVD), maladies which continue to be responsible for up to 70% of death worldwide. Despite the ongoing development of new and potent drugs, their incomplete efficacy, partial intolerance and numerous side effects make the search for new alternatives worthwhile. The focus of the scientific world turned to the potential of natural active compounds to prevent and treat CVD. Essential for effective prevention or treatment based on phytochemicals is to know their mechanisms of action according to their bioavailability and dosage. The present review is focused on the latest data about phenolic compounds and aims to collect and correlate the reliable existing knowledge concerning their molecular mechanisms of action to counteract important risk factors that contribute to the initiation and development of atherosclerosis: dyslipidemia, and oxidative and inflammatory-stress. The selection of phenolic compounds was made to prove their multiple benefic effects and endorse them as CVD remedies, complementary to allopathic drugs. The review also highlights some aspects that still need clear scientific explanations and draws up some new molecular approaches to validate phenolic compounds for CVD complementary therapy in the near future.
Collapse
|
53
|
|
54
|
Hudlikar RR, Sargsyan D, Wu R, Su S, Zheng M, Kong AN. Triterpenoid corosolic acid modulates global CpG methylation and transcriptome of tumor promotor TPA induced mouse epidermal JB6 P+ cells. Chem Biol Interact 2020; 321:109025. [PMID: 32135139 DOI: 10.1016/j.cbi.2020.109025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation is one of the driving forces in the process of carcinogenesis. Corosolic acid (CA); triterpenoid abundantly found in Lagerstroemia speciosa L. is known to modulate various cellular process including cellular oxidative stress and signaling kinases in various diseases, including skin cancer. Genetic mutations in early stages of skin cancer are well-documented, the epigenetic alterations remain elusive. In the present study, we identified the transcriptomic gene expression changes with RNAseq and genome-wide DNA CpG methylation changes with DNA methylseq to profile the early stage transcriptomic and epigenomic changes using tumor promoter TPA-mediated mouse epidermal epithelial JB6 P+ cells. JB6 P+ cells were treated with TPA and Corosolic acid by 7.5uM optimized by MTS assay. Differentiated expressed genes (DEGs) and Differentially methylated genes (DMRs) were analyzed by R software. Ingenuity Pathway Analysis (IPA) was employed to understand the differential regulation of specific pathways. Novel TPA induced differentially overexpressed genes like tumor promoter Prl2c2, small prolin rich protein (Sprr2h) was reported which was downregulated by corosolic acid treatment. Several cancer related pathways were identified by Ingenuity Pathways Analysis (IPA) including p53, Erk, TGF beta signaling pathways. Moreover, differentially methylated regions (DMRs) in genes like Dusp22 (Dual specificity protein phosphatase 22), Rassf (tumor suppressor gene family, Ras association domain family) in JB6 P+ cells were uncovered which are altered by TPA and are reversed by CA treatment. Interestingly, genes like CDK1 (Cyclin-dependent kinases 1) and RASSF2 (Ras association domain family member 2) observed to be differentially methylated and expressed which was further modulated by corosolic acid treatment, validated by qPCR. Given study indicated gene expression changes to DNA CpG methylation epigenomic changes modulated various molecular pathways in TPA-induced JB6 cells and revealed that CA can potentially reverse these changes which deciphering novel molecular targets for future prevention of early stages of skin cancer studies in human.
Collapse
Affiliation(s)
- Rasika R Hudlikar
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Davit Sargsyan
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Renyi Wu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Meinizi Zheng
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
55
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
56
|
Lin ZH, Chan YF, Pan MH, Tung YC, Su ZY. Aged Citrus Peel (Chenpi) Prevents Acetaminophen-Induced Hepatotoxicity by Epigenetically Regulating Nrf2 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1833-1851. [PMID: 31795743 DOI: 10.1142/s0192415x19500939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Excessive consumption of analgesic drug acetaminophen (APAP) can cause severe oxidative stress-mediated liver injury. Here, we investigated the protective effect and mechanism of aged citrus peel (Chenpi, CP), a Chinese herb usually used in foods in Asia, against APAP-induced hepatotoxicity. CP water (CP-WE), ethanolic (CP-EE), and water extraction residue ethanolic (CP-WREE) extracts were prepared. We found that CP-WREE contained higher content of bioactive flavonoids, including narirutin, nobiletin, and tangeretin, and more effectively enhanced the Nrf2 pathway in ARE-luciferase reporter gene transfected human HepG2-C8 cells. In mouse AML-12 hepatocytes, CP-WREE minimized APAP-induced damage and lipid peroxidation and increased mRNA and protein expressions of Nrf2 and its downstream defense enzymes (HO-1, NQO1, and UGT1A). CP-WREE also downregulated HDACs and DNMTs, upregulated KDMs, and increased the unmethylated Nrf2 promoter level. Additionally, CP-WREE blocked in vitro DNA methyltransferase activity. Taken together, CP-WREE might attenuate oxidative stress-induced hepatotoxicity through epigenetically regulating Nrf2-mediated cellular defense system.
Collapse
Affiliation(s)
- Zi-Han Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Yen-Fan Chan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Yen-Chen Tung
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Zheng-Yuan Su
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
57
|
Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 2019; 9:735. [PMID: 31766246 PMCID: PMC6920770 DOI: 10.3390/biom9110735] [Citation(s) in RCA: 642] [Impact Index Per Article: 128.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous ROS production in normal cells is controlled by the appropriate regulation between the silver lining of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis, and survival at different concentrations. At moderate concentration, ROS activates the cancer cell survival signaling cascade involving mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1/2 (MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-3-kinase/ protein kinase B (PI3K/Akt), which in turn activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF). At high concentrations, ROS can cause cancer cell apoptosis. Hence, it critically depends upon the ROS levels, to either augment tumorigenesis or lead to apoptosis. The major issue is targeting the dual actions of ROS effectively with respect to the concentration bias, which needs to be monitored carefully to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets exogenously/endogenously. Overall, additional research is required to comprehend the potential of ROS as an effective anti-tumor modality and therapeutic target for treating malignancies.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Punjab, Chandigarh 160012, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India;
| | - Ayşegül Varol
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir TR26470, Turkey;
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India;
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla TR48000, Turkey;
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India;
| | - Md. Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
58
|
Supplementation of p-coumaric acid exhibits chemopreventive effect via induction of Nrf2 in a short-term preclinical model of colon cancer. Eur J Cancer Prev 2019; 28:472-482. [DOI: 10.1097/cej.0000000000000496] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
59
|
Lee KC, Lee KF, Tung SY, Huang WS, Lee LY, Chen WP, Chen CC, Teng CC, Shen CH, Hsieh MC, Kuo HC. Induction Apoptosis of Erinacine A in Human Colorectal Cancer Cells Involving the Expression of TNFR, Fas, and Fas Ligand via the JNK/p300/p50 Signaling Pathway With Histone Acetylation. Front Pharmacol 2019; 10:1174. [PMID: 31680958 PMCID: PMC6804634 DOI: 10.3389/fphar.2019.01174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Erinacine A, which is one of the major bioactive diterpenoid compounds extracted from cultured mycelia of H. erinaceus, displays great antitumorigenic activity. However, the molecular mechanisms underlying erinacine A inducing cancer cell apoptosis in colorectal cancer (CRC) remain unclear. This study found that treatment with erinacine A not only triggers the activation of extrinsic apoptosis pathways (TNFR, Fas, FasL, and caspases) but also suppresses the expression of antiapoptotic molecules Bcl-2 and Bcl-XL via a time-dependent manner in DLD-1 cells. Furthermore, phosphorylation of Jun N-terminus kinase (JNK1/2), NFκB p50, and p300 is involved in erinacine A–induced cancer cell apoptosis. Inhibition of these signaling pathways by kinase inhibitors blocks erinacine A–induced transcriptional activation implicates histone H3K9K14ac (Acetyl Lys9/Lys14) of the TNFR, Fas, and FasL as promoters. Moreover, histochemical and immunohistochemical analyses revealed that erinacine A treatment significantly induced the TNFR, Fas, and FasL levels in the in vivo xenograft mouse model. Together, these results demonstrated an increase in the cellular transcriptional levels of TNFR, Fas, and FasL by erinacine A induction to cell apoptosis via the activation of the JNK, p300, and NFκB p50 signaling modules, thereby providing a new mechanism for erinacine A treatment in vitro and in vivo.
