51
|
Arthritis and the role of endogenous glucocorticoids. Bone Res 2020; 8:33. [PMID: 32963891 PMCID: PMC7478967 DOI: 10.1038/s41413-020-00112-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis and osteoarthritis, the most common forms of arthritis, are chronic, painful, and disabling conditions. Although both diseases differ in etiology, they manifest in progressive joint destruction characterized by pathological changes in the articular cartilage, bone, and synovium. While the potent anti-inflammatory properties of therapeutic (i.e., exogenous) glucocorticoids have been heavily researched and are widely used in clinical practice, the role of endogenous glucocorticoids in arthritis susceptibility and disease progression remains poorly understood. Current evidence from mouse models suggests that local endogenous glucocorticoid signaling is upregulated by the pro-inflammatory microenvironment in rheumatoid arthritis and by aging-related mechanisms in osteoarthritis. Furthermore, these models indicate that endogenous glucocorticoid signaling in macrophages, mast cells, and chondrocytes has anti-inflammatory effects, while signaling in fibroblast-like synoviocytes, myocytes, osteoblasts, and osteocytes has pro-inflammatory actions in rheumatoid arthritis. Conversely, in osteoarthritis, endogenous glucocorticoid signaling in both osteoblasts and chondrocytes has destructive actions. Together these studies provide insights into the role of endogenous glucocorticoids in the pathogenesis of both inflammatory and degenerative joint disease.
Collapse
|
52
|
Ginosyan S, Grabski H, Tiratsuyan S. In vitro and in silico Determination of the Interaction of Artemisinin with Human Serum Albumin. Mol Biol 2020. [DOI: 10.1134/s0026893320040056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
53
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020. [PMID: 32824207 DOI: 10.339/cancers12082296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
54
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020; 12:cancers12082296. [PMID: 32824207 PMCID: PMC7464564 DOI: 10.3390/cancers12082296] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
55
|
Rogliani P, Ritondo BL, Puxeddu E, Pane G, Cazzola M, Calzetta L. Experimental Glucocorticoid Receptor Agonists for the Treatment of Asthma: A Systematic Review. J Exp Pharmacol 2020; 12:233-254. [PMID: 32982485 PMCID: PMC7495344 DOI: 10.2147/jep.s237480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
Inhaled corticosteroids (ICSs) are considered the cornerstone of asthma treatment. Despite the solid evidence documenting the efficacy and safety of ICSs at the level of the airways, their use can be affected by pulmonary and systemic adverse events (AEs) when administered chronically and/or at high doses. Thus, there is a pharmacological and medical need for new glucocorticoid (GC) receptor (GR) ligands with a more favorable therapeutic index, in order to overcome the shortcomings of currently available ICSs. The therapeutic profile of GCs can be improved by enhancing genomic mechanisms mediated by transrepression, which is assumed to be responsible for several anti-inflammatory and immunomodulatory actions, rather than transactivation, which causes most of the GC-associated AEs. It was assumed that an independent modulation of the molecular mechanisms underlying transactivation and transrepression could translate into the dissociation of beneficial effects from AEs. Therefore, current research is looking for GCs that are able to elicit prevalently transrepression with negligible transactivating activity. These compounds are known as selective glucocorticoid receptor agonists (SEGRAs). In this review, experimental GR agonists currently in pre-clinical and clinical development for the treatment of asthma have been systematically assessed. Several compounds are currently under pre-clinical development, but only three novel experimental GR agonists (GW870086X, AZD5423, AZD7594) seem to have some potential therapeutic relevance and have entered clinical trials for the treatment of asthma. Since data from pre-clinical studies have not always been confirmed in clinical investigations, well-designed randomized controlled trials are needed in asthmatic patients to confirm the potentially positive benefit/risk ratio of each specific SEGRA and to optimize the development strategy of these agents in respiratory medicine.
Collapse
Affiliation(s)
- Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Beatrice Ludovica Ritondo
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ermanno Puxeddu
- Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Gloria Pane
- Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| |
Collapse
|
56
|
Discovery of the potent non-steroidal glucocorticoid receptor modulator BAY 1003803 as clinical candidate. Bioorg Med Chem Lett 2020; 30:127298. [DOI: 10.1016/j.bmcl.2020.127298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023]
|
57
|
Dack KN, Johnson PS, Henriksson K, Eirefelt S, Carnerup MA, Stahlhut M, Ollerstam AK. Topical 'dual-soft' glucocorticoid receptor agonist for dermatology. Bioorg Med Chem Lett 2020; 30:127402. [PMID: 32738970 DOI: 10.1016/j.bmcl.2020.127402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/09/2023]
Abstract
Steroidal glucocorticoids (GR agonists) have been widely used for the topical treatment of skin disorders, including atopic dermatitis. They are a very effective therapy, but they are associated with both unwanted local effects in the skin (skin thinning/atrophy) and systemic side effects. These effects can limit the long-term utility of potent steroids. Here we report on a topically delivered non-steroidal GR agonist, that has the potential to deliver high efficacy in the skin, but due to rapid metabolism in the blood & liver ("dual-soft") it should have greater systemic safety than existing treatments. In addition, compared to less selective steroidal GR agonists, the new non-steroidal Selective Glucocorticoid Agonists (SEGRAs) have the potential to avoid the skin atrophy observed with existing topical steroids. Due to its potential for reduced skin atrophy and low systemic exposure, LEO 134310 (17) may be suitable for long term topical treatment of skin diseases such as atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Kevin N Dack
- LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark.
| | | | | | | | | | | | - Anna K Ollerstam
- AstraZeneca, Laboratory Animal Sciences, Drug Safety and Metabolism, IMED Biotech Unit, Pepparedsleden 1, Mölndal, Sweden
| |
Collapse
|
58
|
De Bosscher K, Desmet SJ, Clarisse D, Estébanez-Perpiña E, Brunsveld L. Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol 2020; 16:363-377. [PMID: 32303708 DOI: 10.1038/s41574-020-0349-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Nuclear receptor crosstalk can be defined as the interplay between different nuclear receptors or between their overlapping signalling pathways. A subset of nuclear receptors (such as PPARs and RARs) engage in the formation of well-characterized 'typical' heterodimers with RXR. 'Atypical' heterodimers (such as GR with PPARs, or PPAR with ERR) might form a novel class of physical complexes that might be more transient in nature. These heterodimers might harbour strong transcriptional flexibility, with no strict need for DNA binding of both partners. Direct crosstalk could stem from a pairwise physical association between atypical nuclear receptor heterodimers, either via pre-existing interaction pairs or via interactions that are newly induced with small molecules; such crosstalk might constitute an uncharted space to target nuclear receptor physiological and/or pathophysiological actions. In this Review, we discuss the emerging aspects of crosstalk in the nuclear receptor field and present various mechanistic crosstalk modes with examples that support applicability of the atypical heterodimer concept. Stabilization or disruption, in a context-dependent or cell type-dependent manner, of these more transient heterodimers is expected to fuel unprecedented translational approaches to yield novel therapeutic agents to treat major human diseases with higher precision.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium.
| | - Sofie J Desmet
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Eva Estébanez-Perpiña
- Laboratory of Structural Biology, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| |
Collapse
|
59
|
Huang Y, Zhao N, Wang YH, Truillet C, Wei J, Blecha JE, VanBrocklin HF, Seo Y, Sayeed M, Feldman BJ, Aggarwal R, Behr SC, Shao H, Wilson DM, Villanueva-Meyer JE, Gestwicki JE, Evans MJ. A Novel Radioligand Reveals Tissue Specific Pharmacological Modulation of Glucocorticoid Receptor Expression with Positron Emission Tomography. ACS Chem Biol 2020; 15:1381-1391. [PMID: 32255605 PMCID: PMC8031368 DOI: 10.1021/acschembio.9b01043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The
complexity of glucocorticoid receptor (GR) signaling cannot
be measured with direct tissue analysis in living subjects, which
has stifled our understanding of GR’s role in human physiology
or disease and impeded the development of selective GR modulators.
Herein, we report 18F-5-(4-fluorobenzyl)-10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-chromeno[3,4-f]quinoline (18F-YJH08), a radioligand that enables
noninvasive measurements of tissue autonomous GR expression levels in vivo with positron emission tomography (PET). YJH08 potently
binds GR (Ki ∼ 0.4 nM) with ∼100-fold
selectivity compared to nuclear hormone receptors in the same subfamily. 18F-YJH08 was prepared via Cu(OTf)2(py)4-mediated radiofluorination of an arylboronic acid
pinacol ester with ∼12% decay corrected radiochemical yield
from the starting 18F-fluoride ion. We applied treatment
with the tissue-wide GR agonist dexamethasone and adrenalectomy and
generated an adipocyte specific GR knockout mouse to show that 18F-YJH08 specifically binds GR in normal mouse tissues, including
those for which aberrant GR expression is thought to drive severe
diseases (e.g., brain, adipose tissue, kidneys). Remarkably, 18F-YJH08 PET also revealed that JG231, a potent and bioavailable
HSP70 inhibitor, selectively degrades GR only in the adipose tissue
of mice, a finding that foreshadows how GR targeted PET might be integrated
into drug discovery to screen for selective GR modulation at the tissue
level, beyond the historical screening that was performed at the transcriptional
level. In summary, 18F-YJH08 enables a quantitative assessment
of GR expression levels in real time among multiple tissues simultaneously,
and this technology is a first step toward unraveling the daunting
complexity of GR signaling and rationally engineering tissue specific
therapeutic modulators in vivo.
