51
|
Hussain A, Bourguet-Kondracki ML, Hussain F, Rauf A, Ibrahim M, Khalid M, Hussain H, Hussain J, Ali I, Khalil AA, Alhumaydhi FA, Khan M, Hussain R, Rengasamy KRR. The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Crit Rev Food Sci Nutr 2020; 62:2580-2605. [DOI: 10.1080/10408398.2020.1855413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amjad Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
| | - Farhad Hussain
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pukhtanuk (KP), Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Punjab, Pakistan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Salle), Germany
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Kannan R. R. Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
52
|
Zhang L, Yang S, Huang L, Ho PCL. Poly (ethylene glycol)-block-poly (D, L-lactide) (PEG-PLA) micelles for brain delivery of baicalein through nasal route for potential treatment of neurodegenerative diseases due to oxidative stress and inflammation: An in vitro and in vivo study. Int J Pharm 2020; 591:119981. [PMID: 33069896 DOI: 10.1016/j.ijpharm.2020.119981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/27/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
The application of baicalein (BE) in central nervous system (CNS) neurodegenerative diseases is hampered by its poor solubility and low oral bioavailability despite its neuroprotective effects. In this study, BE was encapsulated into poly (ethylene glycol)-block-poly (D, L-lactide) micelles (BE-MC) and administrated through nasal inhalation to enhance its brain distribution. BE-MC showed comparable in-vitro antioxidant activity to BE solution. Cytotoxicity study illustrated BE-MC could reduce BE's toxicity in SH-SY5Y cells and BV-2 cells. BE solution at concentration higher than 5 µM caused significant BV-2 cells' death after stimulation of LPS while BE-MC were non-toxic to cells at concentrations up to 50 µM. BE solution at 5 µM had no anti-inflammatory effects in BV-2 cells while BE-MC could reduce the inflammatory factor TNF-α at 5 µM and IL-6 at 20 µM significantly. Pharmacokinetic studies in C57BL/6 mice showed the absolute AUC values of BE in plasma and brain of BE-MC through nasal inhalation group were 5.09-fold and 1.50-fold higher than that of BE coarse powder through oral administration group at the same dose. Thus, our study indicated BE-MC administered nasally could be useful for treatment of CNS neurodegenerative diseases due to oxidative stress and inflammation.
Collapse
Affiliation(s)
- Li Zhang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117583, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Shili Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Paul Chi-Lui Ho
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117583, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
53
|
Yarmohammadi F, Rezaee R, Karimi G. Natural compounds against doxorubicin-induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytother Res 2020; 35:1163-1175. [PMID: 32985744 DOI: 10.1002/ptr.6882] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/01/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Cardiotoxicity is the main concern for long-term use of the doxorubicin (DOX). Reactive oxygen species (ROS) generation leads to oxidative stress that significantly contributes to the cardiac damage induced by DOX. The nuclear factor erythroid 2-related factor (Nrf2) acts as a protective player against DOX-induced myocardial oxidative stress. Several natural compounds (NCs) with anti-oxidative effects, were examined to suppress DOX cardiotoxicity such as asiatic acid, α-linolenic acid, apigenin, baicalein, β-lapachone, curdione, dioscin, ferulic acid, Ganoderma lucidum polysaccharides, genistein, ginsenoside Rg3, indole-3-carbinol, naringenin-7-O-glucoside, neferine, p-coumaric acid, pristimerin, punicalagin, quercetin, sulforaphane, and tanshinone IIA. The present article, reviews NCs that showed protective effects against DOX-induced cardiac injury through induction of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
54
|
Ke JY, Yang J, Li J, Xu Z, Li MQ, Zhu ZL. Baicalein inhibits FURIN-MT1-MMP-mediated invasion of ectopic endometrial stromal cells in endometriosis possibly by reducing the secretion of TGFB1. Am J Reprod Immunol 2020; 85:e13344. [PMID: 32910833 DOI: 10.1111/aji.13344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
PROBLEM Endometriosis (EMs) is characterized by the presence of endometrial stroma and glands outside the uterus. Our previous study showed that baicalein inhibited proliferation and induced apoptosis in EMs. However, the effects of baicalein on the invasiveness of ectopic endometrial stromal cells (EcESCs) remain unclear. The aim of this study was to assess the potential anti-invasive effect of baicalein and determine the underlying mechanism. METHODS The invasive and migratory properties of EcESCs were assessed in vitro using Transwell and wound healing assays. The expression of functional markers of EcESCs, including matrix metalloproteases (MMPs), FURIN, and TGFB1, was analyzed using WB and ELISA. Additionally, a mouse model of EMs was treated with baicalein (10 mg/kg/d and 35 mg/kg/d) for 4 weeks. The weight and number of ectopic lesions were determined, and the expression of markers was assessed using immunohistochemistry. RESULTS Baicalein inhibited the invasion of EcESCs and the expression of certain invasion-related proteins, including MMP9, MMP2, and MT1-MMP. Exposure to baicalein reduced the extracellular levels of TGFB1 in EcESCs and the reduced expression of TGFB1, resulting in decreased expression of FURIN in EcESCs, which serves a pivotal role in the transformation of pro-MT1-MMP to activated MT1-MMP. In the mouse model of EMs, intraperitoneal injection of baicalein inhibited the growth of ectopic lesions and reduced MT1-MMP, FURIN, and TGFB1 expression. CONCLUSIONS Baicalein reduced the invasion of EMs, potentially by restricting the FURIN-MT1-MMP-mediated cell invasion of EcESCs maybe through reduction of the autocrine of TGFB1.
Collapse
Affiliation(s)
- Jun-Ya Ke
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Shanghai, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Shanghai, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhen Xu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ming-Qing Li
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Shanghai, China
| | - Zhi-Ling Zhu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
55
|
Liu Y, Yang S, Wang K, Lu J, Bao X, Wang R, Qiu Y, Wang T, Yu H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Prolif 2020; 53:e12894. [PMID: 32881115 PMCID: PMC7574878 DOI: 10.1111/cpr.12894] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is the principal cause of death and a dominant public health problem which seriously threatening human life. Among various ways to treat cancer, traditional Chinese medicine (TCM) and natural products have outstanding anti‐cancer effects with their unique advantages of high efficiency and minimal side effects. Cell senescence is a physiological process of cell growth stagnation triggered by stress, which is an important line of defence against tumour development. In recent years, active ingredients of TCM and natural products, as an interesting research hotspot, can induce cell senescence to suppress the occurrence and development of tumours, by inhibiting telomerase activity, triggering DNA damage, inducing SASP, and activating or inactivating oncogenes. In this paper, the recent research progress on the main compounds derived from TCM and natural products that play anti‐cancer roles by inducing cell senescence is systematically reviewed, aiming to provide a reference for the clinical treatment of pro‐senescent cancer.
Collapse
Affiliation(s)
- Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
56
|
Inhibition of Autophagy Amplifies Baicalein-Induced Apoptosis in Human Colorectal Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:1-7. [PMID: 33024814 PMCID: PMC7522588 DOI: 10.1016/j.omto.2020.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Baicalein is a Chinese herbal compound extracted from Scutellaria baicalensis that has anti-tumor properties. The aim of this study was to elucidate the mechanisms of action of baicalein against human colorectal cancer cell lines and to assess whether the anti-proliferative effects of baicalein may be amplified with autophagy inhibition. Human colon cancer cell lines (HT-29, HCT-116, SW480, and SW620) were treated with baicalein alone and in combination with the autophagy inhibitor chloroquine (CQ). Baicalein reduced cell viability in all four colon cancer lines in a dose-dependent fashion. Combination treatment of baicalein and the autophagy inhibitor CQ significantly decreased cell viability compared with baicalein alone in HT-29 and HCT-116 cell lines. Western blot analysis of the HCT-116 cell line treated with both baicalein and CQ demonstrated increased expression of LC3-II, a component of autophagy. The combination of baicalein with CQ culminated in activation of caspase-3-mediated apoptosis. These findings demonstrate that inhibition of autophagy enhanced apoptotic cell death induced by baicalein treatment in colon cancer cell lines. Future work will assess other targetable apoptotic pathways activated by baicalein and autophagy inhibition.
Collapse
|
57
|
Anti-inflammatory and immunomodulatory effects of baicalin in cerebrovascular and neurological disorders. Brain Res Bull 2020; 164:314-324. [PMID: 32858128 DOI: 10.1016/j.brainresbull.2020.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Inflammatory responses play an extraordinary role in the pathogenesis of cerebrovascular and neurological disorders. Baicalin is one of the important flavonoids, which is extracted from Scutellaria baicalensis Georgi. Recently, numerous in vivo and in vitro studies have shown that baicalin has salutary effects for anti-inflammatory and immunomodulatory and has been demonstrated to exert beneficial therapeutic properties in cerebrovascular and neurological diseases. In this review, we aim to discuss that baicalin exerts anti-inflammatory effects through multiple pathways and targets, thus affecting the production of a variety of inflammatory cytokines and neuroprotective process of neurological diseases; furthermore, the related targets of the anti-inflammatory effects of baicalin were analyzed via using the tools of network pharmacology, to provide theoretical basis and innovative ideas for the future clinical application of baicalin.
Collapse
|
58
|
Huang L, Peng B, Nayak Y, Wang C, Si F, Liu X, Dou J, Xu H, Peng G. Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic Inhibition. Front Cell Dev Biol 2020; 8:836. [PMID: 32984331 PMCID: PMC7477299 DOI: 10.3389/fcell.2020.00836] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Malignant melanoma is one of the most common and dangerous skin cancers with a high rate of death every year. Furthermore, N-RAS and B-RAF mutations in melanoma cells increase the difficulties for clinical treatment in patients. Therefore, development of effective and universal drugs against melanoma is urgently needed. Here we demonstrate that baicalein and baicalin, the active components of the Chinese traditional medicinal plant Scutellaria baicalensis Georgi, can significantly inhibit melanoma cell growth and proliferation, suppress tumor cell colony formation and migration, as well as induce apoptosis and senescence in melanoma cells. The anti-tumor effects mediated by baicalein and baicalin are independent of N-RAS and B-RAF mutation statuses in melanoma cells. Mechanistically, we identify that the suppression of baicalein and baicalin on melanoma cells is due to inhibition of tumor cell glucose uptake and metabolism by affecting the mTOR-HIF-1α signaling pathway. In addition, we demonstrated that baicalein and baicalin can suppress tumorigenesis and tumor growth in vivo in the melanoma model. These studies clearly indicate that baicalein and baicalin can control tumor growth and development metabolically and have great potential as novel and universal drugs for melanoma therapy.