Collapse
Affiliation(s)
- Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Information Management & College of Liberal Education, Shu-Te University, Kaohsiung, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shui-Yi Tung
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Shih Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | | | | | - Chih-Chuan Teng
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan.,Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chien-Heng Shen
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Chiao Hsieh
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan.,Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| |
Collapse
|
60
|
Nrf2/HO-1 signaling pathway participated in the protection of hydrogen sulfide on neuropathic pain in rats. Int Immunopharmacol 2019; 75:105746. [DOI: 10.1016/j.intimp.2019.105746] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/18/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022]
|
61
|
Castanea sativa Mill. Shells Aqueous Extract Exhibits Anticancer Properties Inducing Cytotoxic and Pro-Apoptotic Effects. Molecules 2019; 24:molecules24183401. [PMID: 31546790 PMCID: PMC6767178 DOI: 10.3390/molecules24183401] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
In this study, chestnut shells (CS) were used in order to obtain bioactive compounds through different extraction procedures. The aqueous extracts were chemically characterized. The highest extraction yield and total phenolic content was obtained by conventional liquid extraction (CLE). Gallic and protocatechuic acids were the main simple phenols in the extract, with 86.97 and 11.20 mg/g chestnut shells dry extract (CSDE), respectively. Six tumor cell lines (DU 145, PC-3, LNCaP, MDA-MB-231, MCF-7, and HepG2) and one normal prostate epithelial cell line (PNT2) were exposed to increasing concentration of CSDE (1–100 µg/mL) for 24 h, and cell viability was evaluated using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide MTT assay. A reduced rate in cell viability was observed in DU 145, PC-3, LNCaP, and MCF-7 cells, while viability of the other assessed cells was not affected, except for PNT2 cells at a concentration of 100 μg/mL. Furthermore, CSDE—at concentrations of 55.5 and 100 µg/mL—lead to a significant increase of apoptotic cells in DU 145 cells of 28.2% and 61%, respectively. In conclusion, these outcomes suggested that CS might be used for the extraction of several polyphenols that may represent good candidates for alternative therapies or in combination with current chemotherapeutics.
Collapse
|
62
|
Li W, Sargsyan D, Wu R, Li S, Wang L, Cheng D, Kong AN. DNA Methylome and Transcriptome Alterations in High Glucose-Induced Diabetic Nephropathy Cellular Model and Identification of Novel Targets for Treatment by Tanshinone IIA. Chem Res Toxicol 2019; 32:1977-1988. [PMID: 31525975 DOI: 10.1021/acs.chemrestox.9b00117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy (DN) is a diabetes complication that comes from overactivation of Renin-Angiotensin System, excessive pro-inflammatory factors, reactive oxygen species (ROS) overproduction, and potential epigenetic changes. Tanshinone IIA (TIIA), a diterpene quinone phytochemical, has been shown to possess powerful antioxidant, anti-inflammatory, epigenetics, and protective effects against different diseases including DN by inhibiting ROS induced by high glucose (HG). However, epigenomic and transcriptomic study of DN and the protective effect of TIIA are lacking. In this study, next-generation sequencing of RNA and DNA methylation profiles on the potential underlying mechanisms of a DN model in mouse kidney mesangial mes13 cells challenged with HG and treatment with TIIA were conducted. Bioinformatic analysis coupled with Ingenuity Pathway analysis of RNA-seq was performed, and 1780 genes from HG/LG and 1416 genes from TIIA/HG were significantly altered. Several pro-inflammatory pathways like leukotriene biosynthesis and eicosanoid signaling pathways were activated by HG stimulation, while TIIA treatment would enhance glutathione-mediated detoxification pathway to overcome the excess oxidative stress and inflammation triggered by HG. Combination analysis of RNA-seq and Methyl-seq data sets, DNA methylation, and RNA expression of a list of DN associated genes, Nmu, Fgl2, Glo, and Kcnip2, were found to be altered in HG-induced mes13 DN model, and TIIA treatment would effectively restore the alterations. Taken together, these findings provide novel insights into the understanding of how epigenetic/epigenomic modifications could affect the progression of DN and the potential preventive effect of TIIA in DN.
Collapse
Affiliation(s)
- Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China,Jiangsu Key laboratory of integrated traditional Chinese and Western
Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, P. R. China
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States.,Graduate Program in Pharmaceutical Sciences , Ernest Mario School of Pharmacy, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States.,Graduate Program in Pharmaceutical Sciences , Ernest Mario School of Pharmacy, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States.,Graduate Program in Pharmaceutical Sciences , Ernest Mario School of Pharmacy, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States.,Graduate Program in Pharmaceutical Sciences , Ernest Mario School of Pharmacy, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
63
|
Shrungeswara AH, Unnikrishnan MK. Evolution of dietary preferences and the innate urge to heal: Drug discovery lessons from Ayurveda. J Ayurveda Integr Med 2019; 10:222-226. [PMID: 29576440 PMCID: PMC6822145 DOI: 10.1016/j.jaim.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/05/2022] Open
Abstract
Highly specialized and functionally integrated cognitive systems facilitate hedonistic and healthy food preferences. Guided by survival needs, flavor preferences not only select safe, nutritious dietary components, but also those with negligible calorific value but significant health benefits, for example, spices. Feeding behavior, both innate and acquired, is guided not only by taste receptors on the tongue but also visceral organs. The gustatory cortex receives information from all senses, not just taste, suggesting multiple checkpoints in predicting and evaluating healthy foods. Ayurvedic interpretation of 'rasa' as chemistry is compatible with medicinal value of diets because, taste and odor are chemosensory perceptions. As flavor and taste are linked to the chemical structure of compounds, taste might offer clues about pharmacological activity. Ayurvedic idea of vipaka, or post digestive perception of taste, recognizes the extended role of taste receptors beyond the tongue and stretching into the viscera. Ayurvedic wisdom is consistent with evolutionary guideposts that suggest three successive stages of nutritional appraisal: before, during, and after ingesting food. While olfaction induces affinity or revulsion even before ingestion, gustatory receptors on the tongue evaluates nutritional value upon contact, and the chemoreceptors in the deeper metabolic systems probably pronounce the final verdict on the nutritive and health benefits of ingested substances. Alliesthesia, neophobia, and the extreme variation in human T2R genes (coding for bitterness receptors) illustrate the importance of adaptive learning of dietary preferences. These evolutionary clues are compatible with the Ayurvedic principle of 'rasa', in facilitating the process of drug discovery.
Collapse
Affiliation(s)
- Akhila Hosur Shrungeswara
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal University, Karnataka, 576104, India
| | | |
Collapse
|
64
|
Ahmed K, Zaidi SF, Cui ZG, Zhou D, Saeed SA, Inadera H. Potential proapoptotic phytochemical agents for the treatment and prevention of colorectal cancer. Oncol Lett 2019; 18:487-498. [PMID: 31289520 PMCID: PMC6540497 DOI: 10.3892/ol.2019.10349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality among men and women. Chemo-resistance, adverse effects and disease recurrence are major challenges in the development of effective cancer therapeutics. Substantial literature on this subject highlights that populations consuming diets rich in fibers, fruits and vegetables have a significantly reduced incidence rate of CRC. This chemo-preventive effect is primarily associated with the presence of phytochemicals in the dietary components. Plant-derived chemical agents act as a prominent source of novel compounds for drug discovery. Phytochemicals have been the focus of an increasing number of studies due to their ability to modulate carcinogenic processes through the alteration of multiple cancer cell survival pathways. Despite promising results from experimental studies, only a limited number of phytochemicals have entered into clinical trials. The purpose of the current review is to compile previously published pre-clinical and clinical evidence of phytochemicals in cases of CRC. A PubMed, Google Scholar and Science Direct search was performed for relevant articles published between 2008-2018 using the following key terms: 'Phytochemicals with colorectal cancers', 'apoptosis', 'cell cycle', 'reactive oxygen species' and 'clinical anticancer activities'. The present review may aid in identifying the most investigated phytochemicals in CRC cells, and due to the limited number of studies that make it from the laboratory bench to clinical trial stage, may provide a novel foundation for future research.
Collapse
Affiliation(s)
- Kanwal Ahmed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Syed Faisal Zaidi
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Zheng-Guo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Dejun Zhou
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Sheikh Abdul Saeed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Hidekuni Inadera
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
65
|
Prasad AS, Bao B. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants (Basel) 2019; 8:antiox8060164. [PMID: 31174269 PMCID: PMC6617024 DOI: 10.3390/antiox8060164] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
The essentiality of zinc as a trace mineral in human health has been recognized for over five decades. Zinc deficiency, caused by diet, genetic defects, or diseases, can cause growth retardation, delayed sexual maturation, depressed immune response, and abnormal cognitive functions in humans. Zinc supplementation in zinc-deficient individuals can overcome or attenuate these abnormalities, suggesting zinc is an essential micro-nutrient in the body. A large number of in vitro and in vivo experimental studies indicate that zinc deficiency also causes apoptosis, cellular dysfunction, deoxyribonucleic acid (DNA) damage, and depressed immune response. Oxidative stress, due to the imbalance of reactive oxygen species (ROS) production and detoxification in the anti-oxidant defense system of the body, along with subsequent chronic inflammation, is believed to be associated with many chronic degenerative diseases such as diabetes, heart diseases, cancers, alcohol-related disease, macular degenerative disease, and neuro-pathogenesis. A large number of experimental studies including cell culture, animal, and human clinical studies have provided supportive evidence showing that zinc acts as an anti-oxidative stress agent by inhibition of oxidation of macro-molecules such as (DNA)/ribonucleic acid (RNA) and proteins as well as inhibition of inflammatory response, eventually resulting in the down-regulation of (ROS) production and the improvement of human health. In this article, we will discuss the molecular mechanisms of zinc as an anti-oxidative stress agent or mediator in the body. We will also discuss the applications of zinc supplementation as an anti-oxidative stress agent or mediator in human health and disease.