Collapse
Affiliation(s)
- Yangjie Huang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Ning Zhao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Yung-hua Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Charles Truillet
- Imagerie Moleculaire in Vivo, INSERM, CEA, Université Paris Sud, CNRS, Universite Paris Saclay, CEA-Service Hospitalier Frederic Joliot, Orsay 94100, France
| | - Junnian Wei
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Joseph E. Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
| | - Mohd Sayeed
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, United States
| | - Brian J. Feldman
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, United States
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94158, United States
| | - Spencer C. Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
| | - Hao Shao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
| | - Javier E. Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
| | - Jason E. Gestwicki
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael J. Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
60
|
Abstract
PURPOSE OF THE REVIEW Polymyalgia rheumatica (PMR) is one of the most common inflammatory rheumatologic condition occurring in older adults. It is characterized by proximal pain and stiffness in the shoulders, neck, and/or pelvic girdle in individuals over 50 years of age along with evidence of an intense systemic inflammatory response. Although the above clinical symptoms are very characteristic for the condition, it can be mimicked by other autoimmune, infectious, malignant, and endocrine disorders chief among which are giant cell arteritis (GCA) and elderly-onset rheumatoid arthritis (EORA). Recently, PMR was reported in relation to treatment with immune checkpoint inhibitors. Current treatment of PMR consists of low-to-medium doses of glucocorticosteroids (GC) with variable response rates and disease recurrence estimated to occur in 50% of patients while tapering down GC doses. In addition, GC-based regimens cause much of the morbidity associated with PMR in older adults, requiring close monitoring for GC-induced toxicity during therapy and highlighting the need for novel therapeutic strategies. Here, we review the latest findings in the field regarding specific etiologic factors, genetic associations, diagnostic methods, and advancements in treatment strategies and disease monitoring indices. RECENT FINDINGS Recent discoveries involving novel therapeutic targets in GCA have accelerated the study of PMR pathophysiology and have advanced treatment strategies in PMR management leading to current trials in IL-6 blocking agents. PMR remains an enigmatic inflammatory condition affecting older adults, with current treatment approach causing much morbidity in this patient population. Advancements in our understanding of novel immunopathologic targets can serve as a solid foundation for future treatment strategies in the field.
Collapse
|
61
|
Seo JH, Jin MH, Chang YH. Anti-inflammatory effect of Salsola komarovii extract with dissociated glucocorticoid activity. BMC Complement Med Ther 2020; 20:176. [PMID: 32503533 PMCID: PMC7275605 DOI: 10.1186/s12906-020-02979-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
Background Glucocorticoids (GCs) are anti-inflammatory drugs widely used to treat acute and chronic inflammatory diseases. However, despite their excellent efficacy, the long-term use of GCs is relatively limited owing to their adverse effects. Recent studies have sought to reduce these adverse effects by developing dissociated GCs that bind to GC receptors (GRs) to induce potent anti-inflammatory effects without the transcription of GC response element (GRE)-promoted genes. Some species of the genus Salsola are used in traditional Chinese medicine to treat cancer, hypertension, and inflammation. In this study, we investigated the potential dissociated GC activities and underlying mechanisms of Salsola komarovii (SK), which is native to Korea. Methods To determine whether SK ethanol extract (SEE) directly interacts with the GR, an in vitro fluorescence polarization based-GR competitor assay was performed. The effect of SEE on the transcriptional activity of nuclear factor (NF)-κB and GRE was confirmed in HepG2 cells using the Cignal reporter assay. The anti-inflammatory effect of SK was determined by assessing lipopolysaccharide (LPS)-induced interleukin (IL)-6 production. To confirm whether SEE induces GRE-driven gene expression, preadipocyte differentiation followed by lipid deposition was performed in the presence of SEE. Results SEE exhibited GR binding activity in the fluorescence polarization competitive binding assay and induced GR nuclear translocation. It also interfered with the nuclear translocation of NF-κB and the NF-κB-dependent transcriptional activity based on the immunofluorescence analysis and reporter assay, respectively. SEE exerted anti-inflammatory effects by reducing LPS-induced IL-6 production as effectively as hydrocortisone (positive control). SK did not induce GRE-driven gene expression and preadipocyte differentiation, which is one of the major adverse effects of GCs. Conclusions Collectively, these results suggest that SK could be a novel and safe anti-inflammatory agent with dissociated GC properties and, therefore, it has great potential for use in treating inflammatory disorders.
Collapse
Affiliation(s)
- Ji Hyun Seo
- LG Science Research Park, LG Household and Healthcare Ltd., 70, Magokjoongang 10-ro, Gangseo-gu, Seoul, 07795, Korea
| | - Mu Hyun Jin
- LG Science Research Park, LG Household and Healthcare Ltd., 70, Magokjoongang 10-ro, Gangseo-gu, Seoul, 07795, Korea
| | - Yun Hee Chang
- LG Science Research Park, LG Household and Healthcare Ltd., 70, Magokjoongang 10-ro, Gangseo-gu, Seoul, 07795, Korea.
| |
Collapse
|
62
|
Zhang T, Liang Y, Zhang J. Natural and synthetic compounds as dissociated agonists of glucocorticoid receptor. Pharmacol Res 2020; 156:104802. [DOI: 10.1016/j.phrs.2020.104802] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
|
63
|
Yorio T, Patel GC, Clark AF. Glucocorticoid-Induced Ocular Hypertension: Origins and New Approaches to Minimize. EXPERT REVIEW OF OPHTHALMOLOGY 2020; 15:145-157. [PMID: 38274668 PMCID: PMC10810227 DOI: 10.1080/17469899.2020.1762488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Introduction Glucocorticoids (GCs) have unique actions in their combined anti-inflammatory and immunosuppressive activities and are among the most commonly-prescribed drugs, particularly for inflammatory conditions. They are often used clinically to treat inflammatory eye diseases like uveitis, optic neuritis, conjunctivitis, keratitis and others, but are often accompanied by side effects, like ocular hypertension that can be vision threatening. Areas covered The review will focus on the complex molecular mechanism of action of GCs that involve both transactivation and transrepression and their use therapeutically that can cause significant systemic side effects, particularly ocular hypertension that can lead to glaucoma. Expert Opinion While we are still unclear as to all the mechanisms responsible for GC-induced ocular hypertension, however, there are potential novel therapies that are in development that can separate some of the anti-inflammatory therapeutic efficacy from their ocular hypertension side effect. This review provides some insight into these approaches.
Collapse
Affiliation(s)
- Thomas Yorio
- Department of Pharmacology & Neuroscience, UNTHSC
- North Texas Eye Research, Institute, UNTHSC
| | | | - Abbot F. Clark
- Department of Pharmacology & Neuroscience, UNTHSC
- North Texas Eye Research, Institute, UNTHSC
| |
Collapse
|
64
|
He M, Halima M, Xie Y, Schaaf MJM, Meijer AH, Wang M. Ginsenoside Rg1 Acts as a Selective Glucocorticoid Receptor Agonist with Anti-Inflammatory Action without Affecting Tissue Regeneration in Zebrafish Larvae. Cells 2020; 9:cells9051107. [PMID: 32365641 PMCID: PMC7290513 DOI: 10.3390/cells9051107] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids are effective anti-inflammatory drugs, but their clinical use is complicated due to the wide range of side effects they induce. Patients requiring glucocorticoid therapy would benefit from more selective glucocorticoid receptor (GR) agonists, capable of attenuating the immune response without causing these side effects. Ginsenosides, such as the compound Rg1, are natural plant compounds with structural similarity to classical glucocorticoids and well-documented anti-inflammatory effects. Here, we have investigated the activity of the ginsenoside Rg1 using a zebrafish larval model, in which amputation of the tail fin allows us to assess drug effects on inflammation, while the ability to regenerate the wounded tissue serves as a readout for side effects. We found that Rg1 attenuates neutrophilic inflammation at the amputation site, similarly to a classical glucocorticoid, beclomethasone. Mutation of the Gr abolishes this anti-inflammatory effect of Rg1. Rg1 and beclomethasone differentially modulate gene expression, suggesting that Rg1 induces transrepression, but not transactivation, activity of Gr. Interestingly, we found no effect of Rg1 on tissue regeneration, whereas beclomethasone inhibits tissue regeneration entirely. We conclude that Rg1 is a promising candidate for development as a selective glucocorticoid drug, and that zebrafish larvae provide a useful model system for screening of such GR agonists.
Collapse
Affiliation(s)
- Min He
- Institute of Biology Leiden, Leiden University, 2333CC Leiden, The Netherlands; (M.H.); (M.H.); (Y.X.)
- Leiden University—European Center for Chinese Medicine, Leiden University, 2333CC Leiden, The Netherlands
| | - Mahmoud Halima
- Institute of Biology Leiden, Leiden University, 2333CC Leiden, The Netherlands; (M.H.); (M.H.); (Y.X.)
- Leiden University—European Center for Chinese Medicine, Leiden University, 2333CC Leiden, The Netherlands
| | - Yufei Xie
- Institute of Biology Leiden, Leiden University, 2333CC Leiden, The Netherlands; (M.H.); (M.H.); (Y.X.)
| | - Marcel J. M. Schaaf
- Institute of Biology Leiden, Leiden University, 2333CC Leiden, The Netherlands; (M.H.); (M.H.); (Y.X.)
- Correspondence: (M.J.M.S.); (A.H.M.); (M.W.)
| | - Annemarie H. Meijer
- Institute of Biology Leiden, Leiden University, 2333CC Leiden, The Netherlands; (M.H.); (M.H.); (Y.X.)
- Correspondence: (M.J.M.S.); (A.H.M.); (M.W.)
| | - Mei Wang
- Institute of Biology Leiden, Leiden University, 2333CC Leiden, The Netherlands; (M.H.); (M.H.); (Y.X.)