Collapse
Affiliation(s)
- Lan Huang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China.,Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Bo Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Yash Nayak
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Cindy Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Fusheng Si
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Xia Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
59
|
Chen Y, Yao F, Ming K, Shi J, Zeng L, Wang D, Wu Y, Hu Y, Liu J. Assessment of the Effect of Baicalin on Duck Virus Hepatitis. Curr Mol Med 2020; 19:376-386. [PMID: 30950349 DOI: 10.2174/1566524019666190405095301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Duck virus hepatitis (DVH) caused by duck hepatitis A virus type 1 (DHAV-1) is a malignant disease in ducklings, causing economic losses in the duck industry. However, there is still no antiviral drug against DHAV-1 in the clinic. OBJECTIVE Our aim is to investigate the anti-DHAV-1 effect of baicalin, which is a flavonoid derived from the Chinese medicinal herb huangqin (Scutellaria baicalensis Georgi). METHODS Here, we first detected its anti-DHAV-1 ability in vitro and in vivo. At the same time, the inhibition of baicalin on DHAV-1 reproduction was determined. Finally, we tested and verified the anti-oxidative and immuno-enhancing roles of baicalin on its curative effect on DVH. RESULTS Baicalin possessed anti-DHAV-1 effect. It improved the cytoactive of DEH which was infected by DHAV-1 as well as reduced the DHAV-1 reproduction in DEH. Under baicalin treatment, mortality of ducklings infected by DHAV-1 decreased, additionally the DHAV-1 level and liver injury in such ducklings were significantly reduced or alleviated. The in vitro mechanism study indicated baicalin inhibited DHAV-1 reproduction via interfering the viral replication and release. Furthermore, the in vivo mechanism study manifested both the anti-oxidative and immuno-enhancing abilities of baicalin, which played crucial roles in its curative effect on DVH. CONCLUSION This study may provide a scientific basis for developing baicalin as one or a part of the anti-DHAV-1 drugs.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,College of Animal Science and Technology, College of Tropical Agriculture and Forestry, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Haikou 570228, China
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Shi
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Zeng
- Animal husbandry and Veterinary Bureau of Yuhang District of Hangzhou, Hangzhou 311100, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
60
|
Li Q, Wang D, Bai D, Cai C, Li J, Yan C, Zhang S, Wu Z, Hao J, Yu G. Photoprotective effect of Astragalus membranaceus polysaccharide on UVA-induced damage in HaCaT cells. PLoS One 2020; 15:e0235515. [PMID: 32692781 PMCID: PMC7373302 DOI: 10.1371/journal.pone.0235515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/16/2020] [Indexed: 11/18/2022] Open
Abstract
Background The skin provides a predominant barrier against chemical, physical and microbial incursion. The intemperate exposure to ultraviolet A (UVA) radiation can cause excessive cellular oxidative stress, leading to skin damage, proteins damage and mitochondrial dysfunction. There is sufficient evidences supporting the proposal that mitochondria is highly implicated in skin photo-damage. Methods In the present study, a polysaccharide isolated from Astragalus membranaceus was further purified to be an α-glucan, which was further investigated its beneficial influence on UVA-induced photo-damage in HaCaT cells. Results Our results showed that the purified Astragalus membranaceus polysaccharide (AP) can protect HaCaT cells from UVA-induced photo-damage through reducing UVA-induced intracellular ROS production and mitochondrial membrane potential, thereby altering ATP content. It was found that the UVA induced damage in HaCaT cells could be effectively restored by co-treatment with AP. Conclusions AP exhibited promising potential for advanced application as multifunctional skin care products and drugs.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Depeng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Donghui Bai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Jia Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chengxiu Yan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shuai Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhijun Wu
- Infinitus (China) Company Ltd., Guangzhou, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- * E-mail: (JH); (GY)
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- * E-mail: (JH); (GY)
| |
Collapse
|
61
|
Zeng A, Liang X, Zhu S, Liu C, Luo X, Zhang Q, Song L. Baicalin, a Potent Inhibitor of NF-κB Signaling Pathway, Enhances Chemosensitivity of Breast Cancer Cells to Docetaxel and Inhibits Tumor Growth and Metastasis Both In Vitro and In Vivo. Front Pharmacol 2020; 11:879. [PMID: 32625089 PMCID: PMC7311669 DOI: 10.3389/fphar.2020.00879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Objective The aim of this study is to investigate the anti-cancer activity and sensibilization of baicalin (BA) against breast cancer (BC) cells. Methods The anti-proliferation of BA in BC cell lines was evaluated by MTT and colony formation assays. Apoptotic induction of BA was measured by flow cytometry. Wound-healing and transwell assays were exploited to assess migrated and invasive inhibition of BA. Western-blot and immunofluorescence were used to study mechanisms of anti-migration and sensibilization of BA. Anti-tumor and anti-metastasis effects of BA were evaluated in subcutaneous and pulmonary metastasis mouse model of BC cells. Results BA significantly suppressed proliferation and induced apoptosis of BC cells in a concentration- and time-dependent manner. Additionally, BA induced cell apoptosis via the mitochondria-mediated pathway, as evidenced by cellular induction of reactive oxygen species and upregulated expression of the Bax/Bcl-2 ratio. The overall expression and nuclear translocation of NF-κB signaling pathway in BC cells were dramatically inhibited by treatment with BA. BA significantly suppressed abilities of migration and invasion in BC cells. Notably, BA sensitized BC cells to docetaxel (DXL) by suppressing the expression of survivin/Bcl-2. BA also retarded tumor growth and triggered apoptosis of tumor cells in a tumor mouse model of 4T1 cells. Furthermore, pulmonary metastasis of BC cells was distinctly suppressed by BA in a tumor mouse model of 4T1 cells. Conclusion BA effectively triggered apoptosis, inhibited metastasis, and enhanced chemosensitivity of BC, implying that BA might serve as a promising agent for the treatment of BC.
Collapse
Affiliation(s)
- Anqi Zeng
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Translational Pharmacology and Clinical Application of Sichuan Academy of Chinese Medical Science, Chengdu, China
| | - Xin Liang
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaomi Zhu
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Luo
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linjiang Song
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
62
|
Baicalein Inhibits Benzo[a]pyrene-Induced Toxic Response by Downregulating Src Phosphorylation and by Upregulating NRF2-HMOX1 System. Antioxidants (Basel) 2020; 9:antiox9060507. [PMID: 32526964 PMCID: PMC7346154 DOI: 10.3390/antiox9060507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Benzo[a]pyrene (BaP), a major environmental pollutant, activates aryl hydrocarbon receptor (AHR), induces its cytoplasmic-to-nuclear translocation and upregulates the production of cytochrome P450 1A1 (CYP1A1), a xenobiotic metabolizing enzyme which metabolize BaP. The BaP-AHR-CYP1A1 axis generates reactive oxygen species (ROS) and induces proinflammatory cytokines. Although the anti-inflammatory phytochemical baicalein (BAI) is known to inhibit the BaP-AHR-mediated CYP1A1 expression, its subcellular signaling remains elusive. In this study, normal human epidermal keratinocytes and HaCaT keratinocytes were treated with BAI, BaP, or BAI + BaP, and assessed for the CYP1A1 expression, antioxidative pathways, ROS generation, and proinflammatory cytokine expressions. BAI and BAI-containing herbal medicine Wogon and Oren-gedoku-to could inhibit the BaP-induced CYP1A1 expression. In addition, BAI activated antioxidative system nuclear factor-erythroid 2-related factor-2 (NRF2) and heme oxygenase 1 (HMOX1), leading the reduction of BaP-induced ROS production. The BaP-induced IL1A and IL1B was also downregulated by BAI. BAI inhibited the phosphorylation of Src, a component of AHR cytoplasmic complex, which eventually interfered with the cytoplasmic-to-nuclear translocation of AHR. These results indicate that BAI and BAI-containing herbal drugs may be useful for inhibiting the toxic effects of BaP via dual AHR-CYP1A1-inhibiting and NRF2-HMOX1-activating activities.
Collapse
|
63
|
Majumdar S, Dey S, Ganguly D, Mazumder R. Enhanced topical permeability of natural flavonoid baicalein through nano liposomal gel: In vitro and in vivo investigation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
64
|
Liao P, Li Y, Li M, Chen X, Yuan D, Tang M, Xu K. Baicalin alleviates deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets. Food Chem Toxicol 2020; 140:111326. [DOI: 10.1016/j.fct.2020.111326] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 01/24/2023]
|
65
|
Baicalin Represses C/EBP β via Its Antioxidative Effect in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8951907. [PMID: 32566108 PMCID: PMC7261332 DOI: 10.1155/2020/8951907] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/19/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the gradual loss of dopaminergic (DA) neurons in the substantia nigra (SN) and the formation of intracellular Lewy bodies (LB) in the brain, which aggregates α-synuclein (α-Syn) as the main component. The interest of flavonoids as potential neuroprotective agents is increasing due to its high efficiency and low side effects. Baicalin is one of the flavonoid compounds, which is a predominant flavonoid isolated from Scutellaria baicalensis Georgi. However, the key molecular mechanism by which Baicalin can prevent the PD pathogenesis remains unclear. In this study, we used bioinformatic assessment including Gene Ontology (GO) to elucidate the correlation between oxidative stress and PD pathogenesis. RNA-Seq methods were used to examine the global expression profiles of noncoding RNAs and found that C/EBPβ expression was upregulated in PD patients compared with healthy controls. Interestingly, Baicalin could protect DA neurons against reactive oxygen species (ROS) and decreased C/EBPβ and α-synuclein expression in pLVX-Tet3G-α-synuclein SH-SY5Y cells. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mouse model, the results revealed that treatment with Baicalin improved the PD model's behavioral performance and reduced dopaminergic neuron loss in the substantia nigra, associated with the inactivation of proinflammatory cytokines and oxidative stress. Hence, our study supported that Baicalin repressed C/EBPβ via redox homeostasis, which may be an effective potential treatment for PD.