Collapse
Affiliation(s)
- Ananda S Prasad
- Department of Oncology, School of Medicine, Wayne State University and Karmanos Cancer Center, Detroit, MI 48201, USA.
| | - Bin Bao
- Department of Oncology, School of Medicine, Wayne State University and Karmanos Cancer Center, Detroit, MI 48201, USA.
| |
Collapse
|
66
|
Peluso I, Yarla NS, Ambra R, Pastore G, Perry G. MAPK signalling pathway in cancers: Olive products as cancer preventive and therapeutic agents. Semin Cancer Biol 2019; 56:185-195. [DOI: 10.1016/j.semcancer.2017.09.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 12/11/2022]
|
67
|
De Silva SF, Alcorn J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals (Basel) 2019; 12:E68. [PMID: 31060335 PMCID: PMC6630319 DOI: 10.3390/ph12020068] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer causes considerable morbidity and mortality across the world. Socioeconomic, environmental, and lifestyle factors contribute to the increasing cancer prevalence, bespeaking a need for effective prevention and treatment strategies. Phytochemicals like plant polyphenols are generally considered to have anticancer, anti-inflammatory, antiviral, antimicrobial, and immunomodulatory effects, which explain their promotion for human health. The past several decades have contributed to a growing evidence base in the literature that demonstrate ability of polyphenols to modulate multiple targets of carcinogenesis linking models of cancer characteristics (i.e., hallmarks and nutraceutical-based targeting of cancer) via direct or indirect interaction or modulation of cellular and molecular targets. This evidence is particularly relevant for the lignans, an ubiquitous, important class of dietary polyphenols present in high levels in food sources such as flaxseed. Literature evidence on lignans suggests potential benefit in cancer prevention and treatment. This review summarizes the relevant chemical and pharmacokinetic properties of dietary polyphenols and specifically focuses on the biological targets of flaxseed lignans. The consolidation of the considerable body of data on the diverse targets of the lignans will aid continued research into their potential for use in combination with other cancer chemotherapies, utilizing flaxseed lignan-enriched natural products.
Collapse
Affiliation(s)
- S Franklyn De Silva
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| | - Jane Alcorn
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| |
Collapse
|
68
|
Pharmacotherapeutics and Molecular Mechanism of Phytochemicals in Alleviating Hormone-Responsive Breast Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5189490. [PMID: 31089409 PMCID: PMC6476122 DOI: 10.1155/2019/5189490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/30/2018] [Accepted: 12/24/2018] [Indexed: 12/23/2022]
Abstract
Breast cancer (BC) is the leading cause of death among women worldwide devoid of effective treatment. It is therefore important to develop agents that can reverse, reduce, or slow the growth of BC. The use of natural products as chemopreventive agents provides enormous advantages. The aim of the current investigation is to determine the efficacy of the phytochemicals against BC along with the approved drugs to screen the most desirable and effective phytocompound. In the current study, 36 phytochemicals have been evaluated against aromatase to identify the potential candidate drug along with the approved drugs employing the Cdocker module accessible on the Discovery Studio (DS) v4.5 and thereafter analysing the stability of the protein ligand complex using GROningen MAchine for Chemical Simulations v5.0.6 (GROMACS). Additionally, these compounds were assessed for the inhibitory features employing the structure-based pharmacophore (SBP). The Cdocker protocol available with the DS has computed higher dock scores for the phytochemicals complemented by lower binding energies. The top-ranked compounds that have anchored with key residues located at the binding pocket of the protein were subjected to molecular dynamics (MD) simulations employing GROMACS. The resultant findings reveal the stability of the protein backbone and further guide to comprehend on the involvement of key residues Phe134, Val370, and Met374 that mechanistically inhibit BC. Among 36 compounds, curcumin, capsaicin, rosmarinic acid, and 6-shogaol have emerged as promising phytochemicals conferred with the highest Cdocker interaction energy, key residue interactions, stable MD results than reference drugs, and imbibing the key inhibitory features. Taken together, the current study illuminates the use of natural compounds as potential drugs against BC. Additionally, these compounds could also serve as scaffolds in designing and development of new drugs.
Collapse
|
69
|
Bungau S, Abdel-Daim MM, Tit DM, Ghanem E, Sato S, Maruyama-Inoue M, Yamane S, Kadonosono K. Health Benefits of Polyphenols and Carotenoids in Age-Related Eye Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9783429. [PMID: 30891116 PMCID: PMC6390265 DOI: 10.1155/2019/9783429] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/20/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Oxidative stress and inflammation play a critical role in the initiation and progression of age-related ocular abnormalities as cataract, glaucoma, diabetic retinopathy, and macular degeneration. Therefore, phytochemicals with proven antioxidant and anti-inflammatory activities, such as carotenoids and polyphenols, could be of benefit in these diseases. We searched PubMed and Web of Science databases for original studies investigating the benefits of different carotenoids and polyphenols in age-related ophthalmic diseases. Our results showed that several polyphenols (such as anthocyanins, Ginkgo biloba, quercetin, and resveratrol) and carotenoids (such as lutein, zeaxanthin, and mezoxanthin) have shown significant preventive and therapeutic benefits against the aforementioned conditions. The involved mechanisms in these findings include mitigating the production of reactive oxygen species, inhibiting the tumor necrosis factor-α and vascular endothelial growth factor pathways, suppressing p53-dependent apoptosis, and suppressing the production of inflammatory markers, such as interleukin- (IL-) 8, IL-6, IL-1a, and endothelial leucocyte adhesion molecule-1. Consumption of products containing these phytochemicals may be protective against these diseases; however, adequate human data are lacking. This review discusses the role and mechanisms of polyphenols and carotenoids and their possible synergistic effects on the prevention and treatment of age-related eye diseases that are induced or augmented by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Simona Bungau
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Department of Ophthalmology and Micro-technology, Yokohama City University, Yokohama, Japan
| | - Delia Mirela Tit
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Esraa Ghanem
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Shimpei Sato
- Department of Ophthalmology and Micro-technology, Yokohama City University, Yokohama, Japan
| | - Maiko Maruyama-Inoue
- Department of Ophthalmology and Micro-technology, Yokohama City University, Yokohama, Japan
| | - Shin Yamane
- Department of Ophthalmology and Micro-technology, Yokohama City University, Yokohama, Japan
| | - Kazuaki Kadonosono
- Department of Ophthalmology and Micro-technology, Yokohama City University, Yokohama, Japan
| |
Collapse
|
70
|
Langner E, Lemieszek MK, Rzeski W. Lycopene, sulforaphane, quercetin, and curcumin applied together show improved antiproliferative potential in colon cancer cells in vitro. J Food Biochem 2019; 43:e12802. [PMID: 31353575 DOI: 10.1111/jfbc.12802] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
Lycopene, sulforaphane, quercetin, and curcumin, ingredients of daily diet, show significant anticancer and chemopreventive potential; however, no data are available showing thorough evaluation of jointly used phytochemicals on cancer cell proliferation. Here, we compare anticancer potential of mentioned substances applied separately or in combination (as MIX) by measuring mitochondrial activity (MTT test), DNA synthesis (BrdU test) and lactate dehydrogenase release (LDH test) in colon epithelial (CCD841 CoTr), and colon cancer (HT-29, LS174T) cells. Additive inhibitory effect of simultaneously used phytochemicals on cancer cells proliferation has been shown. In epithelial cells, tested combination effectively inhibited mitochondrial activity, but not DNA synthesis. LDH test revealed cytotoxicity of tested mixture against cancer cells without negative effect on normal cells. Furthermore, we demonstrated that MIX enhances antiproliferative effect of common cytostatics: 5-fluorouracil and cisplatin. Presented data suggest chemopreventive potential of the proposed combination of natural substances and their usefulness as adjuvant strategy during chemotherapy. PRACTICAL APPLICATIONS: Colorectal cancer is one of the most common causes of cancer death worldwide. Since its development and progression is strongly correlated with dietary habits, healthy diet as well as supplementation with proved anticancer agents seems to be reasonable strategy of colon cancer prevention and treatment. In the present study, we have focused on four natural compounds abundantly found in daily diet i.e., lycopene, sulforaphane, quercetin, and curcumin, with well established anticancer potential. Their individual and collective impact both on normal colon epithelium cells and colon cancer cells viability, growth, and proliferation was examined. Furthermore, activity of the substances combined as MIX to influence antiproliferative potential of commonly used in colon cancer treatment cytostatics, 5-fluorouracil, and cisplatin was verified. Proposed in the study combination of phytochemicals with experimentally proven antiproliferative activity may propose an effective strategy for prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Ewa Langner
- Department of Medical Biology, Institute of Agricultural Medicine, Lublin, Poland.,Department of Pharmacology, Medical University, Lublin, Poland
| | | | - Wojciech Rzeski
- Department of Medical Biology, Institute of Agricultural Medicine, Lublin, Poland.,Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
71
|
Kumar SS, Manna K, Das A. Tender coconut water attenuates heat stress-induced testicular damage through modulation of the NF-κB and Nrf2 pathways. Food Funct 2019; 9:5463-5479. [PMID: 30295310 DOI: 10.1039/c8fo01207e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tender coconut water (TCW), a well-known plant beverage, has been used as a stress-relieving traditional medicine since ancient times. It is also used to treat various ailments of disease, including hepatic disorders, renal disorders, gastric disorders and reproductive disorders. However, the reasons for its effectiveness as a natural antioxidant as well as its testicular protective effects against whole body heat stress (HS)-induced oxidative imbalance remain to be revealed. The present study aimed to elucidate the protective efficacy of TCW on HS-induced testicular damage in a murine system and to explore the possible mechanism of action. Standardized liquid chromatography-mass spectrometry (LC-MS) was used to detect the presence of active components in TCW. Male Wistar rats were exposed to acute HS with or without TCW treatment to evaluate the degree of testicular damage, which was monitored through histological as well as biochemical analysis. Assessment of endogenous antioxidant response and the modulation of signaling pathways associated with inflammation were also subjected to immunofluorescence and flow cytometric evaluation. Acute hyperthermia caused an elevation of excess generation of oxygen radicals following the suppression of antioxidant capacity and augmentation of lipid peroxidation in murine testicles, which was restored by treatment with TCW. The results also demonstrated marked phosphorylation of IKKα/β and IκBα following the activation of NF-κB-guided pro-inflammation upon HS. TCW treatment reversed the HS-induced proinflammatory state through activation of the Nrf2-assisted antioxidant response, which restored the testicular damage. TCW provided competent scientific evidence to substantiate the claims for its use in the treatment of HS-induced inflammation and inflammation-mediated testicular damage.