- Leiden University—European Center for Chinese Medicine, Leiden University, 2333CC Leiden, The Netherlands
- Correspondence: (M.J.M.S.); (A.H.M.); (M.W.)
| |
Collapse
|
65
|
Lucafò M, Franzin M, Decorti G, Stocco G. A patent review of anticancer glucocorticoid receptor modulators (2014-present). Expert Opin Ther Pat 2020; 30:313-324. [PMID: 32148111 DOI: 10.1080/13543776.2020.1740206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Natural and synthetic glucocorticoids are widely employed in different diseases, among which are hematological and solid tumors. Their use is however associated with a number of serious side effects and by the occurrence of resistance. With the aim of separating their gene transactivating effect, more linked to side effects, from transrepressive properties, associated with therapeutic efficacy, a number of selective glucocorticoid modulators have been identified.Areas covered: This review summarizes the patent applications from 2014 to present in the field of selective glucocorticoid receptor modulators employed in cancer therapy. Only few patents have been identified, that concern the identification of new molecules or the method of use of already patented compounds. In addition, a discussion of the mechanism of action of these compounds is included.Expert opinion: Only a very limited number of patents have been applied that concern selective glucocorticoid receptor modulators and their use in cancer. Biological information is scarce for most of these patents; more research is necessary in this field in particular concerning clinical data in order to understand whether it is actually possible to improve the efficacy and therapeutic index of these compounds in cancer therapy.
Collapse
Affiliation(s)
- Marianna Lucafò
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Martina Franzin
- PhD Course in Reproductive and Developmental Sciences, University of Trieste, Trieste, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
66
|
Acetylation of Hsp90 reverses dexamethasone-mediated inhibition of insulin secretion. Toxicol Lett 2020; 320:19-27. [PMID: 31778773 DOI: 10.1016/j.toxlet.2019.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 01/02/2023]
Abstract
The deleterious effects of glucocorticoids on glucose homeostasis limit their clinical use. There is substantial evidence demonstrating that islet function impaired by long-term glucocorticoids exposure is a core defect in the progression of impaired glucose tolerance to diabetes. The activity of heat-shock protein (Hsp) 90 is required to maintain the hormone-binding activity and stability of glucocorticoid receptor (GR). In the present study, Hsp90 inhibition by 17-DMAG counteracted dexamethasone-mediated inhibition of glucose-stimulated insulin secretion in isolated rat islets as well as expressions of neuropeptide Y (NPY) and somatostatin receptor 3 (SSTR3), two negative regulators of insulin secretion. Like 17-DMAG, both the pan-histone deacetylase (HDAC) inhibitor TSA and HDAC6 inhibitor Tubacin exhibited a similar action in protecting islet function against dexamethasone-induced injury, along with the downregulation of NPY and SSTR3 expressions. The hyperacetylation of Hsp90 by TSA and Tubacin disrupted its binding ability to GR and blocked dexamethasone-elicited nuclear translocation of GR in INS-1 β-cell lines. In addition, Tubacin treatment triggered the GR protein degradation through the ubiquitin-proteasome pathway. These findings suggest that Hsp90 acetylation by inhibiting HDAC6 activity may be a potential strategy to prevent the development of steroid diabetes mellitus via alleviating glucocorticoid-impaired islet function.
Collapse
|
67
|
Hegelund Myrbäck T, Prothon S, Edman K, Leander J, Hashemi M, Dearman M, Edenro G, Svanberg P, Andersson EM, Almquist J, Ämmälä C, Hendrickx R, Taib Z, Johansson KA, Berggren AR, Keen CM, Eriksson UG, Fuhr R, Carlsson BCL. Effects of a selective glucocorticoid receptor modulator (AZD9567) versus prednisolone in healthy volunteers: two phase 1, single-blind, randomised controlled trials. THE LANCET. RHEUMATOLOGY 2020; 2:e31-e41. [PMID: 38258274 DOI: 10.1016/s2665-9913(19)30103-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Glucocorticoids are highly effective and widely used anti-inflammatory drugs, but their use is limited by serious side-effects, including glucocorticoid-induced hyperglycaemia and diabetes. AZD9567 is a non-steroidal, selective glucocorticoid receptor modulator that aims to reduce side-effects. We aimed to assess the safety, tolerability, and pharmacokinetics of AZD9567 in healthy volunteers. METHODS Two phase 1 clinical studies were done. First, a randomised, placebo-controlled, single-blind, single-ascending dose study was done in healthy men who received single oral doses of AZD9567 2 mg, 10 mg, 20 mg, 40 mg, 80 mg, 100 mg, 125 mg, or 155 mg, or prednisolone 60 mg (n=8 per dose group, randomly assigned [6:2] to receive active drug or placebo). Second, a randomised, active-controlled, single-blind, multiple-ascending dose study was done, in which men and women received oral AZD9567 or prednisolone once daily for 5 days. One cohort of volunteers with prediabetes received AZD9567 10 mg (n=7) or prednisolone 20 mg (n=2). All other cohorts comprised healthy volunteers, receiving AZD9567 20 mg, 40 mg, 80 mg, or 125 mg (n=7 per dose group), or prednisolone 5 mg (n=13), 20 mg (n=16), or 40 mg (n=13). Participants and study centre staff were masked to treatment assignment for each cohort, although data were unmasked for safety review between cohorts. The primary outcome of the single-ascending dose study was the safety, tolerability, and pharmacokinetics of single ascending doses of AZD9567; for the multiple-ascending dose study it was the safety and tolerability of AZD9567 following multiple ascending doses. As a secondary outcome, effects on glycaemic control were ascertained with oral glucose tolerance tests (OGTTs) done at baseline and on day 1 of the single-ascending dose study, and at baseline and on day 4 of the multiple-ascending dose study. These trials are registered at ClinicalTrials.gov, NCT02512575 and NCT02760316. FINDINGS In the single-ascending dose study, between Nov 18, 2015, and Sept 26, 2016, 72 healthy white men were enrolled, and all completed the study. In the multiple-ascending dose study, between May 2, 2016, and Sept 13, 2017, 77 predominantly white male volunteers (including nine individuals with prediabetes and eight women) were enrolled and 75 completed the study. All doses of AZD9567 and prednisolone were well tolerated, with no serious adverse events or events suggesting adrenal insufficiency. In the single-ascending dose study, nine adverse events of mild intensity were reported (five with AZD9567 and four with placebo); no adverse event was reported by more than one person. In the multiple-ascending dose study, 44 adverse events of mild or moderate intensity were reported (18 with AZD9567 and 26 with prednisolone). The most common were headache and micturition. Apparent clearance, volume of distribution, and half-life of AZD9567 were consistent across doses and for single versus repeated dosing. In the multiple-ascending dose study, OGTTs showed no significant difference with AZD9567 doses up to 80 mg compared with prednisolone 5 mg in glucose area under the curve from 0 h to 4 h post-OGTT (AUC0-4h) from baseline to day 4; the increase in glucose AUC0-4h from baseline to day 4 was significantly lower with all AZD9567 doses versus prednisolone 20 mg (AZD9567 20 mg p<0·0001, 40 mg p=0·0001, 80 mg p=0·0001, and 125 mg p=0·0237). INTERPRETATION AZD9567 appears to be safe and well tolerated in healthy, predominantly white male volunteers and shows promising initial evidence for improved post-prandial glucose control. Studies of longer duration, with a greater proportion of women and other ethnic groups, and in patients requiring anti-inflammatory treatment are needed to characterise the clinical efficacy and safety profile of AZD9567. FUNDING AstraZeneca.
Collapse
Affiliation(s)
| | - Susanne Prothon
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Karl Edman
- Structure Biophysics and Fragments, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jacob Leander
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mahdi Hashemi
- Early Biometrics & Statistical Innovation, Data Science & AI, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew Dearman
- Bioscience, Research and Early Development, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Goran Edenro
- Bioscience, Research and Early Development, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Petter Svanberg
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eva-Marie Andersson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Joachim Almquist
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Carina Ämmälä
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ramon Hendrickx
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ziad Taib
- Early Biometrics & Statistical Innovation, Data Science & AI, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kicki A Johansson
- Research and Early Development, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders R Berggren
- Late-Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christina M Keen
- Research and Early Development, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf G Eriksson
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rainard Fuhr
- PAREXEL Early Phase Clinical Unit, Berlin, Germany
| | - Björn C L Carlsson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
68
|
Zappia CD, Monczor F. Therapeutic utility of glucocorticoids and antihistamines cotreatment. Rationale and perspectives. Pharmacol Res Perspect 2019; 7:e00530. [PMID: 31859461 PMCID: PMC6923805 DOI: 10.1002/prp2.530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Antihistamines and glucocorticoids (GCs) are often used together in the clinic, in several inflammatory-related situations. Even though there is no clear rationale for this drug association, the clinical practice is based on the assumption that due to their concomitant antiinflammatory effects, there should be an intrinsic benefit in their coadministration. Our group has studied the molecular interaction between the histamine H1 receptor and the glucocorticoid receptor (GR) signaling pathways, showing an enhancing effect on GC-induced GR transcriptional activity induced by antihistamines. We hypothesize that the existence of this synergistic effect could contribute in reducing the GCs clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage as the GC-desired effects may be reinforced by the addition of an antihistamine and, as a consequence of the dose reduction, GC-related adverse effects could be reduced or at least mitigated. Here we discuss the potential therapeutic applications of this cotreatment seeking to evaluate its usefulness, especially in inflammatory-related conditions.