Collapse
|
66
|
Momtaz S, Memariani Z, El-Senduny FF, Sanadgol N, Golab F, Katebi M, Abdolghaffari AH, Farzaei MH, Abdollahi M. Targeting Ubiquitin-Proteasome Pathway by Natural Products: Novel Therapeutic Strategy for Treatment of Neurodegenerative Diseases. Front Physiol 2020; 11:361. [PMID: 32411012 PMCID: PMC7199656 DOI: 10.3389/fphys.2020.00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Misfolded proteins are the main common feature of neurodegenerative diseases, thereby, normal proteostasis is an important mechanism to regulate the neural survival and the central nervous system functionality. The ubiquitin-proteasome system (UPS) is a non-lysosomal proteolytic pathway involved in numerous normal functions of the nervous system, modulation of neurotransmitter release, synaptic plasticity, and recycling of membrane receptors or degradation of damaged and regulatory intracellular proteins. Aberrant accumulation of intracellular ubiquitin-positive inclusions has been implicated to a variety of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington disease (HD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Myeloma (MM). Genetic mutation in deubiquitinating enzyme could disrupt UPS and results in destructive effects on neuron survival. To date, various agents were characterized with proteasome-inhibitory potential. Proteins of the ubiquitin-proteasome system, and in particular, E3 ubiquitin ligases, may be promising molecular targets for neurodegenerative drug discovery. Phytochemicals, specifically polyphenols (PPs), were reported to act as proteasome-inhibitors or may modulate the proteasome activity. PPs modify the UPS by means of accumulation of ubiquitinated proteins, suppression of neuronal apoptosis, reduction of neurotoxicity, and improvement of synaptic plasticity and transmission. This is the first comprehensive review on the effect of PPs on UPS. Here, we review the recent findings describing various aspects of UPS dysregulation in neurodegenerative disorders. This review attempts to summarize the latest reports on the neuroprotective properties involved in the proper functioning of natural polyphenolic compounds with implication for targeting ubiquitin-proteasome pathway in the neurodegenerative diseases. We highlight the evidence suggesting that polyphenolic compounds have a dose and disorder dependent effects in improving neurological dysfunctions, and so their mechanism of action could stimulate the UPS, induce the protein degradation or inhibit UPS and reduce protein degradation. Future studies should focus on molecular mechanisms by which PPs can interfere this complex regulatory system at specific stages of the disease development and progression.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.,Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Faculty of Medicine, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Amir Hossein Abdolghaffari
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran.,Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
67
|
Zhu X, Yao P, Liu J, Guo X, Jiang C, Tang Y. Baicalein attenuates impairment of hepatic lysosomal acidification induced by high fat diet via maintaining V-ATPase assembly. Food Chem Toxicol 2020; 136:110990. [DOI: 10.1016/j.fct.2019.110990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/31/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
|
68
|
Fang P, Yu M, Shi M, Bo P, Gu X, Zhang Z. Baicalin and its aglycone: a novel approach for treatment of metabolic disorders. Pharmacol Rep 2020; 72:13-23. [PMID: 32016847 DOI: 10.1007/s43440-019-00024-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/27/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The current strategies for prevention and treatment of insulin resistance and type 2 diabetes are not fully effective and frequently accompanied by many negative effects. Therefore, novel ways to prevent insulin resistance and type 2 diabetes are urgently needed. The roots of Scutellaria radix are commonly used in traditional Chinese medicines for prevention and treatment of type 2 diabetes, atherosclerosis, hypertension, hyperlipidemia, dysentery, and other respiratory disorders. Baicalin and baicalein are the major and active ingredient extracts from Scutellaria baicalensis. METHODS A comprehensive and systematic review of literature on baicalin and baicalein was carried out. RESULTS Emerging evidence indicated that baicalin and baicalein possessed hepatoprotective, anti-oxidative, anti-dyslipidemic, anti-lipogenic, anti-obese, anti-inflammatory, and anti-diabetic effects, being effective for treating obesity, insulin resistance, non-alcoholic fatty liver, and dyslipidemia. Besides, baicalin and baicalein are almost non-toxic to epithelial, peripheral, and myeloid cells. CONCLUSION The purpose of this study is to focus on the therapeutic applications and accompanying molecular mechanisms of baicalin and baicalein against hyperglycemia, insulin resistance, type 2 diabetes, hyperlipidemia, obesity, and non-alcoholic fatty liver, and trying to establish a novel anti-obese and anti-diabetic strategy.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mei Yu
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Xuewen Gu
- Department of Pathology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
69
|
Yan T, Ji M, Sun Y, Yan T, Zhao J, Zhang H, Wang Z. Preparation and characterization of baicalein/hydroxypropyl-β-cyclodextrin inclusion complex for enhancement of solubility, antioxidant activity and antibacterial activity using supercritical antisolvent technology. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00970-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
70
|
Fang P, Sun Y, Gu X, Shi M, Bo P, Zhang Z, Bu L. Baicalin ameliorates hepatic insulin resistance and gluconeogenic activity through inhibition of p38 MAPK/PGC-1α pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153074. [PMID: 31473580 DOI: 10.1016/j.phymed.2019.153074] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Although the results of our and other studies show that baicalin can enhance glucose uptake and insulin sensitivity in skeletal muscle and adipocytes of mice, the specific metabolic contribution of baicalin on hepatic insulin resistance and gluconeogenic activity is still unclear. PURPOSE The aim of this study is to investigate whether baicalin is involved in regulation of hepatic insulin resistance and gluconeogenic activity and its underlying mechanisms. STUDY DESIGN/METHODS In the present study, high-fat diet-induced obese mice were given 50 mg/kg baicalin intraperitoneally (i.p.) once a day for 21 consecutive days, and hepatocytes were treated with baicalin (100 μM) or metformin (100 μM) in the presence of glucagon (200 nM) for 12 h. Then insulin resistance indexes and genes related to gluconeogenesis were examined in liver tissues. RESULTS The present findings showed that baicalin decreased body weight, HOMA-IR, and alleviated high fat diet-induced glucose intolerance, hyperglycemia and insulin resistance in diet-induced obese mice. Furthermore, baicalin markedly suppressed p-p38 MAPK, p-CREB, FoxO1, PGC-1α, PEPCK and G6Pase expression in liver of obese mice and hepatocytes. Moreover, inhibition of gluconeogenic genes by baicalin was also strengthened by p38MAPK inhibitor in hepatocytes. CONCLUSION Baicalin suppressed expression of PGC-1α and gluconeogenic genes, and reduced glucose production in high-fat diet-induced obese mice. Baicalin ameliorated hepatic insulin resistance and gluconeogenic activity mainly through inhibition of p38 MAPK/PGC-1α signal pathway. This study provides a possibility of using baicalin to treat hyperglycemia and hepatic insulin resistance in clinic.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yabin Sun
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Xinru Gu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Ping Bo
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Le Bu
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
71
|
Synthesis of Novel Baicalein Amino Acid Derivatives and Biological Evaluation as Neuroprotective Agents. Molecules 2019; 24:molecules24203647. [PMID: 31601055 PMCID: PMC6832219 DOI: 10.3390/molecules24203647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 01/25/2023] Open
Abstract
Baicalein, a famously effective component of the traditional Chinese medicine Rhizoma Huang Qin (Scutellaria altissima L.), has been proved to have potent neuroprotection and anti-platelet aggregation effects with few side effects. Meanwhile, recent studies have revealed that the introduction of amino acid to baicalein could improve its neuroprotective activity. In the present study, a series of novel baicalein amino acid derivatives were designed, synthesized, and screened for their neuroprotective effect against tert-butyl, hydroperoxide-induced, SH-SY5Y neurotoxicity cells and toxicity on the normal H9C2 cell line by standard methylthiazol tetrazolium (MTT) assay. In addition, all of the newly synthesized compounds were characterized by 1H-NMR, 13C-NMR, and high resolution mass spectrometry (HR-MS). The results showed that most of the compounds provided more potent neuroprotection than baicalein, and were equivalent to the positive drug edaravin. They showed no obvious cytotoxicity on normal H9C2 cells. Notably, the most active compound 8 displayed the highest protective effect (50% effective concentration (EC50) = 4.31 μM) against tert-butyl, hydroperoxide-induced, SH-SY5Y neurotoxicity cells, which was much better than the baicalein (EC50 = 24.77 μM) and edaravin (EC50 = 5.62 μM). Further research on the chick chorioallantoic membrane (CAM) model indicated that compound 8 could significantly increase angiogenesis, which might promote neurovascular proliferation. The detection of apoptosis analysis showed that compound 8 could dramatically alleviate morphological manifestations of cell damage. Moreover, the benzyloxycarbonyl (cbz)-protected baicalein amino acid derivatives showed better neuroprotective activity than the t-Butyloxy carbonyl (boc)-protected derivatives.
Collapse
|
72
|
Ishfaq M, Zhang W, Hu W, Waqas Ali Shah S, Liu Y, Wang J, Wu Z, Ahmad I, Li J. Antagonistic Effects Of Baicalin On Mycoplasma gallisepticum-Induced Inflammation And Apoptosis By Restoring Energy Metabolism In The Chicken Lungs. Infect Drug Resist 2019; 12:3075-3089. [PMID: 31632098 PMCID: PMC6781171 DOI: 10.2147/idr.s223085] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background Baicalin possesses potential anti-inflammatory, anti-tumor and anti-oxidant activities. In the present study, we attempted to investigate the preventive effects of baicalin against Mycoplasma gallisepticum (MG)-induced inflammation, apoptosis and energy metabolism dysfunction in chicken lungs. Methods Experimental chickens were randomly divided into 1) control group, 2) MG infection group, 3) MG-infected group treated with baicalin at a dose of 450 mg/kg and 4) baicalin alone treated group (450 mg/kg). After 7 days of post-treatment, serum and lung tissues were collected for different experimental analyses. The hallmarks of inflammation, apoptosis and energy metabolism dysfunction were detected by histological and ultrastructural examination, qRT-PCR, Western blotting and terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL) assay. Results The level of serum inflammatory markers were increased with MG infection. Histological and ultrastructural analysis showed excessive inflammatory cells infiltrates, alveolar wall thickening, hemorrhages, mitochondrial and nuclear damage, including mitochondrial swelling and condensation of DNA in the lungs of chickens infected with MG. TUNEL assay positive-stained nuclei were significantly increased in MG infection group. In addition, the mRNA and protein expression level of energy metabolism-related genes and ATPase activities were significantly reduced. Meanwhile, MG-induced morphological and ultrastructural changes were partially disappeared with baicalin-treatment, and the level of serum inflammatory markers were significantly reduced. It has been noted that baicalin significantly attenuated MG-induced inflammation and apoptosis in the chicken lungs through the suppression of nuclear factor-kappa B and reduced extensive positive-stained apoptotic nuclei. More importantly, ATPase activities and mRNA and protein expression level of energy metabolism-related genes were significantly improved with baicalin-treatment in the lungs of chickens infected with MG. Conclusion Conclusively, it has been suggested from these results that baicalin-treatment efficiently prevented MG-induced inflammation, apoptosis and energy metabolism dysfunction in the chicken lungs and provide basis for new therapeutic targets to control MG infection.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Wanying Hu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuhao Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jian Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ijaz Ahmad
- The University of Agriculture Peshawar, Peshawar, Khyber Pakhtunkhwa 25130, Pakistan
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
73
|
Ke M, Zhang Z, Xu B, Zhao S, Ding Y, Wu X, Wu R, Lv Y, Dong J. Baicalein and baicalin promote antitumor immunity by suppressing PD-L1 expression in hepatocellular carcinoma cells. Int Immunopharmacol 2019; 75:105824. [PMID: 31437792 DOI: 10.1016/j.intimp.2019.105824] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/25/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
Abstract
Blocking the PD-L1/PD-1 pathway to prevent the immune evasion of tumor cells is a powerful approach for treating multiple cancers, including hepatocellular carcinoma (HCC). Previous studies have shown that baicalein and baicalin are directly cytotoxic to some tumors, here we demonstrate that in addition to direct cytotoxicity, these two flavonoids stimulate the T cell mediated immune response against tumors through reduction of PD-L1 expression in cancer cells. Interestingly, more significant tumor regression was observed in BALB/c mice than in BALB/c-nu/nu mice after baicalein and baicalin treatment. PD-L1 upregulation induced by interferon-γ (IFN-γ) was significantly inhibited by these two flavonoids in vitro. Both baicalein and baicalin enhanced the cytotoxicity of T cells to eliminate tumor cells, which was abrogated after HCC cells were transfected with a PD-L1 overexpression plasmid or after T cells were pretreated with an anti-PD-1 blocking antibody. Further mechanistic research indicated that the IFN-γ-induced expression and promoter activity of PD-L1 were suppressed by these two flavonoids, and these effects were mediated by STAT3 activity inhibition. Therefore, baicalein and baicalin decreased STAT3 activity, further downregulated IFN-γ-induced PD-L1 expression and subsequently restored T cell sensitivity to kill tumor cells. Our findings provide novel insight into the anticancer effects of baicalein and baicalin through which tumor growth is inhibited by PD-L1 expression downregulation and suggest that these flavonoids have great potential for clinical treatment.