Collapse
Affiliation(s)
- Soumya Sundar Kumar
- Department of Physiology, Serampore College, Serampore, Hooghly, West Bengal, India.
| | | | | |
Collapse
|
72
|
Kim MJ, Yun JM. Molecular Mechanism of the Protective Effect of Zerumbone on Lipopolysaccharide-Induced Inflammation of THP-1 Cell-Derived Macrophages. J Med Food 2019; 22:62-73. [DOI: 10.1089/jmf.2018.4253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Min-Ju Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju, South Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
73
|
Hoge A, Guillaume M, Albert A, Tabart J, Dardenne N, Donneau AF, Kevers C, Defraigne JO, Pincemail J. Validation of a food frequency questionnaire assessing dietary polyphenol exposure using the method of triads. Free Radic Biol Med 2019; 130:189-195. [PMID: 30395973 DOI: 10.1016/j.freeradbiomed.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Abstract
When conducting research on polyphenols and their effects on health, it is of primary importance to use standardised and validated dietary assessment tools. This paper aims at assessing the validity of a food frequency questionnaire (FFQ) for quantifying dietary polyphenol exposure among healthy adults using the method of triads. Fifty-three healthy adults, aged 20-60, were included in the study. Total dietary polyphenol intake (TDP) estimated by the FFQ was compared with TDP measured by a 3-day food record (FR) and with urinary excretion levels of total polyphenols (TUP). Pearson correlations were calculated between methods. Validity coefficients (VC) were estimated between the three measurements and the 'unknown' true intake. There was a strong correlation between both dietary methods (r = 0.70, p < 0.0001). A moderate but significant association was observed between FFQ-derived TDP and TUP (r = 0.32, p = 0.020). The method of triads yielded a VC for the FFQ of 0.63 (95%CI: 0.41-0.84), indicating a strong relationship between FFQ-derived TDP and the true polyphenol intake. This study shows that the FFQ is an adequate tool not only for measuring dietary polyphenol exposure in nutrition epidemiological studies but also for guiding clinicians in dietary advice and counselling.
Collapse
Affiliation(s)
- Axelle Hoge
- Department of Public Health, University of Liège, Liège, Belgium.
| | | | - Adelin Albert
- Department of Public Health, University of Liège, Liège, Belgium
| | - Jessica Tabart
- Plant Molecular Biology and Biotechnology Unit, University of Liège, Liège, Belgium
| | - Nadia Dardenne
- Department of Public Health, University of Liège, Liège, Belgium
| | | | - Claire Kevers
- Plant Molecular Biology and Biotechnology Unit, University of Liège, Liège, Belgium
| | - Jean-Olivier Defraigne
- Department of Cardiovascular Surgery, University Hospital of Liège; Research Centre for Experimental Surgery (CREDEC), University of Liège, and Plateforme Nutrition Antioxydante & Santé (NAS), Liège, Belgium
| | - Joël Pincemail
- Department of Cardiovascular Surgery, University Hospital of Liège; Research Centre for Experimental Surgery (CREDEC), University of Liège, and Plateforme Nutrition Antioxydante & Santé (NAS), Liège, Belgium
| |
Collapse
|
74
|
Lecithin-Stabilized Polymeric Micelles (L sbPMs) for Delivering Quercetin: Pharmacokinetic Studies and Therapeutic Effects of Quercetin Alone and in Combination with Doxorubicin. Sci Rep 2018; 8:17640. [PMID: 30518853 PMCID: PMC6281656 DOI: 10.1038/s41598-018-36162-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
In this study, lecithin-stabilized polymeric micelles (LsbPMs) were prepared to load quercetin (QUE) in order to improve its bioavailability and increase its antitumor activity. Its combination with doxorubicin (DOX) to minimize DOX-mediated cardiac toxicity and increase the antitumor activity of QUE-loaded LsbPMs was also examined. LsbPMs were prepared following a previously reported procedure. Results demonstrated that optimal QUE-loaded LsbPMs contained quercetin, D-α-tocopheryl polyethylene glycol succinate, and lecithin at a weight ratio of 6:40:80. Drug-release studies showed that QUE released from LsbPMs followed a controlled release pattern. A cytotoxicity assay revealed that QUE-loaded LsbPMs had significant anticancer activities against MCF-7, SKBR-3, and MDA-MB-231 human breast cancer cells and CT26 mouse colon cancer cells. In animal studies, intravenous administration of QUE-loaded LsbPMs resulted in efficient growth inhibition of CT26 colon cancer cells in a Balb/c mice model. In a pharmacokinetics study compared to free QUE, intravenous and oral administration of QUE-loaded LsbPMs was found to have significantly increased the relative bioavailability to 158% and 360%, respectively, and the absolute bioavailability to 5.13%. The effect of QUE-loaded LsbPMs in combination with DOX resulted in efficient growth inhibition of CT26 colon cancer cells and reduced cardiac toxicity in the Balb/c mice model.
Collapse
|
75
|
A catalogue of somatic NRF2 gain-of-function mutations in cancer. Sci Rep 2018; 8:12846. [PMID: 30150714 PMCID: PMC6110754 DOI: 10.1038/s41598-018-31281-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Identification and characterization of somatic mutations in cancer have important prognostication and treatment implications. Genes encoding the Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor and its negative regulator, Kelch-like ECH-associated protein 1 (KEAP1), are frequently mutated in cancer. These mutations drive constitutive NRF2 activation and correlate with poor prognosis. Despite its apparent significance, a comprehensive catalogue of somatic NRF2 mutations across different tumor types is still lacking. Here, we catalogue NRF2 mutations in The Cancer Genome Atlas (TCGA) database. 226 unique NRF2-mutant tumors were identified from 10,364 cases. NRF2 mutations were found in 21 out of the 33 tumor types. A total of 11 hotspots were identified. Of these, mutation to the R34 position was most frequent. Notably, R34 and D29 mutations were overrepresented in bladder, lung, and uterine cancers. Analyses of corresponding RNA sequencing data using a de novo derived gene expression classifier showed that the R34 mutations drive constitutive NRF2 activation with a selection pressure biased against the formation of R34L. Of all R34 mutants, R34L conferred the least degree of protein stabilization, suggesting a pro-tumor NRF2 half-life threshold. Our findings offer a comprehensive catalogue of NRF2 mutations in cancer that can help prognostication and NRF2 research.