Collapse
Affiliation(s)
- Carlos D. Zappia
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET ‐ Universidad de Buenos AiresBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET ‐ Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
69
|
Zappia CD, Soto A, Granja‐Galeano G, Fenoy I, Fernandez N, Davio CA, Shayo C, Fitzsimons CP, Goldman A, Monczor F. Azelastine potentiates antiasthmatic dexamethasone effect on a murine asthma model. Pharmacol Res Perspect 2019; 7:e00531. [PMID: 31687162 PMCID: PMC6818730 DOI: 10.1002/prp2.531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/03/2022] Open
Abstract
Glucocorticoids are among the most effective drugs to treat asthma. However, the severe adverse effects associated generate the need for its therapeutic optimization. Conversely, though histamine is undoubtedly related to asthma development, there is a lack of efficacy of antihistamines in controlling its symptoms, which prevents their clinical application. We have reported that antihistamines potentiate glucocorticoids' responses in vitro and recent observations have indicated that the coadministration of an antihistamine and a synthetic glucocorticoid has synergistic effects on a murine model of allergic rhinitis. Here, the aim of this work is to establish if this therapeutic combination could be beneficial in a murine model of asthma. We used an allergen-induced model of asthma (employing ovalbumin) to evaluate the effects of the synthetic glucocorticoid dexamethasone combined with the antihistamine azelastine. Our results indicate that the cotreatment with azelastine and a suboptimal dose of dexamethasone can improve allergic lung inflammation as shown by a decrease in eosinophils in bronchoalveolar lavage, fewer peribronchial and perivascular infiltrates, and mucin-producing cells. In addition, serum levels of allergen-specific IgE and IgG1 were also reduced, as well as the expression of lung inflammatory-related genes IL-4, IL-5, Muc5AC, and Arginase I. The potentiation of dexamethasone effects by azelastine could allow to reduce the effective glucocorticoid dose needed to achieve a therapeutic effect. These findings provide first new insights into the potential benefits of glucocorticoids and antihistamines combination for the treatment of asthma and grants further research to evaluate this approach in other related inflammatory conditions.
Collapse
Affiliation(s)
- Carlos D. Zappia
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Ariadna Soto
- Centro de Estudios en Salud y Medio Ambiente (CESyMA)Escuela de Ciencia y TecnologíaUniversidad Nacional de San Martín – CONICETBuenos AiresArgentina
| | - Gina Granja‐Galeano
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Ignacio Fenoy
- Centro de Estudios en Salud y Medio Ambiente (CESyMA)Escuela de Ciencia y TecnologíaUniversidad Nacional de San Martín – CONICETBuenos AiresArgentina
| | - Natalia Fernandez
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Carlos A. Davio
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología MolecularInstituto de Biología y Medicina Experimental CONICETBuenos AiresArgentina
| | - Carlos P. Fitzsimons
- Center for NeuroscienceSwammerdam Institute for Life SciencesFaculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Alejandra Goldman
- Centro de Estudios en Salud y Medio Ambiente (CESyMA)Escuela de Ciencia y TecnologíaUniversidad Nacional de San Martín – CONICETBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
70
|
Patel GC, Millar JC, Clark AF. Glucocorticoid Receptor Transactivation Is Required for Glucocorticoid-Induced Ocular Hypertension and Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:1967-1978. [PMID: 31050723 PMCID: PMC6890434 DOI: 10.1167/iovs.18-26383] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose Glucocorticoid (GC)–induced ocular hypertension (GC-OHT) is a serious side effect of prolonged GC therapy that can lead to glaucoma and permanent vision loss. GCs cause a plethora of changes in the trabecular meshwork (TM), an ocular tissue that regulates intraocular pressure (IOP). GCs act through the glucocorticoid receptor (GR), and the GR regulates transcription both through transactivation and transrepression. Many of the anti-inflammatory properties of GCs are mediated by GR transrepression, while GR transactivation largely accounts for GC metabolic effects and side effects of GC therapy. There is no evidence showing which of the two mechanisms plays a role in GC-OHT. Methods GRdim transgenic mice (which have active transrepression and impaired transactivation) and wild-type (WT) C57BL/6J mice received weekly periocular dexamethasone acetate (DEX-Ac) injections. IOP, outflow facilities, and biochemical changes to the TM were determined. Results GRdim mice did not develop GC-OHT after continued DEX treatment, while WT mice had significantly increased IOP and decreased outflow facilities. Both TM tissue in eyes of DEX-treated GRdim mice and cultured TM cells isolated from GRdim mice had reduced or no change in the expression of fibronectin, myocilin, collagen type I, and α-smooth muscle actin (α-SMA). GRdim mouse TM (MTM) cells also had a significant reduction in DEX-induced cytoskeletal changes, which was clearly seen in WT MTM cells. Conclusions We provide the first evidence for the role of GR transactivation in regulating GC-mediated gene expression in the TM and in the development of GC-OHT. This discovery suggests a novel therapeutic approach for treating ocular inflammation without causing GC-OHT and glaucoma.
Collapse
Affiliation(s)
- Gaurang C Patel
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - J Cameron Millar
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
71
|
Roman DL, Roman M, Som C, Schmutz M, Hernandez E, Wick P, Casalini T, Perale G, Ostafe V, Isvoran A. Computational Assessment of the Pharmacological Profiles of Degradation Products of Chitosan. Front Bioeng Biotechnol 2019; 7:214. [PMID: 31552240 PMCID: PMC6743017 DOI: 10.3389/fbioe.2019.00214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Chitosan is a natural polymer revealing an increased potential to be used in different biomedical applications, including drug delivery systems, and tissue engineering. It implies the evaluation of the organism response to the biomaterial implantation. Low-molecular degradation products, the chito-oligomers, are resulting mainly from the influence of enzymes, which are found in the organism fluids. Within this study, we have performed the computational assessment of pharmacological profiles and toxicological effects on human health of small chito-oligomers with distinct molecular weights, deacetylation degrees, and acetylation patterns. Our approach is based on the fact that regulatory agencies and researchers in the drug development field rely on the use of modeling to predict biological effects and to guide decision making. To be considered as valid for regulatory purposes, every model that is used for predictions should be associated with a defined toxicological endpoint and has appropriate robustness and predictivity. Within this context, we have used FAF-Drugs4, SwissADME, and PreADMET tools to predict the oral bioavailability of chito-oligomers and SwissADME, PreADMET, and admetSAR2.0 tools to predict their pharmacokinetic profiles. The organs and genomic toxicities have been assessed using admetSAR2.0 and PreADMET tools but specific computational facilities have been also used for predicting different toxicological endpoints: Pred-Skin for skin sensitization, CarcinoPred-EL for carcinogenicity, Pred-hERG for cardiotoxicity, ENDOCRINE DISRUPTOME for endocrine disruption potential and Toxtree for carcinogenicity and mutagenicity. Our computational assessment showed that investigated chito-oligomers reflect promising pharmacological profiles and limited toxicological effects on humans, regardless of molecular weight, deacetylation degree, and acetylation pattern. According to our results, there is a possible inhibition of the organic anion transporting peptides OATP1B1 and/or OATP1B3, a weak potential of cardiotoxicity, a minor probability of affecting the androgen receptor, and phospholipidosis. Consequently, these results may be used to guide or to complement the existing in vitro and in vivo toxicity tests, to optimize biomaterials properties and to contribute to the selection of prototypes for nanocarriers.
Collapse
Affiliation(s)
- Diana Larisa Roman
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Marin Roman
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Claudia Som
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Mélanie Schmutz
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Edgar Hernandez
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, St. Gallen, Switzerland
| | - Tommaso Casalini
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Giuseppe Perale
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Adriana Isvoran
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| |
Collapse
|
72
|
Identification of 20(R, S)-protopanaxadiol and 20(R, S)-protopanaxatriol for potential selective modulation of glucocorticoid receptor. Food Chem Toxicol 2019; 131:110642. [DOI: 10.1016/j.fct.2019.110642] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/12/2019] [Accepted: 06/22/2019] [Indexed: 01/06/2023]
|
73
|
Unsworth AJ, Flora GD, Gibbins JM. Non-genomic effects of nuclear receptors: insights from the anucleate platelet. Cardiovasc Res 2019; 114:645-655. [PMID: 29452349 PMCID: PMC5915957 DOI: 10.1093/cvr/cvy044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) have the ability to elicit two different kinds of responses, genomic and non-genomic. Although genomic responses control gene expression by influencing the rate of transcription, non-genomic effects occur rapidly and independently of transcriptional regulation. Due to their anucleate nature and mechanistically well-characterized and rapid responses, platelets provide a model system for the study of any non-genomic effects of the NRs. Several NRs have been found to be present in human platelets, and multiple NR agonists have been shown to elicit anti-platelet effects by a variety of mechanisms. The non-genomic functions of NRs vary, including the regulation of kinase and phosphatase activity, ion channel function, intracellular calcium levels, and production of second messengers. Recently, the characterization of mechanisms and identification of novel binding partners of NRs have further strengthened the prospects of developing their ligands into potential therapeutics that offer cardio-protective properties in addition to their other defined genomic effects.
Collapse
Affiliation(s)
- Amanda J Unsworth
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| | - Gagan D Flora
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| | - Jonathan M Gibbins
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| |
Collapse
|
74
|
Louw A. GR Dimerization and the Impact of GR Dimerization on GR Protein Stability and Half-Life. Front Immunol 2019; 10:1693. [PMID: 31379877 PMCID: PMC6653659 DOI: 10.3389/fimmu.2019.01693] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
Pharmacologically, glucocorticoids, which mediate their effects via the glucocorticoid receptor (GR), are a most effective therapy for inflammatory diseases despite the fact that chronic use causes side-effects and acquired GC resistance. The design of drugs with fewer side-effects and less potential for the development of resistance is therefore considered crucial for improved therapy. Dimerization of the GR is an integral step in glucocorticoid signaling and has been identified as a possible molecular site to target for drug development of anti-inflammatory drugs with an improved therapeutic index. Most of the current understanding regarding the role of GR dimerization in GC signaling derives for dimerization deficient mutants, although the role of ligands biased toward monomerization has also been described. Even though designing for loss of dimerization has mostly been applied for reduction of side-effect profile, designing for loss of dimerization may also be a fruitful strategy for the development of GC drugs with less potential to develop GC resistance. GC-induced resistance affects up to 30% of users and is due to a reduction in the GR functional pool. Several molecular mechanisms of GC-mediated reductions in GR pool have been described, one of which is the autologous down-regulation of GR density by the ubiquitin-proteasome-system (UPS). Loss of GR dimerization prevents autologous down-regulation of the receptor through modulation of interactions with components of the UPS and post-translational modifications (PTMs), such as phosphorylation, which prime the GR for degradation. Rational design of conformationally biased ligands that select for a monomeric GR conformation, which increases GC sensitivity through improving GR protein stability and increasing half-life, may be a productive avenue to explore. However, potential drawbacks to this approach should be considered as well as the advantages and disadvantages in chronic vs. acute treatment regimes.