Collapse
Affiliation(s)
- Mengyun Ke
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Biyi Xu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Shidi Zhao
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Yiming Ding
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Xiaoning Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China.
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China.
| | - Jian Dong
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China; Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China; Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
74
|
Shah MA, Park DJ, Kang JB, Kim MO, Koh PO. Baicalin attenuates lipopolysaccharide-induced neuroinflammation in cerebral cortex of mice via inhibiting nuclear factor kappa B (NF-κB) activation. J Vet Med Sci 2019; 81:1359-1367. [PMID: 31366818 PMCID: PMC6785614 DOI: 10.1292/jvms.19-0281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Baicalin is a plant-derived flavonoid that has anti-inflammatory and anti-oxidative effects. We investigated an anti-inflammatory effect of baicalin against lipopolysaccharide (LPS)-induced
damage in cerebral cortex. Adult mice were divided into control, LPS-treated, and LPS and baicalin co-treated animals. LPS (250 µg/kg/day) and baicalin (10 mg/kg/day) were
intraperitoneally injected for 7 days. LPS treatment induced histopathological changes in cerebral cortex, whereas baicalin protected neuronal cells against LPS toxicity. Moreover, baicalin
treatment attenuated LPS-induced increases of reactive oxygen species and oxidative stress in cerebral cortices. Ionized calcium binding adaptor molecule-1 (Iba-1) and glial fibrillary
acidic protein (GFAP) are known as markers of activated microglia and astrocyte, respectively. Results of Western blot and immunofluorescence staining showed that LPS exposure induces
increases of Iba-1 and GFAP expressions, whereas baicalin alleviates LPS-induced increases of these proteins. Baicalin also prevented LPS-induced increase of nuclear factor kappa B (NF-κB).
LPS treatment led to increases of pro-inflammatory factors including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Increases of these pro-inflammatory mediators were attenuated
in baicalin co-treated animals. These results demonstrated that baicalin regulates neuroglia activation and modulates inflammatory factors in LPS-induced neuronal injury. Thus, our findings
suggest that baicalin exerts a neuroinflammatory effect against LPS-induced toxicity through decreasing oxidative stress and inhibiting NF-κB mediated inflammatory factors, such as IL-1β and
TNF-α.
Collapse
Affiliation(s)
- Murad-Ali Shah
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Myeong-Ok Kim
- Division of Life Science and Applied Life Science, College of Natural Sciences, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| |
Collapse
|
75
|
Glucagon-Like Peptide-1 Receptor Agonist Attenuates Autophagy to Ameliorate Pulmonary Arterial Hypertension through Drp1/NOX- and Atg-5/Atg-7/Beclin-1/LC3β Pathways. Int J Mol Sci 2019; 20:ijms20143435. [PMID: 31336911 PMCID: PMC6678531 DOI: 10.3390/ijms20143435] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial dysfunction is associated with cardiovascular diseases and diabetes. Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling, and the abnormal proliferation, apoptosis and migration of pulmonary arterial smooth muscle cells (PASMCs). The glucagon-like peptide-1 (GLP-1) receptor agonist, liraglutide, has been shown to prevent pulmonary hypertension in monocrotaline-exposed rats. The aim of this study was to investigate the effect of liraglutide on autophagy, mitochondrial stress and apoptosis induced by platelet-derived growth factor BB (PDGF-BB). PASMCs were exposed to PDGF-BB, and changes in mitochondrial morphology, fusion-associated protein markers, and reactive oxygen species (ROS) production were examined. Autophagy was assessed according to the expressions of microtubule-associated protein light chain 3 (LC3)-II, LC3 puncta and Beclin-1. Western blot analysis was used to assess apoptosis, mitochondrial stress and autophagy markers. Liraglutide significantly inhibited PDGF-BB proliferation, migration and motility in PASMCs. PDGF-BB-induced ROS production was mitigated by liraglutide. Liraglutide increased the expression of α-smooth muscle actin (α-SMA) and decreased the expression of p-Yes-associated protein (p-YAP), inhibited autophagy-related protein (Atg)-5, Atg-7, Beclin-1 and the formation of LC3-β and mitochondrial fusion protein dynamin-related (Drp)1. Therefore, liraglutide can mitigate the proliferation of PASMCs via inhibiting cellular Drp1/nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) pathways and Atg-5/Atg-7/Beclin-1/LC3β-dependent pathways of autophagy in PAH.
Collapse
|
76
|
Ren L, Sun D, Zhou X, Yang Y, Huang X, Li Y, Wang C, Li Y. Chronic treatment with the modified Longdan Xiegan Tang attenuates olanzapine-induced fatty liver in rats by regulating hepatic de novo lipogenesis and fatty acid beta-oxidation-associated gene expression mediated by SREBP-1c, PPAR-alpha and AMPK-alpha. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:176-187. [PMID: 30590197 DOI: 10.1016/j.jep.2018.12.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The modified Longdan Xiegan Tang (mLXT) has been used clinically for various neuropsychiatric disorders and liver diseases. The use of antipsychotics is associated with nonalcoholic fatty liver disease. AIM OF THE STUDY To investigate the effect and underlying mechanisms of mLXT on antipsychotic-induced fatty liver. MATERIALS AND METHODS The representative active components in the formula were identified and quantified by a HPLC method. Fatty liver in male rats was induced by olanzapine (5 mg/kg) (p.o., × 8 weeks), and the rats were co-treated with mLXT extract (50 and 500 mg/kg). Blood and liver variables were determined enzymatically or histologically. Gene/protein expression was analyzed by real-time PCR and Western blot. RESULTS Treatment of rats with mLXT decreased olanzapine-induced increases in hepatic triglyceride content, cell vacuolar degeneration and Oil Red O-stained area, accompanied by suppression of olanzapine-stimulated hepatic mRNA and/or protein overexpression of sterol regulatory element-binding protein (SREBP)-1c, and its downstream lipogenic enzymes for de novo lipogenesis. Besides, mLXT also activated hepatic expression of peroxisome proliferator-activated receptor-alpha and its target genes associated with fatty acid beta-oxidation, phosphorylated Thr172 in AMP-activated protein kinase (AMPK)-alpha (the upstream enzyme of SREBP-1c and PPAR-alpha), and its ratio to total AMPK-alpha. CONCLUSIONS The present results suggest that chronic treatment with mLXT ameliorates olanzapine-induced fatty liver by regulating hepatic de novo lipogenesis- and fatty acid beta-oxidation-associated gene expression mediated by SREBP-1c and PPAR-alpha, respectively, through activation of AMPK-alpha. Our findings provide the evidence that supports clinical use of the formula for antipsychotic medication-induced fatty liver.
Collapse
Affiliation(s)
- Liying Ren
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Dongmei Sun
- Analysis Department of Chinese Medicine, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China.
| | - Xia Zhou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yifan Yang
- Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, Sydney, NSW 2000, Australia.
| | - Xiaoqian Huang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yangxue Li
- Analysis Department of Chinese Medicine, Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China.
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yuhao Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, Sydney, NSW 2000, Australia.