Collapse
|
76
|
Balupillai A, Nagarajan RP, Ramasamy K, Govindasamy K, Muthusamy G. Caffeic acid prevents UVB radiation induced photocarcinogenesis through regulation of PTEN signaling in human dermal fibroblasts and mouse skin. Toxicol Appl Pharmacol 2018; 352:87-96. [DOI: 10.1016/j.taap.2018.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/12/2018] [Accepted: 05/22/2018] [Indexed: 01/10/2023]
|
77
|
Novel Neohesperidin Dihydrochalcone Analogue Inhibits Adipogenic Differentiation of Human Adipose-Derived Stem Cells through the Nrf2 Pathway. Int J Mol Sci 2018; 19:ijms19082215. [PMID: 30060630 PMCID: PMC6121477 DOI: 10.3390/ijms19082215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity, characterized by excess lipid accumulation, has emerged as a leading public health problem. Excessive, adipocyte-induced lipid accumulation raises the risk of metabolic disorders. Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that can be obtained from abundant adipose tissue. High fat mass could be caused by an increase in the size (hypertrophy) and number (hyperplasia) of adipocytes. Reactive oxygen species (ROS) are involved in the adipogenic differentiation of human adipose-derived stem cells (hASCs). Lowering the level of ROS is important to blocking or retarding the adipogenic differentiation of hASCs. Nuclear factor erythroid 2-related factor-2 (Nrf2) is a transcription factor that mediates various antioxidant enzymes and regulates cellular ROS levels. Neohesperidin dihydrochalcone (NHDC), widely used as artificial sweetener, has been shown to have significant free radical scavenging activity. In the present study, (E)-3-(4-chlorophenyl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (CTP), a novel NHDC analogue, was synthesized and examined to determine whether it could inhibit adipogenic differentiation. The inhibition of adipogenic differentiation in hASCs was tested using NHDC and CTP. In the CTP group, reduced Oil Red O staining was observed compared with the differentiation group. CTP treatment also downregulated the expression of PPAR-γ and C/EBP-α, adipogenic differentiation markers in hASCs, compared to the adipogenic differentiation group. The expression of FAS and SREBP-1 decreased in the CTP group, along with the fluorescent intensity (amount) of ROS. Expression of the Nrf2 protein was slightly decreased in the differentiation group. Meanwhile, in both the NHDC and CTP groups, Nrf2 expression was restored to the level of the control group. Moreover, the expression of HO-1 and NQO-1 increased significantly in the CTP group. Taken together, these results suggest that CTP treatment suppresses the adipogenic differentiation of hASCs by decreasing intracellular ROS, possibly through activation of the Nrf2 cytoprotective pathway. Thus, the use of bioactive substances such as CTP, which activates Nrf2 to reduce the cellular level of ROS and inhibit the adipogenic differentiation of hASCs, could be a new strategy for overcoming obesity.
Collapse
|
78
|
Liu LQ, Nie SP, Shen MY, Hu JL, Yu Q, Gong D, Xie MY. Tea Polysaccharides Inhibit Colitis-Associated Colorectal Cancer via Interleukin-6/STAT3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4384-4393. [PMID: 29656647 DOI: 10.1021/acs.jafc.8b00710] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interleukin-6 (IL-6)/signal transducer and activator of transcription (STAT)-3 signaling pathway regulates proliferation and survival of intestinal epithelial cells and has profound impact on the tumorigenesis of colitis-associated cancer (CAC). Tea polysaccharides (TPS) are the major nutraceutical component isolated from tea-leaves and are known to possess antioxidant, anti-inflammatory, and antitumor bioactivities. Here, we investigated the antitumor activities of TPS on CAC using the azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model and IL-6-induced colorectal cancer cell line (CT26) and determined whether TPS exerted its antitumor effects through the IL-6/STAT3 pathway. Results demonstrated that TPS significantly decreased the tumor incidence, tumor size, and markedly inhibited the infiltration of pro-inflammatory cells and the secretion of pro-inflammatory cytokines via balancing cellular microenvironment. Furthermore, we found that TPS suppressed the activation of STAT3 and transcriptionally regulated the expressions of downstream genes including MMP2, cyclin Dl, survivin, and VEGF both in vivo and in vitro. Thus, it was concluded that TPS attenuated the progress of CAC via suppressing IL-6/STAT3 pathway and downstream genes' expressions, which indicated that TPS may be a hopeful antitumor agent for the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Deming Gong
- New Zealand Institute of Natural Medicine Research , Auckland 2104 , New Zealand
| | | |
Collapse
|
79
|
Coroglaucigenin enhances the radiosensitivity of human lung cancer cells through Nrf2/ROS pathway. Oncotarget 2018; 8:32807-32820. [PMID: 28415625 PMCID: PMC5464829 DOI: 10.18632/oncotarget.16454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/04/2017] [Indexed: 12/22/2022] Open
Abstract
Seven cardenolides isolated from the ethanol extract of the stems of Calotropis gigantea were evaluated in vitro against human cancer cells and the structure-activity relationships were discussed. The results demonstrated that a compound, named CGN (coroglaucigenin), had better anti-proliferative activity with the IC50 value less than 6 μM among these compounds. Further, we found that CGN displayed much lower cytotoxicity to normal lung epithelial cells (BEAS-2B) than cancer cells (A549). Especially, our results demonstrated that treatment with CGN (1 μM) combined with X-ray irradiation induced higher radiosensitivity in human lung cancer cells (A549, NCI-H460, NCI-H446) but not in BEAS-2B. The expression levels of nuclear transcription factor Nrf2 and Nrf2-driven antioxidant molecule NQO-1 reduced in A549 cells after combined treatment compared to the radiation only. However, CGN had no toxicity and the levels of antioxidant molecules expression were higher in BEAS-2B cells when given the similar treatment as A549 cells. These results suggest that CGN is a very promising potential sensitizer for cancer radiotherapy, which not only inhibits the proliferation of cancer cells but also enhances the radiosensitivity of cancer cells through suppressing the expression of antioxidant molecules while there is no influence for normal cells.
Collapse
|
80
|
Yang Y, Yang I, Cao M, Su ZY, Wu R, Guo Y, Fang M, Kong AN. Fucoxanthin Elicits Epigenetic Modifications, Nrf2 Activation and Blocking Transformation in Mouse Skin JB6 P+ Cells. AAPS JOURNAL 2018; 20:32. [PMID: 29603113 DOI: 10.1208/s12248-018-0197-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/26/2018] [Indexed: 12/30/2022]
Abstract
Nuclear factor erythroid-2-related factor-2 (Nrf2 or NFE2L2) is a master regulator of the anti-oxidative stress response, which is involved in the defense against many oxidative stress/inflammation-mediated diseases, including anticancer effects elicited by an increasing number of natural products. Our previous studies showed that the epigenetic modification of the Nrf2 gene plays a key role in restoring the expression of Nrf2. In this study, we aimed to investigate the epigenetic regulation of Nrf2 by astaxanthin (AST) and fucoxanthin (FX), carotenoids which are abundant in microalgae and seaweeds, in mouse skin epidermal JB6 P+ cells. FX induced the anti-oxidant response element (ARE)-luciferase and upregulated the mRNA and protein levels of Nrf2 and Nrf2 downstream genes in HepG2-C8 cells overexpressing the ARE-luciferase reporter. Both FX and AST decreased colony formation in 12-Otetradecanoylphorbol-13-acetate (TPA)-induced transformation of JB6 P+ cells. FX decreased the methylation of the Nrf2 promoter region in the JB6 P+ cells by the bisulfite conversion and pyrosequencing. Both FX and AST significantly reduced DNA methyltransferase (DNMT) activity but did not affect histone deacetylase (HDAC) activity in JB6 P+ cells. In summary, our results show that FX activates the Nrf2 signaling pathway, induces the epigenetic demethylation of CpG sites in Nrf2 and blocks the TPA-induced transformation of JB6 P+ cells, indicating the potential health-promoting effects of FX in skin cancer prevention.
Collapse
Affiliation(s)
- Yuqing Yang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Irene Yang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Mingnan Cao
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.,State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, People's Republic of China
| | - Zheng-Yuan Su
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.,Department of Bioscience Technology, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City, 32023, Taiwan, Republic of China
| | - Renyi Wu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Yue Guo
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Mingzhu Fang
- Environmental and Occupational Health Sciences Institute, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA. .,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
81
|
Ramirez CN, Li W, Zhang C, Wu R, Su S, Wang C, Gao L, Yin R, Kong ANT. Correction to: In Vitro-In Vivo Dose Response of Ursolic Acid, Sulforaphane, PEITC, and Curcumin in Cancer Prevention. AAPS JOURNAL 2018; 20:27. [PMID: 29411155 DOI: 10.1208/s12248-018-0190-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The citation of the author name "Ah-Ng Tony Kong" in PubMed is not the author's preference. Instead of "Kong AT", the author prefers "Kong AN".
Collapse
Affiliation(s)
- Christina N Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Cellular and Molecular Pharmacology Program, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| | - Wenji Li
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chengyue Zhang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Renyi Wu
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Shan Su
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chao Wang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Linbo Gao
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ran Yin
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ah-Ng Tony Kong
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA. .,Ernest Mario School of Pharmacy, Room 228, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
82
|
Yuan-Jing F, Wei W, Jian-Ping L, Yu-Xia J, Zi-Ling D. Genistein promotes the metabolic transformation of acetaminophen to glucuronic acid in human L-O2, HepG2 and Hep3b cells via the Nrf2/Keap1 pathway. Food Funct 2018; 7:4683-4692. [PMID: 27781231 DOI: 10.1039/c6fo00889e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to explore the effects of genistein on regulating the activation of UGTs via the Nrf2/Keap1 pathway and to elucidate the underlying mechanisms of detoxification and hepatic protection. Experiments monitoring genistein-induced protection against acetaminophen-induced cell damage were performed in L-02, HepG2 and Hep3b cells. The results of the MTT, AST, ALT, LDH, GSH and GSSG assays showed that genistein evidently protected the cells from acetaminophen-induced injury in a dose-dependent manner. The control cells were treated with 10 mM acetaminophen without genistein to compare with the effects of the combination of acetaminophen and genistein on the expression of UGT1A1, 1A6 and 1A9, Nrf2 and Keap1 mRNAs, as well as the expression of Nrf2 and Keap1 proteins, which were tested by western blotting. The results showed that the expression of the Nrf2 mRNA and protein increased; in contrast, the expression levels of the Keap1 mRNA and protein were obviously reduced by genistein in a dose-dependent manner. Meanwhile, the expression of the UGT mRNA was increased, and UGT1A9 exhibited the highest expression among the three UGTs. Accordingly, the residual acetaminophen content was obviously reduced and acetaminophen glucuronidation increased after 24 hours of treatment with genistein in a dose-dependent manner.