Collapse
Affiliation(s)
- Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
75
|
Flynn JK, Dankers W, Morand EF. Could GILZ Be the Answer to Glucocorticoid Toxicity in Lupus? Front Immunol 2019; 10:1684. [PMID: 31379872 PMCID: PMC6652235 DOI: 10.3389/fimmu.2019.01684] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GC) are used globally to treat autoimmune and inflammatory disorders. Their anti-inflammatory actions are mainly mediated via binding to the glucocorticoid receptor (GR), creating a GC/GR complex, which acts in both the cytoplasm and nucleus to regulate the transcription of a host of target genes. As a result, signaling pathways such as NF-κB and AP-1 are inhibited, and cell activation, differentiation and survival and cytokine and chemokine production are suppressed. However, the gene regulation by GC can also cause severe side effects in patients. Systemic lupus erythematosus (SLE or lupus) is a multisystem autoimmune disease, characterized by a poorly regulated immune response leading to chronic inflammation and dysfunction of multiple organs, for which GC is the major current therapy. Long-term GC use, however, can cause debilitating adverse consequences for patients including diabetes, cardiovascular disease and osteoporosis and contributes to irreversible organ damage. To date, there is no alternative treatment which can replicate the rapid effects of GC across multiple immune cell functions, effecting disease control during disease flares. Research efforts have focused on finding alternatives to GC, which display similar immunoregulatory actions, without the devastating adverse metabolic effects. One potential candidate is the glucocorticoid-induced leucine zipper (GILZ). GILZ is induced by low concentrations of GC and is shown to mimic the action of GC in several inflammatory processes, reducing immunity and inflammation in in vitro and in vivo studies. Additionally, GILZ has, similar to the GC-GR complex, the ability to bind to both NF-κB and AP-1 as well as DNA directly, to regulate immune cell function, while potentially lacking the GC-related side effects. Importantly, in SLE patients GILZ is under-expressed and correlates negatively with disease activity, suggesting an important regulatory role of GILZ in SLE. Here we provide an overview of the actions and use of GC in lupus, and discuss whether the regulatory mechanisms of GILZ could lead to the development of a novel therapeutic for lupus. Increased understanding of the mechanisms of action of GILZ, and its ability to regulate immune events leading to lupus disease activity has important clinical implications for the development of safer anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jacqueline K Flynn
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Wendy Dankers
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Eric F Morand
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
76
|
Timmermans S, Souffriau J, Libert C. A General Introduction to Glucocorticoid Biology. Front Immunol 2019; 10:1545. [PMID: 31333672 PMCID: PMC6621919 DOI: 10.3389/fimmu.2019.01545] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones widely used for the treatment of inflammation, autoimmune diseases, and cancer. To exert their broad physiological and therapeutic effects, GCs bind to the GC receptor (GR) which belongs to the nuclear receptor superfamily of transcription factors. Despite their success, GCs are hindered by the occurrence of side effects and glucocorticoid resistance (GCR). Increased knowledge on GC and GR biology together with a better understanding of the molecular mechanisms underlying the GC side effects and GCR are necessary for improved GC therapy development. We here provide a general overview on the current insights in GC biology with a focus on GC synthesis, regulation and physiology, role in inflammation inhibition, and on GR function and plasticity. Furthermore, novel and selective therapeutic strategies are proposed based on recently recognized distinct molecular mechanisms of the GR. We will explain the SEDIGRAM concept, which was launched based on our research results.
Collapse
Affiliation(s)
- Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Souffriau
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
77
|
Song R, Hu XQ, Zhang L. Glucocorticoids and programming of the microenvironment in heart. J Endocrinol 2019; 242:T121-T133. [PMID: 31018174 PMCID: PMC6602534 DOI: 10.1530/joe-18-0672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
Abstract
Glucocorticoids are primary stress hormones and can improve neonatal survival when given to pregnant women threatened by preterm birth or to preterm infants. It has become increasingly apparent that glucocorticoids, primarily by interacting with glucocorticoid receptors, play a critical role in late gestational cardiac maturation. Altered glucocorticoid actions contribute to the development and progression of heart disease. The knowledge gained from studies in the mature heart or cardiac damage is insufficient but a necessary starting point for understanding cardiac programming including programming of the cardiac microenvironment by glucocorticoids in the fetal heart. This review aims to highlight the potential roles of glucocorticoids in programming of the cardiac microenvironment, especially the supporting cells including endothelial cells, immune cells and fibroblasts. The molecular mechanisms by which glucocorticoids regulate the various cellular and extracellular components and the clinical relevance of glucocorticoid functions in the heart are also discussed.
Collapse
Affiliation(s)
- Rui Song
- Correspondence to: Rui Song, PhD, , Lubo Zhang, PhD,
| | | | - Lubo Zhang
- Correspondence to: Rui Song, PhD, , Lubo Zhang, PhD,
| |
Collapse
|
78
|
Treatment of polymyalgia rheumatica. Biochem Pharmacol 2019; 165:221-229. [DOI: 10.1016/j.bcp.2019.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
|
79
|
Transcriptomic Network Interactions in Human Skin Treated with Topical Glucocorticoid Clobetasol Propionate. J Invest Dermatol 2019; 139:2281-2291. [PMID: 31247200 PMCID: PMC6814545 DOI: 10.1016/j.jid.2019.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/19/2022]
Abstract
Glucocorticoids are the most frequently used anti-inflammatory drugs in dermatology. However, the molecular signature of glucocorticoids and their receptor in human skin is largely unknown. Our validated bioinformatics analysis of human skin transcriptome induced by topical glucocorticoid clobetasol propionate (CBP) in healthy volunteers identified numerous unreported glucocorticoid-responsive genes, including over a thousand noncoding RNAs. We observed sexual and racial dimorphism in the CBP response including a shift toward IFN-α/IFN-γ and IL-6/Jak/Signal transducer and activator of transcription (STAT) 3 signaling in female skin; and a larger response to CBP in African-American skin. Weighted gene coexpression network analysis unveiled a dense skin network of 41 transcription factors including circadian Kruppel-like factor 9 (KLF9), and ∼260 of their target genes enriched for functional pathways representative of the entire CBP transcriptome. Using keratinocytes with Kruppel-like factor 9 knockdown, we revealed a feedforward loop in glucocorticoid receptor signaling, previously unreported. Interestingly, many of the CBP-regulated transcription factors were involved in the control of development, metabolism, circadian clock; and 80% of them were associated with skin aging showing similarities between glucocorticoid-treated and aged skin. Overall, these findings indicate that glucocorticoid receptor acts as an important regulator of gene expression in skin-both at the transcriptional and posttranscriptional level-via multiple mechanisms including regulation of noncoding RNAs and multiple core transcription factors.
Collapse
|
80
|
Ginsenoside compound-K inhibits the activity of B cells through inducing IgD-B cell receptor endocytosis in mice with collagen-induced arthritis. Inflammopharmacology 2019; 27:845-856. [DOI: 10.1007/s10787-019-00608-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/25/2019] [Indexed: 01/06/2023]
|
81
|
McKinlay CJ, Manley BJ. Antenatal and postnatal corticosteroids: A swinging pendulum. Semin Fetal Neonatal Med 2019; 24:167-169. [PMID: 31147160 DOI: 10.1016/j.siny.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Christopher Jd McKinlay
- Liggins Institute, University of Auckland, Auckland, New Zealand; Kidz First Neonatal Care, Counties Manukau Health, Auckland, New Zealand.
| | - Brett J Manley
- Neonatal Services and Newborn Research Centre, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
82
|
Petta I, Peene I, Elewaut D, Vereecke L, De Bosscher K. Risks and benefits of corticosteroids in arthritic diseases in the clinic. Biochem Pharmacol 2019; 165:112-125. [PMID: 30978323 DOI: 10.1016/j.bcp.2019.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
Glucocorticoids (GCs) constitute a first line treatment for many autoimmune and inflammatory diseases. Due to their potent anti-inflammatory and immunosuppressive actions, GCs are added frequently to disease modifying antirheumatic drugs (DMARDs) in various arthritic diseases, such as rheumatoid arthritis. However, their prolonged administration or administration at high doses is associated with adverse effects that may be (quality of) life-threatening, including osteoporosis, metabolic, gastrointestinal and cardiovascular side effects. In this review, we summarize the clinical and pharmacological effects of GCs in different arthritic diseases, while documenting the current research efforts towards the identification of novel and more efficient GCs with reduced side effects.