| |
Collapse
|
77
|
Zhang Z, Ma G, Xue C, Sun H, Wang Z, Xiang X, Cai W. Establishment of rat liver microsome-hydrogel system for in vitro phase II metabolism and its application to study pharmacological effects of UGT substrates. Drug Metab Pharmacokinet 2019; 34:141-147. [PMID: 30744936 DOI: 10.1016/j.dmpk.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
Studies on the efficacy evaluation of UDP-glucuronosyltransferases (UGTs) substrates often ignore the existence of active metabolites. However, the present study aims to establish an in-vitro Phase II metabolism system to predict their pharmacological effects after metabolism. Rat liver microsomes (RLMs) encapsulated in a F127'-Acr-Bis (FAB) hydrogel were placed in the incubation system. Baicalein (BA) was chosen as a model drug and the metabolic activity was investigated by quantitating the metabolite Baicalin (BG). The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to measure the cell viability in Traditional cell culture system (TCCS) and Microsome-hydrogel added to cell culture system for Phase II metabolism (MHCCS-II). Finally, MHCCS-II was applied to predict the metabolic effects of Oroxylin A (OA) and Wogonin (W). Compared to TCCS group, for HepG2 and MCF-7 cells, BA in MHCCS-II led to lower survival ratios of cells (P < 0.05), while for PC12 cells it led to higher survival ratios of cells (P < 0.01). For HepG2 cells, OA and W showed obviously enhanced tumor inhibition after metabolism with the IC50 of 32.7 ± 2.9 μM and 76.1 ± 5.1 μM, respectively (P < 0.01). In conclusion, the MHCCS-II could be a useful tool for studying the pharmacokinetics and pharmacodynamics of UGTs substrates.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Guo Ma
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Caifu Xue
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hong Sun
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ziteng Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaoqiang Xiang
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Weimin Cai
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
78
|
Park C, Choi EO, Kim GY, Hwang HJ, Kim BW, Yoo YH, Park HT, Choi YH. Protective Effect of Baicalein on Oxidative Stress-induced DNA Damage and Apoptosis in RT4-D6P2T Schwann Cells. Int J Med Sci 2019; 16:8-16. [PMID: 30662323 PMCID: PMC6332490 DOI: 10.7150/ijms.29692] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/31/2018] [Indexed: 01/20/2023] Open
Abstract
Background: Due to its high antioxidant activity, baicalein, a kind of flavonoid present in Radical Scutellariae, has various pharmacological effects. However, the protective effect against oxidative stress in Schwann cells, which plays an important role in peripheral neuropathy, has not yet been studied. In this study, the effects of baicalein on hydrogen peroxide (H2O2)-induced DNA damage and apoptosis in RT4-D6P2T Schwann cells were evaluated. Methods: Cell viability assay was performed using MTT assay and colony formation assay. Apoptosis was assessed by flow cytometry analysis and DNA fragmentation assay. The effects on DNA damage and ATP content were analyzed by comet method and luminometer. In addition, changes in protein expression were observed by Western blotting. Results: Our results show that baicalein significantly inhibits H2O2-induced cytotoxicity through blocking reactive oxygen species (ROS) generation. We also demonstrate that baicalein is to block H2O2-induced DNA damage as evidenced by inhibition of DNA tail formation and γH2AX phosphorylation. Moreover, baicalein significantly attenuated H2O2-induced apoptosis and mitochondrial dysfunction, and restored inhibition of ATP production. The suppression of apoptosis by baicalein in H2O2-stimulated cells was associated with reduction of increased Bax/Bcl-2 ratio, activation of caspase-9 and -3, and degradation of poly (ADP-ribose) polymerase. Conclusions: These results demonstrate that baicalein eliminates H2O2-induced apoptosis through conservation of mitochondrial function by the removal of ROS. Therefore, it is suggested that baicalein protects Schwann cells from oxidative stress, and may be beneficial for the prevention and treatment of peripheral neuropathy induced by oxidative stress.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Republic of Korea
| | - Eun Ok Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Hye-Jin Hwang
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences & Human Ecology, Dong-eui University, Busan 47340, Republic of Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan 49201, Republic of Korea
| | - Hwan Tae Park
- Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan 49201, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
79
|
Wu B, Li HX, Lian J, Guo YJ, Tang YH, Chang ZJ, Hu LF, Zhao GJ, Hong GL, Lu ZQ. Nrf2 overexpression protects against paraquat-induced A549 cell injury primarily by upregulating P-glycoprotein and reducing intracellular paraquat accumulation. Exp Ther Med 2018; 17:1240-1247. [PMID: 30679998 PMCID: PMC6327482 DOI: 10.3892/etm.2018.7044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/26/2018] [Indexed: 12/26/2022] Open
Abstract
Paraquat (PQ) intoxication causes thousands of mortalities every year, worldwide. Its pulmonary-targeted accumulation and the acute lung injury it subsequently causes, remain a challenge for detoxification treatment. A previous study has demonstrated that the upregulation of nuclear factor erythroid-2 related factor 2 (Nrf2) prevents PQ toxicity in cell line and murine models. As Nrf2 target genes include a group of membrane transporters, the current study assessed the protective mechanism exerted by Nrf2 against PQ toxicity and intracellular PQ accumulation via its effects on P-glycoprotein (P-gp), a downstream transporter of Nrf2. Adenovirus vectors containing the Nrf2 gene were transfected into A549 cells. Cell proliferation was assessed by Cell Counting Kit-8. The levels of LDH, MDA, SOD, TNF-α, IL-6 levels were detected using their respective ELISA kits. In addition, the levels of Nrf2 and P-gp protein expression were detected by western blot analysis. The concentration of PQ was measured by HPLC. The results revealed that overexpressed Nrf2 significantly increased P-gp protein levels, decreased the intracellular accumulation of PQ and attenuated PQ-induced toxicity. However, the protective effects of Nrf2 overexpression on PQ-challenged A549 cells were abrogated following cyclosporine A treatment, a competitive inhibitor of P-gp, which also increased intracellular PQ levels. These data indicated that Nrf2 gene overexpression prevented PQ toxicity in A549 cells, potentially via the upregulation of P-gp activity and the inhibition of intracellular PQ accumulation. Thus, Nrf2 and P-gp may serve as potential therapeutic targets for the treatment of PQ-induced injury.
Collapse
Affiliation(s)
- Bin Wu
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hai-Xiao Li
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jie Lian
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yong-Jie Guo
- Department of Intensive Care Unit, Jiaxing Maternal and Child Health-Care Center, Jiaxing, Zhejiang 314000, P.R. China
| | - Ya-Hui Tang
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zi-Juan Chang
- Emergency Center, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Lu-Feng Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guang-Ju Zhao
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guang-Liang Hong
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhong-Qiu Lu
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
80
|
Ma J, Li S, Zhu L, Guo S, Yi X, Cui T, He Y, Chang Y, Liu B, Li C, Jian Z. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway. Free Radic Biol Med 2018; 129:492-503. [PMID: 30342186 DOI: 10.1016/j.freeradbiomed.2018.10.421] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/26/2018] [Accepted: 10/09/2018] [Indexed: 12/30/2022]
Abstract
Vitiligo is a complex disorder characterized by patchy loss of skin pigmentation due to abnormal melanocyte function. Overwhelming evidences have suggested that oxidative stress plays a major role in the loss of melanocytes thereby mediating the onset and progression of vitiligo. The nuclear factor erythroid 2-like factor 2 (Nrf2) is a master regulator of cellular redox homeostasis and the activation of Nrf2 signaling pathway is impaired in the vitiligo melanocytes. Baicalein, as flavonoid extracted from the Scutellaria baicalensis, has been proved to possess the ability to activate Nrf2 signaling pathway in other cell types and mouse model. Our previous data found that baicalein exerts a cytoprotective role in H2O2-induced apoptosis in human melanocytes cell line (PIG1). Based on these founding, we hypothesized that baicalein activates Nrf2 signaling pathway, alleviates H2O2-induced mitochondrial dysfunction and cellular damage, thereby protecting human vitiligo melanocytes from oxidative stress. In the present study, we found that baicalein effectively inhibited H2O2-induced cytotoxicity and apoptosis in human vitiligo melanocytes (PIG3V). Further results demonstrated that baicalein promoted Nrf2 nucleus translocation as well as up-regulated the expression of Nrf2 and its target gene, heme oxygenase-1 (HO-1). Moreover, the protective effects of baicalein against H2O2-induced cellular damage and apoptosis as well as mitochondrial dysfunction were abolished by Nrf2 knockdown. Additionally, we observed that Nrf2 knockdown suppressed proliferation and increased the sensitivity of PIG3V cells to H2O2 treatment. Finally, we explored the mechanism of baicalein associated with Nrf2 activation and found that the phosphorylation of Nrf2 as well as ERK1/2and PI3K/AKT signaling were not involved in the baicalein-induced activation of Nrf2. Taken together, these data clearly suggest that baicalein enhances cellular antioxidant defense capacity of human vitiligo melanocytes through the activation of the Nrf2 signaling pathway, providing beneficial evidence for the application of baicalein in the vitiligo treatment.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Longfei Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Yuanmin He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Bangmin Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
81
|
Su G, Chen H, Sun X. Baicalein suppresses non small cell lung cancer cell proliferation, invasion and Notch signaling pathway. Cancer Biomark 2018; 22:13-18. [PMID: 29614624 DOI: 10.3233/cbm-170673] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Baicalein is an important Chinese herbal medicine and has multiple pharmacological activities. However, the biological mechanisms of the anti-tumor effects of Baicalein on non small cell lung cancer (NSCLC) still need to be understood. METHODS Human NSCLC A549 and H1299 cells were pretreated with Baicalein or DMSO. Cells viability and transwell cell invasion assays were performed to assess cell proliferation and invasion. QRT-PCR assay was used to analyze mRNA expression levels of Twist1, E-cadhertin, Vimentin, Notch1 and hes-1. Western blot analysis was also performed to determine protein expression. RESULTS In the study, we found that Baicalein had a significantly inhibited effect on proliferation ability of A549 and H1299 cells. Cells treated with Baicalein showed a down-regulated expression of CyclinD1 and CDK1 in A549 and H1299 cells. Furthermore, we found that Baicalein significantly inhibited cell invasion and Epithelial-Mesenchymal Transition (EMT) by up-regulating the mRNA and protein expression of E-cadherin and down-regulated the Twist1 and Vimentin expression, Moreover, Treatment of Baicalein down-regulated Notch1 and hes-1 expression in A549 and H1299 cells, which indicated that Baicalein could suppress the Notch signaling pathway. CONCLUSION Our studies suggest that Baicalein may be a potential phytochemical flavonoid for therapeutics of NSCLC and serve as a molecular target for NSCLC.
Collapse
Affiliation(s)
- Guangfeng Su
- Department of Thoracic Surgery, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China.,Department of Thoracic Surgery, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Hao Chen
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China.,Department of Thoracic Surgery, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Xinhua Sun
- Department of Surgery, Boshan District Hospital of Traditional Chinese Medicine, Zibo 255200, Shandong, China
| |
Collapse
|
82
|
Fernández-Rojas B, Gutiérrez-Venegas G. Flavonoids exert multiple periodontic benefits including anti-inflammatory, periodontal ligament-supporting, and alveolar bone-preserving effects. Life Sci 2018; 209:435-454. [DOI: 10.1016/j.lfs.2018.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 12/19/2022]
|
83
|
Brand RM, Wipf P, Durham A, Epperly MW, Greenberger JS, Falo LD. Targeting Mitochondrial Oxidative Stress to Mitigate UV-Induced Skin Damage. Front Pharmacol 2018; 9:920. [PMID: 30177881 PMCID: PMC6110189 DOI: 10.3389/fphar.2018.00920] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
Unmitigated UV radiation (UVR) induces skin photoaging and multiple forms of cutaneous carcinoma by complex pathways that include those mediated by UV-induced reactive oxygen species (ROS). Upon UVR exposure, a cascade of events is induced that overwhelms the skin’s natural antioxidant defenses and results in DNA damage, intracellular lipid and protein peroxidation, and the dysregulation of pathways that modulate inflammatory and apoptotic responses. To this end, natural products with potent antioxidant properties have been developed to prevent, mitigate, or reverse this damage with varying degrees of success. Mitochondria are particularly susceptible to ROS and subsequent DNA damage as they are a major intracellular source of oxidants. Therefore, the development of mitochondrially targeted agents to mitigate mitochondrial oxidative stress and resulting DNA damage is a logical approach to prevent and treat UV-induced skin damage. We summarize evidence that some existing natural products may reduce mitochondrial oxidative stress and support for synthetically generated mitochondrial targeted cyclic nitroxides as potential alternatives for the prevention and mitigation of UVR-induced skin damage.