Collapse
Affiliation(s)
- Fan Yuan-Jing
- School of Food science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Wei Wei
- School of Food science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Luo Jian-Ping
- School of Food science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jin Yu-Xia
- School of Food science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Dai Zi-Ling
- School of Food science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
83
|
Bayat S, Shekari Khaniani M, Choupani J, Alivand MR, Mansoori Derakhshan S. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications. Biomed Pharmacother 2018; 97:1445-1453. [DOI: 10.1016/j.biopha.2017.11.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
|
84
|
Ramirez CN, Li W, Zhang C, Wu R, Su S, Wang C, Gao L, Yin R, Kong AN. In Vitro-In Vivo Dose Response of Ursolic Acid, Sulforaphane, PEITC, and Curcumin in Cancer Prevention. AAPS J 2017; 20:19. [PMID: 29264822 PMCID: PMC6021020 DOI: 10.1208/s12248-017-0177-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
According to the National Center of Health Statistics, cancer was the culprit of nearly 600,000 deaths in 2016 in the USA. It is by far one of the most heterogeneous diseases to treat. Treatment for metastasized cancers remains a challenge despite modern diagnostics and treatment regimens. For this reason, alternative approaches are needed. Chemoprevention using dietary phytochemicals such as triterpenoids, isothiocyanates, and curcumin in the prevention of initiation and/or progression of cancer poses a promising alternative strategy. However, significant challenges exist in the extrapolation of in vitro cell culture data to in vivo efficacy in animal models and to humans. In this review, the dose at which these phytochemicals elicit a response in vitro and in vivo of a multitude of cellular signaling pathways will be reviewed highlighting Nrf2-mediated antioxidative stress, anti-inflammation, epigenetics, cytoprotection, differentiation, and growth inhibition. The in vitro-in vivo dose response of phytochemicals can vary due, in part, to the cell line/animal model used, the assay system of the biomarker used for the readout, chemical structure of the functional analog of the phytochemical, and the source of compounds used for the treatment study. While the dose response varies across different experimental designs, the chemopreventive efficacy appears to remain and demonstrate the therapeutic potential of triterpenoids, isothiocyanates, and curcumin in cancer prevention and in health in general.
Collapse
Affiliation(s)
- Christina N Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Cellular and Molecular Pharmacology Program, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854, USA
| | - Wenji Li
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chengyue Zhang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Renyi Wu
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Shan Su
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Chao Wang
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Linbo Gao
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ran Yin
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Ah-Ng Kong
- Center for Phytochemicals Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
- Ernest Mario School of Pharmacy, Room 228, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
85
|
Li H, Jiang N, Liu Q, Gao A, Zhou X, Liang B, Li R, Li Z, Zhu H. Topical treatment of green tea polyphenols emulsified in carboxymethyl cellulose protects against acute ultraviolet light B-induced photodamage in hairless mice. Photochem Photobiol Sci 2017; 15:1264-1271. [PMID: 27714264 DOI: 10.1039/c6pp00073h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultraviolet (UV) radiation causes skin injury and inflammation resulting in impaired immune response and increased risk of skin cancer. It has been shown that green tea polyphenols (GTPs) enhanced intracellular antioxidant defense and promoted the downregulation of proapoptotic genes, and they could be used to protect against the damage induced by UV irradiation. However, the high instability and poor bioavailability of GTPs impose restrictions on their potential pharmacological use. Here we show that carboxymethyl cellulose sodium (CMC-Na) had a stabilizing effect on GTPs under aqueous conditions and topical application of GTPs (emulsified in CMC-Na) had a strong photoprotective effect against acute UVB induced photodamage in uncovered (Uncv) hairless mice skin. After 8 h of incubation at 50 °C with CMC-Na, a percentage i.e. 93% of GTPs was preserved, while in the absence of CMC-Na, a percentage of only 61% was preserved. Topical treatment of emulsified GTPs effectively inhibited acute UVB-induced infiltration of inflammatory cells, increase of skin thickness, oxidative stress such as depletion of antioxidant enzymes and lipid oxidation, and induced nuclear accumulation of Nrf2 in the mice skin. We also discovered the ability of GTPs to simultaneously trigger accumulation of nuclear Nrf2 and export of nuclear Bach1. Altogether, our findings reinforced the putative application of GTPs in the prevention/minimization of the deleterious effects of UV on the skin.
Collapse
Affiliation(s)
- Huaping Li
- Guangzhou Institute of Dermatology, No. 56, Hengfu Road, Guangzhou, 510095, China.
| | - Na Jiang
- Guangzhou Institute of Dermatology, No. 56, Hengfu Road, Guangzhou, 510095, China.
| | - Qing Liu
- Guangzhou Institute of Dermatology, No. 56, Hengfu Road, Guangzhou, 510095, China.
| | - Aili Gao
- Guangzhou Institute of Dermatology, No. 56, Hengfu Road, Guangzhou, 510095, China.
| | - Xin Zhou
- Guangzhou Institute of Dermatology, No. 56, Hengfu Road, Guangzhou, 510095, China.
| | - Bihua Liang
- Guangzhou Institute of Dermatology, No. 56, Hengfu Road, Guangzhou, 510095, China.
| | - Runxiang Li
- Guangzhou Institute of Dermatology, No. 56, Hengfu Road, Guangzhou, 510095, China.
| | - Zhenjie Li
- Guangzhou Institute of Dermatology, No. 56, Hengfu Road, Guangzhou, 510095, China.
| | - Huilan Zhu
- Guangzhou Institute of Dermatology, No. 56, Hengfu Road, Guangzhou, 510095, China.
| |
Collapse
|
86
|
Kim YS, Lee HJ, Park JM, Han YM, Kangwan N, Oh JY, Lee DY, Hahm KB. Targeted molecular ablation of cancer stem cells for curing gastrointestinal cancers. Expert Rev Gastroenterol Hepatol 2017; 11:1059-1070. [PMID: 28707966 DOI: 10.1080/17474124.2017.1356224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abundance of the ATPase-binding cassette (ABC) transporters and deranged self-renewal pathways characterize the presence of cancer stem cells (CSCs) in gastrointestinal cancers (GI cancers), which play crucial roles in tumorigenesis, chemotherapy resistance, tumor recurrence, and cancer metastasis. Therefore, in order to ensure high cure rates, chemoquiescence, CSCs should be ablated. Recent advances in either understanding CSCs or biomarker identification enable scientists to develop techniques for ablating CSCs and clinicians to provide cancer cure, especially in GI cancers characterized by inflammation-driven carcinogenesis. Areas covered: A novel approach to ablate CSCs in GI cancers, including esophageal, gastric, and colon cancers, is introduced along with explored underlying molecular mechanisms. Expert commentary: Though CSC ablation is still in the empirical stages and not in clinical practice, several strategies for ablating CSCs in GI cancers had been published, proton-pump inhibitors (PPIs) that regulate the membrane-bound ABC transporters, which underlie drug resistance; chloroquine (CQ) that inhibits autophagy, which is responsible for tumor survival; Hedgehog/Wnt/Notch inhibitors that influence the underlying stem-cell growth, and some natural products including Korean red ginseng, cancer-preventive kimchi, Artemisia extract, EGCG from green tea, and walnut extracts.
Collapse
Affiliation(s)
- Yong Seok Kim
- a Department of Biochemistry and Molecular Biology , Hanyang University College of Medicine , Seoul , Korea
| | - Ho Jae Lee
- b Department of Biochemistry , Gachon University College of Medicine , Incheon , Korea
| | - Jong-Min Park
- c CHA Cancer Prevention Research Center , CHA University , Seongnam , Korea
| | - Young-Min Han
- c CHA Cancer Prevention Research Center , CHA University , Seongnam , Korea
| | - Napapan Kangwan
- d Division of Physiology, School of Medical Sciences , University of Phayao , Phayao , Thailand
| | | | | | - Ki Baik Hahm
- a Department of Biochemistry and Molecular Biology , Hanyang University College of Medicine , Seoul , Korea.,c CHA Cancer Prevention Research Center , CHA University , Seongnam , Korea.,f Digestive Disease Center , CHA University Bundang Medical Center , Seongnam , Korea
| |
Collapse
|
87
|
Khallouki F, Eddouks M, Mourad A, Breuer A, Owen RW. Ethnobotanic, Ethnopharmacologic Aspects and New Phytochemical Insights into Moroccan Argan Fruits. Int J Mol Sci 2017; 18:E2277. [PMID: 29084170 PMCID: PMC5713247 DOI: 10.3390/ijms18112277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
This review summarizes available data on argan fruit botany, geographical distribution, traditional uses, environmental interest, socioeconomic role, phytochemistry, as well as health beneficial effects and examination of future prospects. In particular, ethnomedical uses of argan fruits are carried out throughout Morocco where it has been used against various diseases. Different classes of bioactive compounds have been characterized including essential oils, fatty acids, triacylglycerols, flavonoids and their newly reported acylglycosyl derivatives, monophenols, phenolic acids, cinnamic acids, saponins, triterpenes, phytosterols, ubiquinone, melatonin, new aminophenols along with vitamin E among other secondary metabolites. The latter have already shown a wide spectrum of in vitro, and ex vivo biologicalactivities including antioxidant, anti-inflammatory, anti-diabetic, antihypertensive, anti-hypercholesterolemia, analgesic, antimicrobial, molluscicidal anti-nociceptive and anticancer potential. Argan flesh (pulp) contains a broad spectrum of polyphenolic compounds which may have utility for incorporation into nutraceuticals and cosmeceuticals relevant to the food, cosmetic and health industries. Further research is recommended, especially on the health beneficial effects of the aminophenols.