Collapse
Affiliation(s)
- Ioanna Petta
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Host-Microbiota Interaction Lab (HMI) and Laboratory for Molecular Immunology and Inflammation, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; VIB Center for Inflammation Research (IRC), Ghent University, Technologiepark 71 - Zwijnaarde, 9052 Ghent, Belgium; Ghent Gut Inflammation Group (GGIG), Ghent University, Ghent, Belgium
| | - Isabelle Peene
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Host-Microbiota Interaction Lab (HMI) and Laboratory for Molecular Immunology and Inflammation, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; VIB Center for Inflammation Research (IRC), Ghent University, Technologiepark 71 - Zwijnaarde, 9052 Ghent, Belgium; Department of Rheumatology, AZ SintJan, Ruddershove 10, 8000 Brugge, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Host-Microbiota Interaction Lab (HMI) and Laboratory for Molecular Immunology and Inflammation, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; VIB Center for Inflammation Research (IRC), Ghent University, Technologiepark 71 - Zwijnaarde, 9052 Ghent, Belgium; Ghent Gut Inflammation Group (GGIG), Ghent University, Ghent, Belgium
| | - Lars Vereecke
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Host-Microbiota Interaction Lab (HMI) and Laboratory for Molecular Immunology and Inflammation, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; VIB Center for Inflammation Research (IRC), Ghent University, Technologiepark 71 - Zwijnaarde, 9052 Ghent, Belgium; Ghent Gut Inflammation Group (GGIG), Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, Albert Baertsoenkaai 3, 9000, Ghent, Belgium.
| |
Collapse
|
83
|
Okafor CD, Colucci JK, Ortlund EA. Ligand-Induced Allosteric Effects Governing SR Signaling. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
84
|
Morrow JD, Chase RP, Parker MM, Glass K, Seo M, Divo M, Owen CA, Castaldi P, DeMeo DL, Silverman EK, Hersh CP. RNA-sequencing across three matched tissues reveals shared and tissue-specific gene expression and pathway signatures of COPD. Respir Res 2019; 20:65. [PMID: 30940135 PMCID: PMC6446359 DOI: 10.1186/s12931-019-1032-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Multiple gene expression studies have been performed separately in peripheral blood, lung, and airway tissues to study COPD. We performed RNA-sequencing gene expression profiling of large-airway epithelium, alveolar macrophage and peripheral blood samples from the same subset of COPD cases and controls from the COPDGene study who underwent bronchoscopy at a single center. Using statistical and gene set enrichment approaches, we sought to improve the understanding of COPD by studying gene sets and pathways across these tissues, beyond the individual genomic determinants. METHODS We performed differential expression analysis using RNA-seq data obtained from 63 samples from 21 COPD cases and controls (includes four non-smokers) via the R package DESeq2. We tested associations between gene expression and variables related to lung function, smoking history, and CT scan measures of emphysema and airway disease. We examined the correlation of differential gene expression across the tissues and phenotypes, hypothesizing that this would reveal preserved and private gene expression signatures. We performed gene set enrichment analyses using curated databases and findings from prior COPD studies to provide biological and disease relevance. RESULTS The known smoking-related genes CYP1B1 and AHRR were among the top differential expression results for smoking status in the large-airway epithelium data. We observed a significant overlap of genes primarily across large-airway and macrophage results for smoking and airway disease phenotypes. We did not observe specific genes differentially expressed in all three tissues for any of the phenotypes. However, we did observe hemostasis and immune signaling pathways in the overlaps across all three tissues for emphysema, and amyloid and telomere-related pathways for smoking. In peripheral blood, the emphysema results were enriched for B cell related genes previously identified in lung tissue studies. CONCLUSIONS Our integrative analyses across COPD-relevant tissues and prior studies revealed shared and tissue-specific disease biology. These replicated and novel findings in the airway and peripheral blood have highlighted candidate genes and pathways for COPD pathogenesis.
Collapse
Affiliation(s)
- Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA.
| | - Robert P Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Minseok Seo
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Miguel Divo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
85
|
Zhang L, Huang Y, Wu C, Du Y, Li P, Wang M, Wang X, Wang Y, Hao Y, Wang T, Fan B, Gao Z, Fu F. Network Pharmacology Based Research on the Combination Mechanism Between Escin and Low Dose Glucocorticoids in Anti-rheumatoid Arthritis. Front Pharmacol 2019; 10:280. [PMID: 30967782 PMCID: PMC6440172 DOI: 10.3389/fphar.2019.00280] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic progressive symmetrical synovitis and destruction of multiple joints. Glucocorticoids (GCs) are widely used in the treatment of RA. However, their adverse effects can be serious. Escin, which is isolated from Aesculus hippocastanum L., has been reported to have anti-inflammatory effects. We investigated the anti-RA effect of Escin combined with low dose GCs (dexamethasone, Dex) and the underlying mechanism. Adjuvant-induced RA rats and lipopolysaccharides (LPS)-injured RAW264.7 cells were used to investigate the anti-RA effects of Escin combined with low dose Dex in vivo and in vitro. The results showed that Escin combined with low-dose Dex significantly decreased arthritic index, serum IL-6 and TNF-α levels, reduced paw swelling, and ameliorated the joint pathology and immune organ pathology. Gene chip results revealed that Nr3c1 (GR) expression was significantly altered, and that GR was activated by Escin and low dose Dex in vivo and in vitro. Additionally, Escin combined with low dose Dex also significantly increased GR mRNA expression. However, when GR expression was suppressed by its specific inhibitor, the anti-RA effect of Escin combined with low-dose Dex was abolished. The data in this study demonstrated that Escin combined with Dex reduced the dose of Dex, and exerted significant anti-RA effects, which could also reduce the adverse effects of Dex. This combination might result from GR activation. This study might provide a new combination of drugs for the treatment of RA.
Collapse
Affiliation(s)
- Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, China
| | - Yanan Huang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, China
| | - Chuanhong Wu
- The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, China
| | - Peng Li
- College of Arts and Sciences, Shanxi Agricultural University, Taigu, China
| | - Meiling Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, China
| | - Xinlin Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, China
| | - Yanfang Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, China
| | - Yanfei Hao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, China
| | - Tian Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, China
| | - Baofeng Fan
- Air Force General Hospital, PLA, Beijing, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fenghua Fu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, China
| |
Collapse
|
86
|
DeBono A, Thomas DR, Lundberg L, Pinkham C, Cao Y, Graham JD, Clarke CL, Wagstaff KM, Shechter S, Kehn-Hall K, Jans DA. Novel RU486 (mifepristone) analogues with increased activity against Venezuelan Equine Encephalitis Virus but reduced progesterone receptor antagonistic activity. Sci Rep 2019; 9:2634. [PMID: 30796232 PMCID: PMC6385310 DOI: 10.1038/s41598-019-38671-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
There are currently no therapeutics to treat infection with the alphavirus Venezuelan equine encephalitis virus (VEEV), which causes flu-like symptoms leading to neurological symptoms in up to 14% of cases. Large outbreaks of VEEV can result in 10,000 s of human cases and mass equine death. We previously showed that mifepristone (RU486) has anti-VEEV activity (EC50 = 20 μM) and only limited cytotoxicity (CC50 > 100 μM), but a limitation in its use is its abortifacient activity resulting from its ability to antagonize the progesterone receptor (PR). Here we generate a suite of new mifepristone analogues with enhanced antiviral properties, succeeding in achieving >11-fold improvement in anti-VEEV activity with no detectable increase in toxicity. Importantly, we were able to derive a lead compound with an EC50 of 7.2 µM and no detectable PR antagonism activity. Finally, based on our SAR analysis we propose avenues for the further development of these analogues as safe and effective anti-VEEV agents.
Collapse
Affiliation(s)
- Aaron DeBono
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - David R Thomas
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Ying Cao
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - J Dinny Graham
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Christine L Clarke
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kylie M Wagstaff
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology School of Biomedical Sciences, Monash University, Melbourne, Australia
| | | | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - David A Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology School of Biomedical Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
87
|
Potamitis C, Siakouli D, Papavasileiou KD, Boulaka A, Ganou V, Roussaki M, Calogeropoulou T, Zoumpoulakis P, Alexis MN, Zervou M, Mitsiou DJ. Discovery of New non-steroidal selective glucocorticoid receptor agonists. J Steroid Biochem Mol Biol 2019; 186:142-153. [PMID: 30321666 DOI: 10.1016/j.jsbmb.2018.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/19/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
Glucocorticoids (GCs) are widely used as potent anti-inflammatory drugs; however, GC therapy is often accompanied by adverse side effects. The anti-inflammatory action of GCs is exerted through the glucocorticoid receptor (GR) in part by antagonizing the pro-inflammatory nuclear factor k B (NF-kB) whereas the majority of side effects are assumed to be mediated by transactivation of GR target genes. We set out to identify novel non-steroidal selective GR agonists (SEGRA) favoring transrepression of NF-kB target genes over transactivation of genes associated with undesirable effects. Our virtual screening protocol was driven by a pharmacophore model based on a pyrrolidinone amide analogue (named as 'compound 12' in Biggadike et al 2009, PNAS USA 106, 18,114) bound to the extended binding pocket of the GR ligand binding domain (GR-LBD). Ambinter library (7.8 million compounds) was queried by our validated pharmacophore hypothesis and the prioritized compounds were biologically evaluated using a series of well-established screening assays. Two structurally similar hits (1 and 13) were identified that bind to GR, induce its translocation to the nucleus, do not mediate transactivation of GR target genes whereas partially repress a number of pro-inflammatory NF-kB target genes, in a GR-dependent manner. Explanatory molecular dynamics (MD) calculations could detail the per-residue interactions accounting for the binding of 1 and 13 to the extended binding pocket of GR. The discovered 1,3-benzothiazole analogs introduce a new class of genuine SEGRA paving the way for hit-to-lead optimization.
Collapse
Affiliation(s)
- Constantinos Potamitis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Dimitra Siakouli
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Konstantinos D Papavasileiou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece; National Center for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Molecular Thermodynamics and Modelling of Materials Laboratory, GR-15310 Aghia Paraskevi Attikis, Greece
| | - Athina Boulaka
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Vassiliki Ganou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Marina Roussaki
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Theodora Calogeropoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Michael N Alexis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Maria Zervou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece.
| | - Dimitra J Mitsiou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
88
|
Hemmer MC, Wierer M, Schachtrup K, Downes M, Hübner N, Evans RM, Uhlenhaut NH. E47 modulates hepatic glucocorticoid action. Nat Commun 2019; 10:306. [PMID: 30659202 PMCID: PMC6338785 DOI: 10.1038/s41467-018-08196-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/17/2018] [Indexed: 01/24/2023] Open
Abstract
Glucocorticoids (GCs) are effective drugs, but their clinical use is compromised by severe side effects including hyperglycemia, hyperlipidemia and obesity. They bind to the Glucocorticoid Receptor (GR), which acts as a transcription factor. The activation of metabolic genes by GR is thought to underlie these adverse effects. We identify the bHLH factor E47 as a modulator of GR target genes. Using mouse genetics, we find that E47 is required for the regulation of hepatic glucose and lipid metabolism by GR, and that loss of E47 prevents the development of hyperglycemia and hepatic steatosis in response to GCs. Here we show that E47 and GR co-occupy metabolic promoters and enhancers. E47 is needed for the efficient recruitment of GR and coregulators such as Mediator to chromatin. Altogether, our results illustrate how GR and E47 regulate hepatic metabolism, and might provide an entry point for novel therapies with reduced side effects. Glucocorticoids (GCs) are widely used anti-inflammatory drugs; however, long-term treatment causes metabolic side effects. Here, the authors show that E47 is a modulator of glucocorticoid receptor activity for a subset of target genes in mouse liver, and that loss of E47 protects mice from hyperglycemia and hepatic steatosis in response to GCs.