Collapse
Affiliation(s)
- Rhonda M Brand
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Austin Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
84
|
de Oliveira MR, de Bittencourt Brasil F, Fürstenau CR. Inhibition of the Nrf2/HO-1 Axis Suppresses the Mitochondria-Related Protection Promoted by Gastrodin in Human Neuroblastoma Cells Exposed to Paraquat. Mol Neurobiol 2018; 56:2174-2184. [PMID: 29998398 DOI: 10.1007/s12035-018-1222-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria are double-membrane organelles involved in the transduction of energy from different metabolic substrates into adenosine triphosphate (ATP) in mammalian cells. The oxidative phosphorylation system is comprised by the activity of the respiratory chain and the complex V (ATP synthase/ATPase). This system is dependent on oxygen gas (O2) in order to maintain a flux of electrons in the respiratory chain, since O2 is the final acceptor of these electrons. Electron leakage from this complex system leads to the continuous generation of reactive species in the cells. The mammalian cells exhibit certain mechanisms to attenuate the consequences originated from the constant exposure to these reactive species. In this context, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and one of the enzymes whose expression is modulated by Nrf2, heme oxygenase-1 (HO-1), take a central role in inducing cytoprotection in humans. Mitochondrial abnormalities are observed during intoxication and in certain diseases, including neurodegeneration. Mitochondrial protection promoted by natural compounds has attracted the attention of researchers due to the promising effects these agents induce experimentally. In this regard, we examined here whether and how gastrodin (GAS), a phenolic glucoside, would prevent the paraquat (PQ)-induced mitochondrial impairment in the SH-SY5Y cells. The cells were exposed to GAS (25 μM) for 4 h prior to the challenge with PQ at 100 μM for additional 24 h. The silencing of Nrf2 by siRNA or the inhibition of HO-1 by ZnPP IX suppressed the GAS-elicited cytoprotection. Therefore, GAS promoted mitochondrial protection by an Nrf2/HO-1-dependent manner.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil.
- Programa de Pós-Graduação em Química (PPGQ), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Flávia de Bittencourt Brasil
- Departamento de Ciências da Natureza, Campus Universitário de Rio das Ostras, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Cristina Ribas Fürstenau
- Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Patos de Minas, MG, Brazil
| |
Collapse
|
85
|
Shi R, Zhu D, Wei Z, Fu N, Wang C, Liu L, Zhang H, Liang Y, Xing J, Wang X, Wang Y. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition. Life Sci 2018; 207:442-450. [PMID: 29969608 DOI: 10.1016/j.lfs.2018.06.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022]
Abstract
AIMS Endothelial-to-mesenchymal transition (EndoMT) was shown to lead to endothelial cell (EC) dysfunction in pulmonary arterial hypertension (PAH). Baicalein was reported to inhibit epithelial-to-mesenchymal transition (EMT), a biological process that has many regulatory pathways in common with EndoMT. Whether it can attenuate PAH by inhibiting EndoMT remains obscure. MAIN METHODS PAH was induced by a single subcutaneous injection of MCT (60 mg/kg) in male Sprague Dawley rats. Two weeks after MCT administration, the rats in the treatment groups received baicalein orally (50 or 100 mg/kg/day) for an additional 2 weeks. Hemodynamic changes and right ventricular hypertrophy (RVH) were evaluated on day 28. Cardiopulmonary interstitial fibrosis was detected using Masson's trichrome, Picrosirius-red, and immunohistochemical staining. The reactivity of pulmonary arteries (PAs) was examined ex vivo. The protein expresson of EndoMT molecules, bone morphogenetic protein receptor 2 (BMPR2), and nuclear factor-κB (NF-κB) was examined to explore the mechanism of protective action of baicalein. KEY FINDINGS Baicalein (50 and 100 mg/kg) significantly alleviated MCT-induced PAH and cardiopulmonary interstitial fibrosis. Furthermore, baicalein treatment enhanced PA responsiveness to acetylcholine (ACh) in PAH rats. The upregulation of EndoMT molecules (N-cadherin, vimentin, Snail, and Slug) strongly suggest that EndoMT participates in MCT-induced PAH, which was reversed by baicalein (50 and 100 mg/kg) treatment. Moreover, baicalein partially reversed MCT-induced reductions in BMPR2 and NF-κB activation in the PAs. SIGNIFICANCE Baicalein attenuated MCT-induced PAH in rats by inhibiting EndoMT partially via the NF-κB-BMPR2 pathway. Thus, baicalein might be considered as a promising treatment option for PAH.
Collapse
Affiliation(s)
- Ruizan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China.
| | - Diying Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Zehui Wei
- Department of Pharmacology, Peace Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Naijie Fu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Chang Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Linhong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Huifeng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Yueqin Liang
- Medical Functional Experimental Center, Shanxi Medical University, Taiyuan 030001, China
| | - Jianfeng Xing
- Medical Functional Experimental Center, Shanxi Medical University, Taiyuan 030001, China
| | - Xuening Wang
- Department of Cardiovascular Surgery, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan 030032, China
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
86
|
Catechol-O-Methyltransferase and UDP-Glucuronosyltransferases in the Metabolism of Baicalein in Different Species. Eur J Drug Metab Pharmacokinet 2018; 42:981-992. [PMID: 28536775 DOI: 10.1007/s13318-017-0419-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Baicalein is the major bioactive flavonoid in some herb medicines and dietary plants; however, the detailed metabolism pathway of its major metabolite oroxylin A-7-O-β-D-glucuronide in human was not clear. It was important to illustrate the major metabolic enzymes that participate in its elimination for the clinic use of baicalein. OBJECTIVES We first revealed a two-step metabolism profile for baicalein and illustrated the combination of catechol-O-methyltransferase (COMT) and uridine diphosphate-glucuronosyltransferases (UGTs) in drug metabolism, further evaluated its bioactivity variation during drug metabolism. METHODS The metabolism profiles were systematically characterized in different human biology preparations; after then, the anti-inflammatory activities of metabolites were evaluated in LPS-induced RAW264.7 cell. RESULTS The first-step metabolite of baicalein was isolated and identified as oroxylin A; soluble-bound COMT (S-COMT) was the major enzyme responsible for its biotransformation. Specially, position 108 mutation of S-COMT significantly decreases the elimination. Meantime, oroxylin A was rapidly metabolized by UGTs, UGT1A1, -1A3, -1A6, -1A7, -1A8, -1A9, and -1A10 which were involved in the glucuronidation. Considerable species differences were observed with 1060-fold K m (3.05 ± 1.86-3234 ± 475 μM) and 330-fold CLint (5.93-1973 μL/min/mg) variations for baicalein metabolism. Finally, the middle metabolite oroxylin A exhibited a potent anti-inflammatory activity with the IC50 value of 28 μM. CONCLUSION The detailed kinetic parameters indicated that COMT provide convenience for the next glucuronidation; monkey would be a preferred animal model for the preclinical investigation of baicalein. Importantly, oroxylin A should be reconsidered in evaluating baicalein efficacy against inflammatory diseases.
Collapse
|
87
|
Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review. Brain Sci 2018; 8:brainsci8060104. [PMID: 29891783 PMCID: PMC6025220 DOI: 10.3390/brainsci8060104] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the gradual loss of neurons. The development of effective neuroprotective agents to prevent and control neurodegenerative diseases is specifically important. Recently, there has been an increasing interest in selecting flavonoid compounds as potential neuroprotective agents, owing to their high effectiveness with low side effects. Baicalin is one of the important flavonoid compounds, which is mainly isolated from the root of Scutellaria baicalensis Georgi (an important Chinese medicinal herb). In recent years, a number of studies have shown that baicalin has a potent neuroprotective effect in various in vitro and in vivo models of neuronal injury. In particular, baicalin effectively prevents neurodegenerative diseases through various pharmacological mechanisms, including antioxidative stress, anti-excitotoxicity, anti-apoptotic, anti-inflammatory, stimulating neurogenesis, promoting the expression of neuronal protective factors, etc. This review mainly focuses on the neuroprotective and cognitive enhancement effects of baicalin. The aim of the present review is to compile all information in relation to the neuroprotective and cognitive enhancement effects of baicalin and its molecular mechanisms of action in various in vitro and in vivo experimental models.