Collapse
Affiliation(s)
- Farid Khallouki
- Divisionof Preventive Oncology, National Center for Tumor Diseases, Im Neuenheimer Feld 460, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, D-69120 Heidelberg, Germany.
- Team of Physiology, Nutrition and Endocrinology, Biology Department, FSTE, BP 509 Boutalamine, Errachidia, Morocco.
| | - Mohamed Eddouks
- Team of Physiology, Nutrition and Endocrinology, Biology Department, FSTE, BP 509 Boutalamine, Errachidia, Morocco.
| | - Akdad Mourad
- Team of Physiology, Nutrition and Endocrinology, Biology Department, FSTE, BP 509 Boutalamine, Errachidia, Morocco.
| | - Andrea Breuer
- Divisionof Preventive Oncology, National Center for Tumor Diseases, Im Neuenheimer Feld 460, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, D-69120 Heidelberg, Germany.
| | - Robert Wyn Owen
- Divisionof Preventive Oncology, National Center for Tumor Diseases, Im Neuenheimer Feld 460, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, D-69120 Heidelberg, Germany.
| |
Collapse
|
88
|
Lee H, Shin EA, Lee JH, Ahn D, Kim CG, Kim JH, Kim SH. Caspase inhibitors: a review of recently patented compounds (2013-2015). Expert Opin Ther Pat 2017; 28:47-59. [DOI: 10.1080/13543776.2017.1378426] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hyemin Lee
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun Ah Shin
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae Hee Lee
- Department of East West Medical Science, Graduate School of East West Medical Science Kyung Hee University, Yongin, South Korea
| | - Deoksoo Ahn
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Chang Geun Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ju-Ha Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
89
|
Sturm C, Wagner AE. Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways. Int J Mol Sci 2017; 18:E1890. [PMID: 28862664 PMCID: PMC5618539 DOI: 10.3390/ijms18091890] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
A high consumption of vegetables belonging to the Brassicaceae family has been related to a lower incidence of chronic diseases including different kinds of cancer. These beneficial effects of, e.g., broccoli, cabbage or rocket (arugula) intake have been mainly dedicated to the sulfur-containing glucosinolates (GLSs)-secondary plant compounds nearly exclusively present in Brassicaceae-and in particular to their bioactive breakdown products including isothiocyanates (ITCs). Overall, the current literature indicate that selected Brassica-derived ITCs exhibit health-promoting effects in vitro, as well as in laboratory mice in vivo. Some studies suggest anti-carcinogenic and anti-inflammatory properties for ITCs which may be communicated through an activation of the redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) that controls the expression of antioxidant and phase II enzymes. Furthermore, it has been shown that ITCs are able to significantly ameliorate a severe inflammatory phenotype in colitic mice in vivo. As there are studies available suggesting an epigenetic mode of action for Brassica-derived phytochemicals, the conduction of further studies would be recommendable to investigate if the beneficial effects of these compounds also persist during an irregular consumption pattern.
Collapse
Affiliation(s)
- Christine Sturm
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
90
|
Taxifolin Activates the Nrf2 Anti-Oxidative Stress Pathway in Mouse Skin Epidermal JB6 P+ Cells through Epigenetic Modifications. Int J Mol Sci 2017; 18:ijms18071546. [PMID: 28714938 PMCID: PMC5536034 DOI: 10.3390/ijms18071546] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/31/2022] Open
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a vital transcription factor that regulates the anti-oxidative defense system. Previous reports suggested that the expression of the Nrf2 gene can be regulated by epigenetic modifications. The potential epigenetic effect of taxifolin (TAX), a potent cancer chemopreventive agent, in skin cancer chemoprotection is unknown. In this study, we investigated how Nrf2 is epigenetically regulated by TAX in JB6 P+ cells. TAX was found to inhibit the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced colony formation of JB6 P+ cells. TAX induced antioxidant response element (ARE)-luciferase activity in HepG2-C8 cells and up-regulated mRNA and protein levels of Nrf2 and its downstream genes heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), in JB6 P+ cells. Furthermore, bisulfite genomic sequencing revealed that TAX treatment reduces the methylation level of the first 15 CpGs sites in the Nrf2 promoter. Western blotting showed that TAX inhibits the expression levels of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) proteins. In summary, our results revealed that TAX can induce expression of Nrf2 and its downstream target genes in JB6 P+ cells by CpG demethylation. These finding suggest that TAX may exhibit a skin cancer preventive effect by activating Nrf2 via an epigenetic pathway.
Collapse
|
91
|
Braicu C, Mehterov N, Vladimirov B, Sarafian V, Nabavi SM, Atanasov AG, Berindan-Neagoe I. Nutrigenomics in cancer: Revisiting the effects of natural compounds. Semin Cancer Biol 2017; 46:84-106. [PMID: 28676460 DOI: 10.1016/j.semcancer.2017.06.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/04/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023]
Abstract
Nutrigenomics effects have an important role in the manipulation of dietary components for human benefit, particularly in cancer prevention or treatment. The impact of dietary components, including phytochemicals, is largely studied by nutrigenomics, looking at the gene expression and molecular mechanisms interacting with bioactive compounds and nutrients, based on new 'omics' technologies. The high number of preclinical studies proves the relevant role of nutrigenomics in cancer management. By deciphering the network of nutrient-gene connections associated with cancer, relevant data will be transposed as therapeutic interventions for this devastating pathology and for fulfilling the concept of personalized nutrition. All these are presented under the nutrigenomics canopy for a better comprehension of the relation between ingested phytochemicals and chemoprevention or chemotherapy. The profits from the nutrigenomics progress, with a particular focus on the coding and noncoding genes related to the exposure of natural compounds need to be validated. A precise attention receives the evaluation of the role of natural compounds in tandem with conventional therapy using genomic approaches, with emphasis on the capacity to inhibit drug resistance mechanisms. All these relevant nutrigenomics aspects are summarized in the present review paper. It is concluded that further nutrigenomics studies are required to improve our understanding related to the complex mechanisms of action of the natural compounds and for their appropriate application as gears in cancer therapy.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania
| | - Nikolay Mehterov
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Technological Center for Emergency Medicine, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Center of Plant Systems Biology and Biotechnology, 139, Ruski Blvd., Plovdiv 4000, Bulgaria
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Faculty of Dental Medicine, Medical University-Plovdiv, 3 Hristo Botev Blvd., Plovdiv 4000, Bulgaria; Clinic of Maxillofacial Surgery, University Hospital St. George, 66 Peshtersko Shosse Blvd., Plovdiv 4002, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Technological Center for Emergency Medicine, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Sheikh Bahaei St., P.O. Box 19395, 5487 Tehran, Iran
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, 05-552, Jastrzebiec, Poland; Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; MEDFUTURE -Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republici 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
92
|
Corrêa RCG, Peralta RM, Haminiuk CWI, Maciel GM, Bracht A, Ferreira ICFR. New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Crit Rev Food Sci Nutr 2017; 58:942-957. [DOI: 10.1080/10408398.2016.1233860] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rúbia C. G. Corrêa
- Graduate Program in Food Science, State University of Maringá (UEM), Paraná, Brazil
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Campus Campo Mourão, Paraná, Brazil
- Academic Department of Chemistry and Biology, Federal Technological University of Paraná (UTFPR), Curitiba, Paraná, Brazil
| | - Rosane M. Peralta
- Graduate Program in Food Science, State University of Maringá (UEM), Paraná, Brazil
- Department of Biochemistry, State University of Maringá (UEM), Paraná, Brazil
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, Bragança, Portugal
- Academic Department of Chemistry and Biology, Federal Technological University of Paraná (UTFPR), Curitiba, Paraná, Brazil
| | - Charles W. I. Haminiuk
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Campus Campo Mourão, Paraná, Brazil
- Academic Department of Chemistry and Biology, Federal Technological University of Paraná (UTFPR), Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, Bragança, Portugal
- Academic Department of Chemistry and Biology, Federal Technological University of Paraná (UTFPR), Curitiba, Paraná, Brazil
| | - Adelar Bracht
- Graduate Program in Food Science, State University of Maringá (UEM), Paraná, Brazil
- Department of Biochemistry, State University of Maringá (UEM), Paraná, Brazil
- Academic Department of Chemistry and Biology, Federal Technological University of Paraná (UTFPR), Curitiba, Paraná, Brazil
| | - Isabel C. F. R. Ferreira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, Bragança, Portugal
- Academic Department of Chemistry and Biology, Federal Technological University of Paraná (UTFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
93
|
Docosahexaenoic Acid Induces Expression of Heme Oxygenase-1 and NAD(P)H:quinone Oxidoreductase through Activation of Nrf2 in Human Mammary Epithelial Cells. Molecules 2017; 22:molecules22060969. [PMID: 28604588 PMCID: PMC6152628 DOI: 10.3390/molecules22060969] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022] Open
Abstract
Docosahexaenoic acid (DHA), an ω-3 fatty acid abundant in fish oils, has diverse health beneficial effects, such as anti-oxidative, anti-inflammatory, neuroprotective, and chemopreventive activities. In this study, we found that DHA induced expression of two representative antioxidant/cytoprotective enzymes, heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO1), in human mammary epithealial (MCF-10A) cells. DHA-induced upregulation of these enzymes was accompanied by enhanced translocation of the redox-sensitive transcription factor Nrf2 into the nucleus and its binding to antioxidant response element. Nrf2 gene silencing by siRNA abolished the DHA-induced expression of HO-1 and NQO1 proteins. When MCF-10A cells were transfected with mutant constructs in which the cysteine 151 or 288 residue of Keap1 was replaced by serine, DHA-induced expression of HO-1 and NQO1 was markedly reduced. Moreover, DHA activated protein kinase C (PKC)δ and induced Nrf2 phosphorylation. DHA-induced phosphorylation of Nrf2 was abrogated by the pharmacological PKCδ inhibitor rottlerin or siRNA knockdown of its gene expression. The antioxidants N-acetyl-l-cysteine and Trolox attenuated DHA-induced activation of PKCδ, phosphorylation of Nrf2, and and its target protein expression. In conclusion, DHA activates Nrf2, possibly through modification of critical Keap1 cysteine 288 residue and PKCδ-mediated phosphorylation of Nrf2, leading to upregulation of HO-1 and NQO1 expression.