Collapse
Affiliation(s)
- M Charlotte Hemmer
- Molecular Endocrinology, Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Ingolstädter Landstr. 1, 85764, Neuherberg, Munich, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Kristina Schachtrup
- Center for Chronic Immunodeficiency, University Medical Center and Faculty of Biology, University of Freiburg, 79106, Freiburg, Germany
| | - Michael Downes
- The Salk Institute for Biological Studies & HHMI, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences & DZHK (German Center for Cardiovascular Research), Charité-Universitätsmedizin & Berlin Institute of Health (BIH), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle Strasse 10, 13125, Berlin, Germany
| | - Ronald M Evans
- The Salk Institute for Biological Studies & HHMI, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - N Henriette Uhlenhaut
- Molecular Endocrinology, Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Ingolstädter Landstr. 1, 85764, Neuherberg, Munich, Germany. .,The Salk Institute for Biological Studies & HHMI, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA. .,Cardiovascular and Metabolic Sciences & DZHK (German Center for Cardiovascular Research), Charité-Universitätsmedizin & Berlin Institute of Health (BIH), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle Strasse 10, 13125, Berlin, Germany. .,Gene Center, Ludwig-Maximilians-Universität München (LMU), Feodor-Lynen-Straße 25, 81377, Munich, Germany.
| |
Collapse
|
89
|
Savvidou O, Milonaki M, Goumenos S, Flevas D, Papagelopoulos P, Moutsatsou P. Glucocorticoid signaling and osteoarthritis. Mol Cell Endocrinol 2019; 480:153-166. [PMID: 30445185 DOI: 10.1016/j.mce.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
Glucocorticoids are steroid hormones synthesized and released by the adrenal cortex. Their main function is to maintain cell homeostasis through a variety of signaling pathways, responding to changes in an organism's environment or developmental status. Mimicking the actions of natural glucocorticoids, synthetic glucocorticoids have been recruited to treat many diseases that implicate glucocorticoid receptor signaling such as osteoarthritis. In osteoarthritis, synthetic glucocorticoids aim to alleviate inflammation and pain. The variation of patients' response and the possibility of complications associated with their long-term use have led to a need for a better understanding of glucocorticoid receptor signaling in osteoarthritis. In this review, we performed a literature search in the molecular pathways that link the osteoarthritic joint to the glucocorticoid receptor signaling. We hope that this information will advance research in the field and propose new molecular targets for the development of more optimized therapies for osteoarthritis.
Collapse
Affiliation(s)
- Olga Savvidou
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Mandy Milonaki
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Stavros Goumenos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Dimitrios Flevas
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Panayiotis Papagelopoulos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| |
Collapse
|
90
|
Potential Dissociative Glucocorticoid Receptor Activity for Protopanaxadiol and Protopanaxatriol. Int J Mol Sci 2018; 20:ijms20010094. [PMID: 30591629 PMCID: PMC6337468 DOI: 10.3390/ijms20010094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids are steroid hormones that regulate inflammation, growth, metabolism, and apoptosis via their cognate receptor, the glucocorticoid receptor (GR). GR, acting mainly as a transcription factor, activates or represses the expression of a large number of target genes, among them, many genes of anti-inflammatory and pro-inflammatory molecules, respectively. Transrepression activity of glucocorticoids also accounts for their anti-inflammatory activity, rendering them the most widely prescribed drug in medicine. However, chronic and high-dose use of glucocorticoids is accompanied with many undesirable side effects, attributed predominantly to GR transactivation activity. Thus, there is a high need for selective GR agonist, capable of dissociating transrepression from transactivation activity. Protopanaxadiol and protopanaxatriol are triterpenoids that share structural and functional similarities with glucocorticoids. The molecular mechanism of their actions is unclear. In this study applying induced-fit docking analysis, luciferase assay, immunofluorescence, and Western blot analysis, we showed that protopanaxadiol and more effectively protopanaxatriol are capable of binding to GR to activate its nuclear translocation, and to suppress the nuclear factor-kappa beta activity in GR-positive HeLa and HEK293 cells, but not in GR-low level COS-7 cells. Interestingly, no transactivation activity was observed, whereas suppression of the dexamethasone-induced transactivation of GR and induction of apoptosis in HeLa and HepG2 cells were observed. Thus, our results indicate that protopanaxadiol and protopanaxatriol could be considered as potent and selective GR agonist.
Collapse
|
91
|
Kumari S, Shakoor SMA, Markad D, Mandal SK, Sakhuja R. NH
4
OAc‐Promoted Cascade Approach towards Aberrant Synthesis of Chromene‐Fused Quinolinones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Santosh Kumari
- Department of Chemistry Birla Institute of Technology & Science 333031 Pilani, Rajasthan India
| | - S. M. Abdul Shakoor
- Department of Chemistry Birla Institute of Technology & Science 333031 Pilani, Rajasthan India
| | - Datta Markad
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Sector 81, S.A.S. Nagar, Manuali P.O. 140306 Punjab India
| | - Sanjay K. Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Sector 81, S.A.S. Nagar, Manuali P.O. 140306 Punjab India
| | - Rajeev Sakhuja
- Department of Chemistry Birla Institute of Technology & Science 333031 Pilani, Rajasthan India
| |
Collapse
|
92
|
Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018; 7:R328-R349. [PMID: 30352419 PMCID: PMC6280593 DOI: 10.1530/ec-18-0421] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.
Collapse
Affiliation(s)
- Legh Wilkinson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Correspondence should be addressed to A Louw:
| |
Collapse
|
93
|
Abstract
The transcription factor NF-κB is a critical regulator of immune and inflammatory responses. In mammals, the NF-κB/Rel family comprises five members: p50, p52, p65 (Rel-A), c-Rel, and Rel-B proteins, which form homo- or heterodimers and remain as an inactive complex with the inhibitory molecules called IκB proteins in resting cells. Two distinct NF-κB signaling pathways have been described: 1) the canonical pathway primarily activated by pathogens and inflammatory mediators, and 2) the noncanonical pathway mostly activated by developmental cues. The most abundant form of NF-κB activated by pathologic stimuli via the canonical pathway is the p65:p50 heterodimer. Disproportionate increase in activated p65 and subsequent transactivation of effector molecules is integral to the pathogenesis of many chronic diseases such as the rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, and even neurodegenerative pathologies. Hence, the NF-κB p65 signaling pathway has been a pivotal point for intense drug discovery and development. This review begins with an overview of p65-mediated signaling followed by discussion of strategies that directly target NF-κB p65 in the context of chronic inflammation.
Collapse
Affiliation(s)
- Sivagami Giridharan
- Department of Oral Medicine, Madha Dental College, Kundrathur, Chennai, TN, India
| | - Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA,
- Provaidya LLC, Indianapolis, IN, USA,
| |
Collapse
|
94
|
Novel role for receptor dimerization in post-translational processing and turnover of the GRα. Sci Rep 2018; 8:14266. [PMID: 30250038 PMCID: PMC6155283 DOI: 10.1038/s41598-018-32440-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/07/2018] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids (GCs), acting via the glucocorticoid receptor (GRα), remain the mainstay therapeutic choice for the treatment of inflammation. However, chronic GC use, aside from generating undesirable side-effects, results in GRα down-regulation, often coupled to a decrease in GC-responsiveness, which may culminate in acquired GC resistance. The current study presents evidence for a novel role of the dimerization state of the GRα in mediating GC-mediated GRα turnover. Through comparing the effects of dimerization promoting GCs on down-regulation of a transfected human wild type GRα (hGRwt) or a dimerization deficient GRα mutant (hGRdim), we established that a loss of receptor dimerization restricts GRα turnover, which was supported by the use of the dimerization abrogating Compound A (CpdA), in cells containing endogenous GRα. Moreover, we showed that the dimerization state of the GRα influenced the post-translational processing of the receptor, specifically hyper-phosphorylation at Ser404, which influenced the interaction of GRα with the E3 ligase, FBXW7α, thus hampering receptor turnover via the proteasome. Lastly, the restorative effects of CpdA on the GRα pool, in the presence of Dex, were demonstrated in a combinatorial treatment protocol. These results expand our understanding of factors that contribute to GC-resistance and may be exploited clinically.
Collapse
|
95
|
Mylka V, Deckers J, Ratman D, De Cauwer L, Thommis J, De Rycke R, Impens F, Libert C, Tavernier J, Vanden Berghe W, Gevaert K, De Bosscher K. The autophagy receptor SQSTM1/p62 mediates anti-inflammatory actions of the selective NR3C1/glucocorticoid receptor modulator compound A (CpdA) in macrophages. Autophagy 2018; 14:2049-2064. [PMID: 30215534 PMCID: PMC6984772 DOI: 10.1080/15548627.2018.1495681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids are widely used to treat inflammatory disorders; however, prolonged use of glucocorticoids results in side effects including osteoporosis, diabetes and obesity. Compound A (CpdA), identified as a selective NR3C1/glucocorticoid receptor (nuclear receptor subfamily 3, group C, member 1) modulator, exhibits an inflammation-suppressive effect, largely in the absence of detrimental side effects. To understand the mechanistic differences between the classic glucocorticoid dexamethasone (DEX) and CpdA, we looked for proteins oppositely regulated in bone marrow-derived macrophages using an unbiased proteomics approach. We found that the autophagy receptor SQSTM1 but not NR3C1 mediates the anti-inflammatory action of CpdA. CpdA drives SQSTM1 upregulation by recruiting the NFE2L2 transcription factor to its promoter. In contrast, the classic NR3C1 ligand dexamethasone recruits NR3C1 to the Sqstm1 promoter and other NFE2L2-controlled gene promoters, resulting in gene downregulation. Both DEX and CpdA induce autophagy, with marked different autophagy characteristics and morphology. Suppression of LPS-induced Il6 and Ccl2 genes by CpdA in macrophages is hampered upon Sqstm1 silencing, confirming that SQSTM1 is essential for the anti-inflammatory capacity of CpdA, at least in this cell type. Together, these results demonstrate how off-target mechanisms of selective NR3C1 ligands may contribute to a more efficient anti-inflammatory therapy.