Collapse
|
88
|
Fang P, Yu M, Min W, Han S, Shi M, Zhang Z, Bo P. Beneficial effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice. Diabetes Res Clin Pract 2018. [PMID: 29526684 DOI: 10.1016/j.diabres.2018.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIMS Although baicalin has been shown to increase glucose uptake and insulin sensitivity in skeletal muscle of mice, there is no literature available about the effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice. METHODS In the present study, diet-induced obese mice were given 50 mg/kg baicalin intraperitoneally (i.p.) once a day for 21 days, and 3T3-L1 cells were treated with 100, 200, 400 μM baicalin for 3 h. Then insulin resistance indexes and insulin signal protein levels were examined to elucidate whether baicalin increased glucose uptake and GLUT4 translocation in adipocytes of diet-induced obese mice. RESULTS The present findings showed that administration of baicalin decreased food intake, body weight, HOMA-IR and p-p38 MAPK and pERK levels, but enhanced pAKT and PGC-1α contents, as well as GLUT4 mRNA, PGC-1α mRNA expression in adipocytes, and reversed high fat diet-induced glucose intolerance, hyperglycemia and insulin resistance in diet-induced obese mice. Moreover, baicalin treatment increased GLUT4 concentration in plasma membranes of adipocytes. CONCLUSIONS These data demonstrated that baicalin accelerated GLUT4 translocation from intracellular membrane compartments to plasma membranes in adipocytes. Baicalin plays a significant role in elevation of glucose uptake and insulin sensitivity to promote glucose clearance.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Wen Min
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Shiyu Han
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Mingyi Shi
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
89
|
Dai C, Tang S, Wang Y, Velkov T, Xiao X. Baicalein acts as a nephroprotectant that ameliorates colistin-induced nephrotoxicity by activating the antioxidant defence mechanism of the kidneys and down-regulating the inflammatory response. J Antimicrob Chemother 2018; 72:2562-2569. [PMID: 28859441 DOI: 10.1093/jac/dkx185] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/19/2017] [Indexed: 01/05/2023] Open
Abstract
Background Nephrotoxicity is the major adverse effect patients experience during colistin therapy. The development of effective nephroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. Objectives To investigate the nephroprotective effect of baicalein, a component of the root of Scutellaria baicalensis, against colistin-induced nephrotoxicity using a mouse model. Methods C57BL/6 mice were randomly divided into the following groups: control, baicalein 100 mg/kg/day (administered orally), colistin (18 mg/kg/day administered intraperitoneally) and colistin (18 mg/kg/day) plus baicalein (25, 50 and 100 mg/kg/day). After 7 day treatments, histopathological damage, the markers of renal functions, oxidative stress and inflammation were examined. The expressions of Nrf2, HO-1 and NF-κB mRNAs were also further examined using quantitative RT-PCR examination. Results Baicalein co-administration markedly attenuated colistin-induced oxidative and nitrative stress, apoptosis, the infiltration of inflammatory cells, and caused decreases in IL-1β and TNF-α levels (all P < 0.05 or 0.01) in the kidney tissues. Baicalein co-administration up-regulated expression of Nrf2 and HO-1 mRNAs and down-regulated the expression of NF-κB mRNA, compared with those in the colistin alone group. Conclusions To the best of our knowledge, this is the first study demonstrating the protective effect of baicalein on colistin-induced nephrotoxicity and apoptosis by activating the antioxidant defence mechanism in kidneys and down-regulating the inflammatory response. Our study highlights that oral baicalein could potentially ameliorate nephrotoxicity in patients undergoing polymyxin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yang Wang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Xilong Xiao
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
90
|
Fang CL, Wang Y, Tsai KHY, Chang HI. Liposome-Encapsulated Baicalein Suppressed Lipogenesis and Extracellular Matrix Formation in Hs68 Human Dermal Fibroblasts. Front Pharmacol 2018; 9:155. [PMID: 29559910 PMCID: PMC5845745 DOI: 10.3389/fphar.2018.00155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/13/2018] [Indexed: 01/02/2023] Open
Abstract
The dermis of human skin contains large numbers of fibroblasts that are responsible for the production of the extracellular matrix (ECM) that supporting skin integrity, elasticity and wound healing. Previously, an in vivo study demonstrated that dermal fibroblasts siting in the lower dermis are capable to convert into skin adipose layer and hence fibroblast lipogenesis may vary the structure and elasticity of dermis. In the present study, Hs68 human dermal fibroblasts were utilized as an in vitro model to study the lipogenesis via using adipogenic differentiation medium (ADM). Baicalein, isolated from Scutellaria baicalensis, is one of the flavonoids to inhibit adipocyte differentiation due to high antioxidant activity in vitro. In order to develop a suitable formulation for baicalein (a poorly water-soluble drug), soybean phosphatidylcholine (SPC) was used to prepare baicalein-loaded liposomes to enhance drug bioavailability. Our results demonstrated that liposome-encapsulated baicalein protected cell viability and increased cellular uptake efficiency of Hs68 fibroblasts. Lipid accumulation, triglyceride synthesis and gene expressions of lipogenesis enzymes (FABP4 and LPL) were significantly increased in ADM-stimulated Hs68 fibroblasts but subsequently suppressed by liposome-encapsulated baicalein. In addition, ADM-induced TNF-α expression and related inflammatory factors was down-regulated by liposome-encapsulated baicalein. Through ADM-induced lipogenesis, the protein expression of elastin, type I and type III collagens increased remarkably, whereas liposome-encapsulated baicalein can down-regulate ADM-induced ECM protein synthesis. Taken together, we found that liposome-encapsulated baicalein can inhibit ADM-induced lipid accumulation and ECM formation in Hs68 fibroblasts through the suppression of lipogenesis enzymes and inflammatory responses. Liposome-encapsulated baicalein may have the potential to improve wound healing and restore skin structure after skin injury.
Collapse
Affiliation(s)
- Chien-Liang Fang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, Concord Hospital, University of Sydney, Concord, NSW, Australia
| | - Kevin H-Y Tsai
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City, Taiwan
| | - Hsin-I Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City, Taiwan
| |
Collapse
|
91
|
Pharmacokinetic Characteristics of Baicalin in Rats with 17α-ethynyl-estradiol-induced Intrahepatic Cholestasis. Curr Med Sci 2018; 38:167-173. [PMID: 30074167 DOI: 10.1007/s11596-018-1861-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 11/29/2017] [Indexed: 12/11/2022]
Abstract
Baicalin is one of the main active ingredients of choleretic traditional Chinese medicine drug Radix Scutellariae. The aim of this study was to explore the pharmacokinetic characteristics of baicalin in rats with 17α-ethynylestradiol (EE)-induced intrahepatic cholestasis (IC) based on its choleretic effects. Firstly, rats were subcutaneously injected with EE solution (5 mg/kg, 0.25 mL/100 g) for 5 consecutive days to construct an IC model. Then the bile excretion rate, serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bile acid (TBA) and pathological changes of the liver were detected. Secondly, after successfully modeling, the rats were intragastrically given baicalin solution (200 mg/kg) (n=6). Blood samples were collected from the tail vein at different time points after intragastric administration. The protective effects of low- (50 mg/kg), medium- (100 mg/kg) and high-dose (200 mg/kg) baicalin on the liver in IC rats were evaluated. The content of baicalin in plasma was detected by liquid chromatography-mass spectrometry/mass spectrometry and pharmacokinetics parameters were calculated. Pharmacodynamic results showed that low-, medium- and high-dose baicalin all significantly increased the average excretion rate of bile (P<0.05), and significantly decreased serum levels of ALT, AST and ALP and TBA (P<0.05). Meanwhile, HE staining showed that baicalin significantly relieved EE-induced hepatocyte edema and necrosis. Pharmacokinetic results exhibited that the absorption of baicalin in both IC and normal control rats showed bimodal phenomenon. Cmax, AU(0-t) and AUC(0-∞) of baicalin in IC rats were significantly higher than those of the normal control group (P<0.01). T1/2 of plasma baicalin in the model group was significantly extended to (11.09±1.84) h, with clearance dropping to 61.78% of that of the normal control group (P<0.01). The above results suggested that baicalin had protective effects on the liver of IC rats, accompanied by significantly increased in vivo exposure, delayed in vivo clearance and markedly alterative pharmacokinetic characteristics. This study provides a theoretical basis for further development of baicalin as a feasible drug for treating IC.
Collapse
|
92
|
Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system. Cell Death Dis 2018; 9:234. [PMID: 29445081 PMCID: PMC5833405 DOI: 10.1038/s41419-018-0318-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022]
Abstract
In this study, the effects of Baicalin on the hyperglycemia-induced cardiovascular malformation during embryo development were investigated. Using early chick embryos, an optimal concentration of Baicalin (6 μM) was identified which could prevent hyperglycemia-induced cardiovascular malformation of embryos. Hyperglycemia-enhanced cell apoptosis was reduced in embryos and HUVECs in the presence of Baicalin. Hyperglycemia-induced excessive ROS production was inhibited when Baicalin was administered. Analyses of SOD, GSH-Px, MQAE and GABAA suggested Baicalin plays an antioxidant role in chick embryos possibly through suppression of outwardly rectifying Cl(−) in the high-glucose microenvironment. In addition, hyperglycemia-enhanced autophagy fell in the presence of Baicalin, through affecting the ubiquitin of p62 and accelerating autophagy flux. Both Baicalin and Vitamin C could decrease apoptosis, but CQ did not, suggesting autophagy to be a protective function on the cell survival. In mice, Baicalin reduced the elevated blood glucose level caused by streptozotocin (STZ). Taken together, these data suggest that hyperglycemia-induced embryonic cardiovascular malformation can be attenuated by Baicalin administration through suppressing the excessive production of ROS and autophagy. Baicalin could be a potential candidate drug for women suffering from gestational diabetes mellitus.
Collapse
|
93
|
Fang P, Yu M, Min W, Wan D, Han S, Shan Y, Wang R, Shi M, Zhang Z, Bo P. Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats. Life Sci 2018; 196:156-161. [PMID: 29459024 DOI: 10.1016/j.lfs.2018.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/07/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
AIMS Although baicalin could attenuate obesity-induced insulin resistance, the detailed mechanism of baicalin on glucose uptake has not been sufficiently explored as yet. The aim of this study was to survey if baicalin might facilitate glucose uptake and to explore its signal mechanisms in L6 myotubes. MATERIALS AND METHODS L6 myotubes were treated with 100, 200, 400 μM baicalin for 6 h, 12 h and 24 h in this study. Then 2-NBDG and insulin signal protein levels in myotubes of L6 cells were examined. KEY FINDINGS We discovered that administration of baicalin enhanced GLUT4, PGC-1α, pP38MAPK, pAKT and pAS160 contents, as well as GLUT4 mRNA and PGC-1α mRNA levels in L6 myotubes. The beneficial metabolic changes elicited by baicalin were abrogated in myotubes of L6 by P38MAPK or AKT inhibitors. SIGNIFICANCE These results suggest that baicalin promoted glucose uptake in myotubes by differential regulation on P38MAPK and AKT activity. In conclusion, these data provide insight that baicalin is a powerful and promising agent for the treament of hyperglycemia via AKT/AS160/GLUT4 and P38MAPK/PGC1α/GLUT4 pathway.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Wen Min
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Dan Wan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Shiyu Han
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Yizhi Shan
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Rui Wang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Mingyi Shi
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
94
|
Wu X, Zhi F, Lun W, Deng Q, Zhang W. Baicalin inhibits PDGF-BB-induced hepatic stellate cell proliferation, apoptosis, invasion, migration and activation via the miR-3595/ACSL4 axis. Int J Mol Med 2018; 41:1992-2002. [PMID: 29393361 PMCID: PMC5810201 DOI: 10.3892/ijmm.2018.3427] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatic fibrosis is a physiological response to liver injury that includes a range of cell types. The pathogenesis of hepatic fibrosis currently focuses on hepatic stellate cell (HSC) activation into muscle fiber cells and fibroblasts. Baicalin is a flavone glycoside. It is the glucuronide of baicalein, which is extracted from the dried roots of Scutellaria baicalensis Georgi. Previous work focused on the anti-viral, -inflammatory and -tumor properties of baicalin. However, the potential anti-fibrotic effects and mechanisms of baicalin are not known. The present study demonstrated that baicalin influenced the activation, proliferation, apoptosis, invasion and migration of platelet-derived growth factor-BB-induced activated HSC-T6 cells in a dose-dependent manner. To investigate the anti-fibrotic effect of baicalin, a one-color micro (mi)RNA array and reverse transcription-quantitative polymerase chain reaction analyses were used. Results demonstrated that baicalin increased the expression of the miRNA, miR-3595. In addition, the inhibition of miR-3595 substantially reversed the anti-fibrotic effect of baicalin. The present data also suggested that miR-3595 negatively regulates the long-chain-fatty-acid-CoA ligase 4 (ACSL4). Furthermore, ACSL4 acted in a baicalin-dependent manner to exhibit anti-fibrotic effects. Taken together, it was concluded that baicalin induces miR-3595 expression that modulates the expression levels of ACSL4. To the best of our knowledge, the present study is the first to demonstrate that baicalin induces overexpression of human miR-3595, and subsequently decreases the expression of ACSL4, resulting in an anti-fibrotic effect.