Collapse
|
94
|
Hua Y, Wang C, Jiang H, Wang Y, Liu C, Li L, Liu H, Shao Z, Fu R. Iron overload may promote alteration of NK cells and hematopoietic stem/progenitor cells by JNK and P38 pathway in myelodysplastic syndromes. Int J Hematol 2017; 106:248-257. [DOI: 10.1007/s12185-017-2237-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/02/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
|
95
|
Adomako-Bonsu AG, Chan SL, Pratten M, Fry JR. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics. Toxicol In Vitro 2017; 40:248-255. [PMID: 28122265 DOI: 10.1016/j.tiv.2017.01.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 01/22/2023]
Abstract
Persistent accumulation of reactive oxygen species causes cellular oxidative stress which contributes strongly towards the induction and progression of various diseases. Therapeutic focus has therefore shifted towards the use of antioxidants, with recent interest in those of plant origin. In the current study, rosmarinic acid (RA) and its key metabolites were evaluated in non-cellular and cellular antioxidant assays, using quercetin (Q) as a positive control. The non-cellular assay was performed as scavenging of DPPH radical, whilst the cellular assay was performed as protection from an oxidant stress. Radical-scavenging activity of RA and two of its primary metabolites, CA and DHPLA, were comparable to that of Q, whilst FA was of lower potency and m-CoA was inactive. In the cellular assay, RA and CA were markedly less potent than Q, with DHPLA, FA and m-CoA being inactive, this being true in short-term (5-h) or long-term (20-h) exposure conditions. However, antioxidant potency of Q and methyl rosmarinate, a non-ionisable ester of RA, was similar in the non-cellular and short-term cellular assays. It is proposed that marked ionisation of organic acids such as RA and its metabolites at physiological pH greatly limits their intracellular accumulation, and so attenuates intrinsic antioxidant ability demonstrated in the non-cellular assay. This study demonstrates some of the factors that prevent well-known phytochemicals from progressing further along the drug discovery chain.
Collapse
Affiliation(s)
- Amma G Adomako-Bonsu
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Sue Lf Chan
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Margaret Pratten
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Jeffrey R Fry
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
96
|
Ratovitski EA. Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression. Curr Genomics 2017; 18:175-205. [PMID: 28367075 PMCID: PMC5345332 DOI: 10.2174/1389202917666160803165229] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022] Open
Abstract
Accumulating evidence shows that hallmarks of cancer include: "genetic and epigenetic alterations leading to inactivation of cancer suppressors, overexpression of oncogenes, deregulation of intracellular signaling cascades, alterations of cancer cell metabolism, failure to undergo cancer cell death, induction of epithelial to mesenchymal transition, invasiveness, metastasis, deregulation of immune response and changes in cancer microenvironment, which underpin cancer development". Natural compounds as bioactive ingredients isolated from natural sources (plants, fungi, marine life forms) have revolutionized the field of anticancer therapeutics and rapid developments in preclinical studies are encouraging. Natural compounds could affect the epigenetic molecular mechanisms that modulate gene expression, as well as DNA damage and repair mechanisms. The current review will describe the latest achievements in using naturally produced compounds targeting epigenetic regulators and modulators of gene transcription in vitro and in vivo to generate novel anticancer therapeutics.
Collapse
Affiliation(s)
- Edward A. Ratovitski
- Head and Neck Cancer Research Division, Department of Otolaryngology/Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
97
|
Perillyl alcohol, a pleiotropic natural compound suitable for brain tumor therapy, targets free radicals. Arch Immunol Ther Exp (Warsz) 2017; 65:285-297. [DOI: 10.1007/s00005-017-0459-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/30/2017] [Indexed: 12/17/2022]
|
98
|
Brasili E, Filho VC. Metabolomics of cancer cell cultures to assess the effects of dietary phytochemicals. Crit Rev Food Sci Nutr 2017; 57:1328-1339. [DOI: 10.1080/10408398.2014.964799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elisa Brasili
- Department of Environmental Biology, “Sapienza” University of Rome, Rome, Italy
| | - Valdir Cechinel Filho
- Programa de Pós-Graduação em Ciências Farmacêuticas e Núcleo de Investigações Químico-Farmacêuticas/CCS, Universidade do Vale do Itajaí, Itajaí, SC, Brazil
| |
Collapse
|
99
|
Chen L, Zhang YH, Lu G, Huang T, Cai YD. Analysis of cancer-related lncRNAs using gene ontology and KEGG pathways. Artif Intell Med 2017; 76:27-36. [PMID: 28363286 DOI: 10.1016/j.artmed.2017.02.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/31/2017] [Accepted: 02/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cancer is a disease that involves abnormal cell growth and can invade or metastasize to other tissues. It is known that several factors are related to its initiation, proliferation, and invasiveness. Recently, it has been reported that long non-coding RNAs (lncRNAs) can participate in specific functional pathways and further regulate the biological function of cancer cells. Studies on lncRNAs are therefore helpful for uncovering the underlying mechanisms of cancer biological processes. METHODS We investigated cancer-related lncRNAs using gene ontology (GO) terms and KEGG pathway enrichment scores of neighboring genes that are co-expressed with the lncRNAs by extracting important GO terms and KEGG pathways that can help us identify cancer-related lncRNAs. The enrichment theory of GO terms and KEGG pathways was adopted to encode each lncRNA. Then, feature selection methods were employed to analyze these features and obtain the key GO terms and KEGG pathways. RESULTS The analysis indicated that the extracted GO terms and KEGG pathways are closely related to several cancer associated processes, such as hormone associated pathways, energy associated pathways, and ribosome associated pathways. And they can accurately predict cancer-related lncRNAs. CONCLUSIONS This study provided novel insight of how lncRNAs may affect tumorigenesis and which pathways may play important roles during it. These results could help understanding the biological mechanisms of lncRNAs and treating cancer.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China; College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China.
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
100
|
ErbB Proteins as Molecular Target of Dietary Phytochemicals in Malignant Diseases. JOURNAL OF ONCOLOGY 2017; 2017:1532534. [PMID: 28286519 PMCID: PMC5327764 DOI: 10.1155/2017/1532534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/30/2016] [Accepted: 01/17/2017] [Indexed: 12/16/2022]
Abstract
ErbB proteins overexpression, in both normal and mutated forms, is associated with invasive forms of cancer prone to metastasis and with stronger antiapoptotic mechanisms and therefore more challenging to treat. Downstream effectors of ErbB receptors mediating these phenotypic traits include MAPK, STAT, and PI3K/AKT/mTOR pathways. Various phytochemical compounds were studied for their large number of biological effects including anticancer activity. Among these compounds, epigallocatechin-3-gallate (EGCG), the main catechin from green tea leaves, and curcumin, component of the curry powder, constituted the object of numerous studies. Both compounds were shown to act directly either on ErbB expression, or on their downstream signaling molecules. In this paper we aim to review the involvement of ErbB proteins in cancer as well as the biologic activity of EGCG and curcumin in ErbB expressing and overexpressing malignancies. The problems arising in the administration of the two compounds due to their reduced bioavailability when orally administered, as well as the progress made in this field, from using novel formulations to improved dosing regimens or improved synthetic analogs, are also discussed.
Collapse
|