Collapse
Affiliation(s)
- Viacheslav Mylka
- a Receptor Research Laboratories, Nuclear Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Julie Deckers
- a Receptor Research Laboratories, Nuclear Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium.,f Inflammation Research Center , VIB, Ghent University , Ghent , Belgium
| | - Dariusz Ratman
- a Receptor Research Laboratories, Nuclear Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Lode De Cauwer
- a Receptor Research Laboratories, Nuclear Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Jonathan Thommis
- a Receptor Research Laboratories, Nuclear Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Riet De Rycke
- f Inflammation Research Center , VIB, Ghent University , Ghent , Belgium.,g Department of Biomedical Molecular Biology , Ghent University , Ghent , Belgium.,h Department of Plant Systems Biology , VIB , Ghent , Belgium.,i Department of Plant Biotechnology and Bioinformatics , Ghent University , Ghent , Belgium
| | - Francis Impens
- c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium.,j VIB Proteomics Core , VIB , Ghent , Belgium
| | - Claude Libert
- f Inflammation Research Center , VIB, Ghent University , Ghent , Belgium.,g Department of Biomedical Molecular Biology , Ghent University , Ghent , Belgium
| | - Jan Tavernier
- b Receptor Research Laboratories, Cytokine Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Wim Vanden Berghe
- e PPES lab Protein Science, Proteomics & Epigenetic Signaling , Department Biomedical Sciences - University of Antwerp , Wilrijk , Belgium
| | - Kris Gevaert
- c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Karolien De Bosscher
- a Receptor Research Laboratories, Nuclear Receptor Lab , Ghent University , Ghent , Belgium.,c Department of Biochemistry , VIB-UGent Center for Medical Biotechnology , Ghent , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| |
Collapse
|
96
|
Souffriau J, Eggermont M, Van Ryckeghem S, Van Looveren K, Van Wyngene L, Van Hamme E, Vuylsteke M, Beyaert R, De Bosscher K, Libert C. A screening assay for Selective Dimerizing Glucocorticoid Receptor Agonists and Modulators (SEDIGRAM) that are effective against acute inflammation. Sci Rep 2018; 8:12894. [PMID: 30150712 PMCID: PMC6110732 DOI: 10.1038/s41598-018-31150-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023] Open
Abstract
It has been suggested that glucocorticoid receptor (GR) agonists that promote GR homodimerization more than standard glucocorticoids such as Dexamethasone could be more effective anti-inflammatory molecules against acute and life-threatening inflammatory conditions. To test this hypothesis, we set up a screening pipeline aimed at discovering such Selective Dimerizing GR Agonists and Modulators (SEDIGRAM). The pipeline consists of a reporter gene assay based on a palindromic glucocorticoid responsive element (GRE). This assay represents GR dimerization in human A549 lung epithelial cells. In the pipeline, this is followed by analysis of endogenous GRE-driven gene expression, a FRET assay confirming dimerization, and monitoring of in vitro and in vivo anti-inflammatory activity. In a proof of principle experiment, starting from seven candidate compounds, we identified two potentially interesting compounds (Cortivazol and AZD2906) that confer strong protection in a mouse model of aggressive TNF-induced lethal inflammation. A screening pipeline for SEDIGRAM may assist the search for compounds that promote GR dimerization and limit overwhelming acute inflammatory responses.
Collapse
Affiliation(s)
- Jolien Souffriau
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Melanie Eggermont
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sara Van Ryckeghem
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Van Looveren
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lise Van Wyngene
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Evelien Van Hamme
- Bio Imaging Core, Center for Inflammation Research, VIB, Ghent, Belgium
| | | | - Rudi Beyaert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, Center for Medical Biotechnology Center, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
97
|
Burwick N, Sharma S. Glucocorticoids in multiple myeloma: past, present, and future. Ann Hematol 2018; 98:19-28. [PMID: 30073393 DOI: 10.1007/s00277-018-3465-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
Abstract
Glucocorticoids are a backbone of treatment for multiple myeloma in both the upfront and relapsed/refractory setting. While glucocorticoids have single agent activity in multiple myeloma, in the modern era, they are paired with novel agents to induce high clinical response rates. On the other hand, toxicities of steroid therapy limit high dose delivery and impact patient quality of life. We provide a history of steroid use in multiple myeloma with the aim to understand how steroids have emerged and persisted in the treatment of multiple myeloma. We review mechanisms of glucocorticoid sensitivity and resistance and highlight potential future directions to evaluate steroid responsiveness. Further research in this area will aid in optimizing steroid utilization and help determine when glucocorticoid therapy may no longer benefit patients.
Collapse
Affiliation(s)
- Nicholas Burwick
- VA Puget Sound Health Care System, Seattle, WA, USA. .,Department of Medicine, University of Washington, 1705 NE Pacific St, M/S 358280, Seattle, WA, 98195, USA.
| | | |
Collapse
|
98
|
Buttgereit F, Matteson EL, Dejaco C, Dasgupta B. Prevention of glucocorticoid morbidity in giant cell arteritis. Rheumatology (Oxford) 2018; 57:ii11-ii21. [PMID: 29982779 DOI: 10.1093/rheumatology/kex459] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 01/08/2023] Open
Abstract
Glucocorticoids are the mainstay of treatment for GCA. Patients often require long-term treatment that may be associated with numerous adverse effects, depending on the dose and the duration of treatment. Trends in recent decades for glucocorticoid use in GCA suggest increasing cumulative doses and longer exposures. Common adverse events (AEs) reported in glucocorticoid-treated GCA patients include osteoporosis, hypercholesterolaemia, hypertension, posterior subcapsular cataract, infections, diabetes mellitus, Cushingoid appearance, adrenal insufficiency and aseptic necrosis of bone. AEs considered most worrisome by patients and rheumatologists include weight gain, psychological effects, osteoporosis, cardiometabolic complications and infections. The challenge is to maximize the benefit-risk ratio by giving the maximum glucocorticoid treatment necessary to control GCA initially and then to prevent relapse but to give the minimum treatment possible to avoid glucocorticoid-related AEs. We discuss the safety issues associated with long-term glucocorticoid use in patients with GCA and strategies for preventing glucocorticoid-related morbidity.
Collapse
Affiliation(s)
- Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| | - Eric L Matteson
- Division of Rheumatology and Department of Health Sciences Research, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Christian Dejaco
- Department of Rheumatology, Medical University Graz, Graz, Austria.,Rheumatology Service, South Tyrolian Health Trust, Hospital Bruneck, Bruneck, Italy
| | - Bhaskar Dasgupta
- Department of Rheumatology, Southend University Hospital and Anglia Ruskin University, Essex, UK
| |
Collapse
|
99
|
González-Gay MA, Pina T, Prieto-Peña D, Calderon-Goercke M, Blanco R, Castañeda S. Drug therapies for polymyalgia rheumatica: a pharmacotherapeutic update. Expert Opin Pharmacother 2018; 19:1235-1244. [DOI: 10.1080/14656566.2018.1501360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Miguel A. González-Gay
- Division of Rheumatology and Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
- Faculty of Medicine, University of Cantabria, Santander, Spain
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Trinitario Pina
- Division of Rheumatology and Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Diana Prieto-Peña
- Division of Rheumatology and Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Mónica Calderon-Goercke
- Division of Rheumatology and Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Ricardo Blanco
- Division of Rheumatology and Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Santos Castañeda
- Rheumatology Division, Hospital de La Princesa, IIS-Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
100
|
Hachemi Y, Rapp AE, Picke AK, Weidinger G, Ignatius A, Tuckermann J. Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. J Mol Endocrinol 2018; 61:R75-R90. [PMID: 29588427 PMCID: PMC5976078 DOI: 10.1530/jme-18-0024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/27/2018] [Indexed: 12/29/2022]
Abstract
Glucocorticoid hormones (GCs) have profound effects on bone metabolism. Via their nuclear hormone receptor - the GR - they act locally within bone cells and modulate their proliferation, differentiation, and cell death. Consequently, high glucocorticoid levels - as present during steroid therapy or stress - impair bone growth and integrity, leading to retarded growth and glucocorticoid-induced osteoporosis, respectively. Because of their profound impact on the immune system and bone cell differentiation, GCs also affect bone regeneration and fracture healing. The use of conditional-mutant mouse strains in recent research provided insights into the cell-type-specific actions of the GR. However, despite recent advances in system biology approaches addressing GR genomics in general, little is still known about the molecular mechanisms of GCs and GR in bone cells. Here, we review the most recent findings on the molecular mechanisms of the GR in general and the known cell-type-specific actions of the GR in mesenchymal cells and their derivatives as well as in osteoclasts during bone homeostasis, GC excess, bone regeneration and fracture healing.
Collapse
Affiliation(s)
- Yasmine Hachemi
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| | - Anna E Rapp
- Institute of Orthopaedic Research and BiomechanicsUlm University Medical Centre, Ulm, Germany
| | - Ann-Kristin Picke
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular BiologyUlm University, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and BiomechanicsUlm University Medical Centre, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| |
Collapse
|