Collapse
Affiliation(s)
- Xiongjian Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weijian Lun
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiliang Deng
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wendi Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
95
|
de Oliveira MR. Carnosic Acid as a Promising Agent in Protecting Mitochondria of Brain Cells. Mol Neurobiol 2018; 55:6687-6699. [DOI: 10.1007/s12035-017-0842-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
|
96
|
Liposome‑delivered baicalein induction of myeloid leukemia K562 cell death via reactive oxygen species generation. Mol Med Rep 2018; 17:4524-4530. [PMID: 29328378 PMCID: PMC5802230 DOI: 10.3892/mmr.2018.8396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/18/2017] [Indexed: 11/28/2022] Open
Abstract
Baicalein (BL), a potential cancer chemopreventative flavone, has been reported to inhibit cancer cell growth by inducing apoptosis and causing cell cycle arrest in various human cancer cell models. Delivery of BL via nanoliposomes has been shown to improve its oral bioavailability and long-circulating property in vivo. However, the role of BL in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms has yet to be elucidated. In the present study, BL was formulated into liposomes with different sizes to improve its solubility and stability. The cytotoxic and pro-apoptotic effects of free BL and liposomal BL were also evaluated. The results demonstrated that 100 nm liposomes were the most stable formulation when compared with 200 and 400 nm liposomes. Liposomal BL inhibited K562 cell growth as efficiently as free BL (prepared in DMSO), indicating that the liposome may be a potential vehicle to deliver BL for the treatment of CML. Flow cytometry analysis showed that there was significant (P<0.005) cell cycle arrest in the sub-G1 phase (compared with vehicle control), indicating cell apoptosis following 20 µM liposomal BL or free BL treatment of K562 cells for 48 h. The induction of cell apoptosis by all BL preparations was further confirmed through the staining of treated cells with Annexin V-fluorescein isothiocyanate/propidium iodide. A significant increase in reactive oxygen species (ROS) generation was observed in free BL and liposomal BL treated cells, with a higher level of ROS produced from those treated with free BL. This indicated that cell apoptosis induced by BL may be via ROS generation and liposome delivery may further extend the effect through its long-circulating property.
Collapse
|
97
|
de Oliveira MR, Brasil FB, Fürstenau CR. Evaluation of the Mitochondria-Related Redox and Bioenergetics Effects of Gastrodin in SH-SY5Y Cells Exposed to Hydrogen Peroxide. J Mol Neurosci 2018; 64:242-251. [PMID: 29330687 DOI: 10.1007/s12031-018-1027-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
Abstract
Mitochondrion is the main site of ATP production in animal cells and also orchestrates signaling pathways associated with cell survival and death. Mitochondrial dysfunction has been linked to bioenergetics and redox impairment in human diseases, such as neurodegeneration and cardiovascular disease. Protective agents able to attenuate mitochondrial impairment are of pharmacological interest. Gastrodin (GAS; 4-hydroxybenzyl alcohol 4-O-beta-D-glucoside) is a phenolic glucoside obtained from the Chinese herbal medicine Gastrodia elata Blume and exhibits antioxidant, anti-inflammatory, and antiapoptotic effects in several cell types. GAS is able to cross the blood-brain barrier, reducing the impact of different stressors on the cognition of experimental animals. In the present work, we investigated whether GAS would protect mitochondria of human SH-SY5Y neuroblastoma cells against an exposure to a pro-oxidant agent. The cells were treated with GAS at 25 μM for 30 min before the administration of hydrogen peroxide (H2O2) at 300 μM for an additional 3 or 24 h, depending on the assay. We evaluated both mitochondrial redox state and function parameters and analyzed the mechanism by which GAS protected mitochondria in this experimental model. Silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor suppressed the GAS-induced mitochondrial protection seen here. Moreover, Nrf2 knockdown abrogated the effects of GAS on cell viability, indicating a potential role for Nrf2 in both mitochondrial and cellular protection promoted by GAS. Further research would be necessary to investigate whether GAS would be able to induce similar effects in in vivo experimental models.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil.
| | | | - Cristina Ribas Fürstenau
- Instituto de Genética e Bioquímica (INGEB), Universidade Federal de Uberlândia (UFU), Patos de Minas, MG, Brazil
| |
Collapse
|
98
|
Dou J, Wang Z, Ma L, Peng B, Mao K, Li C, Su M, Zhou C, Peng G. Baicalein and baicalin inhibit colon cancer using two distinct fashions of apoptosis and senescence. Oncotarget 2018; 9:20089-20102. [PMID: 29732005 PMCID: PMC5929448 DOI: 10.18632/oncotarget.24015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 01/01/2018] [Indexed: 12/30/2022] Open
Abstract
Baicalein and baicalin are active components of the Scutellaria baicalensis Georgi and both have broad anti-tumor activity. However, how and whether baicalein and baicalin inhibit colon cancer is unclear. Here we demonstrate that baicalein and baicalin can significantly inhibit human colon cancer cell growth and proliferation. Furthermore, both can induce cell cycle arrest, and suppress cancer cell colony formation and migration. The suppressive effects are mechanistically due to the induction of colon cancer cell apoptosis and senescence mediated by baicalein and baicalin, respectively. Furthermore, we revealed that baicalin-induced senescence in tumor cells is due to its inhibition of telomerase reverse transcriptase expression in tumor cells, and that MAPK ERK and p38 signaling pathways are causatively involved in the regulation of colon cancer cell apoptosis and senescence mediated by baicalein and baicalin. In addition, our in vivo studies using human colon cancer cells in humanized mouse xenograft models, further demonstrated that baicalein and baicalin can induce tumor cell apoptosis and senescence, resulting in inhibition of tumorigenesis and growth of colon cancer in vivo. These data clearly suggest that baicalein and baicalin have potent anti-cancer effects against human colon cancer and could be potential novel and effective target drugs for cancer therapy.
Collapse
Affiliation(s)
- Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.,Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Zhou Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Leon Ma
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Bo Peng
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Ke Mao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chengqin Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mengqi Su
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| |
Collapse
|
99
|
Chen B, Luo M, Liang J, Zhang C, Gao C, Wang J, Wang J, Li Y, Xu D, Liu L, Zhang N, Chen H, Qin J. Surface modification of PGP for a neutrophil-nanoparticle co-vehicle to enhance the anti-depressant effect of baicalein. Acta Pharm Sin B 2018; 8:64-73. [PMID: 29872623 PMCID: PMC5985696 DOI: 10.1016/j.apsb.2017.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023] Open
Abstract
Exploiting cells as vehicles combined with nanoparticles combined with therapy has attracted increasing attention in the world recently. Red blood cells, leukocytes and stem cells have been used for tumor immunotherapy, tissue regeneration and inflammatory disorders, and it is known that neutrophils can accumulate in brain lesions in many brain diseases including depression. N-Acetyl Pro-Gly-Pro (PGP) peptide shows high specific binding affinity to neutrophils through the CXCR2 receptor. In this study, PGP was used to modify baicalein-loaded solid lipid nanoparticles (PGP-SLNs) to facilitate binding to neutrophils in vivo. Brain-targeted delivery to the basolateral amygdala (BLA) was demonstrated by enhanced concentration of baicalein in the BLA. An enhanced anti-depressant effect was observed in vitro and in vivo. The mechanism involved inhibition of apoptosis and a decrease in lactate dehydrogenase release. Behavioral evaluation carried out with rats demonstrated that anti-depression outcomes were achieved. The results indicate that PGP-SLNs decrease immobility time, increase swimming time and climbing time and attenuate locomotion in olfactory-bulbectomized (OB) rats. In conclusion, PGP modification is a strategy for targeting the brain with a cell-nanoparticle delivery system for depression therapy.
Collapse
Affiliation(s)
- Baoyu Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Man Luo
- Department of Pharmaceutics, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jianming Liang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
| | - Chun Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
| | - Caifang Gao
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
| | - Jue Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
| | - Yongji Li
- Department of Pharmaceutics, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Desheng Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lina Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Ning Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Corresponding authors.
| | - Huijun Chen
- The Second Hospital Affiliated Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, China
- Corresponding authors.
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
- Corresponding authors.
| |
Collapse
|
100
|
Baicalin attenuates diet induced nonalcoholic steatohepatitis by inhibiting inflammation and oxidative stress via suppressing JNK signaling pathways. Biomed Pharmacother 2017; 98:111-117. [PMID: 29247950 DOI: 10.1016/j.biopha.2017.12.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/02/2017] [Accepted: 12/05/2017] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic steatohepatitis may develop into hepatic cirrhosis. The therapeutic drugs for NASH are absent. Baicalin (BC) has hepatoprotective effect, while whether BC could prevent the development of NASH is unknown. This study aimed to investigate the effect of BC on the development of diet induced NASH and the possible mechanisms involved. Mice were fed with high fat and high cholesterol (HFC) diet to establish a NASH model, BC (0.5% w/w) was added into the diet to evaluate its effect on NASH. Mice fed an HFC diet developed NASH in 12 weeks. BC administration attenuated hepatic steatosis, inflammation and fibrosis induced by HFC diet. The NALFD activity score (NAS) was sharply decreased by BC. Mice serum ALT and AST were decreased in the BC group. BC decreased hepatic inflammatory cell infiltration, inflammatory genes (MCP-1, TNFα) and fibrosis genes (COL1, α-SMA, TGFβ) mRNA expression. BC has antioxidant function evidenced by upregulated hepatic GSH and SOD levels and downregulated MDA levels. BC restored some oxidative stress markers including 4-HNE, 8-OHdG in liver. Western blot analysis stated that BC suppressed pro-inflammatory COX-2 levels, pro-oxidative CYP2E1 levels and phosphorylation of JNK in mice liver. Collectively, BC can attenuate diet induced NASH and the mechanism in which possibly due to its anti-inflammatory and anti-oxidant effects via blockade of the activation of JNK.
Collapse
|